离子交换树脂基础知识..
离子交换树脂使用方法
离子交换树脂使用方法
离子交换树脂是一种常见的水处理方法,用于去除水中的离子物质。
以下是离子交换树脂的使用方法:
1. 准备工作:根据水质需求,选择合适的离子交换树脂。
树脂通常以珠形或颗粒形式存在,可以根据需要选择合适的尺寸。
2. 选择床层:根据水处理系统的需求,确定离子交换树脂的床层深度。
一般来说,树脂床层的深度越大,处理效果越好。
3. 处理过程:将离子交换树脂装入处理设备中,通常为一个带有床层的垂直柱状容器。
将待处理的水通过树脂床层流过,树脂会吸附或释放特定的离子物质。
4. 回收树脂:当树脂饱和时,需要进行树脂的再生或更换。
根据不同的树脂类型和水质要求,可以使用盐水(纳盐)或酸碱溶液(酸洗、碱洗)来再生树脂,从而使其恢复吸附能力。
5. 检测和控制:使用合适的水质测试仪器,对处理过的水进行定期检测,以确保离子交换树脂的性能和处理效果。
需要注意的是,离子交换树脂的使用过程可能会受到多个因素的影响,如水质、水量、树脂种类和状态等。
因此,在实际操作中,可能需要根据具体情况进行适
当的调整和优化。
离子交换树脂 载量
离子交换树脂载量摘要:1.离子交换树脂的概述2.离子交换树脂的分类与特点3.离子交换树脂的应用领域4.离子交换树脂的载量及其影响因素5.如何选择和使用离子交换树脂6.离子交换树脂的再生与维护正文:离子交换树脂是一种广泛应用于水处理、化工、冶金、食品、制革、制药等领域的材料。
它通过选择、交换、吸附和催化反应,实现净化水、脱盐、脱色、分离、精制等目的。
离子交换树脂主要分为阳离子树脂和阴离子树脂。
阳离子树脂由苯乙烯和二乙烯苯共聚而成,带有磺酸基团,具有良好的交换容量和交换速度。
阴离子树脂则是在苯乙烯-二乙烯苯共聚基体上带有磺酸基团的离子交换树脂,具有高交换容量和快速交换的特点。
离子交换树脂的载量是指树脂中可交换离子的数量,它受到树脂的物理和化学性质、制备工艺、再生方式等因素的影响。
一般来说,载量越高,树脂的性能越好。
但载量并非唯一决定树脂性能的因素,还需考虑树脂的交换速度、机械强度、耐热性等指标。
在使用离子交换树脂时,应根据实际需求选择合适的树脂类型和规格。
对于水处理行业,通常选择强酸性和弱酸性离子交换树脂;在化工领域,可根据需要选择特定功能的离子交换树脂。
此外,在使用过程中,要定期检查树脂的性能,如发现性能下降,应及时进行再生处理。
离子交换树脂的再生主要有两种方法:一种是化学再生,使用酸或碱溶液对树脂进行处理,使其恢复交换能力;另一种是物理再生,通过加热、搅拌、洗涤等方式去除树脂上的吸附物,恢复其交换能力。
无论哪种方法,都需要注意再生剂的浓度、温度、时间等条件,以保证再生效果。
总之,离子交换树脂是一种重要的新型材料,其选择、使用和再生均需要专业知识。
离子交换树脂安全操作及保养规程
离子交换树脂安全操作及保养规程离子交换树脂是一种广泛应用于水处理、化工制药、食品饮料等领域的特种分离材料。
但是,在使用离子交换树脂进行特定的反应时,它的对操作人员的危害也不容忽视。
因此,为了确保操作人员的安全,本文将介绍离子交换树脂的安全操作和保养规程。
离子交换树脂的基本概念离子交换树脂顾名思义,是一种能够与同等电量的离子交换的材料。
树脂中的离子与外部的离子进行反应,从而改变其形态和性质,实现特定的反应目的。
离子交换树脂分为阳离子交换树脂和阴离子交换树脂。
阳离子交换树脂主要用于固定带负电荷离子,阴离子交换树脂主要用于固定带正电荷离子。
离子交换树脂具有良好的分离性能和疏水性能,可广泛应用于污水处理、电子化学、饮用水、药品制造、纺织染料等领域。
离子交换树脂的危害离子交换树脂本身对人体不会造成伤害,但在处理离子交换树脂的过程中,操作人员接触到的化学品和化学制品如酸、碱、有机物等会对身体造成伤害。
1.对皮肤刺激:离子交换树脂能直接刺激皮肤和敏感部位,损害皮肤组织。
2.对眼睛刺激:如果离子交换树脂接触到眼睛,会引起眼睛痛、红、肿和流泪,这时应立即用大量清水将其冲洗。
3.对呼吸系统的影响:加工离子交换树脂的操作室通常没有足够的通风,长时间吸入到盲气、二氧化碳等有害气体,会对呼吸系统造成危害,影响身体健康。
离子交换树脂的安全操作规程离子交换树脂的安全操作规程通常要求操作人员保持警觉,并遵循一系列的操作流程和控制要求。
1.离子交换树脂的储存应该避免阳光直射和空气接触,对于不同种类的树脂应分别储存。
2.操作人员在操作离子交换树脂之前,应该全面了解该材料的特性和危害,认真阅读操作手册和标签。
3.操作人员应该穿戴好个人防护装备,根据不同材料和危害程度选择合适的防护措施,包括戴口罩、防护镜、手套等。
4.操作人员需要能够正确分辨不同的离子交换树脂,避免操作混淆,发生误操作。
5.操作人员应该正确调整和控制反应条件,防止产生不必要的危害。
离子交换树脂基础知识
压缩空气的压力:0.1~0.15MPa 压缩空气的流量:2~3Nm3/(m2·s) 混合时间:30~60s
离子交换树脂基础知识
水处理专业学习笔记
离子交换树脂的结构
二乙烯苯将苯乙烯单体聚合而成 的线型高分子交联起来,搭接成 一个立体型的高分子化合物,不 溶于水的球状固体(树脂)。
苯乙烯和二乙烯苯聚合成的网状 聚合物树脂,是透明或半透明的 凝胶状结构。
离子交换树脂的双电层结构
由内层的带负电荷的固定离子和 外层的带正电荷的可交换离子组 成了“双电层结构”。
强酸阳树脂Na型
可以独立使用 用Na+置换水中的Ca2+、Mg2+ 去除了钙、镁的碳酸盐硬度和永久硬度 离子交换之后,水中阴离子成分不改变,水的碱度不改变 使用NaCl溶液再生
弱酸阳树脂H型
不独立使用 用H+置换水中的Ca2+、Mg2+ 去除了钙、镁的碳酸盐硬度,不能去除永久硬度 对于中性盐没有交换能力 离子交换之后,水的碱度降低,碳酸盐硬度降低,出水微酸,有CO2 使用HCl溶液再生
H-Na软化降碱
弱酸阳树脂H型+强酸阳树脂Na型
强酸阳树脂H型
不独立使用 用H+置换水中所有阳离子 离子交换后,中性溶解盐都转变成了相应的强酸,出水酸性 离子交换后,碳酸盐转变成了碳酸 使用HCl溶液再生
强碱阴树脂OH型
不独立使用 用OH-置换水中所有阴离子 离子交换后,溶液呈碱性 使用NaOH溶液再生
树脂的交换
磺酸型强酸性阳树脂(R-Na+的亲合力大于H+ 完全交换后的树脂为R-SO3Na 交换后的溶液呈酸性
离子交换树脂工作原理
离子交换树脂工作原理离子交换树脂是一种吸附介质,它能够通过交换其固定的离子与溶液中的离子达到去除或吸附某些成分的目的。
其工作原理可以分为吸附、解吸和再生三个过程。
1. 吸附:当溶液通过离子交换树脂时,树脂中固定的离子会与溶液中的离子发生交换反应,树脂上的固定离子释放到溶液中,而溶液中的离子则附着在树脂上。
这个过程可以选择性地去除特定的离子或分子,使溶液中的成分得到富集或去除。
2. 解吸:当树脂吸附达到一定饱和度后,需要对树脂进行解吸,即从树脂上去除吸附的离子或分子。
可以通过改变溶液的性质,如改变酸碱度、浓度等,使溶液中的离子与树脂上的固定离子交换,使树脂上的离子释放到溶液中,达到解吸的目的。
3. 再生:树脂在多次使用后会逐渐失去吸附能力,此时需要对树脂进行再生。
再生的方法有多种,常见的包括用盐水洗涤、用酸或碱洗涤等。
通过这些方法,可以将吸附在树脂上的离子彻底去除,使树脂恢复到初始状态,再次用于吸附过程。
综上所述,离子交换树脂通过固定离子与溶液中的离子交换,达到去除或吸附特定成分的目的。
通过解吸和再生,树脂可以多次使用,提高了其经济性和可持续性。
继续:离子交换树脂的工作原理可以进一步细分为两个方面:固定相和移动相。
1. 固定相:离子交换树脂的固定相是树脂内部的交联聚合物。
交联聚合物中含有特定的离子基团,如偶氮树脂中的-NH2基团或阴离子树脂中的-RSO3H基团,这些基团会与溶液中的离子交换。
2. 移动相:溶液中的离子是离子交换树脂工作的移动相。
当溶液从树脂上流经时,其中的离子会与树脂上的固定离子发生交换,并附着在树脂上。
这个过程中,离子在树脂与溶液之间交换位置,从而实现了溶液中特定成分的去除或富集。
离子交换树脂的选择性是由其固定相的種類或結構所决定的。
例如,阴离子树脂主要用于吸附溶液中的阳离子,而阳离子树脂则用于吸附溶液中的阴离子。
此外,还有具有特定的选择性的离子交换树脂,如特异性吸附镁离子、铝离子等的树脂。
弱酸阳离子交换树脂和强酸阳离子树脂
弱酸阳离子交换树脂和强酸阳离子树脂1. 阳离子交换树脂的基本知识你有没有想过,你喝的水或是用的化学品里,隐藏着一种神奇的东西,可以把不需要的离子换成你需要的离子?别急,这不是魔法,而是阳离子交换树脂的奇妙之处。
说白了,阳离子交换树脂就是一种能够在液体中“交换”离子的材料。
它们像是化学界的“调皮捣蛋鬼”,随时准备着把不受欢迎的离子赶走,换上我们需要的“新朋友”。
2. 弱酸阳离子交换树脂说到弱酸阳离子交换树脂,咱们可以把它想象成一个温和的老者。
他不急不躁,对离子的交换比较随意。
它的工作原理是这样的:树脂的交换基团是弱酸性的,这意味着它们能交换出弱酸性离子(比如氢离子),但对那些强酸性离子(比如硫酸根)不太“感冒”。
这就像是他只愿意跟温和的朋友打交道,对那些性格火爆的就不太上心了。
用弱酸阳离子交换树脂处理水质时,它的反应比较温柔,通常用于处理那些离子浓度不是特别高的情况。
如果你要处理的水里只有一点点的“脏东西”,这个“老者”就非常合适。
比如,它可以用在软水处理、清洗一些较温和的化学品等。
3. 强酸阳离子交换树脂再来聊聊强酸阳离子交换树脂,这可是一位霸气的“超级英雄”,就像是化学界的“大力士”。
它的交换基团是强酸性的,能与各种离子快速而有效地交换。
无论你的水里有多少种复杂的离子,它都能“一网打尽”。
简直就是不怕麻烦的“工作狂”,全力以赴地清除一切杂质。
它的应用范围更广,比如在那些离子浓度高、要求严格的环境中,它表现得尤为出色。
强酸阳离子交换树脂通常用在需要高效去除水中各种离子的场景,如工业废水处理、某些化学反应的催化等。
比如说,你要清理那些堆积如山的废水,它就像是用巨大的网子,把所有杂质一一捞出,确保你得到的水质是顶呱呱的。
4. 弱酸与强酸树脂的对比这俩树脂其实就像是性格迥异的两个人,一个是和善的长者,另一个是霸气的英雄。
他们各自有各自的优缺点,就像“文人”与“武将”的差别。
弱酸阳离子交换树脂的优势在于处理低浓度离子时,它非常温和,不容易对处理对象产生损伤。
6.阳离子交换树脂的基本结构及其工作原理
6.阳离子交换树脂的基本结构及其工作原理阳离子交换树脂是一种广泛用于水处理、化工、医药等领域的重要材料,它通过特殊的结构和工作原理,能够有效去除水中的阳离子杂质,从而改善水质或提纯目标物质。
本文将深入探讨阳离子交换树脂的基本结构及其工作原理,帮助读者更全面地了解这一重要材料。
一、阳离子交换树脂的基本结构1.1 树脂基质阳离子交换树脂的基本结构首先包括树脂基质,它通常由聚苯乙烯、丙烯腈、乙烯基苯等聚合物材料组成。
这些基质具有良好的机械强度和化学稳定性,能够承受反复的离子交换操作。
1.2 功能基团阳离子交换树脂的基本结构中含有功能基团,这些功能基团负责与水中的阳离子发生交换反应。
常见的功能基团包括硫酸基(-SO3H)、胺基(-NH2)等,它们具有高度选择性地吸附和释放特定的阳离子。
1.3 孔隙结构阳离子交换树脂还具有一定的孔隙结构,这些微孔和介孔为水分子和离子提供了通道,有利于吸附和传输反应。
二、阳离子交换树脂的工作原理2.1 离子交换过程阳离子交换树脂的工作原理主要是通过离子交换过程来去除水中的阳离子杂质。
当含有阳离子的水流经阳离子交换树脂床层时,阳离子与功能基团发生吸附和交换反应,被树脂表面所吸附,而树脂上原有的阳离子则被释放出来,达到了去除杂质的目的。
2.2 再生与回收阳离子交换树脂还可以通过再生和回收来重复利用。
当树脂吸附饱和后,可以通过使用盐酸、硫酸等溶液对其进行再生,使其脱除吸附的阳离子,恢复至初始状态,方便后续的继续使用。
三、个人观点和理解阳离子交换树脂凭借其独特的结构和工作原理在水处理、化工等领域发挥着重要的作用。
通过合理选择基质材料和功能基团,可以实现对不同类型阳离子的高效吸附和去除,为水质改善和目标物质提纯提供了有力支持。
阳离子交换树脂的再生与回收特性也大大降低了成本,具有良好的经济效益。
总结回顾通过本文的对阳离子交换树脂的基本结构及工作原理的深入探讨,相信读者对该主题有了更全面、深入的理解。
离子交换树脂综合知识
离子交换树脂综合知识1树脂的储存和运输1、离子交换树脂在长期储存中,或需在停用设备内长期存放,强型树脂(强酸性和强碱性树脂)应转为盐型,弱型树脂(弱酸性和弱碱性树脂)可转为相应的氢型或游离胺型,也可转变为盐型,以保持树脂性能的稳定。
然后浸泡在洁净的水中。
停用设备若须将水排去,则应密封,以防树脂中水份散失。
2、离子交换树脂内含有一定的平衡水份,在储存和运输中应保持湿润,防止脱水。
树脂应储存在室内或加遮盖,环境温度以5°C-40°C为宜。
袋装树脂应避免直接日晒,远离锅炉、取暖器等加热装置,避免脱水。
若发现树脂已有脱水现象,切勿将树脂直接放于水中,以免干树脂遇水急剧溶胀而破碎。
应根据其脱水程度,用10%左右的食盐水慢慢加入到树脂中,浸泡数小时后用洁净水逐步稀释。
3、当环境温度在0°C或以下时,为防止树脂因内部水份结冰而崩裂,应做好保温措施,或根据气温条件,将树脂存于相应浓度的食盐水中,防止冰冻。
若发现树脂已被冻,则应让其缓慢自然解冻,切不可用机械力施于树脂。
食盐溶液浓度与冰点的关系如下表:4、长期停用而放置在交换器内的树脂,为防止微生物(如藻类、细菌等)对树脂的不可逆污染,树脂在停用前须彻底反洗,以除去运行时积聚的悬浮物质,并注意定期冲洗和换水。
或彻底反洗后采用以下措施:阴树脂:用3倍树脂体积的10%NaCl+2%NaOH混合液分两次通过树脂层,每次静止浸泡数小时,然后将其排去。
如有必要,在重新启动前用2倍树脂体积的0.2%过氧化氢(H2O2)溶液淋洗树脂层。
阳树脂:在阳离子交换器及管系内可充入0.5%的甲醛溶液,并在停用期间保持此浓度。
也可用食盐水浸泡。
在设备重新启动前用0.2%过氧化氢或0.5%甲醛溶液淋洗。
2树脂的预处理在离子交换树脂的工业产品中,常含有少量的有机低聚物及一些无机杂质。
在使用初期会逐渐溶解释放,影响出水水质或产品质量。
因此,新树脂在使用前必须进行预处理,具体方法如下:1、树脂装入交换器后,用洁净水反洗树脂层,展开率为50-70%,直至出水清晰、无气味、无细碎树脂为止。
001×7阳离子交换树脂使用常识1
001×7阳离子交换树脂使用常识一、贮存和运输001×7阳树脂不属于危险品和有毒品,可以采用各种交通工具运输,在运输和搬动中,应注意保护包装物、出厂标志和合格证完整无缺。
如发现包装物损坏或有树脂漏出时,应重新密封包装,以防树脂流失或脱水变质。
运输和贮存过程中温度应在5-40℃,以防树脂冻裂,也不得在阳光下曝晒,不同规格树脂同时存放时,务必分类堆放,以防混淆。
二、填装填装前应由专业水处理人员检查以下几方面内容:1.离子交换器内防腐有无破损或脱落,滤水帽、筛网等是否完好。
2.认真检查阀门的泄漏情况及管道的畅通,若阀门泄漏予以修复或更换。
3.清洗交换器本体及填装器具,以防杂物混入树脂层内,影响其出水质量。
4.填装树脂时,应事先在交换器内注入约1米深的水垫层,以防树脂装入时冲击垫层和底部装置,使其遭到破坏。
5.逐一开包检查,发现脱水树脂,应用浓盐水浸湿,再进行填装,并将袋内合格证、塑料扎绳、塑料内袋清理干净,防止混入树脂柱内,影响正常运行。
三、新树脂的预处理预处理应在交换器内直接进行,这样操作方便,效果好,其步骤大致如下:1.反洗:用澄清水或自来水反洗树脂层、以除去气泡、树脂粉末、碎屑及其它细小物质,反洗膨胀率50%左右,同时应注意控制水洗流速,防止树脂冲出,反洗进行到出水澄清透明,树脂层面水清晰为止。
2.再生:排掉树脂上部多余结水,留水高出树脂层面5-10cm,将配制好的8-10%氯化钠溶液通过树脂层,保证氯化钠溶液与树脂的接触时间不少于60分钟。
3.清洗:再生结束后,直接通水,注意流速,直至出水指标符合要求。
四、使用时参考指标:001×7阳树脂应用于硬水软化时应保证原水清澈、透明无可见机械杂质,若原水中悬浮物较多,有机物含量高,则应增加机械过滤器和活性碳过滤器,同时应保证原水中铁、铜、锰等金属离子含量符合工业用水要求。
1.原水PH值范围:1-142.原水浑浊度:≤5mg/L3.原水总硬度:≤10mmol/L(若原水硬度超过此指标,则须进行二级软化)4.最高使用温度:≤100℃5.工作交换容量:≥1000mmol/L(湿)6.再生液浓度:食盐水8-10%7.再生液用量:食盐水体积:树脂体积=1.5-2 :18.再生液接触时间:60-90分钟9.清洗流速:10-20米/小时10.运行流速:10-40米/小时。
离子交换树脂原理及使用方法
离子交换树脂原理及使用方法以离子交换树脂原理及使用方法为题,本文将介绍离子交换树脂的基本原理、分类、应用以及使用方法。
一、离子交换树脂的原理离子交换树脂是一种能够与溶液中的离子发生交换反应的高分子材料。
其原理基于离子交换反应,通过树脂中的功能基团与溶液中的离子发生化学反应,将溶液中的离子吸附到树脂上,并释放出与之相对应的离子。
离子交换树脂的功能基团可以是酸性基团或碱性基团,根据功能基团的不同,离子交换树脂可以分为阴离子交换树脂和阳离子交换树脂。
二、离子交换树脂的分类1. 阴离子交换树脂:阴离子交换树脂是具有具有碱性功能基团的树脂,能够吸附溶液中的阴离子。
常见的阴离子交换树脂有强碱性树脂和弱碱性树脂。
强碱性树脂通常是以季胺基或氨基作为功能基团,具有较高的离子交换容量和较强的吸附能力;弱碱性树脂则是以胺基或次胺基作为功能基团,离子交换容量和吸附能力较强碱性树脂较低。
2. 阳离子交换树脂:阳离子交换树脂是具有具有酸性功能基团的树脂,能够吸附溶液中的阳离子。
常见的阳离子交换树脂有强酸性树脂和弱酸性树脂。
强酸性树脂通常是以磺酸基或磷酸基作为功能基团,具有较高的离子交换容量和较强的吸附能力;弱酸性树脂则是以羧基或酚基作为功能基团,离子交换容量和吸附能力较强酸性树脂较低。
三、离子交换树脂的应用离子交换树脂在各个领域都有广泛的应用,主要包括水处理、制药、食品加工、环境保护等方面。
1. 水处理:离子交换树脂可用于去除水中的阳离子或阴离子,从而净化水质。
常见的应用包括软化水、去除重金属离子和放射性核素等。
2. 制药:离子交换树脂可用于药物的分离纯化、药物吸附和药物释放控制等方面。
在制药工业中,离子交换树脂广泛应用于药物的纯化和分离、药物固定化以及药物缓释等方面。
3. 食品加工:离子交换树脂可用于食品加工中的脱色、脱苦味、去除重金属离子等。
例如,可用于提取咖啡因、去除苦味物质和脱色等。
4. 环境保护:离子交换树脂可用于废水处理、废气治理和固体废物处理等方面。
阳离子交换树脂工作原理
阳离子交换树脂工作原理概述阳离子交换树脂是一种广泛应用于水处理、食品加工和化学工业中的吸附材料。
它具有优秀的吸附能力,能够去除水中的阳离子,使水质得到改善。
本文将详细介绍阳离子交换树脂的工作原理及其应用。
一、阳离子交换树脂的组成阳离子交换树脂通常是由聚合物基质和离子交换基团组成的。
聚合物基质通常是由丙烯酸酯等聚合物构成,具有良好的机械强度和化学稳定性。
离子交换基团是树脂的活性部分,决定了树脂对阳离子的选择性吸附能力。
二、工作原理阳离子交换树脂的工作原理基于离子的电荷吸引力和离子交换原理。
当含有阳离子的溶液通过阳离子交换树脂时,树脂中的交换基团与溶液中的阳离子发生吸附作用。
这个过程可以分为三个步骤:吸附、解吸和再生。
1. 吸附当含有阳离子的溶液接触阳离子交换树脂时,溶液中的阳离子会与树脂表面的交换基团发生作用,使得阳离子从溶液中被吸附到树脂上。
吸附的程度取决于阳离子交换树脂的选择性和树脂上交换基团的数量。
2. 解吸当阳离子被吸附到树脂上后,它可以再次释放回溶液中。
这个过程可以通过使用具有较高亲和力的离子来进行解吸,例如酸溶液。
通过调整pH值或溶液中的离子浓度,可以实现阳离子的解吸。
3. 再生当阳离子交换树脂失去吸附能力时,可以通过再生来恢复其吸附性能。
一般来说,再生方法包括酸洗法、盐洗法和碱洗法。
通过这些方法,可以将树脂上的吸附阳离子去除,使其重新具备吸附能力。
三、阳离子交换树脂的应用阳离子交换树脂广泛应用于水处理和化学工业中的离子交换过程。
以下是一些常见的应用场景:1. 水处理阳离子交换树脂可以用于去除水中的钠、镁、钙等阳离子,从而降低水的硬度。
此外,它还可以去除水中的重金属离子、放射性物质等有害物质,提高水质。
2. 食品加工在食品加工过程中,阳离子交换树脂可以用于去除食品中的杂质、重金属离子和有害物质,提高食品质量和安全性。
3. 化学工业阳离子交换树脂在化学工业中被广泛用于分离和纯化过程中。
它可以用于分离和纯化有机化合物、酸碱盐溶液等。
离子交换树脂的交换原理以及应用
离子交换树脂的交换原理以及应用1. 什么是离子交换树脂?离子交换树脂是一种特殊的高分子化合物,具有交换离子的功能。
它的分子结构中含有一定的正或负电荷,可以与溶液中的离子发生置换反应,使溶液中的离子浓度发生变化。
2. 离子交换树脂的交换原理离子交换树脂的交换原理基于离子的电荷性质。
当溶液中的离子进入离子交换树脂中时,与树脂上的交换位点发生电荷交换,被交换的离子被树脂固定,而溶液中的其他离子则释放出来。
这个过程实质上是离子间的电荷互相作用,使得树脂中的离子浓度逐渐增加或减少。
3. 离子交换树脂的应用离子交换树脂在许多领域都有广泛的应用。
•水处理:离子交换树脂可以用于水处理过程中的去除硬度离子(如钙、镁离子),净化水质。
•工业过程中的分离纯化:离子交换树脂可以用于分离和纯化溶液中的不同离子,例如分离和提取金属离子。
•药物制剂:离子交换树脂可以用于药物制剂中的分离纯化和药物释放控制。
•医疗设备:离子交换树脂可以用于人工肾脏等医疗设备中,对血液进行离子交换,实现体内离子平衡的调节。
4. 离子交换树脂的分类离子交换树脂可以根据其结构和性质进行分类。
•强酸型离子交换树脂:具有强酸性,可以交换出H+离子,常用于去除水中的碱性离子和重金属离子。
•强碱型离子交换树脂:具有强碱性,可以交换出OH-离子,常用于去除水中的酸性离子。
•核型交换树脂:具有特定的功能基团,可以选择性地交换特定的离子。
•高效离子交换树脂:具有较高的离子交换容量和选择性,广泛应用于工业领域。
5. 离子交换树脂的使用注意事项使用离子交换树脂时需要注意以下几点:•pH值:离子交换树脂的交换能力与溶液的pH值有关,一般选择合适的pH范围以保证交换效果。
•温度:离子交换树脂的交换速率随温度升高而增加,但同时也要注意树脂的热稳定性。
•流速:流速的选择应适当,以保证离子与树脂有足够的接触时间。
•冲洗和再生:使用后的离子交换树脂需要进行冲洗和再生,以去除吸附的离子并恢复树脂的交换能力。
离子交换树脂离子交换原理ppt课件
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
3.密度
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
(f) H型树脂与水中Ca2+、Mg2+、Na+交换时水质变化 离子交换柱工作过程
进水初期,进水中所用阳离子均交换出H+,生成相当量的无机酸,出水 酸度保持定值。运行至a点时,Na+首先穿透,且迅速增加,同时酸度降低, 当Na+泄漏量增大到与进水中强酸阴离子含量总和相当时,出水开始呈现碱性; 当Na+增加到与进水阳离子含量总和相等时,出水碱度也增加到与进水碱度 相等。至此,H离子交换结束,交换器开始进行Na+交换,稳定运行至b点之 后,硬度离子开始穿透,出水Na+含量开始下降,最后出水硬度接近进水硬 度,出水Na+接近进水Na+,树脂层全部饱和。
化学性能 1.再生:离子交换反应的可逆性交换的逆反应。 2.酸碱性:树脂在水中电离出H+和OH-,表现出酸碱性。树 脂的酸碱性受pH值影响,各种树脂在使用时都有适当 的pH值范围。 3.选择性:树脂对水中某种离子能优先交换的性能称为 选择性,选择性大小用选择性系数来表征。 4.交换容量:表示树脂的交换能力。通常用EV(mmol/ml 湿树脂)表示,也可用EW(mmol/g干树脂)表示。 EV=EW×(1-含水量)×湿视视密度
影响离子交换扩散速度的因素 1.树脂的交联度越大,网孔越小,则内扩散越慢。 2.树脂颗粒越小,由于内扩散距离缩短和液膜扩散的表面
离子交换树脂的种类和性能
离子交换树脂的种类和性能1.阴离子交换树脂:阴离子交换树脂能吸附溶液中的阴离子。
常用的阴离子交换树脂有三种类型:强酸型、强碱型和弱碱型。
-强酸型树脂,如固体硫酸和聚苯乙烯磺酸型树脂,能够在酸性条件下吸附和释放阴离子,具有较高的吸附容量和离子选择性。
-强碱型树脂,如四乙基溴化铵凝胶型树脂和胺基聚合物树脂,能够在碱性条件下吸附和释放阴离子,具有较高的吸附容量和离子选择性。
-弱碱型树脂,如丙烯酸型树脂和聚乙烯亚胺树脂,对酸性和碱性条件下的阴离子都有吸附能力,但相对选择性较弱。
2.阳离子交换树脂:阳离子交换树脂能吸附溶液中的阳离子。
常用的阳离子交换树脂有两种类型:强酸型和强碱型。
-强酸型树脂,如聚苯乙烯磺酸型树脂和马来酸酯型树脂,能够在酸性条件下吸附和释放阳离子,具有较高的吸附容量和离子选择性。
-强碱型树脂,如四乙基溴化铵凝胶型树脂和胺基聚合物树脂,能够在碱性条件下吸附和释放阳离子,具有较高的吸附容量和离子选择性。
- 吸附容量:树脂能够吸附的离子量,一般以等效氢离子交换量(eq/L)来表示。
吸附容量越大,说明树脂能够处理的溶液浓度越高。
-选择性:树脂在吸附离子时的选择性,即特定离子与树脂的相对亲和力。
选择性越高,树脂对特定离子的吸附能力越强。
-交换速度:树脂对离子的吸附和释放速度,一般与树脂的孔径和内部扩散有关。
交换速度越快,树脂的处理效率越高。
-耐热性:树脂在高温条件下的稳定性。
一些特殊用途的树脂需要能够耐受较高温度的操作和再生条件。
-耐化学性:树脂对酸碱溶液和有机溶剂等的稳定性。
树脂需能够在不同的化学环境中稳定工作,而不受化学物质的破坏。
-再生性:树脂吸附的离子可以通过适当的方法进行释放,使树脂得以再生和重复使用。
再生性能越好,树脂的经济性越高。
总之,离子交换树脂的种类和性能多种多样,可以根据不同需求选择合适的树脂应用于各种领域,广泛提高工业生产和环境水质的处理效率。
第1章-离子交换树脂
24
1.5 离子交换树脂的制备方法
12
1.3 离子交换树脂的分类
离子交换树脂的分类方法有很多种,最常用和最 重要的分类方法有以下两种。 (1)按交换基团的性质分类
按交换基团性质的不同,可将离子交换树脂分为 阳离子交换树脂和阴离子交换树脂两大类。
13
阳离子交换树脂可进一步分为强酸型、中酸型和 弱酸型三种。如R—SO3H为强酸型,R—PO(OH)2为 中酸型,R—COOH为弱酸型。习惯上,一般将中酸 型和弱酸型统称为弱酸型。
大家好
1
第一章 离子交换树脂
2
1.1 概述
1.1.1 离子交换树脂的发展简史
离子交换树脂是指具有离子交换基团的高分子化 合物。它具有一般聚合物所没有的新功能——离子交 换功能,本质上属于反应性聚合物。
离子交换树脂是最早出现的功能高分子材料,其 历史可追溯到上一世纪30年代。1935年英国的Adams 和Holmes发表了关于酚醛树脂和苯胺甲醛树脂的离子 交换性能的工作报告,开创了离子交换树脂领域,同 时也开创了功能高分子领域。
1.5.1 凝胶型离子交换树脂 凝胶型离子交换树脂的制备过程主要包括两大部
分:合成一种三维网状结构的大分子和连接上离子交 换基团。
具体方法,可先合成网状结构大分子,然后使之 溶胀,通过化学反应将交换基团连接到大分子上。也 可先将交换基团连接到单体上,或直接采用带有交换 基团的单体聚合成网状结构大分子的方法。
离子交换树脂知识详解
1、离子交换树脂的基本类型(1) 强酸性阳离子树脂这类树脂含有大量的强酸性基团,如磺酸基-SO3H,容易在溶液中离解出H+,故呈强酸性。
树脂离解后,本体所含的负电基团,如SO3-,能吸附结合溶液中的其他阳离子。
这两个反应使树脂中的H+与溶液中的阳离子互相交换。
强酸性树脂的离解能力很强,在酸性或碱性溶液中均能离解和产生离子交换作用。
树脂在使用一段时间后,要进行再生处理,即用化学药品使离子交换反应以相反方向进行,使树脂的官能基团回复原来状态,以供再次使用。
如上述的阳离子树脂是用强酸进行再生处理,此时树脂放出被吸附的阳离子,再与H+结合而恢复原来的组成。
(2) 弱酸性阳离子树脂这类树脂含弱酸性基团,如羧基-COOH,能在水中离解出H+而呈酸性。
树脂离解后余下的负电基团,如R-COO-(R为碳氢基团),能与溶液中的其他阳离子吸附结合,从而产生阳离子交换作用。
这种树脂的酸性即离解性较弱,在低pH下难以离解和进行离子交换,只能在碱性、中性或微酸性溶液中(如pH5~14)起作用。
这类树脂亦是用酸进行再生(比强酸性树脂较易再生)。
(3)强碱性阴离子树脂这类树脂含有强碱性基团,如季胺基(亦称四级胺基)-NR3OH(R 为碳氢基团),能在水中离解出OH-而呈强碱性。
这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂的离解性很强,在不同pH下都能正常工作。
它用强碱(如NaOH)进行再生。
(4) 弱碱性阴离子树脂这类树脂含有弱碱性基团,如伯胺基(亦称一级胺基)-NH2、仲胺基(二级胺基)-NHR、或叔胺基(三级胺基)-NR2,它们在水中能离解出OH-而呈弱碱性。
这种树脂的正电基团能与溶液中的阴离子吸附结合,从而产生阴离子交换作用。
这种树脂在多数情况下是将溶液中的整个其他酸分子吸附。
它只能在中性或酸性条件(如pH 1~9)下工作。
它可用Na2CO3、NH4OH进行再生。
2、离子交换树脂基体的组成离子交换树脂的基体(matrix),制造原料主要有苯乙烯和丙烯酸(酯)两大类,它们分别与交联剂二乙烯苯产生聚合反应,形成具有长分子主链及交联横链的网络骨架结构的聚合物。
离子交换树脂的性能及其应用
离子交换树脂的性能及其应用离子交换树脂是一种常见的分离和纯化材料,具有较高的选择性和吸附能力。
离子交换树脂将离子和分子通过静电相互作用和吸附分离,广泛应用于水处理、制药、食品加工、生物技术等领域。
一、离子交换树脂的分类离子交换树脂按功能可分为阴离子交换树脂和阳离子交换树脂。
阴离子交换树脂含有正电荷的功能基团,可吸附阴离子或含有负电荷的分子,如氢氧化物、硝酸根、硫酸根等。
而阳离子交换树脂则含有负电荷的功能基团,可吸附阳离子或含有正电荷的分子,如钠离子、钙离子、铵离子等。
离子交换树脂还可根据颗粒大小和形状、官能团种类、交换容量等进行分类。
二、离子交换树脂的性能离子交换树脂的性能取决于其官能团类型、交换容量、孔径大小、颗粒形状等因素。
其中,交换容量是影响离子交换树脂吸附能力的关键因素。
交换容量越大,吸附能力越强。
离子交换树脂还具有选择性,特定的离子可以更容易地被吸附。
例如,同样具有正电荷的钠离子和铵离子在阳离子交换树脂中吸附能力不同,因为它们与树脂官能团之间的化学结构和亲和力不同。
离子交换树脂在选择性和吸附能力方面的差异使得它们在不同的应用领域具有特殊的优势。
三、离子交换树脂的应用1. 水处理:离子交换树脂广泛应用于水处理行业,如软化水、去除重金属、去除硝酸盐等。
2. 制药:离子交换树脂在制药加工中可以用于分离、纯化和浓缩药物。
3. 食品加工:离子交换树脂可以用于食品加工中对糖化酶、酪蛋白酶等酶的分离和纯化。
4. 生物技术:离子交换树脂在生物技术中的应用越来越广泛,如蛋白质纯化、DNA纯化、细胞培养中的离子平衡等。
五、离子交换树脂的未来离子交换树脂作为分离和纯化技术的重要手段之一,将在未来的某些应用领域中发挥更大的作用。
例如,在石油、天然气和化学工业中,离子交换树脂可用于合成气、催化剂回收和废料处理。
随着科学技术的不断发展,离子交换树脂将会出现更多创新型应用。
总之,离子交换树脂是一种基础分离和纯化工具,已经在许多领域中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子交换树脂的基础知识一、离子交换树脂发展简史离子交换剂是一类能发生离子交换的物质,分为无机离子交换剂和有机离子交换剂。
有机离子交换剂又称离子交换树脂。
无机离子交换剂(如沸石)早在一百多年前就已发现并应用,人类就已经会利用沙砾净水。
而有机离子交换树脂是在1933年由英国人亚当斯(Hdams)和霍姆斯(Holms)首先用人工方法制造酚醛类型的阳、阴离子交换树脂。
在第二次世界大战期间,德国首先进行工业规模的生产。
战后英、美、苏、日等国的发展很快。
1945年美国人迪阿莱里坞(D’Alelio)发表了关于聚苯乙烯型强酸性阳离子交换树脂及聚丙烯酸型弱酸性阳离子交换树脂的制备方法。
后来聚苯乙烯阴离子交换树脂、氧化还原树脂以及螯合树脂等也相继出现,在应用技术及其范围上也日益广大。
到了上世纪五十年代后期,各种大孔型的树脂又相继发展起来,在生产及科学研究中,离子交换树脂起着越来越重要的作用。
解放前,我国的离子交换树脂的科研和生产完全空白,解放后,从五十年代初期开始,我国在北京、上海和天津的一些科研单位和高等学校分别开始了离子交换树脂的研究。
1953年酚醛磺化树脂产生,1958年凝胶型苯乙烯树脂投入生产,1959年南开大学何炳林用苯乙烯做致孔剂合成孔径大、强度高和交换速度快的大孔型交联聚苯乙烯离子交换树脂。
60年代我国生产了大孔型苯乙烯系、丙烯酸系离子交换树脂。
到70年代中、后期又合成了多种吸附树脂、碳化树脂,并已先后投入生产。
经过50年的努力,我国的离子交换树脂的生产和工业应用得到了飞速的发展,生产的品种已超过六十种,产品的种类和产量日益增多,质量不断提高,并广泛应用于工农业生产、国防建设、医药卫生、交通运输及科学研究等部门,在我国的建设中起着越来越重要的作用。
二、离子交换树脂的组成离子交换树脂不溶于一般的酸、碱溶液及各种有机溶剂,如乙醇、丙酮及烃等,结构上属于既不溶解、也不熔融的多孔性海绵状固体高分子物质。
每个树脂颗粒都由交联的具有三维空间立体结构的网络骨架构成,在骨架上连接许多可以活动的功能基。
这种功能基能离解出离子,可以与周围的外来离子互相交换。
功能基固定在网络骨架上不能自由移动,但功能基所带的可以离解的离子却能自由移动,随着使用或再生时,在不同的外界条件下,与周围的同类型其他离子相互交换,所以叫做可交换离子。
人们就是通过控制树脂上的这种可交换离子,创造适宜条件,如改变浓度差、利用亲合力差别等,使它与相近的同类型离子进行反复交换,以达到不同的使用目的,如浓缩、分离、提纯、净化等。
换言之,离子交换树脂是一类带有功能基的网状结构的高分子化合物,其结构由三部分组成:不溶性的三维空间网状骨架、连接在骨架上的功能基团和功能基团所带的相反电荷的可交换离子。
离子交换树脂也可以看作多功能基的高分子化合物。
对于具有能离解出阳离子作为可交换离子与外来的阳离子进行交换的物质叫做阳离子交换树脂,相当高分子的多元酸;对于能离解出阴离子作为可交换离子的物质,叫做阴离子交换树脂,相当于高分子多元碱。
它们通常被列入高分子领域。
又由于这种功能基除了离子交换的功能外,还能起吸附等多种作用,所以也属于功能高分子。
阳离子交换树脂是一类骨架上结合有磺酸(-SO3H)和羧酸(-COOH)等酸性功能基的聚合物。
将此树脂浸渍于水中时,交换基部分可如同普通酸那样发生电离。
以R表示树脂的骨架部分,阳离子交换树脂R-SO3H或R-COOH在水中的电离如下:RSO3H RSO3- + H+RCOOH RCOO-+ H+RSO3H型的树脂易于电离,具有相当于盐酸或硫酸的强酸性,称为强酸性阳离子交换树脂。
而RCOOH型的树脂类似有机酸,较难电离。
具有弱酸的性质,因此称为弱酸性阳离子交换树脂。
阴离子交换树脂是一类在骨架上结合有季胺基、伯胺基、仲胺基、叔胺基的聚合物。
其中以季胺基上的羟基为交换基的树脂具有强碱性,称为强碱性阴离子交换树脂。
用R表示树脂中的聚合物骨架时,强碱性阴离子交换树脂在水中会发生如下的电离:R—N+(CH3)3OH-R—N+(CH3)3 + OH--具有伯胺、仲胺、叔胺基的阴离子交换树脂碱性较弱,称为弱碱性阴离子交换树脂。
强碱性阴离子交换树脂一般以化学稳定的CL盐型出售,应用时要用N a OH溶液进行转型。
三、离子交换树脂的分类按骨架结构不同,离子交换树脂可分为凝胶性和大孔型树脂两大类。
由苯乙烯和二乙烯苯混合物在引发剂存在下进行自由基悬浮聚合,得到具有交联网状结构的聚合体。
这种聚合体一般是呈透明状态的,无孔的凝胶型树脂。
聚会时增加DVB的加入量,则链的分枝多,成为紧密结构;将DVB量减少,则生成分枝少、网目大的树脂。
其中单体DVB称为交联剂,其加入量占单体总量的百分数表示网状结构粗密的尺度,称为交联度。
通常8%左右为标准交联度树脂,高于8%的称为高交联度树脂,低于8%的称为低交联度树脂。
在得到的苯乙烯-DVB共聚物上导入磺酸基可制的强酸性阳离子交换树脂,将共聚物氯甲基化后与胺反应则可制得强碱性阴离子交换树脂。
在功能基导入之前,苯乙烯和二乙烯苯共聚物无吸水性,导入功能基后,树脂会吸水溶胀,交联高的树脂骨架的链难于伸展,吸水量也受到限制,不易溶胀;而交联低的树脂吸水量大,溶胀也大。
离子交换树脂吸水后,树脂相内产生微孔,反离子可扩散进由吸水而产生的微孔内进行离子交换,微孔的大小依赖于树脂的交联度。
因此交联度是离子交换树脂的重要指标之一。
另一类型的是大孔离子交换树脂,它是60年代在一般凝胶型树脂基础上发展起来的一种新型树脂。
它的基本特点是在整个树脂内部无论干、湿或收缩、溶胀(在水中)都存在着比一般凝胶型更多、更大的孔道,因而表面积大,在离子交换过程中,离子容易迁移扩散,交换速度较快,工作效率高。
大孔离子交换树脂的制备,是通过加入适量的致孔剂,使在网状骨架固化和链结结构单元形成的过程中,添加惰性分子,预先留下孔道形成的。
在骨架固定后,再抽走致孔剂,便留下不受干湿或缩胀影响的永久性孔道。
所用致孔剂一般能与单体混溶,不参加化学反应,对聚合物来说是溶胀剂或沉淀剂的有机溶剂。
按所带的交换功能基的特性,离子交换树脂可分为阳离子交换树脂、阴离子交换树脂和其他树脂。
带有酸性功能基,能与阳离子进行交换的聚合物叫阳离子交换树脂;带有碱性功能基、能与阴离子交换的聚合物叫阴离子交换树脂。
按功能基上酸或碱的强弱程度又可分为强酸(-SO3H)、中强酸(PO(OH)2)、弱酸(—COOH)阳离子交换树脂;弱碱(—NH2、—NRH、—NR2)及强碱(—N+R3CL)离子交换树脂。
强碱型阴离子交换树脂又把带三甲基苄铵基的树脂叫Ⅰ型树脂,带二甲基羟乙基苄铵基【—N—(CH3)CH2OH】的树脂叫Ⅱ型树脂。
带有第三锍基(—S+—)和第四磷基(—P+ 2—)的树脂也列入强碱树脂。
在同一种离子交换树脂中,有时也带有数种不同酸碱性的功能基,所以又有单功能基和多功能基离子交换树脂之分。
对于带氧化还原(—SH,—螯合(—N(CH2COOH)2)、光活性、阴阳两性等功能基的树脂,一般按其特征命名。
从物质的基本组成来分,一般将主链上含有碳、氢,而功能基上带有氧、氮、磷、硫等元素的树脂列为有机离子交换树脂,可算是聚合物的一个分支,而把含有锆、钛、钒、钨、钼等元素为主的无机离子交换剂,当作无机高分子化合物的一个分支。
四、离子交换树脂的名称、牌号及命名方法为避免分类上的混乱,我国在1958年提出命名草案。
为了统一国产离子交换树脂的牌号,石油化学工业部在1977年7月1日制定了《离子交换树脂产品分类、命名及型号》的部颁标准。
《标准》根据离子交换树脂功能基的性质,将其分为强酸、弱酸、强碱、弱碱、螯合、两性及氧化还原等七类,见下表:表1 离子交换树脂的种类对离子交换树脂的命名做了如下规定:离子交换树脂的全名由分类名称、骨架(或集团)名称、基本名称排列组成。
离子交换树脂的型态分为凝胶型和大孔型两种。
凡具有物理孔结构的称为大孔型树脂,在全名前加“大孔”两字以示区别。
由于氧化还原树脂与离子交换树脂的特性不同,故在命名的排列上也有不同,其命名原则由基团的名称、骨架名称、分类名称和树脂两字排列组成。
离子交换树脂的基本名称为离子交换树脂。
凡分类中属酸性的,应在基本名称前加一“阳”字;凡分类中属碱性的,在基本名称前加一“阴”字。
为了区别离子交换树脂产品中的不同品种,在全名前必须有型号。
离子交换树脂产品的型号由三位阿拉伯数字组成。
第一位数字代表产品的分类,第二位数字代表骨架结构的差异(代号可见表2、3),第三位数字为顺序号,用以区别基团、交联剂等。
表2 离子交换树脂产品分类表3 离子交换树脂骨架分类凡大孔型离子交换树脂,在型号前加“大”字的汉语拼音首位字母“D”表示之。
凝胶型离子交换树脂,在型号后面用“×”号连接阿拉伯数字,表示交联度。
遇到二次聚合或其交联度不清楚时,可以采用近似值表示或不给予表示,见图1。
. . .×.交联度数值连接符号顺序号骨架代号分类代号0 0 1×7交联度数值、交联度为7连接符号顺序号骨架代号、苯乙烯系分类代号、强酸性2 0 1×7交联度数值、交联度为7连接符号顺序号骨架代号、苯乙烯系分类代号、强碱性D×××顺序号骨架代号分类代号大孔型代号图1 离子交换树脂型号图解D113顺序号骨架代号、丙烯酸系分类代号、弱酸性大孔型代号五、离子交换树脂的作用原理离子交换树脂的交换反应与溶液中的置换反应相似,例如NaCL + AgNO3AgCL + Na NO3这个反应可以看作是银离子交换了氯化钠中的钠离子。
利用固载在聚合物骨架上的功能基所带的可交换的离子在水溶液中能发生离解,如磺酸树脂上可离解出氢离子,这种离子可在较大的范围内自由移动,扩散到溶液中。
同时,在溶液中的同类型离子,如钠离子,也能从溶液中扩散到聚合物网络和孔内。
当这两种离子的浓度差较大时,就产生一种交换的推动力使他们之间发生交换作用,浓度差越大,交换速度越快。
利用这种浓度差的推动力关系使树脂上可交换离子发生可逆交换反应,如,当溶液中的钠离子浓度较大时,就可把磺酸树脂上的氢离子交换下来。
当全部氢离子被钠离子交换后,这时就称树脂为钠离子所饱和。
然后,如果把溶液变为浓度较高的酸时,溶液中的氢离子又能把树脂上的钠离子置换下来,这时树脂就“再生”为H+型。
通过这种可逆交换作用原理,加上树脂上固载的功能基对不同离子具有不同的亲和性,使离子交换树脂能应用于离子的分离、置换、浓缩、杂质的去除和催化反应等。
阴离子交换树脂骨架上带的是各种碱性不同的功能基(RN(CH3)3OH、RN(CH3)2HOH、RNH2HOH),能离解出与溶液里的阴离子进行交换的阴离子(OH-)。