第三章 往复式制冷压缩机
往复式压缩机PPT课件
国际化竞争加剧 随着全球化的深入发展,往复式压缩机行业将面临更加激 烈的国际化竞争,企业需要加强技术创新和品牌建设以提 高竞争力。
THANKS
感谢观看
降低压缩后气体的温度。
缓冲罐
减小气流脉动和噪音。
油分离器
分离压缩空气中的油分。
储气罐
储存压缩空气,稳定气流和压力。
控制系统
电动机
提供动力,驱动曲轴旋转。
传感器
监测压缩机的各项运行参数,如压力、温度、 流量等。
控制面板
设定和控制压缩机的运行参数。
电磁阀
控制气路通断,实现压缩机的加载和卸载。
安全保护装置
03
空气压缩机、氧气压缩机、氮气压缩机等。
往复式压缩机应用领域
石油化工
用于气体压缩、输送和 储存,如天然气、石油
气等。
制冷空调
动力工程
其他领域
用于制冷剂的压缩和循 环,实现制冷和空调功
能。
用于气体动力设备的驱 动和控制,如燃气轮机、
内燃机等。
如冶金、矿山、纺织、 医药等行业中的气体压
缩和输送。
02
考虑运行环境 根据安装地点的环境条件,选择适合的压缩机材 质和防护措施。
3
了解制造商的信誉和售后服务 选择有良好信誉和售后服务的制造商。
设计流程与方法
确定设计参数
包括气体性质、流量、压力等。
选择压缩机类型
根据设计参数和工艺要求,选择合适的压缩机类型。
设计流程与方法
进行热力计算
确定压缩机的功率、冷却方式等。
01
连接压缩机进出口管道,确保管道连接牢 固、密封良好。
往复式压缩机PPT课件
2.速度式压缩机 它的工作原理为:通过离心力提高气体速度,并 在扩压型通道中降低速度提高压力。按运动特点 不同,又可分为以下三种: (1)轴流式。压缩气体流动方向与轴平行。 (2)离心式。压缩气体流动方向与主轴垂直。 (3)混流式。既有轴流又有离心。
1.往复式压缩机工作原理
往复式压缩机通过曲柄连杆机构将曲轴旋转运动转化为
呼吸器
2.气 缸 部 件
汽缸的作用: 气缸是往复式压缩机组成压缩容积的主要部分。
气缸的结构型式: 根据压缩介质、压力、排气量、总体结构以及材料的不同,
气缸的结构型式很多。 1.按活塞在气缸中作用方式的不同: 有单作用式、双作用式与级差式气缸; 2.按气缸的冷却方式的不同: 有风冷、水冷气缸 3.按制造材料的不同: 有铸铁、铸钢、合金钢锻制气缸。
往复式压缩机 知识培训
一 压缩机概述
随着近代科学技术的不断发展,压缩 机在工业生产上的应用十分普遍,所占的 地位相当重要。压缩机就是产生气体压力 能的机器,它在国民经济各部门中特别在 石油、化工、矿山、冶金、机械以及国防 工业中已成为必不可少的关键设备。其重 要的应用场合有化工工艺过程上的应用、 动力工程的应用、气体输送等。
气体从高压侧第一道环逐
级漏到最后一道环时,每一道 环所承受的压力差相差较大。 第一道活塞环承受着主要的压 力差,并随着转速的提高,压 力差也增高。第二道承受的压 力差就不大,以后各环逐级减 少。因此环数过多是没有必要 的,反而会增加气缸磨损,增 大摩擦功。
SUCCESS
THANK YOU
2019/7/20
28
3.活 塞 部 件
活塞部件的作用:
活塞部件是活塞、活塞杆及活塞环、支撑环的总称。活 塞组在连杆带动下,在汽缸内作往复直线运动,从而与汽缸及 缸盖等共同组成一个可变的工作容积,以实现吸气、压缩、排 气等过程。
往复式压缩机培训教材
往复式压缩机
往复式压缩机
往复式压缩机的主要性能 指标
•往复式压缩机的主要性能指标
压 紧 弹 簧 ; 6、 压 板
1、
图 2 -2 5
摩擦环式轴封装置
托 板 ; 2、 弹 簧 ; 3、 钢 圈 ; 4、 动 摩 擦 环 ; 5、 橡
皮 圈 ; 6、 钢 壳 ; 7、 压 板 ; 8、 轴 承 座
往复式压缩机 的结构-润滑
系统
• 润滑的作用 • 润滑是压缩机中的重要问题之一,它不仅影响到压缩机的性能指标,而
连杆体在工作时承受拉、压交变载荷,故一般 用优质中碳钢锻造或用球墨铸铁(如QT40- 10)铸造,杆身多采用工字形截面且中间钻一 长孔作为油道。
往复式压缩机 的结构-连杆
往复式压缩机 的结构
• 活塞组: 活塞组是活塞、活塞销及活塞环的总称。活塞组
在连杆带动下,在汽缸内作往复直线运动,从而与汽缸等 共同组成一个可变的工作容积,以实现吸气、压缩、排气 等过程。 • 活塞---活塞可分为筒形和盘形两大类。活塞的材料一般为 铝合金或铸铁 • 活塞销---活塞销是用来连接活塞和连杆小头的零件,在工 作时承受复杂的交变载荷。 • 活塞环---活塞环包括气环和油环。汽环的主要作用是使活 塞和气缸壁之间形成密封,防止被压缩气从活塞和气缸壁 之间的间隙中泄漏;油环的作用是布油和刮去气缸壁上多 余的润滑油。
往复式压缩机 的结构
往复式压缩机的结构:压缩机主要由机体、 曲轴、连杆、活塞组、阀门、轴封、油泵、 能量调节装置、油循环系统等部件组成。
压缩机(往复式压缩机)ppt课件
2. 检查设备状态
检查压缩机的各项参数是否正常,如油位、 压力、温度等。
调试和验收流程
01
02
03
3. 空载试运行
在无负载状态下进行试运 行,观察压缩机的运行情 况,检查是否有异常声响 和振动。
4. 加载试运行
逐步增加负载进行试运行 ,观察压缩机的运行情况 ,记录各项参数的变化情 况。
满足多样化的需求。
数字化和智能化
借助数字化技术和人工智能等先 进技术,实现压缩机的智能化运 行和维护,提高生产效率和降低
成本。
绿色低碳
积极响应全球绿色低碳发展趋势 ,推动压缩机的绿色设计和制造 ,降低能耗和排放,助力可持续
发展。
谢谢您的聆听
THANKS
03
往复式压缩机工作过程
吸气过程详解
吸气阀开启,气体进入气缸
01
在吸气过程中,吸气阀在压力差的作用下自动开启,气体通过
吸气管道和吸气阀进入气缸。
气缸内压力降低,形成负压
02
随着气体的进入,气缸内的压力逐渐降低,形成负压,进一步
促使气体吸入。
吸气过程结束,吸气阀关闭
03
当气缸内气体达到预定压力时,吸气阀在弹簧力作用下自动关
往复式压缩机的结构相对复杂,包含 多个部件,制造和安装精度要求较高 。
易损件多
由于存在往复运动部件和摩擦副,易 损件较相比于其他类型的压缩机,往复式压 缩机通常体积较大,重量较重,给运 输和安装带来一定困难。
气流脉动大
由于往复运动的特性,气流在压缩过 程中会产生较大的脉动,可能对系统 稳定性造成一定影响。
01
在排气过程中,排气阀在压力差的作用下自动开启,
往复式制冷压缩机课件-2024鲜版
制冷量与功率关系探讨
制冷量与功率成正比
在相同条件下,制冷量越大,所需功率也越大。
2024/3/28
能效比(EER)
制冷量与功率的比值,用于评价压缩机的能效水平。EER值越高,表示压缩机在相同功率下 能提供更多制冷量。
影响制冷量与功率关系的因素
包括制冷剂种类、环境温度、冷却方式等。不同制冷剂的热力性质不同,导致相同条件下制 冷量和功率的差异。环境温度和冷却方式则影响压缩机的散热效果和运行效率,从而影响制 冷量与功率的关系。
04
安装过程中应避免强烈振动和撞击,以免 影响压缩机性能。
21
调试方法及步骤指导
在调试前,检查压缩机的电源接 线是否正确,电压是否符合要求。
打开压缩机进出口阀门,启动压 缩机进行空载运行。
2024/3/28
观察压缩机运行状况,检查有无 异常声响、振动或泄漏现象。
逐步增加负载,调整压缩机运行 参数,使其达到设计要求的性能 指标。
核对附件、配件是否齐 全,如压力表、温度计、 安全阀等。
20
准备安装工具和设备, 如起重机械、扳手、螺 丝刀等。
安装过程中注意事项
2024/3/28
01 确保安装场地平整、清洁,无杂物和障碍 物。
02 严格按照压缩机安装图纸进行安装,确保 各部件正确就位。
03
注意压缩机进出口管道的连接,确保密封 性良好,防止泄漏。
12
性能参数分析
制冷量
表示压缩机在单位时间内从低温热源吸收的 热量,是评价压缩机性能的重要指标。
效率
制冷量与功率的比值,反映压缩机的能量转 换效率。
2024/3/28
功率
压缩机消耗的电能或机械能,用于驱动活塞 运动并压缩制冷剂。
往复式压缩机原理及结构
往复式压缩机原理及结构----34b4083e-715e-11ec-b982-7cb59b590d7d从世界范围内看压缩机的发展历程和概况。
活塞式压缩机的发展历史悠久,具有丰富的设计、研究、制造和运行的经验,至今在各个领域中依然被广泛采用、发展着。
然而,也必须注意到,制冷压缩机的不断进步也反映在其种类的多样性方面,活塞式以外的各类压缩机机型,如离心式、螺杆式、滚动转子式和涡旋式等均被有效地开发和利用,并各具特色,这就为我们制冷工程的业内人士在机型的选择上提供了更多的可能性。
在这样的背景之下,活塞式压缩机的使用范围必然受到一定影响而出现逐渐缩小的趋势,这一趋势在大冷量范围内表现得更为显著。
在中小冷量范围内,实际上还是以活塞式压缩机为主往复式压缩机的优缺点优点:适应各种压力热效率高、单位耗电量少、加工方便对材料要求低,造价低廉成熟的生产、使用、设计和制造技术,简单的设备系统,缺点:结构复杂、易损件多、维修工作量大运转时有震动不连续气体传输和气体压力波动第一章热力循环(1)理论循环与实践循环的区别(2)实际循环的压缩机的性能1.制冷压缩机性能指标输气量:单位时间内由吸气端输送到排气端的气体质量称谓压缩机的质量输气量q,单位为kg/h,此气体若换算为吸气状态的容积,则是压缩机的容积输气量q,单位为立方米/h。
制冷量:表示制冷压缩机工作能力的重要指标之一,即单位时间内可产生的制冷量。
输气系数:表示压缩机气缸工作容积的有效利用率,即压缩机实际输气量与理论输气量之比值--称为输气系数。
指示功率和指示效率:单位时间消耗的指示功是压缩机的指示功率。
制冷压缩机的指示效率是压缩一千克工作介质所需的绝热循环理论功的值。
轴功率、轴效率和机械效率:由原动机传到压缩机主轴上的功率,称为轴功率。
制冷压缩机的等熵理论功率与轴功率之比称为轴效率,用于评估压缩机主轴输入功率利用的完善程度。
机械效率是压缩机的指示功率和轴功率之比,用以评定压缩机摩擦损耗的大小程度。
往复式压缩机
提高了运行稳定性。
实例二
某石油企业采用控制系统优化技术 ,对往复式压缩机的控制系统进行 升级改造,实现了精准控制,减少 了能耗。
实例三
某制造企业采用新材料应用技术, 使用高性能的密封材料、润滑材料 等,降低了压缩机的泄漏和摩擦损 失,提高了能效。
未来发展趋势预测
高效节能技术将得到更广泛应用
随着环保意识的提高和能源价格的上涨,高效节能技术将成为往复式压缩机领域的重要发 展方向。
智能化技术将助力节能降耗
智能化技术的应用将进一步提高压缩机的运行效率,降低能耗,实现更加精准的控制和优 化。
新材料、新工艺将推动节能技术发展
新材料、新工艺的不断涌现,将为往复式压缩机的节能技术提供更多的选择和可能性。
案例二
某石油天然气公司需要一台高压大排量往复式压缩机,用于天然气输送。经过 对市场上多个品牌和型号的比较,最终选择了一台高性能的螺杆式压缩机,确 保了输送效率和安全性。
04
往复式压缩机安装与调试
安装前准备工作
基础检查
01
检查压缩机基础是否符合设计要求,包括基础的尺寸、位置、
标高等。
设备开箱检查
02
往复式压缩机
contents
目录
• 往复式压缩机概述 • 往复式压缩机结构组成 • 往复式压缩机性能参数与选型 • 往复式压缩机安装与调试 • 往复式压缩机运行与维护 • 往复式压缩机节能技术探讨
01
往复式压缩机概述
定义与工作原理
定义
往复式压缩机是一种通过活塞在气缸内做往复运动来改变气体容积,从而实现气体压缩 的机械装置。
往复式压缩机培训课件
其他领域
往复式压缩机还广泛应用于其他 领域,如呼吸机、潜水设备、气 垫船等。
往复式压缩机的组成结构
1 2
主机
往复式压缩机的主机通常由机身、汽缸、活塞 、十字头、曲轴、连杆等组成。
辅助设备
往复式压缩机的辅助设备包括冷却系统、润滑 系统、控制系统、过滤系统等。
检查润滑油是否变质、不足或过多 ,及时调整。
04
往复式压缩机的安全操作规程
压缩机的安全操作规程概述
严格遵守安全操作规程流程
往复式压缩机是一种高风险设备,必须按照规定流程进行操 作,不能随意更改或省略步骤。
熟悉操作界面和仪表
操作人员必须熟悉压缩机的操作界面和各种仪表,了解其功 能和使用方法,以便能够正确地控制和调整机器。
2023
往复式压缩机培训课件
contents
目录
• 往复式压缩机概述 • 往复式压缩机的工作原理 • 往复式压缩机的使用和维护 • 往复式压缩机的安全操作规程 • 往复式压缩机的故障排除实例 • 往复式压缩机的未来发展趋势
01
往复式压缩机概述
往复式压缩机的定义和特点
往复式压缩机定义
往复式压缩机是一种利用活塞在汽缸内往复运动来压缩气体 或液体的机械设备,通常简称活塞机。
数字智能化
数字智能化技术将进一步应用到压缩机的设计、制造、运行、维护等各个环节, 提高生产效率、降低成本、增强市场竞争力。
用领域,涉及到能源、化工、制药 、食品等多个领域,以满足不同行业的需求。
多样化产品类型
压缩机未来将不断推出新的产品类型,包括无油往复式压缩 机、螺杆压缩机、滑片压缩机等,以满足不同客户的需求。
制冷压缩机-往复式上2011
生物系统热科学与技术研究所
生物系统热科学与技术研究所
生物系统热科学与技术研究所
温的度增系加数会与使压温缩度机系的数运 减行 小工 ,况 这有 是关 因。 为压Tk的缩上机升和或吸T入0的蒸下气降的,温即度压差力距比增c 大,加强了蒸气吸热程度的缘故。 此外,温度系数还与压缩机的转速、冷却强度、热交换面积的大小、 内置电动机的效率、制冷剂的种类等因素有不同程度的联系。
气缸中心线夹角:V型—90°;W型—60°;Y型—120°;S型—45°。
生物系统热科学与技术研究所
§3-2 基本结构和工作原理
生物系统热科学与技术研究所
生物系统热科学与技术研究所
生物系统热科学与技术研究所
§3-3 热力性能
容积型压缩机的单机功率可以从几十瓦到几千千瓦的 范围。尽管结构型式众多,但究其热力学基础还有许 多部分是相同的。
生物系统热科学与技术研究所
一、往复式压缩机的实际循环
实际过程相当复杂。 利用示功器记录不同活塞位置或曲轴转角时气缸内部 气体压力的变化。得到
生物系统热科学与技术研究所
实际循环和理论循环比较
生物系统热科学与技术研究所
具有相同吸、排气压力,吸气温度和气缸工作容积的 压缩机实际循环示功图与理论循环指示图以及相应的 温—熵图对照比较,可发现有以下几方面的区别:
生物系统热科学与技术研究所
忽略容积损失、质量损失和其他不可逆损失。
压缩机没有余隙容积 吸气与排气过程中没有压力损失 吸气与排气过程中无热量传递 无漏气损失 无摩擦损失
理想工作过程: 4-1:吸气过程(下止点) 1-2:压缩过程 2-3:排气过程(上止点)
完成一个循环。
生物系统热科学与技术研究所
容积型压缩机的实际性能
《制冷压缩机》第3-2章_往复式制冷压缩机祁 (1)
容积系数 V
V 越大。而减小 c 受到结构、工艺和 c 越小, 气阀通流能力的限制。 c 还与压缩机的结构参 数S / D 有关。S / D 大的压缩机易获得较小的 c 值。现代中小型制冷压缩机的 c 值约为1.5% ~ 6%之间,低温机取小的 c 值。
(b) 相对余隙容积 c VC VP
成一个理论循环所消耗的理论功可用P-V图面积a-bc-d-a 求得
压缩机消耗的理论功率
Wt Vdp
a
b
(J/kg)
wt vdp
a
b
(2-4)
被压缩工质为过热蒸气,可将其视为理想气体; 设a-b为等熵压缩过程
k ( Wts Ps 0Vp k 1
k 1 k
1)
(J)
理论功率计算
(2-5) J (2-6) (2-7) J/Kg
Wts H dk H s 0 qmt (hdk hs 0 )
wts (hdk hs 0 )
inWts Pts 601000
i —汽缸数;
压缩机所消耗的理论功率 : (kw)
n —转速,r/min
2.3.2 单级往复式制冷压缩 机的实际循环
D S
图2-1 单级往复式压缩机的理论循 环
2。
汽缸工作容积Vp
当余隙容积为零,按压缩机进口吸气状态计算,活塞移动 一个行程所扫过的汽缸容积,即每一循环从汽缸中排出的气体 容积。
压缩机的理论输气量
Vp
D
4
2
S
(m3)
(2-1)
D—汽缸直径, m S—活塞行程, m
理论容积输气量
qvt 60inVp
容积效率影响因素小结
往复式制冷压缩机
❖ 要求 1.材料应耐制冷剂、耐油和耐热; 2.对负荷适应性好; 3.耐振动冲击; 4.防温度过高,过载保护
往复式制冷压缩机
❖ 冷却
❖ 起动 —起动电流;起动时间;耐电压;恢复时间
1.电阻分相起动
2.电容起动
3.电容运转方式起动
4.电磨屑;密封
❖ 方式
1.飞溅润滑
2.压力润滑-液压泵供油
3.压力润滑-离心供油
❖ 润滑油
1.黏度 2.与制冷剂的相溶性 3.低温下的流动性 4.酸值 5.闪点 6.化学稳定性和对系统中材料的相容性 7.含水量,机械杂质 8.电击穿强度
❖ 间歇运行 ❖ 旁通调节 ❖ 顶开吸气阀调节 ❖ 关闭吸气通道的调节 ❖ 变速调节—有级和无级 ❖ 起动卸载
往复式制冷压缩机
往复式制冷压缩机
往复式制冷压缩机 工 作 过 程 示 意 图
理论循环过程
A-吸、排气管内压力不变
B-吸、排气管内压力波动
压缩机的理论和实际吸、排气过程
往复式制冷压缩机 ❖ 容积效率—衡量气缸容积利用程度的指标 (单级压缩机的容积效率)
1.容积系数— 2.压力系数— 3.温度系数— 4.泄露系数—
2.连杆
3.曲轴
曲柄-滑块机构
滑管驱动机构示意图
滑槽驱动机构示意图
斜盘式驱动机构 斜盘式驱动机构示意图
❖ 压缩机的气缸布置方式 1.卧式和立式
2.角度式 3.十字形
❖ 机体、气缸套和机壳 机体—气缸体和曲轴箱
气缸套
机壳
❖ 轴封装置
❖ 气阀的作用—控制工作过程
1.阻力小 2.寿命长 3.余隙容积小 4.气密性好 5.简单
❖ 内置电动机的保护 1.过热 2.缺相 3.相间不平衡
往复式压缩机_3
3.1机体部件(机身、中体)
机身带有油池和十字头滑道,机身为灰铸铁件,用来装曲轴、连杆、十 字头,机身用螺栓固定在底座上。
机身顶部为开口的,可用来安装主轴承,曲轴和连杆,主轴承上端有支 承梁与机身紧密配合并用长拉杆螺栓紧固以增强机身刚性, 总装完成后用 机身盖板来密封,机身的十字头滑道两侧都有十字头窗口,用来安装十 字头销及连接十字头与活塞杆等,工作时窗口用盖板密封,机身上端设 有呼吸器、使机身内部与大气相通,用于降低曲轴箱的油温与内部压力, 不使油从连接面处挤出来。机身安装的详细说明请看本教程的安装部分。 主轴承由上下两部分组成,瓦背由钢制成,内表面为轴承合金。机身底 部为储油部分,底面倾钭,便于油流出,油池设有电加热器。以便冬季
3.14仪表及自动监控系统
压缩机设有较完善的监测和控制仪表,对各级排气压力、温度;冷却 水压力、温度;润滑油供油压力、温度均设有就地仪表,以便操作人 员随时观察压缩机运行工况参数。
对重要运行参数,还设有自动监控保护装置,当压缩机运行参数远离 设计规定值,达到危险工况时,能及时自动发出声光报警信号,并能 自动联锁停机。
3.10 运动机构润滑系统
压缩机运动机构(曲轴、连杆、十字头等)全部采用强制润滑。机身油 池作为油箱,其前部设有油标,用于显示机身油池油位。润滑系统由机 身、油泵、安全阀和管路等部分组成。开车前先启动油泵润滑各摩擦部 位,当油压≥0.2MPa(G)时,允许压缩机主电机启动,压缩机开始工 作,当油压高于0.4MPa(G)时报警,停油泵;当油压≤0.2MPa(G) 时报警,自行启动油泵;当油压≤0.15MPa(G)时主电机立即联锁停 机,以保证摩擦部位不至于因无油润滑而损坏。油泵的供油压力应为 0.25~0.35MPa(G)。机身内的油位可从油标上观察,最高油位应不至 于接触曲轴、连杆,最低应保证吸油口不露出油面。本机机身油池设有 恒温电加热器,可以根据实际温度自动控制。油温≥10℃时即可启动主 电机。运动部件润滑油选用GB12691-90标准中的L-DAB100压缩机油。
第3章 制冷压缩机与设备的选型计算
第3章制冷压缩机与设备的选型计算3.1制冷压缩机的选型计算制冷压缩机是制冷装置的核心部件,在制冷系统中吸入蒸发器出口的低温、低压气体制冷工质,经压缩机压缩至高温、高压状态,在较高温度下向外界放出热量,完成制冷工质和热量的输送任务。
制冷压缩机的选择影响制冷装置的运行特性、经济指标和安全可靠性。
用于制冷装置的制冷压缩机种类很多,按照压缩气体制冷工质的方式分类,可分为往复式制冷压缩机和回转式制冷压缩机;按照电动机与制冷压缩机的布置形式分类,可分为开启、半封闭和全封闭式;按制冷压缩机的工作温度分类,可分为高温压缩机、中温压缩机和低温压缩机;按制冷压缩机的压缩级数分类,可分为单级制冷压缩机和双级制冷压缩机;按制冷工质的热力性能及对环境的影响分类,又可分为合成制冷工质的制冷压缩机和自然工质的制冷压缩机。
3.1.1制冷压缩机的选型原则制冷压缩机的选型应遵循以下原则:1)所选制冷压缩机(以下简称压缩机)的制冷量应与制冷装置的机械负荷相等或接近,相近蒸发温度的冷间尽可能把必需的制冷量集中在一个机组中,按不同的蒸发温度系统分别选配压缩机,尽可能使每台(组)压缩机分别提供一种蒸发温度,以确保制冷系统运行可靠、经济合理。
除特殊的要求外,一般不设专门的备用机,压缩机的工作条件应在制造厂家限定的工作条件范围内。
2)为便于压缩机的维护和零部件的更换,同一制冷系统中如需多台压缩机,应选同一系列,且台数要适宜,以满足高、低峰负荷变化的需要。
当机械负荷较大时,应选用大型压缩机,减少台数,简化系统,降低成本,可以减少占地面积,节省建设投资。
3)为使压缩机安全、可靠和经济地运行,当氨制冷系统中冷凝压力与蒸发压力的比值>8、氟利昂制冷系统中冷凝压力与蒸发压力的比值>10时,应采用双级压缩;但氨系统的压力比<8、R134a系统的压力比<10时,采用单级压缩。
当要求制冷温度低于-60℃时,可采用复叠式制冷装置。
4)压缩机在不同的工况下运行,消耗的功率也不同,压缩机配用电动机的功率应按照运行的工况校核。
第三章制冷压缩机与设备的选型计算
图3-13 冷却塔与水冷式冷凝器的管线连接图
第二节 换热设备的选型计算
3. 冷却水系统设备的选型计算 (1)冷却塔的选型——选型参数
冷却范围
冷却塔中进水温度与出水温度之差;
冷幅高
出水温度与空气湿球温度之差;
热负荷——冷却塔的热负荷Q可由下式计算:
第三节 辅助设备的选型计算
一、液体储存设备
1.高压储液器
高压贮液器的选择主要是确定容积,保证制冷
装置在运行时,最大贮液量小于容积的70%,
最小贮液量大于容积的10%。
大型 储液器
V m
中小型 储液器
V m
m Vc
第三节 辅助设备的选型计算
2. 低压循环贮液器
气液分离器的作用是使混合的气体和液体制冷剂进行 分离,按照不同的蒸发系统分别设置,并按设置位置 的不同,分为机房气液分离器和库房气液分离器。
机房气液分离器
D
4qV t 3600
库房气液分离器
D 4qmv0
3600
第三节 辅助设备的选型计算
三、节流机构
节流机构的作用是为蒸发器提供适量的制冷剂液体,同 时又维持系统高、低压侧的压力差,保证蒸发器中适宜 的蒸发压力。
(二)选型计算
1.冷凝器传热面积
A Qk Qk
m2
qF K tm
(1)冷凝器的对数平均温差⊿tm
tm
t2 t1 Ln tK t1
tK t2
(K或℃)
第二节 换热设备的选型计算
(2)冷凝器的传热系数K
由冷凝器的结构型式、制冷剂种类、冷却介质的速度、温度差、传热
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) (3) (4) (5) (6)
School of Power Engineering
3. 型号表示
行程:用阿拉伯数字表示,单位为mm 制冷剂:用F表示 缸数和缸径:用阿拉伯数字表示,缸径单位cm
压缩机型式:半封闭式用B表示,全封闭式用Q表示,开启式不表示 配用电动机功率:用阿拉伯数字表示,单位为kW 气缸排列方式:如V、W、S形等 制冷剂类型:氟利昂用F表示,氨用A表示 压缩机气缸数:用阿拉伯数字表示
School of Power Engineering Chongqing University
0. 概 述
School of Power Engineering
Chongqing University
1. 往复式制冷压缩机的优缺点
① 能适应较广阔的压力范围和制冷量要求; ② 热效率较高,单位耗电量相对较少,偏离设计工况 运行时更为明显; ③ 对材料要求低,多用普通钢铁材料,加工比较容易, 造价较低廉; ④ 技术上较为成熟,生产使用上积累有丰富的经验; ⑤ 装置系统比较简单。
School of Power Engineering
Chongqing University
第一节 基本结构和工作原理
School of Power Engineering
Chongqing University
1. 基本结构
School of Power Engineering
Chongqing University
3-5’:出现排气阀 延迟关闭,高压侧 气体从排气腔向气 体缸倒流,等端点 膨胀过程指数变小 ,容积效率下降。
School of Power Engineering
Chongqing University
优点
School of Power Engineering
Chongqing University
缺点
① 因受到活塞往复惯性力的影响,转速受到限制, 不能过高,因此单机输气量大时,机器显得很笨重; ② 结构复杂,易损件多,维修工作量大; ③ 由于受到各种力、力矩的作用,运转时振动较 大; ④ 输气不连续,气体压力有波动。
定义式:
V ' V p − ∆V ' ∆V ' λv = = = 1− Vp Vp V p (3-1)
1 m
吸气容积损失ΔV’是由余隙容积内高压气体的膨胀引起。
计算式:
λv = 1 − c (ε − 1)
(3-7)
c—相对余隙容积,余隙容积与气缸工作容积之比。
c = Vc / Vp
School of Power Engineering Chongqing University
Chongqing University
(1) 容积效率 � 单级压缩机的容积效率
容积效率又称输气系数,为压缩机实际输气量与理 论输气量之比,是衡量气缸空间利用程度的指标。
qva ηv = = λv λ p λT λl qvt
5) (33-5
其中,容积系数λv、压力系数λp、温度系数λT、泄漏 系数λl
Chongqing University
School of Power Engineering
第二节
热力性能
School of Power Engineering
Chongqing University
1. 往复式压缩机的实际循环 (1)实际循环与理论循环的差异 � � � � � � 余隙容积,有再膨胀过程 气阀弹簧力 气体与缸壁及活塞间的热交换和摩擦 多变过程而非等熵过程 气体泄漏损失 润滑油和吸入湿蒸汽的影响
第三章 往复式制冷压缩机
School of Power Engineering
Chongqing University
目录:
0. 概述 1. 基本结构和工作原理 2. 热力性能 3. 制冷系统中压缩机的运行平衡点 4. 驱动机构和机体部件 5. 气阀 6. 封闭式制冷压缩机的内置电动机 7. 润滑系统和润滑油 8. 输气量调节 9. 总体结构 10. 往复式制冷压缩机的振动与噪声 11. 安全保护
School of Power Engineering
Chongqing University
活塞式制冷压缩机的实际工作中,吸入的制冷剂蒸 气容积并不等于活塞排量。原因是:
� 压缩机结构上不可避免存在余隙容积; � 吸、排气阀阻力;气阀部分及活塞环与气缸壁之间的 气体内部泄漏; � 吸气过程中气体与气缸壁之间的热交换等。 因此,实际输气量永远小于理论输气量 (活塞排量),两者之间 的比值称为压缩机的容积效率(输气系数),其大小反映了实际 工作过程中存在的诸多因素对压缩机输气量的影响,也表示了压 缩机气缸工作容积的有效利用程度,通常可用容积系数λv、压 力系数λp、温度系数λT、泄漏系数λl 的乘积来表示 。
School of Power Engineering
Chongqing Unive实际循环:1-2-3-4-1
理论循环:a-b-c-d-a
� 压缩机具有相同吸、排气压力,吸气温度和气缸工作容积; � 与理论循环相比,实际循环多一个膨胀过程(余隙容积); � 吸气阀弹簧力,实际循环吸气终了时,P1<Ps0 , T1>Ts0 ; � 压缩过程为多变过程。排气阀弹簧力使得排气压力P2 >Pdk , P3 >Pdk; � 在吸、排气时存在压力损失和压力波动,在整个工作过程中气 体同气缸、活塞间有热量交换和摩擦,在气缸与活塞间隙及吸、 排气阀之间还有气体泄漏。 � 理论循环为干制冷剂蒸气,实际循环为湿蒸气。
School of Power Engineering
1 m
(3-6)
Chongqing University
3-6)可简化为: 略去排气压力损失ΔPd3,则式( 1
λv = 1 − c[ε m − 1)] = f (c, ε , m)
式中,ε—压力比, ε = Pdk / P s0
(3-7)
因此,λv主要与压力比ε、相对余隙容积c和多变膨胀指数m有关
School of Power Engineering Chongqing University
2. 影响性能参数的因素
� 容积效率 � 指示功率和指示效率 � 机械效率和轴效率 � 电动机效率和电效率 � 压缩机热力性能计算举例 � 压缩机的排气温度
School of Power Engineering
School of Power Engineering Chongqing University
实际循环:1-2-3-4-1
理论循环:a-b-c-d-a
① 容积系数:反映余隙容积对压缩机输气量影响
由于余隙容积的存在,工作过程中出现了膨胀过程,占据了一定的气缸工作 容积,使部分活塞行程失去吸气作用,导致压缩机吸气量减少,即压缩机实 际输气量减少。
School of Power Engineering
Chongqing University
2. 分类
按使用的工质分: 氨压缩机、氟利昂压缩机、异丁烷压缩机 按气缸布置方式分: 卧式、直立式、角度式 按压缩机的密封方式分 : 开启式、封闭式 按制冷量的大小分: 小型活塞式、中型活塞式 按气体压缩的级数分: 单级压缩、多级 (一般为两级) 按活塞行程分: 短行程、长行程
膨胀过程:3—5 设过程的多变膨胀指数m为定值(常数),则
∆V '+Vc Pdk + ∆Pd 3 =( ) Vc Ps 0
'
1 m
Pdk + ∆Pd 3 ∆V = Vc [( ) − 1] Ps 0
将上式代入式(3-1):
1 m
Pdk + ∆Pd 3 λ v = 1 − c[( ) − 1)] Ps 0
� 当 ε达到一定数值时, λ v= 0 ,故有ε ≤10 ,对低温制冷系统采用 多级压缩实现高压比(图 3-6)。 � 缩小 c会受压缩机结构、工艺和气阀通流能力限制; c值还和压缩机结 构参数 S/D有关, S/D 大的压缩机易获得较小的 c值。现代中小型压缩机 c值约为 1.5~6% ,低温机取小值。 � m值取决于制冷剂种类和膨胀过程中气体与接触壁面的热交换情况, 随热交换的方向和强度而不断变化 。计算 λv 时m假定为常数。
School of Power Engineering
Chongqing University
2. 外形
School of Power Engineering
Chongqing University
3. 往复式制冷压缩机的工作循环
School of Power Engineering
Chongqing University
School of Power Engineering Chongqing University
� 对膨胀过程, m应根据示功图,取等端点膨 胀过程的多变膨胀指数值:
(3-8)
� 对压缩过程,其多变过程指数 n’亦应取等 端点过程指数值。 � 按等端点多变过程指数画出的示功图,其 面积略小于实际示功图。计算实际循环指示 功时,可按等功法求取压缩或膨胀过程的不 变的等功过程指数,称 等功多变过程指数。 � 同种制冷剂的 m和n’在同一循环中不相等, m<n’ 。对氨压缩机, m=1.10~1.15 , n’ =1.20~1.30 ;对氟利昂压缩机, m=0.95~1.05 , n’ =1.05~1.18 。增强对气缸壁面的冷却,多变膨胀线斜率变陡, m增大,对提高 λv 有利。
School of Power Engineering
Chongqing University
� � � �
压缩过程 排气过程 膨胀过程 吸气过程