6树和二叉树(基础知识)

合集下载

二叉树知识点总结

二叉树知识点总结

二叉树知识点总结1. 二叉树的性质1.1 二叉树的性质一:二叉树的深度二叉树的深度是指从根节点到叶子节点的最长路径长度。

对于一个空树而言,它的深度为0;对于只有一个根节点的树而言,它的深度为1。

根据定义可知,深度为k的二叉树中,叶子节点的深度值为k。

由此可知,二叉树的深度为所有叶子节点深度的最大值。

1.2 二叉树的性质二:二叉树的高度二叉树的高度是指从根节点到叶子节点的最短路径长度。

对于一个空树而言,它的高度为0;对于只有一个根节点的树而言,它的高度为1。

由此可知,二叉树的高度总是比深度大一。

1.3 二叉树的性质三:二叉树的节点数量对于一个深度为k的二叉树而言,它最多包含2^k - 1个节点。

而对于一个拥有n个节点的二叉树而言,它的深度最多为log2(n+1)。

1.4 二叉树的性质四:满二叉树满二叉树是一种特殊类型的二叉树,它的每个节点要么是叶子节点,要么拥有两个子节点。

满二叉树的性质是:对于深度为k的满二叉树而言,它的节点数量一定是2^k - 1。

1.5 二叉树的性质五:完全二叉树完全二叉树是一种特殊类型的二叉树,它的所有叶子节点都集中在树的最低两层,并且最后一层的叶子节点从左到右依次排列。

对于一个深度为k的完全二叉树而言,它的节点数量一定在2^(k-1)和2^k之间。

2. 二叉树的遍历二叉树的遍历是指按照一定的顺序访问二叉树的所有节点。

二叉树的遍历主要包括前序遍历、中序遍历和后序遍历三种。

2.1 前序遍历(Pre-order traversal)前序遍历的顺序是:根节点 -> 左子树 -> 右子树。

对于一个二叉树而言,前序遍历的结果就是按照“根-左-右”的顺序访问所有节点。

2.2 中序遍历(In-order traversal)中序遍历的顺序是:左子树 -> 根节点 -> 右子树。

对于一个二叉树而言,中序遍历的结果就是按照“左-根-右”的顺序访问所有节点。

2.3 后序遍历(Post-order traversal)后序遍历的顺序是:左子树 -> 右子树 -> 根节点。

第7章-树和二叉树第2讲-二叉树的概念

第7章-树和二叉树第2讲-二叉树的概念
(root),其余结点可分为m (m≥0)个互不相交的有限子集 T1、T2、…、Tm,而每个子集本身又是一棵树,称为根结点 root的子树。 树中所有结点构成一种层次关系!
第一层
树的特 点?
第二层 第三层 第四层
复习:二、树的基本术语
1.结点A、D的度?树的度? 2;3;3; 2.根结点?分支结点?叶子结点? A;BCDE;GHIJF;
在二叉链中,空指针的个数?
b A
B∧
C
∧D
∧E∧
∧F∧
∧G∧
n个结点 2n个指针域 分支数为n-1 非空指针域有n-1个 空指针域个数 = 2n-(n-1) = n+1
n=7 空指针域个数=8
39/10
40/10
二叉树
当n=3,结果为ห้องสมุดไป่ตู้。
第n个Catalan数
41/23
有n个结点并且高度为n的不同形态的二叉树个数是多少? 该二叉树:有n层,每层一个结点,该结点可以
43/23
结点个数为n,树形可以唯一确定 叶子结点个数为n0,树形不能唯一确定 n为奇数时,n1=0; n为偶数时,n1=1。 n0=n2+1 高度h= log2(n+1),是n个结点高度最小的二叉树
44/23
含有60个叶子结点的二叉树的最小高度是多少?
在该二叉树中,n0=60,n2=n0-1=59,n=n0+n1+n2=119+n1。 当n1=0且为完全二叉树时高度最小。 此时高度h=log2(n+1)= log2120=7。
作为双亲结点的左孩子,也可以作为右孩子 这样的二叉树的个数=1×2×…×2=2n-1。
例如,当n=3时有22=4个这样的二叉树。

数据库系统l试题库及答案 第6章 树和二叉树

数据库系统l试题库及答案 第6章 树和二叉树

第6章树和二叉树6.1知识点: 树和二叉树的基本概念一、填空题1.高度为h,度为m的树中至少有___________个结点,至多有______________个结点。

2.树的结点是由及若干指向其子树的组成;结点拥有的子树数称为;度为0的结点称为;度不为0的结点成为;树中结点的最大度数称为;树的最大层次称为_____________。

3.对于一棵具有n个结点的树,该树中所有结点的度数之和为___________。

4.如果结点A有3个兄弟结点,而且B是A的双亲,则B的度是___________。

5.二叉树是另一种树形结构,它的特点是。

6.一颗度数为k且有2k-1个结点的二叉树称为。

7.深度为k,且有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1到n的结点一一对应时,称之为。

8.一棵深度为6的满二叉树有个分支结点和个叶子。

9.一棵具有257个结点的完全二叉树,它的深度为。

10.设一棵完全二叉树具有1000个结点,则此完全二叉树有个叶子结点,有个度为2的结点,有个结点只有非空左子树,有个结点只有非空右子树。

11.由3个结点可以构成__________种形态的的二叉树,可以构成种形态的树。

12.将含有82个结点的完全二叉树从根结点开始顺序编号,根结点为第1号,其他结点自上向下,同一层自左向右连续编号。

则第40号结点的双亲结点的编号为。

13.一棵高度为5的完全二叉树中,最多包含有____________个结点。

14.一棵具有n个结点的二叉树,若它有n0个叶子结点,则该二叉树上度为1的结点n1=____________。

15.在高度为h(h>=0)的二叉树中至多可以有__________个结点,至少可以有___________个结点。

16.n个结点的二叉树最大高度是____________,最小高度是_______________。

二、选择题1.( )不含任何结点的空树()。

A.是一棵树B.是一棵二叉树C.是一棵树也是一棵二叉树D.既不是树也不是二叉树2.()一棵度为4的树中度为1、2、3、4的结点个数为4、3、2、1,则该树的结点总数为()。

数据结构-第6章 树和二叉树---4. 树和森林(V1)

数据结构-第6章 树和二叉树---4. 树和森林(V1)
ElemType data ; struct CSnode *firstchild, *nextsibing ; }CSNode;
6.4.1 树的存储结构
R AB C D EG F
R⋀
A
⋀D
⋀B
⋀E ⋀
C⋀
⋀G
⋀F ⋀
6.4.2 树、森林和二叉树的转换
1. 树转换为二叉树 将树转换成二叉树在“孩子兄弟表示法”中已 给出,其详细步骤是: ⑴ 加线。在树的所有相邻兄弟结点之间加一 条连线。 ⑵ 去连线。除最左的第一个子结点外,父结点 与所有其它子结点的连线都去掉。 ⑶ 旋转。将树以根结点为轴心,顺时针旋转 450,使之层次分明。
B C
D
A E
L HK
M
技巧:无左孩子 者即为叶子结点
6.4.3 树和森林的遍历
1. 树的遍历 由树结构的定义可知,树的遍历有二种方法。 ⑴ 先序遍历:先访问根结点,然后依次先序 遍历完每棵子树等。价于对应二叉树的先序遍历
⑵ 后序遍历:先依次后序遍历完每棵子树,然 后访问根结点。等价于对应二叉树的中序遍历
0 R -1 1A 0 2B 0 3C 0
}Ptree ; R
4D 1 5E 1
AB C
6F 3
7G 6
DE
F
8H 6
9I 6
G H I 10~MAX_Size-1 ... ...
6.4.1 树的存储结构
2. 孩子表示法
每个结点的孩子结点构成一个单链表,即有n 个结点就有n个孩子链表;
n个孩子的数据和n个孩子链表的头指针组成一 个顺序表; 结点结构定义: 顺序表定义:
typedef struct PTNode { ElemType data ;

第6章_数据结构习题题目及答案_树和二叉树_参考答案

第6章_数据结构习题题目及答案_树和二叉树_参考答案

一、基础知识题6.1设树T的度为4,其中度为1,2,3和4的结点个数分别为4,2,1,1,求树T中的叶子数。

【解答】设度为m的树中度为0,1,2,…,m的结点数分别为n0, n1, n2,…, nm,结点总数为n,分枝数为B,则下面二式成立n= n0+n1+n2+…+nm (1)n=B+1= n1+2n2 +…+mnm+1 (2)由(1)和(2)得叶子结点数n0=1+即: n0=1+(1-1)*4+(2-1)*2+(3-1)*1+(4-1)*1=86.2一棵完全二叉树上有1001个结点,求叶子结点的个数。

【解答】因为在任意二叉树中度为2 的结点数n2和叶子结点数n0有如下关系:n2=n0-1,所以设二叉树的结点数为n, 度为1的结点数为n1,则n= n0+ n1+ n2n=2n0+n1-11002=2n0+n1由于在完全二叉树中,度为1的结点数n1至多为1,叶子数n0是整数。

本题中度为1的结点数n1只能是0,故叶子结点的个数n0为501.注:解本题时要使用以上公式,不要先判断完全二叉树高10,前9层是满二叉树,第10层都是叶子,……。

虽然解法也对,但步骤多且复杂,极易出错。

6.3 一棵124个叶结点的完全二叉树,最多有多少个结点。

【解答】由公式n=2n0+n1-1,当n1为1时,结点数达到最多248个。

6.4.一棵完全二叉树有500个结点,请问该完全二叉树有多少个叶子结点?有多少个度为1的结点?有多少个度为2的结点?如果完全二叉树有501个结点,结果如何?请写出推导过程。

【解答】由公式n=2n0+n1-1,带入具体数得,500=2n0+n1-1,叶子数是整数,度为1的结点数只能为1,故叶子数为250,度为2的结点数是249。

若完全二叉树有501个结点,则叶子数251,度为2的结点数是250,度为1的结点数为0。

6.5 某二叉树有20个叶子结点,有30个结点仅有一个孩子,则该二叉树的总结点数是多少。

计算机二级公共基础专题探究——二叉树

计算机二级公共基础专题探究——二叉树

公共基础专题探究——二叉树1.6 树与二叉树树是一种简单的非线性结构,所有元素之间具有明显的层次特性。

在树结构中,没有前件的结点只有一个,称为树的根结点,简称树的根。

每一个结点可以有多个后件,称为该结点的子结点。

没有后件的结点称为叶子结点。

在树结构中,一个结点所拥有的后件的个数称为该结点的度,所有结点中最大的度称为树的度。

为该结点的左子树与右子树。

二叉树的基本性质:必考的题目(1)在二叉树的第k层上,最多有2k-1(k≥1)个结点;(2)深度为m的二叉树最多有2m-1个结点;(3)度为0的结点(即叶子结点)总是比度为2的结点多一个;(4)二叉树中 n = n0 +n1 +n2k层上有2k-1个结点深度为m的满二叉树有2m-1个结点。

若干结点。

二叉树的遍历:(一般画个图要你把顺序写出来)后序遍历(访问根结点在访问左子树和访问右子树之后)重点题型:二叉树的遍历例1:某二叉树的前序序列为ABCD,中序序列为DCBA,则后序序列为(DCBA )。

【解析】前序序列为ABCD,可知A为根结点。

根据中序序列为DCBA可知DCB是A的左子树。

根据前序序列可知B是CD的根结点。

再根据中序序列可知DC是结点B的左子树。

根据前序序列可知,C是D的根结点,故后序序列为DCBA例2:对下列二叉树进行前序遍历的结果为 ABDYECFXZ例3:设二叉树如下,则后序序列为 DGEBHFCA【解析】本题中前序遍历为ABDEGCFH,中序遍历为DBGEAFHC,后序遍历为DGEBHFCA完全二叉树指除最后一层外,每一层上的结点数均达到最大值,在最后堆排序问题:例1:已知前序序列与中序序列均为ABCDEFGH,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知ABCDEFGH中:L-D-R 已知ABCDEFGH后:L-R-D 待求由此可知,L=0,D-R= ABCDEFGH故R-D=HGFEDCBA,即后序序列= HGFEDCBA变式训练1:已知后序序列与中序序列均为ABCDEFGH,求前序序列答案:HGFEDCBA,(这次R=0)结论:若前序序列与中序序列均为某序列,则后序序列为该序列的倒序,且为折线;同样地,若后序序列与中序序列均为某序列,则前序序列为该序列的倒序,且为折线例2:已知前序序列=ABCD,中序序列=DCBA,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知ABCD中:L-D-R 已知DCBA后:L-R-D 待求因为ABCD与DCBA正好相反,由此可知,R=0所以D-L=ABCD,即L-D=DCBA所以后序序列= DCBA变式训练2-1:中序序列=BDCA,后序序列=DCBA,求前序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 待求中:L-D-R 已知BDC,A后:L-R-D 已知DCB,A通过观察可知,R=0,L={B,D,C},D=A中、后变换时,{B,D,C}发生了变化,说明左子树结构特殊,进一步令中’:L’-D’-R’已知B,DC后’:L’-R’-D’已知DC,B可知L’=0,即D’=B,R’= DC可以画出二叉树示意图为:Array所以前序序列= ABCD变式训练2-2:中序序列=ABC,后序序列=CBA,求前序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 待求中:L-D-R 已知ABC后:L-R-D 已知通过观察可知,L=0,D-R=ABC,R-D=CBA所以前序序列=D-L-R= D-R=ABC变式训练2-3:前序序列=ABC,中序序列=CBA,求后序序列【解析】设根节点为D≠0,左子树为L,右子树为R,有遍历顺序为:前:D-L-R 已知A,BC中:L-D-R 已知CB,A后:L-R-D 待求通过观察可知,D=A ,L={B,C},R=0所以后序序列=CBA (一边偏)题型二:求二叉树的深度。

云大《数据结构》课程教学课件-第6章 树和二叉树(147P)_OK

云大《数据结构》课程教学课件-第6章 树和二叉树(147P)_OK

^d ^ ^ e ^ 三叉链表
3)二叉链表是二叉树最常用的存储结构。还有其它链接方 法,采用何种方法,主要取决于所要实施的各种运算频度。
例:若经常要在二叉树中寻找某结点的双亲时,可在每个结 点上再加一个指向其双亲的指针域parent,称为三叉链表。
lchild data parent rchild
2021/8/16
2021/8/16
9
6.2 二 叉 树
6.2.1 二叉树的概念
一、二叉树的定义: 二叉树(Binary Tree)是n(n>=0)个结点的有限集,它或者是 空集(n=0)或者由一个根结点和两棵互不相交的,分别称 为根的左子树和右子树的二叉树组成。 可以看出,二叉树的定义和树的定义一样,均为递归定 义。
A
集合3
集合1
BCD
EF
G
集合2
2021/8/16
3
2、树的表示方法 1)树形图法
A
BCD
EF
G
2)嵌套集合法
3)广义表形式 ( A(B, C(E,F), D(G) )
4)凹入表示法
2021/8/16
A B
D
CG
EF
A B C E DF G
4
3、 树结构的基本术语
1)结点的度(Degree):为该结点的子树的个数。 2)树的度:为该树中结点的最大度数。
7)路径(Path):若树中存在一个结点序列k1,k2,…,kj,使得ki是 ki+1的双亲(1<=i<j),则称该结点序列是从ki到kj一条路径 (Path)
路径长度:路径的长度为j-1,其为该路径所经过的边的数 目。
A
BCD
EF
G

第6章树和二叉树(2)培训讲学

第6章树和二叉树(2)培训讲学

第6章树和二叉树(2)第六章树和二叉树一、选择题1.算术表达式a+b*(c+d/e)转为后缀表达式后为()A.ab+cde/* B.abcde/+*+ C.abcde/*++ D.abcde*/++2. 设森林F对应的二叉树为B,它有m个结点,B的根为p,p的右子树结点个数为n,森林F中第一棵树的结点个数是()A.m-n B.m-n-1 C.n+1 D.条件不足,无法确定3.若度为m的哈夫曼树中,其叶结点个数为n,则非叶结点的个数为()。

A.n-1 B.⎣n/m⎦-1 C.⎡(n-1)/(m-1)⎤ D.⎡n/(m-1)⎤-1E.⎡(n+1)/(m+1)⎤-14.深度为h的满m叉树的第k层有()个结点。

(1=<k=<h)A.m k-1 B.m k-1 C.m h-1 D.m h-15. 若X是二叉中序线索树中一个有左孩子的结点,且X不为根,则x的前驱为( )A.X的双亲B.X的右子树中最左的结点C.X的左子树中最右结点D.X的左子树中最右叶结点6. 引入二叉线索树的目的是()A.加快查找结点的前驱或后继的速度 B.为了能在二叉树中方便的进行插入与删除C.为了能方便的找到双亲 D.使二叉树的遍历结果唯一7.由3 个结点可以构造出多少种不同的二叉树?()A.2 B.3 C.4 D.58.下述编码中哪一个不是前缀码()。

A.(00,01,10,11) B.(0,1,00,11) C.(0,10,110,111)D.(1,01,000,001)二、判断题1. 给定一棵树,可以找到唯一的一棵二叉树与之对应。

2.将一棵树转成二叉树,根结点没有左子树;3. 在中序线索二叉树中,每一非空的线索均指向其祖先结点。

4. 一棵哈夫曼树的带权路径长度等于其中所有分支结点的权值之和。

5.当一棵具有n个叶子结点的二叉树的WPL值为最小时,称其树为Huffman树,且其二叉树的形状必是唯一的。

三、填空题1.一棵树T中,包括一个度为1的结点,两个度为2的结点,三个度为3的结点,四个度为4的结点和若干叶子结点,则T的叶结点数为___ ___。

树和二叉树知识考点整理

树和二叉树知识考点整理

树和二叉树知识考点整理●树的基本概念●树的定义●n个结点的有限集●n=0代表空树●满足条件●只有一个根的结点●其余结点是互不相交的有限集,每个集合本身是一棵树,是根的子树●树是一种递归的数据结构●树的根结点没有前驱,其余结点只有一个前驱●树中所有结点可以有零个或多个后驱●基本术语●双亲、兄弟、孩子、祖先●度:孩子个数●分支结点:度大于0●叶子结点:度为0●深度:从下往上;●高度:从上往下;●有序树:从左到右是有次序的●路径和路径长度:路径是从上往下的●森林:m棵互不相交的树的集合。

●树的基本性质●结点数=所有结点度数之和+1●度为m的树中第i层上至多有m的i-1次分个结点●高度为h的m叉树至多有(m^h-1)/(m-1)个结点●具有n个结点的m叉树的最小高度为「logm(n(m-1)+1)]●二叉树的概念●定义●一种树形结构,特点是每个结点至多只有两棵子树(即二叉树中不存在度大于2的结点)并且二叉树的子树有左右之分,次序不可颠倒●二叉树与度为2的有序树区别●度为2的可以有三个结点,二叉树可以是空树●度为2的有序树的孩子左右之分是根据另一个孩子而言的;二叉树无论有没有,都要确定左右●特殊的二叉树●满二叉树●树中每一层都含有最多的结点●完全二叉树●高度为h,有n个结点的二叉树,当且仅当,每个结点都与高度为h的满二叉树中的编号一一对应●二叉排序树●用途:可用于元素的排序、搜索●左子树上所有结点的关键字均小于根结点的关键字;右子树上所有结点的关键字均大于根结点的关键字;左子树和右子树又是一棵二叉排序树●二叉树的性质●非空二叉树上的叶子结点数等于度为2的结点树加1,即n0=n2+1●非空二叉树上第k层至多有2^(k-1)个结点●高度为h的二叉树至多有2^h-1个结点●具有n个结点的完全二叉树的高度为log2(n+1)取顶或者log2n取底+1●二叉树的存储结构●顺序存储结构●只适合存储完全二叉树,数组从0开始●链式存储结构●顺序存储的空间利用率太低●至少三个指针域:数据域、左指针域、右指针域●增加了指向父结点后,变为三叉链表的存储结构●在含有n个结点的二叉链表中,含有n+1个空链域●二叉树的遍历和线索二叉树●二叉树的遍历●先序遍历●根左右●应用:求树的深度●中序遍历●左根右●后序遍历●左右根●应用:求根到某结点的路径、求两个结点的最近公共祖先等●三个遍历时间复杂度都是O(n)●递归算法和非递归算法的转换●层次遍历●需要借助队列●步骤●二叉树根结点入队,然后出队,访问出队结点,若有左子树,左子树根结点入队●遍历右子树,有右子树,右子树根结点入队。

数据结构(本)单元6树和二叉树单元测试

数据结构(本)单元6树和二叉树单元测试

数据结构(本)单元6树和二叉树单元测试(题+答案)题目1、假定一棵二叉树中,双分支结点数为15,单分支结点数为30,则叶子结点数为()。

A. 15B. 16C. 47D. 17题目2、已知某二叉树的后续遍历序列是dabec,中序遍历是debac,则它的先序遍历序列是()。

A. cedbaB. decabC. acbedD. deabc题目3、二叉树第k层上最多有()个结点。

A.B.C.D. 2k题目4、二叉树的深度为k,则二叉树最多有()个结点。

A.B.C. 2kD. 2k-1题目5、设某一二叉树先序遍历为abdec,中序遍历为dbeac,则该二叉树后序遍历的顺序是()。

A. debacB. debcaC. abedcD. abdec题目6、设某一二叉树中序遍历为badce,后序遍历为bdeca,则该二叉树先序遍历的顺序是()。

A. debacB. decabC. adbecD. abcde题目7、树最适合于用来表示()。

A. 元素之间有包含和层次关系的数据B. 元素之间无前驱和后继关系的数据C. 顺序结构的数据D. 线性结构的数据题目8、一棵非空的二叉树,先序遍历与后续遍历正好相反,则该二叉树满足()。

A. 任意二叉树B. 无左孩子C. 只有一个叶子结点D. 无右孩子题目9、设a,b为一棵二叉树的两个结点,在后续遍历中,a在b前的条件是()。

A. a在b左方B. a在b右方C. a在b上方D. a在b下方题目10、权值为{1,2,6,8}的四个结点构成的哈夫曼树的带权路径长度是()。

A. 29B. 18C. 19D. 28题目11、如果将给定的一组数据作为叶子数值,所构造出的二叉树的带权路径长度最小,则该树称为()。

A. 哈夫曼树B. 平衡二叉树C. 二叉树D. 完全二叉树题目12、下列有关二叉树的说法正确的是()。

A. 完全二叉树中,任何一个结点的度,或者为0或者为2B. 二叉树中度为0的结点的个数等于度为2的结点的个数加1C. 二叉树的度是2D. 二叉树中结点个数必大于0题目13、二叉树是非线性数据结构,所以()。

第6-10章 树和二叉树--答案

第6-10章  树和二叉树--答案

第6章树和二叉树一、基础知识题1.列出右图所示二叉树的叶结点、分支结点和每个结点的层次。

[解答]二叉树的叶结点有⑥、⑧、⑨。

分支结点有①、②、③、④、⑤、⑦。

结点①的层次为0;结点②、③的层次为1;结点④、⑤、⑥的层次为2;结点⑦、⑧的层次为3;结点⑨的层次为4。

2.使用(1)顺序表示和(2)二叉链表表示法,分别画出右图所示二叉树的存储表示。

[解答](1)顺序表示(2)二叉链表表示3.在结点个数为n(n>1)的各棵树中,高度最小的树的高度是多少?它有多少个叶结点?多少个分支结点?高度最大的树的高度是多少?它有多少个叶结点?多少个分支结点?[解答]结点个数为n时,高度最小的树的高度为1,有2层;它有n-1个叶结点,1个分支结点;高度最大的树的高度为n-1,有n层;它有1个叶结点,n-1个分支结点。

4.试分别画出具有3个结点的树和3个结点的二叉树的所有不同形态。

[解答]具有3个结点的树具有3个结点的二叉树5.如果一棵树有n1个度为1的结点,有n2个度为2的结点,…,n m个度为m的结点,试问有多少个度为0的结点?试推导之。

[解答]总结点数n=n0+n1+n2+…+n m总分支数e=n-1= n0+n1+n2+…+n m-1=m×n m+(m-1)×n m-1+…+2×n2+n1则有 n 0=∑=+-mi i n i 21))1((6.试分别找出满足以下条件的所有二叉树:(1) 二叉树的前序序列与中序序列相同; (2) 二叉树的中序序列与后序序列相同; (3) 二叉树的前序序列与后序序列相同。

[解答](1) 二叉树的前序序列与中序序列相同:空树或缺左子树的单支树;(2) 二叉树的中序序列与后序序列相同:空树或缺右子树的单支树; (3) 二叉树的前序序列与后序序列相同:空树或只有根结点的二叉树。

7.填空题(1)对于一棵具有n 个结点的树,该树中所有结点的度数之和为 n-1 。

数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树

数据结构——用C语言描述(第3版)教学课件第6章 树与二叉树

6.2 二叉树 6.2.1 二叉树的定义与基本操作 6.2.2 二叉树的性质 6.2.3 二叉树的存储结构
6.2.1 二叉树的定义与基本操作 定义:我们把满足以下两个条件的树型结构叫做二 叉树(Binary Tree): (1)每个结点的度都不大于2; (2)每个结点的孩子结点次序不能任意颠倒。
有序树:在树T中,如果各子树Ti之间是有先后次序的,则称为有序树。 森林:m(m≥0)棵互不相交的树的集合。将一棵非空树的根结点删去,树就变成一 个森林;反之,给森林增加一个统一的根结点,森林就变成一棵树。
同构:对两棵树,通过对结点适当地重命名,就可以使两棵树完全相等(结点对应相 等,对应结点的相关关系也像等),则称这两棵树同构。
二叉树的基本结构由根结点、左子树和右子树组成
如图示
LChild Data RChild
Data
LChild RChild
用L、D、R分别表示遍历左子树、访问根结点、遍 历右子树,那么对二叉树的遍历顺序就可以有:
(1) 访问根,遍历左子树,遍历右子树(记做DLR)。 (2) 访问根,遍历右子树,遍历左子树(记做DRL)。 (3) 遍历左子树,访问根,遍历右子树(记做LDR)。 (4) 遍历左子树,遍历右子树,访问根 (记做LRD)。 (5) 遍历右子树,访问根,遍历左子树 (记做RDL)。 (6) 遍历右子树,遍历左子树,访问根 (记做RLD)。
(8) NextSibling(Tree,x): 树Tree存在,x是Tree中的某个结点。若x不 是其双亲的最后一个孩子结点,则返回x后面的下一个兄弟结点,否则 返回“空”。
基本操作:
(9) InsertChild(Tree,p,Child): 树Tree存在,p指向Tree 中某个结点,非空树Child与Tree不相交。将Child插入Tree中, 做p所指向结点的子树。

2023年高考信息技术专题13 树与二叉树 知识点梳理(选修)(浙教版2019)

2023年高考信息技术专题13 树与二叉树 知识点梳理(选修)(浙教版2019)

第十三章树与二叉树一、线性结构和非线性结构线性结构的所有元素都是线性排列的,结构中必然存在唯一的“起点”和“终点”元素。

且除首尾元素外,都有且只有一个“前驱”和“后继”节点。

例:链表、队列、栈非线性结构则完全相反,结构中可能存在多个“起点”和“终点”元素。

所有节点都可能存在0个或多个“前驱”和“后继”节点。

例:树、图二、树形结构树可以描述为由n(n>=0)个节点和n-1条边构成的一个有限集合,以及在该集合上定义的一种节点关系。

树形结构是一种特殊的非线性结构,其特点是:只有一个没有“前驱”,只有“后继”的根节点。

有多个只有“前驱”没有“后继”的叶子节点,其余节点均只有一个“前驱”和多个“后继”。

树的示例1.描述树形结构的词1.1节点名称(Node):根节点:树中唯一没有前驱的节点,也称开始节点(A)叶子节点:树中没有后继的节点,也称终端节点(G,H,C,D,K,L,M,J,F)分支节点:除叶子节点之外的所有节点(A,B,E,I)内部节点:除根节点之外的分支节点(B,E,I)1.2节点关系:父子关系:节点间的前驱后继关系又称父子关系。

例:B是G的父节点;G是B的子节点兄弟关系:同一父节点下的所有节点关系称兄弟关系。

例:G和H是兄弟节点1.3度(Degree):节点的度:一个节点拥有的子树(后继节点)的个数称之为该节点的度。

树的度:一棵树中最大的度称之为树的度。

例:图中A点的度为5,是该树中度最大的点,故该树的度为5。

1.4层/深(Level):节点的层:节点的层数从根节点开始计算,根节点的层数为1。

每经过一条边,层数加1。

树的高度/深度(Depth):树中节点最大层数称为树的高度或深度。

例:图中K点的深度为4,是该树中深度最大的点,故该树深度为4。

三、二叉树二叉树是树形结构的一种特殊情况,二叉树的度<=2。

1.完全二叉树和满二叉树满二叉树:所有节点度为2或0;所有叶子节点在同一层完全二叉树:最多只有最深两层节点的度小于2;最深一层的叶子节点依次排列在最左边。

数据结构 第六章 树和二叉树

数据结构 第六章  树和二叉树

F
G
H
M
I
J
结点F,G为堂兄弟 结点A是结点F,G的祖先
5
树的基本操作
树的应用很广,应用不同基本操作也不同。下面列举了树的一些基本操作: 1)InitTree(&T); 2)DestroyTree(&T); 3)CreateTree(&T, definition); 4)ClearTree(&T); 5)TreeEmpty(T); 6)TreeDepth(T); 7) Root(T); 8) Value(T, &cur_e); 9) Assign(T, cur_e, value); 10)Paret(T, cur_e); 11)LeftChild(T, cur_e); 12)RightSibling(T, cur_e); 13)InsertChild(&T, &p, i, c); 14)DeleteChild(&T,&p, i); 15)TraverseTree(T, Visit( ));
1
2 4 8 9 10 5 11 12 6 13 14 3 7 15 4 6 2
1
3
5 7
证明:设二叉树中度为1的结点个数为n1 根据二叉树的定义可知,该二叉树的结点数n=n0+n1+n2
又因为在二叉树中,度为0的结点没有孩子,度为1的结点有1 个孩子,度为2的结点有2个结孩子,故该二叉树的孩子结点 数为 n0*0+n1*1+n2*2(分支数) 而一棵二叉树中,除根结点外所有都为孩子结点,故该二叉 树的结点数应为孩子结点数加1即:n=n0*0+n1*1+n2*2+1
文件夹1
文件夹n

第6章树和二叉树(下)-数据结构简明教程(第2版)-微课版-李春葆-清华大学出版社

第6章树和二叉树(下)-数据结构简明教程(第2版)-微课版-李春葆-清华大学出版社

6.6
【例6.16】 已知先序序列为ABDECFG,中序序列为DBEACGF,
给出构造该二叉树的过程。
解:构造该二叉树的过程如下所示。
根:A 左先序:BDE 右先序:CFG 右中序:DBE 右中序:CGF

叉 树
根:B 左先序:D 右先序:E
根:C 左先序:空 右先序:FG

右中序:D 右中序:E
右子树中
序序列, 有n-k-1 个结点

构 造
若bk前面有k个结点,则左子树有k个结点,右子树有n-k-1 个结点。
可以求出左右子树的中序序列和后序序列。
这样根结点是确定的,左右子树也是确定的,则该二叉树是 确定的。
6.6
【例6.17】 已知一棵二叉树的后序遍历序列为DEBGFCA,
中序遍历序列为DBEACGF,给出构造该二叉树的过程。
间 的
以树的根结点为轴心,将整棵树顺时针转动45度,使之结

构层次分明。

【例6.18】 将图6.27(a)所示的树转换成二叉树。 解:转换的过程:
A
A
6.7
BC D

叉 树
EF
G

一棵树
树 之
A


B


E
C
相邻兄弟之间 加连线(虚线)
BC D
EF
G
删除与双亲 结点的连线
转换后的二叉树
A BC D
【例6.15】 一棵二叉树的先序遍历序列和中序遍历序列相同,
说明该二叉树的形态。
解:二叉树的先序遍历序列为NLR,中序遍历序列为LNR:
NLR = LNR
二 则L应为空(因为N为空后其L、R没有意义)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档