上册-第1章飞机结构

合集下载

第一章 飞机机身结构知识点

第一章 飞机机身结构知识点

机身结构1 机身的结构类型1)构架式机身隔框立柱图1.225构架式机身2)半硬壳式机身(2)桁条式机身。

ill'亦质慕皮(1)桁梁式机身。

图1.226桁梁式机身2 机身主要构件机身主要部件包括蒙皮、桁条、桁梁和隔框。

1) 蒙皮机身蒙皮的作用与机翼蒙皮的作用一样,用来维持机身外形;同时蒙皮与支撑它的构件一起承受和传递局部气动载荷和弯矩。

2) 桁条和桁梁桁条和桁梁都是机身结构的纵向构件 3) 龙骨梁龙骨梁是机身的一个主要纵向部件,它由上、下两个受压的弦杆和一个带有加强筋的承剪腹板结构件组成。

龙骨梁位于中央翼下方、两主轮舱之间的机身中心线上,如图1.229所示。

3)硬壳式机身桁条式机身结构图1.227 ■罐皮隔梃-图1.228硬壳式机身阻力揑杆连播到孙梁中删严捲头/也机纵轴缄惦流也皮茧捽框一龙骨陀支傑枇一刖图1.229机身龙骨梁4)隔框机身隔框可分为普通隔框和加强隔框两种。

(1)普通隔框。

(a)(b)图1.230普通隔框(2)加强隔框。

图1.231壁板板式加强隔框5)机身上骨架元件与蒙皮的连接机身蒙皮同骨架元件的连接有两种方式:第一种:蒙皮只与桁条相连,如图1.232(a)所示;第二种,蒙皮既与框相连,又与桁条相连,如图1.232(b)所示。

(a)⑹(c)图1.232蒙皮与骨架元件的连接方式1—蒙皮;2—桁条;3—框;4—补偿片(a)(b)图1.233框与桁条的连接1—蒙皮;2—桁条;3—框;4—弯边;5—角片3 增压密封现代飞机大都在空气稀薄的高空中飞行,为了保证空勤人员和旅客在高空飞行时的正常工作条件和生理要求,以及保证仪表、设备可靠地工作,都采用了增压气密座舱。

图1.234所示为波音B737飞机的增压气密座舱区域。

STA{站位)^TA17K1016ISTAS'fASTASTASiA227.S294.5540663727匚二|增压区墜非增压区图1.234B737飞机增压区增压气密舱内需要密封的地方有:各骨架构件与蒙皮的对接处(铆接和螺栓连接);蒙皮与壁板之间;飞机和发动机操纵系统的拉杆和钢索在座舱内增压区和非增压区交界面的进出口处;飞机液压系统、引气系统、空调系统的导管、电缆束进出口;座舱盖口和应急出口;舱口和窗口等。

第一章 飞机结构

第一章 飞机结构

第一章- 飞机结构摘要:飞机结构是第一章,主要讲述了飞机的机身,机翼,尾翼,起落架,和发动机这几个主要结构部分。

根据美国联邦法规全书(CFR)第14篇第一部分的定义和缩写,飞行器(Aircraft)是一种用于或者可用于飞行的设备。

飞行员执照的飞行器分类包括飞机(Airplane),直升机,气球类(lighter-than-air),动力升力类(powered-lift),以及滑翔机。

还定义了飞机(Airplane)是由引擎驱动的,比空气重的固定翼飞行器,在飞行中由作用于机翼上的空气动态反作用力支持。

本章简单介绍飞机和它的主要组成部分。

主要组成部分尽管飞机可以设计用于很多不同的目的,大多数还是有相同的主要结构。

它的总体特性大部分由最初的设计目标确定。

大部分飞机结构包含机身,机翼,尾翼,起落架和发动机。

机身机身包含驾驶舱和/或客舱,其中有供乘客使用的坐位和飞机的控制装置。

另外,机身可能也提供货舱和其他主要飞机部件的挂载点。

一些飞行器使用开放的桁架结构。

桁架型机身用钢或者铝质管子构造。

通过把这些管子焊接成一系列三角形来获得强度和刚性,成为桁架结构。

图1-2就是华伦桁架。

华伦桁架结构中有纵梁,斜管子和竖直的管子单元。

为降低重量,小飞机一般使用铝合金管子,可能是用螺钉或者铆钉通过连接件铆成一个整体。

随着技术进步,飞行器设计人员开始把桁架单元弄成流线型的飞机以改进性能。

在最初使用布料织物来实现的,最终让位于轻金属比如铝。

在某些情况下,外壳可以支持所有或者一主要部分的飞行载荷。

大多数现代飞机使用称为单体横造或者半单体构造的加强型外壳结构。

单体横造设计使用加强的外壳来支持几乎全部的载荷。

这种结构非常结识,但是表面不能有凹痕或者变形。

这种特性可以很容易的通过一个铝的饮料罐来演示。

你可以对饮料罐的两头施加相当的力量管子不受什么损坏。

然而,如果罐壁上只有一点凹痕,那么这个罐子就很容易的被扭曲变形。

实际的单体造型结构主要由外壳,隔框,防水壁组成。

第一章飞机结构

第一章飞机结构
用来连接机翼与机身,把机翼上的力传递到机身隔框上。接头 分为固接和铰接两种,固接的接头,接点既不可移动,也不可转动; 因此,它既能传递剪力又能传递弯矩。铰接不可移动、但可以旋转, 只传剪力,不传弯矩。
单块式机翼:梁弱,多长 桁、厚蒙皮
• 由蒙皮、桁条和缘条组 成一整块构件。现代飞 机多采用单块式机翼。
桁条
蒙皮
纵向元件有翼梁、长桁、墙(腹板) 横向元件有翼肋(普通翼肋和加强翼肋) 以及包在纵、横元件组成的骨架外面的蒙皮
一、蒙皮:蒙皮的直接功用是形成流线型的机翼外表面。 蒙皮受到垂直于其表面的局部气动载荷;
蒙皮还参与机翼的总体受力—— 它和翼梁或翼墙的腹板组合在一起, 形成封闭的盒式薄壁梁承受机翼的扭矩



构航 空
工 程 学
孟 令
院兵
第0章 授课计划
授课内容 第一章 飞机结构 第二章 重量与平衡 第三章 液压系统 第四章 起落架系统 第五章 飞机飞行操纵系统 第六章 座舱环境控制系统 第七章 防水排雨系统 第八章 飞机燃油系统 第九章 飞机防火系统 第十章 飞机电子系统
课时 12 8 8 8 6 6 4 4 4 4
• 加强翼肋:除具有普通翼肋的功用 外,还作为机翼结构的局部加强件, 承受较大的集中载荷或悬挂部件。
翼肋RIB
形成并维持翼剖面之形状;并将纵向骨架与蒙皮连成一体; 把由蒙皮和桁条传来的空气动力载荷传递给翼梁。
68
蒙皮
• 承受空气动力,形成和维持机翼外形,并承受扭矩,有 些机翼蒙皮还承受弯矩。
接头
• 特点:蒙皮较厚;桁条 较多而且较强;弯曲引 起的轴向力由蒙皮、桁 条和缘条组成的整体壁 板承受。
• 优点:能较好的保持翼 形;抗弯、扭刚度较大; 受力构件分散;

飞机结构介绍-课件 (一)

飞机结构介绍-课件 (一)

飞机结构介绍-课件 (一)飞机结构介绍-课件飞机是一种非常复杂的机器,由许多部分构成。

这些部分一起工作,使飞机能够起飞、飞行和降落。

在本文中,我们将更详细地了解一些飞机的主要结构部分。

1. 机身飞机的机身是整个飞机最大、最重要的部分。

它通常被称为飞机的“躯干”,起着支撑和保护其他部分的作用。

机身由多个部件构成,包括壳体、翼下盖、起落架和液压系统。

2. 机翼机翼是飞机的主要升力部件。

它们带有多个部件,包括翼展、翼面积和翼端。

翼展是机翼的长度。

翼面积是机翼下面的面积。

翼端是支撑翼展的部分。

机翼上还有襟翼和襟缝,襟翼是在机翼前端向下伸出的部件,以增大机翼的升阻比;襟缝则是为了使翼前向下部分的充气率增大,从而增加升力和改善沟通情况。

3. 推进器推进器是发动机推力的部分。

它们可以是螺旋桨或喷气式推进器。

螺旋桨由至少一个旋转的桨叶组成,以产生推力,驱动叶片旋转;喷气式推进器由发动机喷出的高速气流产生推力。

4. 发动机发动机是飞机的重要组装部件。

通常分为往复式发动机,涡轮螺旋桨发动机和涡喷发动机等。

往复式发动机是最常见的发动机,运行方式类似于汽车发动机。

涡轮螺旋桨发动机主要用于支持小型飞机或直升机。

涡喷发动机则主要用于大型民用飞机和军用飞机。

5. 机尾部件机尾部件是飞机的后部。

它包括方向舵、高度舵和俯仰舵。

这些部件可以通过飞行员的操纵杆和脚蹬进行操作,以控制飞机的方向和飞行高度。

6. 起落架起落架是可以伸缩的三角形构架,它可在起飞和降落时支撑整个飞机。

它由前轮和后轮构成,并且可以收起,以减少阻力和空气阻力。

7. 电气系统电气系统是飞机上的电力系统,它提供了飞机所需的电力,以支持各种设备,例如航电系统,通信设备和仪表板。

电气系统由多个部件构成,包括发电机、电池和电线。

总之,飞机的构造非常复杂,由多个部分构成。

这些部分的组合使得飞机飞行、降落和操纵时能够更加可靠和安全。

了解这些飞机部分的功能和组织结构,可以帮助大家更好地理解和欣赏飞机的优美和飞行原理。

上册飞机结构

上册飞机结构

(上册)第1章飞机结构1、飞机在匀速直线飞行,这些外载荷必须满足下列平衡方程:(图1.1-1)ΣX=0 P0=D0(发动机推力等于气动阻力)ΣY=0 L0=W(气动升力等于飞机重力)ΣM=0 M A=M B(抬头力矩等于低头力矩)2、飞机过载分为机动过载和突风过载。

飞机过载n y的定义是:作用在飞机上的升力L和飞机飞行重量W之比。

即n y=L/W飞机过载是代数值,不但有大小而且有正负。

3、机动过载:滚转角越大,过载值越大。

n y=1/cosγ(图1.1-2)4、对飞机结构受力影响比较大的是垂直突风。

垂直突风主要是改变气流对飞机运动速度的方向,从而产生较大的突风过载n y。

5、当飞机进行水平飞行或垂直上升、下滑时,飞机各部位运动的加速度与飞机重心处运动的加速度相同,此时附加过载等于零Δn y=0,部件过载等于全机过载。

6、当飞机以角加速度绕机体纵轴向右转动时,左侧机翼过载大于右侧机翼过载。

7、当以大速度、小迎角飞行时,机翼上、下表面的吸力都很大。

8、最大使用过载和最小使用过载是对飞机结构进行总体强度设计的主要依据。

9、所谓速度-过载飞行包线就是分别以空速和过载系数为横坐标和纵坐标,根据飞行使用限制条件(最大过载、最小过载、最大速度、最小速度等)画出一条封闭的曲线,形成飞机飞行的限制包线。

10、设计载荷与使用载荷之比叫做安全系数f, f=P设计/P使用使用载荷(限制载荷)是飞机在使用过程中预期的最大载荷;设计载荷又叫极限载荷。

11、结构强度:飞机结构必须能够承受极限载荷至少3秒而不破坏。

12、机构的刚度:结构受力时抵抗变形的能力叫做结构的刚度。

在直到限制载荷的任何载荷作用下,变形不得妨害安全飞行。

13、结构在载荷作用下保持原平衡状态的能力叫做结构的稳定性。

杆件受压有两种破坏形式:一种是杆件轴线变弯,杆件不能保持直杆形状与载荷平衡,这种失稳被称为总体失稳。

另一种是杆件轴线保持直线,组成杆件的薄壁产生了皱折,这种失稳被称为局部失稳。

飞机结构讲解介绍课件

飞机结构讲解介绍课件

飞机检修的周期和内容
定期检修
根据飞机的类型和飞行小时数, 飞机需要进行定期检修,包括起 落架、发动机、机翼等关键部件
的检查和维修。
飞行前检查
每次飞行前,机组人员会对飞机进 行简短的目视检查,确保没有明显 的损坏或异常情况。
飞行后检查
每次飞行后,机组人员会对飞机进 行详细检查,包括发动机、起落架、 机身等部分,确保飞机在下次飞行 前处于良好状态。
起落架的材料和制造工 艺
要点一
总结词
要点二
详细描述
起落架材料多为高强度铝合金或复合材料,制造工艺涉及 精密铸造和焊接等。
高强度铝合金具有轻质、高强度和耐腐蚀等优点,广泛应 用于起落架制造。复合材料则具有更高的强度和刚度,适 用于现代高性能飞机的起落架。制造工艺涉及精密铸造、 焊接、机械加工等多种技术,以确保起落架的精度和可靠性。
飞机结构的维修和保养
表面清洁
定期对飞机表面进行清洁,去除尘土、 污垢和鸟粪等污染物,保持飞机外观 整洁。
防腐处理
对飞机的金属部分进行防腐处理,如 喷涂防锈漆、涂抹防腐剂等,以延缓 腐蚀过程。
紧固件检查与更换
定期检查飞机的紧固件,如螺丝、铆 钉等,如有松动或损坏及时更换。
结构损伤修复
对于发现的飞机结构损伤,如裂纹、 凹陷等,及时进行修复或更换受损部 件。
转运动。
起落架
用于起飞、降落和地面滑行, 由支柱、轮子和减震器等组成。
飞机结构分类
01
02
03
按机翼数目
可分为单翼机、双翼机和 多翼机。
按机翼固定方式
可分为固定翼机和旋翼机。
按用途
可分为民用飞机、军用飞 机和通用航空器等。
飞机结构材料

第一章 飞机结构概论【飞机结构】

第一章 飞机结构概论【飞机结构】
由于qmax,max>qmax,所以在强度设计 中计算外载荷时,qmax,max比qmax更为重 要,qmax,max也称为强度限制速压。飞机飞 行中不能超过规定的速压值,否则,飞机会 由于强度、刚度不足而使蒙皮产生过大的变
3、机动飞行包线 根据空气动力学原理,在一定的飞行速度下,
各种飞机的最大使用过载ny,ser,max ,主要是 由飞机的机动飞行能力,飞行员生理上的限制,以 及 素在确大型飞 定运行 的输中 。机因:气+3流~4不稳定而可能受到的外载荷等因
-1.5~2.5
2、飞机的最大允许速压
速压:q
V2
2
飞机平飞时,可以根
据飞机在不同高度时的需 用推力和发动机的可用推 力之间的关系,确定出各 个高度上的最大平飞速度 vH,max。
飞机结构设计的主要指标之一;
飞机在y轴方向的过载ny等于飞飞机机结升构强力度Y的与主要飞取机决因重素量G 飞的机本比身值的轴,,并非空间绝对轴
飞机在x轴方向的过载nx等于发动机推力与飞机阻力
3、过载的大小
飞机的重心过载大小取决于飞行时升力的大小 和方平向飞。过载的正负号与升力的正负号一致。
Y
ny 垂直机
突风的方向向上时,升力增量为正;突风的方向向下时,升力增量为负。
二、飞机的过载 (一)飞机重心的过载 1、过载的基本概念
飞机在某一飞行状态下所受的除重力以外的外 载荷同飞机重量做比较,称为过载(载荷因数)。
2、过载的定义 作用在飞机的某方向的除重力之外的外载荷与
飞机重量的比值,称为该方向的飞机重心过载,用 n表示。
(二)飞机各部位的局部过载
飞机的局部过载沿飞机长度是按直线规律变化

εz
当飞机绕重心有一个抬头的角加速度 时,

第1章飞机结构特点

第1章飞机结构特点

2.整体式翼梁 整体式翼梁是一种用高强度合金钢锻制成的腹 板式翼梁。 它的优点是:刚度较大,截面尺寸可以更好地 做得符合等强度要求。


高强度合金钢 刚度大 加工成型难
3.桁架式翼梁 在翼型较厚的低速重型飞机上,常采用桁架式 翼梁。这种翼梁由上下缘条和许多直支柱、斜支 柱连接而成。翼梁承受剪力时,缘条之间的支柱 承受拉力或压力。缘条和支柱,有的采用硬铝管 或钢管制成,有的则用厚壁开口型材制成。

目前,与世界先进、发达的国家相比,我国的 民航事业仍处于发展阶段,而且民航事业将有着 很大的发展空间。 首先,随着我国的经济发展,民航飞机将会越 来越多,飞机增多则意味着飞机结构的修理工作 量也将会随之增多; 其次,伴随着我国现有民航飞机机龄的增长, 民航飞机结构修理工作也将会随之大大增加;
一、飞机的组成(见图1)
飞机结构: 机体:机身(装载) 机翼(产生升力) 尾翼(使飞机具有操纵性与稳定性) 起落架(起飞、着陆、滑跑) 发动机(产生推力) 操纵系统(保证操纵性与稳定性) 机载设备(保证飞机可靠控制与飞行安全)等
图1 飞机的组成
二、机身总体布局 机身一般由两段或多段构成。图2为B737 飞机的总布局图,它的机身分为四个生产 段(或称制造段)。

五、飞机结构修理的基本程序 第一步是检查损伤处,确定损伤的程度和类型; 第二步是根据损伤的程度、类型及其位置,同时依据 相应的飞机结构修理手册,确定修理工艺以及编制修理 工艺卡; 第三步按修理工艺卡实施修理,使之达到规定的要求。

六、我国民航飞机结构修理工作现状、地位及前景
飞机结构修理工作主要是在有能力进行 C检或C检以上 的大型民航飞机维修厂(基地)进行。 中小型民航飞机维修厂(站)只作一些少量的、简单 的飞机结构修理工作。 民航飞机结构修理工作的主要内容是对民航飞机各类 损伤的钣金结构件和复合材料构件进行修理使之恢复原 有的功能并符合适航要求。它主要包括对机身、机翼和 尾翼的结构件(如梁、桁条、隔框、蒙皮等)、各类舱 门和燃油箱等的修理。

第1章 飞机结构及其特点

第1章 飞机结构及其特点

(1)蒙皮
除了整体壁板外,近来夹芯蒙皮也得到推广。夹芯蒙皮由两层 薄金属板或复合材料层板与轻质疏松或蜂窝结构夹芯互相连接而成。 夹芯蒙皮可以降低翼面结构质量,提高翼面刚度和表面品质(无铆 缝),并具有良好的隔热、隔音、防震、抵抗裂纹及其他损伤扩展 能力。
F15尾翼和方向舵蒙皮 是全厚度铝夹芯和硼-环 氧复合材料面板构成的 蜂窝壁板。前、后缘为 全铝蜂窝结构。
桁条
蒙皮 传来的力 翼肋
翼肋 传来的力
桁条
翼肋 桁条 蒙皮
翼肋
(2)桁条
桁条按截面形状分有开式和闭式;按制造方法分有 板弯桁条和挤压桁条。板弯开式桁条由板材制造, 容易弯曲,与蒙皮贴合好,得到翼面光滑,容易与 蒙皮及其它构件固接;板弯闭式桁条可提高型材和 蒙皮压缩临界应力。挤压型材比板弯型材具有较厚 的腹板,受力临界应力较高,但与蒙皮(特别是弯 度大的蒙皮)难以固接。
纵墙还起到对蒙皮的支持,以提高蒙皮的屈曲承载能力。通常腹 板设有减轻孔,为了提高临 界应力,腹板用支持型材加 强。后墙则还有封闭翼面内 部容积的作用。
(5)翼肋
翼肋分为普通翼肋和加强翼肋。 普通翼肋
构造上的功用是维持机翼剖面所需的形状,并将局部气动载 荷从蒙皮和桁条传递到翼梁和蒙皮上。一般它与蒙皮、长桁相连, 翼面受气动载荷时,它以自身平面内的刚度向蒙皮、长桁提供垂 直方向的支持。同时,翼肋又沿周边支持在蒙皮和梁(或墙)的 腹板上,在翼肋受载时,由蒙皮、腹板向翼肋提供各自平面内的 支承剪流。
§1.2 机翼结构形式
机翼是飞机产生升力和滚转操纵力矩的主要部件,同时也是现代飞 机存储燃油的地方。机翼作为飞机的主要气动面,是主要的承受气动 载荷部件,其结构高度低,承载大。机翼通常有以下气动布局形式: 平直翼、梯形翼、三角翼、后掠翼、边条翼、前掠翼、变后掠翼和菱 形翼等。

飞机的结构ppt课件

飞机的结构ppt课件
处理飞行控制系统的各种信息,进行计算并传输 到舵机执行机构,控制飞机的飞行轨迹。
舵机执行机构
接收飞行控制计算机的指令,操纵飞机的副翼、 升降舵和方向舵等部件,实现飞行姿态的调整。
动力系统
发动机
为飞机提供动力,推动飞机前进,并产生必要的推力。
燃油系统
供应燃油,确保发动机正常工作,包括油箱、油泵、过滤器等部件 。
先进导航
研究和开发更精确、高效的导航系统和设备,以提高飞行的安全性和效率。
智能维护
研究和开发基于数据的预测性维护系统,以实时监控飞机的状态并提前进行维护。
高超声速飞行技术
超音速巡航
01
研究和开发能够实现超音速巡航的发动机和飞机设计
,以提高飞行速度和效率。
高超声速运输
02 研究和开发高超声速运输机,以实现全球范围内的快
导航雷达
探测周围空域的天气情况、地形等,帮助飞行员确定航向和高度 。
卫星通信系统
通过卫星实现全球通信,包括GPS定位系统、卫星电话等。
03
飞机的材料和工艺
金属材料
铝合金
01
用于飞机的主要结构,如机翼、机身和起落架。具有高的强度
、耐腐蚀性和易于加工的特性。
高强度钢
02
用于承受高应力和高强度载荷的部位,如发动机涡轮叶片和转
飞机的结构ppt课件
• 飞机的基本结构 • 飞机的主要部件 • 飞机的材料和工艺 • 飞机的分类和特点 • 飞机的维护和保养 • 飞机的发展趋势和未来展望
目录
01
飞机的基本结构
机身结构
概述
机身是飞机的主体结构,主要作 用是搭载乘员、货物和燃料等, 同时为机翼、尾翼和起落架提供
连接点。

飞机结构与系统.完整资料PPT

飞机结构与系统.完整资料PPT

(2)飞机在地面上的使用限制
(3)结构的稳定性
2.飞机结构件的分类
根据结构件失效后对飞机安全性造成的后果,结 构件可划分为重要结构项目和一般(其他)结构项目。
重要结构项目是指一旦损坏,会破坏飞机结构的 完整性,且会危及飞机的安全性,如:机翼、尾翼、 操纵面及其系统、机身、发动机架、起落架及上述各 部分有关的主要连接构件等。
一般结构项目是指不包括在重要结构项目内的部 件或组件,如:机身与机翼连接部位的整流蒙皮等。
• 本次课小结 本次课介绍了两个内容,一是飞机结构的基本概念;二是飞机结构适航性要求和结构
分类。 涉及的概念有飞机外载荷及分类、载荷系数、飞机结构的承载能力和承载余量、飞机结构 的适航要求、飞机结构件的分类。重点是各概念,难点是各系数公式和结构件受力分析。 要记住重点理解难点。 思考题: 1.飞行中,作用在飞机上的外载荷有哪些?P3 2.飞机结构的适航性要求有哪些?P13 3.飞机结构件有哪些分类?P15
• 如图,飞机在某以高度上做水平匀速的巡航飞行,
作用在飞机上的外载荷有重力W、气动升力L0、气动 阻力D0和发动机推力P0。选机体坐标系(OXtYtZt), 并将外载荷向坐标系原点--全机中心O简化,得到作









系和 L0
抬 yt


矩M
O
A,




M
B

MA
P0 xt
MB
D0 W
• 飞机在匀速直线飞行,这些外载荷必须满足下列平衡方程:∑x=0 P0=D0
歼10可超极限飞9G
④部件过载
前面根据作用在飞机重心处升力L和飞机飞行重量W之比得出过载ny值,这个过载称为飞机 重心过载,也叫全机过载。知道全机过载,就可以知道全机升力的大小和方向。

飞机结构ppt课件

飞机结构ppt课件

后机身
通常包含货舱门、尾翼和起落架安装 位置,要求具备足够的结构强度和刚 度。
机身的结构形式
金属半硬式机体
01
采用金属材料制成,结构形式为半硬式,具有较好的刚度和稳
定性。
复合材料机体
02
采用复合材料制成,具有较高的比强度和比刚度,可减轻机身
重量。
混合式机体
03
采用金属和复合材料混合制成,结合了金属和复合材料的优点
转向装置
协助飞行员控制飞机滑行方向。
刹车装置
使飞机在地面滑行时能够减速。
轮毂和轮胎
支撑飞机重量,吸收地面摩擦力。
THANKS
感谢观看
,具有较高的结构性能。
机身的结构特点
材料
机身通常采用高强度铝合金、钛合金和复合材料 等轻质材料,以减轻机身重量。
结构形式
机身的结构形式根据受力特点进行设计,常见的 有梁式、板式和整体式等结构形式。
连接方式
机身各部分之间的连接方式根据材料和结构形式 选择,常见的有焊接、铆接和胶接等连接方式。
05
起落架结构
率。
高强度材料
尾翼结构需要采用高强度材料,以 承受飞行中的各种载荷和应力。
抗疲劳性能
尾翼结构需要具有良好的抗疲劳性 能,以确保长期使用的可靠性和安 全性。
04
机身结构
机身的功用和要求
概述
机身是飞机的主体结构,承载着乘客、货物和机组人员,并维持 其在空中的稳定性和安全性。
功用
机身主要承受飞行中的气动力、发动机推力和其他附加载荷,同时 作为其他飞机部件的安装基础。
尾翼的要求
尾翼的设计和制造需要满足强度 、刚度、耐久性和轻量化的要求 ,以确保飞行的安全性和经济性 。

第1章 飞机结构及其特点

第1章 飞机结构及其特点

第1章 飞机结构及其特点郭 宇南京航空航天大学 航空宇航制造工程系飞行器制造技术基础2本章内容§1.1飞机结构及组成 §1.2 机翼结构形式 §1.3 机身结构形式 §1.4 尾翼结构形式 §1.5 起落架结构形式 §1.6飞机制造工艺的特点3 §1.1 飞机结构及组成主要由机体、飞机操纵系统、飞机动力装置和机载设备等部分组成,其中机体包括机翼、机身及尾翼等部件,构成飞机的主体结构。

4§1.1 飞机结构及组成5 本章内容§1.1飞机结构及组成 §1.2 机翼结构形式 §1.3 机身结构形式 §1.4 尾翼结构形式 §1.5 起落架结构形式 §1.6飞机制造工艺的特点6机翼是飞机产生升力和滚转操纵力矩的主要部件,同时也是现代飞机存储燃油的地方。

机翼作为飞机的主要气动面,是主要的承受气动载荷部件,其结构高度低,承载大。

§1.2 机翼结构形式7 §1.2 机翼结构形式机翼通常有以下气动布局形式:平直翼、梯形翼、三角翼、后掠翼、边条翼、前掠翼、变后掠翼和菱形翼等。

8§1.2.1机翼的基本组成☐机翼重量一般占全机重量的8%-15%,机翼结构重量占机翼重量的30%-50%。

☐机翼一般由机翼主盒、襟翼、扰流片、副翼、前缘襟翼、发动机吊挂等部分组成。

9机翼的基本元件机翼结构属薄壁型结构形式,构造上主要由蒙皮和骨架结构组成。

机翼的基本结构元件是由纵向骨架、横向骨架以及蒙皮和接头等组成。

⏹纵向骨架——沿翼展方向安置的构件。

⏹横向骨架——沿翼弦方向安置的构件。

10(1)机翼蒙皮☐蒙皮的直接功用是保持机翼外形和承载,蒙皮将作用在上面的局部气动力传给结构骨架。

在总体承载时,蒙皮和翼梁或翼墙的腹板组合在一起,形成封闭的盒式薄壁结构承受翼面扭矩,与长桁一起形成壁板承受翼面弯矩引起的轴力。

飞机构造之结构(参考文章)

飞机构造之结构(参考文章)

第一章 飞机结构1.1 概 述 1.2 飞机载荷 1.3 载荷、变形和应力的概念 1.4 机翼结构 1.5 机身结构1.6 尾翼和副翼1.7 机体开口部位的构造和受力分析1.8 定位编码系统1.1.概述固定机翼飞机的机体由机身、机翼、安定面、飞行操纵面和起落架五个主要部件组成。

直升机的机体由机身、旋翼及其相关的减速器、尾桨(单旋翼直升机才有)和起落架组成。

机体各部件由多种材料组成,并通过铆钉、螺栓、螺钉、焊接或胶接而联接起来。

飞机各部件由不同构件构成。

飞机各构件用来传递载荷或承受应力。

单个构件可承受组合应力。

对某些结构,强度是主要的要求;而另一些结构,其要求则完全不同。

例如,整流罩只承受飞机飞行过程中的局部空气动力,而不作为主要结构受力件。

1.2.飞机载荷飞行中,作用于飞机上的载荷主要有飞机重力,升力,阻力和发动机推力(或拉力)。

飞行状态改变或受到不稳定气流的影响时,飞机的升力会发生很大变化。

飞机着陆接地时,飞机除了承受上述载荷外,还要承受地面撞击力,其中以地面撞击力最大。

飞机承受的各种载荷中,以升力和地面撞击力对飞机结构的影响最大。

1.2.1.平飞中的受载情况飞机在等速直线平飞时,它所受的力有:飞机重力G、升力Y、阻力X和发动机推力P。

为了简便起见,假定这四个力都通过飞机的重心,而且推力与阻力的方向相反。

则作用在飞机上的力的平衡条件为:升力等于飞机的重力,推力等于飞机的阻力。

即:Y = GP = X图1 - 1 平飞时飞机的受载飞机作不稳定的平飞时,推力与阻力是不相等的。

推力大于阻力,飞机就要加速;反之,则减速。

由于在飞机加速或减速的同时,飞行员减小或增大了飞机的迎角,使升力系数减小或增大,因而升力仍然与飞机重力相等。

平飞中,飞机的升力虽然总是与飞机重力相等,但是,飞行速度不同时,飞机上的局部气动载荷(局部空气动力)是不相同的。

飞机以小速度平飞时,迎角较大,机翼上表面受到吸力,下表面受到压力,这时的局部气动载荷并不很大;而当飞机以大速度平飞时,迎角较小,对双凸型翼型机翼来说,除了前缘要受到很大压力外,上下表面都要受到很大的吸力。

第1章飞机结构及其特点ppt课件

第1章飞机结构及其特点ppt课件

严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
(5)翼肋
加强翼肋 主要用于承受固定在翼面上的部件(起落架、发动机、副
翼及翼面其他活动部分悬挂接头)的集中力和力矩,并将它们 传递转化为分散力传给蒙皮和翼梁、纵墙的腹板。结构不连续 的地方也要布置加强肋,用于重新分配在纵向构件轴线转折处 壁板和腹板之间的力,或在翼面结合处和大开口边界上将扭矩 转变为力偶。加强肋有很大的横截面积,挤压型材制成的缘条、 腹板不开口,用支撑角材加强,翼肋上的桁条重新对接,不需 要切断翼肋缘条。有时这样的翼肋由锻件制造,或采用桁架式 结构。
按照抗弯材料的配置,蒙皮骨架式翼面可分为梁式、单块式 和多墙式三种结构形式。
最初的薄壁结构翼面蒙皮很薄,只承担扭矩,不能承受弯 矩,称为梁式结构。
以后蒙皮不断加厚,支持蒙皮的桁条相应加强。蒙皮不仅 承扭,还参与承弯,并且承弯程度越来越高,以至蒙皮与 桁条一起组成的加强壁板成为主要的承弯构件,此时结构 便发展成单块式结构。
(3)翼梁
翼梁由梁的腹板和缘条(或称凸缘)组成,大多在根部与中翼段 或与机身固接,剖面呈工字形或槽形。翼梁是单纯的受力件,缘 条承受由弯矩M引起的拉压轴力。由支柱加固的腹板承受剪力并 能承受由扭矩引起的剪流,使翼面周边形成闭室并在这两种情况 下受剪。在有的结构形式中,它是翼面主要的纵向受力件,承受 翼面全部或大部分 弯矩。
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
§1.2 机翼结构形式
机翼是飞机产生升力和滚转操纵力矩的主要部件,同时也是现代飞 机存储燃油的地方。机翼作为飞机的主要气动面,是主要的承受气动 载荷部件,其结构高度低,承载大。机翼通常有以下气动布局形式: 平直翼、梯形翼、三角翼、后掠翼、边条翼、前掠翼、变后掠翼和菱 形翼等。

飞机结构与系统(上篇)m11精华版

飞机结构与系统(上篇)m11精华版

第1章飞机结构1)结构基本元件:杆件、梁元件、板件。

①与横截面尺寸相比长度尺寸比较大的元件称为杆件。

②梁元件有两种类型:a.外形与杆件相似,但具有比较强的弯曲或扭转刚度〔闭合剖面的杆件〕,可以承受垂直梁轴线方向的载荷;b.具有比较强的剪切弯曲强度,机翼大梁〔缘条和腹板组成〕属于这种梁原件。

③厚度远小于平面内另外两个尺寸的元件称为板件。

2〕飞机结构件及分类:杆系结构、平面薄壁结构、空间薄壁结构。

3〕根据结构件失效后对飞机安全性造成的后果,结构件可分为主要结构项目和次要结构项目飞机结构必须具有足够的强度、刚度和稳定性,并且满足疲劳性能的要求,这样飞机结构才是适航的。

1〕结构的强度:结构受力时抵抗损坏的能力。

CCAR-25部要求:用真实载荷情况对飞机结构进行静力试验以确定飞机结构强度是,飞机结构必须能承受极限载荷至少3s而不受破坏。

2) 结构的刚度:结构受力时抵抗变形的能力。

CCAR-25部规定飞机结构必须能够承受限制载荷〔使用中预期的最大载荷〕而无有害的永久变形。

在直到限制载荷的任何载荷作用下,变形不妨害安全飞行。

3〕结构的稳定性:结构在载荷作用下保持原平衡状态的能力。

如果在载荷作用下,尽管此载荷在结构中引起的应力远小于破坏应力,结构已不能保持原平衡状态与载荷抗衡,就认为结构失稳。

4〕结构的疲劳性能:结构在疲劳载荷作用下抵抗破坏的能力。

CCAR-25部规定必须说明飞机结构符合“结构的损伤容限和疲劳评定的要求”。

规定中要求飞机在整个使用寿命期间将防止由于疲劳、腐蚀或意外损伤而引起的灾难性破坏。

3.飞机结构疲劳设计为了保证飞机飞行的安全,必须对飞机结构进行疲劳设计,以确保飞机结构的抗疲劳性能。

1〕安全寿命设计思想:一架机体结构不存在缺陷的新飞机从投入使用到出现可检裂纹这一段时间就是飞机结构的安全寿命。

2〕损伤容限设计①概念:承认结构在使用前就带有初始缺陷,并认为有初始缺陷到形成临界裂纹的扩展寿命即是结构的总寿命。

飞机结构讲解介绍课件

飞机结构讲解介绍课件
详细描述
起落架内部通常装减震器,吸收着陆 时冲击力,保护机体受损坏。此外, 起落架还装刹车系统,通过刹车片与 轮毂之间摩擦力实现飞机减速。
起落架结构材料技术
总结词
起落架结构材料主包括钢、铝合金复合材料等,制造技术包括焊接、机械加工热处理等。
详细描述
传统起落架结构材料主包括钢铝合金,些材料具较高强度耐腐蚀性。随着复合材料技术发展,一些先进起落架也 开始采复合装材制造,减轻重量提高结构效率。制造起落架涉及技术包括焊接、机械加工热处理等,些技术能够 确保起落架结构强度稳定性。
按发动机类型类
可活塞式发动机飞机、喷气式 发动机飞机螺旋桨式发动机飞
机等。
飞机结构重性
安全可靠性
飞机结构必须能够承受飞行过 程中各种载荷应力,保证飞行
安全可靠性。
经济性
飞机结构设计制造需考虑成本 经济效益,降低飞机制造成本 使成本。
舒适性
飞机结构设计还需考虑乘客舒 适性,如机身振动噪音等。
环保性
现代飞机结构设计还需考虑环 保求,如减排降噪等。
总结词
尾翼内部结构包括骨架、蒙皮操纵机构等部 些部协同工作实现尾翼功能。
详细描述
尾翼骨架通常由金属材料制成,如铝合金或 复合材料,支撑蒙皮并提供必刚度。蒙皮则 覆盖骨架提供尾翼外观气动性能。操纵机构 则连接飞行控制舵面与机身舵机,通过舵机 转动改变尾翼角度,进而控制飞机方向姿态

尾翼结构材料技术
总结词
详细描述
机翼内部主梁主承力结构,承受飞行中各种应力。主梁附桁条,加强机翼结构强 度。蒙皮则紧密附着桁条形成机翼外表面。些内部结构共同支撑机翼形状,确保 其能够承受飞行中各种应力。
机翼材料技术
总结词
现代飞机机翼通常采复合材料或铝合金制造,提高强度、减轻重量并满足各种飞行条件性能求。

飞机结构介绍课件

飞机结构介绍课件
寿命。
复合材料在飞机制造中的应用包括机身、 机翼、尾翼、发动机罩等部件。
特殊材料
01 铝合金:强度高、 重量轻、耐腐蚀
02 钛合金:强度高、 耐高温、耐腐蚀
03 复合材料:强度高、 重量轻、耐腐蚀
04 陶瓷材料:耐高温、 耐磨损、耐腐蚀
05 碳纤维:强度高、 重量轻、耐腐蚀
06 玻璃纤维:强度高、 重量轻、耐腐蚀Leabharlann 维修与更换12
3
4
定期检查:检查飞机各 部件的磨损情况,及时
发现问题
维修方案:根据检查结 果制定维修方案,包括
更换部件、修复等
保养措施:定期进行飞 机清洁、润滑等保养工 作,延长飞机使用寿命
更换部件:根据维修方 案更换损坏的部件,确
保飞机安全
安全操作
01
定期检查:检查飞机
各部件是否正常,确
保安全飞行
导航系统的应用:广泛 应用于民航、军用航空 等领域,是飞机安全飞 行的重要保障
01
02
03
04
飞机的制造材料
金属材料
1
2
铝合金:飞机的主要结构材料, 具有强度高、重量轻、耐腐蚀
等优点
钛合金:具有高强度、耐高温、 耐腐蚀等优点,常用于制造飞
机的承力构件
3
钢:具有高强度、高韧性等优 点,常用于制造飞机的起落架、
发动机等部件
4
复合材料:具有重量轻、强度 高、耐腐蚀等优点,常用于制
造飞机的蒙皮、机翼等部件
复合材料
复合材料是一种由两种或两种以上材料 组成的材料,具有比单一材料更高的强
度、刚度和耐热性。
复合材料在飞机制造中广泛应用,如碳 纤维增强塑料(CFRP)、玻璃纤维增
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(上册)第1章飞机结构1、飞机在匀速直线飞行,这些外载荷必须满足下列平衡方程:(图1.1-1)ΣX=0 P0=D0(发动机推力等于气动阻力)ΣY=0 L0=W(气动升力等于飞机重力)ΣM=0 M A=M B(抬头力矩等于低头力矩)2、飞机过载分为机动过载和突风过载。

飞机过载n y的定义是:作用在飞机上的升力L和飞机飞行重量W之比。

即n y=L/W飞机过载是代数值,不但有大小而且有正负。

3、机动过载:滚转角越大,过载值越大。

n y=1/cosγ(图1.1-2)4、对飞机结构受力影响比较大的是垂直突风。

垂直突风主要是改变气流对飞机运动速度的方向,从而产生较大的突风过载n y。

5、当飞机进行水平飞行或垂直上升、下滑时,飞机各部位运动的加速度与飞机重心处运动的加速度相同,此时附加过载等于零Δn y=0,部件过载等于全机过载。

6、当飞机以角加速度绕机体纵轴向右转动时,左侧机翼过载大于右侧机翼过载。

7、当以大速度、小迎角飞行时,机翼上、下表面的吸力都很大。

8、最大使用过载和最小使用过载是对飞机结构进行总体强度设计的主要依据。

9、所谓速度-过载飞行包线就是分别以空速和过载系数为横坐标和纵坐标,根据飞行使用限制条件(最大过载、最小过载、最大速度、最小速度等)画出一条封闭的曲线,形成飞机飞行的限制包线。

10、设计载荷与使用载荷之比叫做安全系数f, f=P设计/P使用使用载荷(限制载荷)是飞机在使用过程中预期的最大载荷;设计载荷又叫极限载荷。

11、结构强度:飞机结构必须能够承受极限载荷至少3秒而不破坏。

12、机构的刚度:结构受力时抵抗变形的能力叫做结构的刚度。

在直到限制载荷的任何载荷作用下,变形不得妨害安全飞行。

13、结构在载荷作用下保持原平衡状态的能力叫做结构的稳定性。

杆件受压有两种破坏形式:一种是杆件轴线变弯,杆件不能保持直杆形状与载荷平衡,这种失稳被称为总体失稳。

另一种是杆件轴线保持直线,组成杆件的薄壁产生了皱折,这种失稳被称为局部失稳。

14、结构在疲劳载荷的作用下抵抗破坏能力叫做结构疲劳性能。

15、结构件截面单位面积上的内力叫做应力。

正应力是拉应力和压应力的统称。

用符号σ表示。

剪应力是平行于所取截面应力,即应力的矢量沿截面的切向方向。

用符号τ表示。

16、使结构件两个相距很近的截面发生相对移动错动的变形叫做剪切变形,反抗剪切变形的内力叫剪应力。

使结构件轴线曲率发生变化的变形叫弯曲变形,反抗弯曲变形的内力叫弯矩。

在弯矩作用下,梁的截面上要产生拉、压正应力。

在被拉伸和被压缩的材料之间,必定有一层既不缩短也不拉长的材料,这一层叫做中性层。

中性层与梁横截面的交线叫中轴。

承受弯矩作用时,结构件中离中性层越远的材料起作用越大,中性层的材料不起作用。

17、使结构件两个相距很近的截面发生相对转动错开的变形叫扭转变形。

扭转剪应力在截面边缘处达到最大。

在结构受力和变形中,刚轴的特点是:通过刚轴的外载荷只能使机翼(机身)产生弯曲变形,而不发生扭曲。

18、起落架受力构架中的撑杆、阻力杆属于杆件。

19、起落架减震支柱就是梁元件。

梁缘条承受弯曲产生的拉压正应力的作用,腹板则承受剪切产生的剪应力的作用。

20、厚度远小于平面内另外两个尺寸的元件称为板件。

在飞机结构中,蒙皮、翼梁和翼肋的腹板等都属于板件。

厚度比较小的薄板承受拉压的能力比较弱,可以忽略不计,但承受剪切的能力比较强,在载荷作用下只承受剪应力;厚度比较大的板件,承受拉压和剪切的能力都比较强,在载荷作用下,承受正应力和剪应力。

在局部的气动载荷作用下,飞机蒙皮也要承受垂直板平面的分布气动载荷。

分布的气动载荷并不是蒙皮承受的主要载荷,但如果由于飞行速度过快,蒙皮上的分布气动载荷过大,也会造成蒙皮与桁条连接的铆钉被拉坏、蒙皮被撕裂等局部破坏现象的发生。

21、由杆件和梁元件组成的结构称为杆系结构。

杆件承受沿着杆件轴线的载荷的作用,产生正应力;梁元件承受剪切、弯曲和扭转载荷的作用,产生剪应力、弯曲正应力和扭转剪应力。

22、平面薄壁结构:载荷在杆件内产生正应力,在板件中产生剪应力。

机翼大梁承受平面内剪应力和弯矩的作用,弯矩在杆件――梁缘条内产生拉压正应力;剪力在板件――大梁腹板内产生剪应力。

23、机翼、机身和尾翼等都属于空间薄壁结构。

板件承受板平面内的正应力和剪应力的作用,杆件只承受正应力的作用(轴向力的作用)。

24、安全寿命设计是建立在无裂纹的基础上,当结构在疲劳载荷作用下出现宏观的可检裂纹时,就到了结构安全寿命终结点了。

安全寿命设计的不足之处:(1)不能确保飞机结构的使用安全;(2)不能充分发挥飞机结构的使用价值。

尽管有以上的不足,但安全寿命设计已使用了几十年。

特别是其中有关改善结构疲劳品质的设计方法、生产中强化质量控制的方法都被实践证明是成功和有效的,也都被后来的结构疲劳设计方法所借鉴和使用。

25、损伤容限设计概念是承认结构在使用前就带有初始缺陷,并认为由初始缺陷到形成临界裂纹的裂纹扩展寿命既是结构的总寿命。

所以它不考虑无裂纹寿命,只考虑裂纹寿命。

损伤容限设计方法是:承认结构在使用前就带有初始缺陷,并通过结构设计和试验研究控制裂纹的扩展,对可检结构给出检查周期,对不可检结构提出严格的剩余强度要求和裂纹增长限制,以保证结构在给定的使用寿命内,不致因未发现的初始缺陷扩展失控而造成飞机灾难性事故。

损伤容限设计方法是对传统设计方法的补充和发展。

26、耐久性设计的基本要求是:(图1.1-36)(1)飞机结构经济寿命必须超过一个设计使用寿命;(2)在低于一个设计使用寿命期内不允许出现功能性损伤(如刚度降低、操纵性下降、座舱减压和油箱漏油);(3)飞机经济寿命必须通过分析和试验验证。

27、进行钛合金结构蒙皮铆接应选用蒙乃尔合金铆钉。

2117铝合金铆钉也称为外场铆钉(铆接前无须再进行热处理)。

28、铆钉是以承受剪切为主来传递载荷的紧固件,孔中填充量达不到要求会减小钉杆和钉孔之间的挤压面积,大大减小铆钉承受剪切时的挤压强度。

29、现代民用飞机上大多数铆钉连接都采用干涉配合(既一种过盈配合)。

干涉量适当的干涉配合可以提高疲劳强度;干涉配合铆接的密封效果最好。

铆钉采用湿安装可以达到密封的目的,也可以防腐。

30、螺栓与结构的连接采用间隙配合的形式。

如果间隙中有腐蚀介质,会产生应力腐蚀。

31、采用预载指示垫圈时,用工具拨动外环,外环不再转动,说明螺帽已拧紧到要求的程度,螺栓定力结束。

通常在螺栓上的预载为螺栓屈服强度的72%。

32、铆钉、螺栓和焊点可以有效地阻止胶层损伤的扩展,为胶接提供了破损――安装的特性。

33、飞机表面的清洁:排泄孔、瓣状活门等要保持打开的状态,使冲洗的水和清洁剂可以畅通地排出,防止水或清洁剂存留在机体内。

对于透明塑料件应该用清水冲洗,用软布浸沾肥皂水擦拭掉污渍,再用软布擦干。

对于机轮轮胎等橡胶制品只能用肥皂水。

34、表面氧化膜的保护:阳极化处理的铝合金表面生成氧化模。

这种氧化模比较坚硬,防水并且气密,是很好的防腐保护膜。

35、涂阿洛丁的表面保护:在阿洛丁固化期间一定要保持阿洛丁薄膜的湿润,才能得到均匀的带有光泽的具有保护作用的合格氧化膜。

36、合金钢的表面保护:镀镉层均匀致密、不透水、不透气,能起到很好的保护作用。

另外,镉的电位比钢的低,生成的镀层是阳极镀层。

37、漆层的保护:(1)通过阳极化和涂阿洛丁处理生成的氧化膜和漆层有很好的粘着能力,可以在氧化膜上面直接涂底层涂料;必须用浓度为5%的铬酸溶液进行蚀洗,使其表面粗糙。

(2)铬酸锌底层涂料:涂料中的铬离子可以释放出来积聚到金属表面,使表面涂层有很好的防电化学腐蚀的作用。

38、机体区域划分的基本原则是将机体由粗到细逐渐划分。

机体区域划分编号用三位数表示。

100-机身下部、200-机身上部、300-机尾和尾翼、400-动力装置和吊舱、500-左机翼、600-右机翼、700-起落架和舱门、800-门(一下二上三尾四发,五左六右七腿八门)39、飞机的水平姿态可以用放置在机体上规定的固定座上的气泡水准仪来检查。

40、机翼安装角检查:使用制造厂提供的带有水准仪的检查板进行。

这是检查板应沿弦向靠在制造厂规定的部位的机翼外表面。

41、飞机对称性检查:(1)从前、后机身下部中心的规定点吊铅锤,作为前后机身中心的地面的参考点;(2)在左右机翼上靠近翼梢两个对称点吊铅锤,作为机翼翼梢在地面的参考点;(3)用尺分别测量前、后机身中心参考点到两机翼翼梢参考点的距离。

42、机翼的功用:主要功用是产生升力,并使飞机获得横向稳定性和操纵性,还可用于安装起落架、发动机和储存燃油等。

翼梁、纵墙和桁条为机翼的纵向构件,翼肋为机翼的横向构件。

机翼结构是由翼梁、纵墙、桁条、翼肋和蒙皮等典型构件组成。

43、腹板式翼梁由缘条和腹板铆接而成。

翼肋是组成机翼骨架横向构件,沿弦向布置。

加强翼肋除具有普通翼肋的功能外,还要承受和传递较大的集中载荷。

在飞行时,机翼蒙皮承受并传递局部气动载荷。

当蒙皮和翼梁或纵墙的腹板组合在一起形成封闭的盒式薄壁梁时,蒙皮还能够承受机翼的扭矩。

44、梁式机翼中,桁条较弱,蒙皮较薄。

剪力由翼梁腹板承受,扭矩由蒙皮与前、后梁或纵墙腹板形成的盒形结构承受。

作用在机翼剖面上的剪力和扭矩在机翼根部传给机身加强框。

45、整体式机翼又可分为单块式机翼和多腹板式机翼。

在单块式机翼中,可以用纵墙代替翼梁,它只承受剪力。

优点:蒙皮厚,局部刚度和扭转刚度较大,受力构件分散,生存力较强,适用于高速飞机。

46、机翼传力分析:47、副翼的功用是使机翼产生滚转力矩,以保证飞机具有横侧操纵性。

为了避免副翼在飞行中产生过大的弯曲变形,并提高它的生存力,通常采用两个以上的副翼接头与机翼相连。

连接的副翼接头中,至少有一个接头是沿展向固定的,其余的接头沿展向应是可移动的。

在操纵摇臂部位,扭矩最大。

48、后缘襟翼是位于机翼后缘的可活动小翼面,它通过向下偏转来提高机翼的升力,但同时也会使飞机的阻力增大。

现代民航飞机多采用开缝式和三缝式襟翼。

49、机身主要是用来装在机组人员、乘客、货物和设备等。

机身还作为整个机体的中枢部件,将机翼、尾翼、起落架和动力装置组装在一起组成完整的飞机。

现代飞机机身结构形式主要是半硬壳式。

50、由于硬壳式机身结构没有纵向加强件,因而蒙皮必须足够强,以维持机身的刚性。

51、半硬壳式机身又分桁梁式和桁条式:(1)桁梁式机身:桁梁式机身由几根较强的大梁、弱的桁条、较薄的蒙皮和隔框等组成。

桁条比纵梁轻、强度也低得多,它主要用来保持机体的形状和固定蒙皮;(2)桁条式机身得结构特点:纵向没有桁梁,桁条较密、较强;蒙皮较厚、较强;受压稳定性较好;弯矩引起的轴向力全部由桁条和蒙皮承受;剪力仍全部由蒙皮承受。

52、普通隔框的功用是形成和保持机身的外形、提高蒙皮的稳定性以及承受局部空气动力。

相关文档
最新文档