带宽增益积及关于放大器不受基本增益带宽积的电流反馈运放电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科技名词定义
中文名称:增益带宽积
英文名称:gain-bandwidth product
定义:有源器件或电路的增益与规定带宽的乘积。增益带宽积是评价放大器性能的一项指标。
应用学科:通信科技(一级学科);通信原理与基本技术(二级学科)
例如
一个放大器的GBP号称为1G。如果它的增益为+2V/V。那么带宽
=1G÷2=500M。如果它的增益为+4V/V,那么带宽=1G÷4=250M。以此类推。总之,增益和带宽之间满足这个简单的乘积关系。
所以像某些运放,制造厂商宣称的GBP很高,如3.9G。可是它的条件是G(增益)=+20V/V。其实算下来,带宽也很有限了。而有
些运放,制造厂商用增益为+1V/V,输出电压为small signal条件下的带宽来定义运放,这样还显得实在很多。
首先F上和F下表示的是什么??
运放增益带宽积=1时,没有放大作用,Po/Pi=1是正确的
增益带宽积只在放大倍数=1 条件下有效,是运放的静态指标作为选择运放使用,放大倍数不为一的时候无效。
“F上与F下是增益为-3dB时的频率”再结合问题不完整也不对;
首先增益只能是+的,-的是指放大倍数,举例40dB即放大倍数为-100;
应该是:
设F上限截止频率=x;F下限截止频率=y;
那么在3dB的增益下,电压放大倍数为
3/(1+ x/F)(1+ y/F)
那么
GBW=(Po/Pi)*电压放大倍数
单位增益带宽GB:
单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db
(或是相当于运放输入信号的0.707)所对应的信号频率。单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益后,可以计算出单位增益带宽,用以选择合适的运放。这用于小信号处理中运放选型。
单位增益带宽, 电压增益为 1 时的带宽. 有的文件称为 "带宽增益乘积" GBW, 可以用来估算你的放大器电路带宽. 如ICL76XX 的GBW=44KHz, 当接成电压跟随器 G=1 时 BW=44KHz, 而接成正反相运算电路 G=10 时, BW=4.4KHz.
关于放大器不受基本增益带宽积的电流反馈运放电路
电流反馈放大器不受基本增益带宽积的限制,随着信号幅度的增加,带宽的损失非常小。因为可以在最小失真的条件下对大信号进行调节,这些放大器在非常高的频率下通常都具有优异的线性度。而电压反馈放大器的带宽随着增益的增加降低,电流反馈放大器在很宽的增益范围上维持其大部分带宽不变。
正因为如此,准确地说,电流反馈运放没有增益带宽积的限制。当然,电流反馈运放也不是无限快,其压摆率(Slew Rate)不受内部偏置电流的限制,但受三极管本身的速度限制。对给定的偏置电流,这就容许不用通常可能影响稳定性的正反馈或其方法来获得较大的压摆率。
那么如何构建这些电路呢?电流反馈运放具有一个与差分对相对的输入缓冲器,该输入缓冲器大多数情况下常常是射极跟随器或其它非常类似的电路。正相输入端具有高阻抗,而缓冲器的输出,即放大器的反相输入具有低阻抗。相比之下,电压反馈放大器的输入都是高阻。
电流反馈运放的输出是电压,并且它与流出或流入运放的反相输入端的电流有关,这由称为互阻抗(transimpedance)的复杂函数Z(s)来表示(图1)。在直流时,互阻抗是一个非常大的数,并且像电压反馈运放一样,它随着频率的增加具有单极点滚降特性。
电流反馈运放灵活性的关键之一是具有可调节的带宽和可调节的稳定性。因为反馈电阻的数值实际上改变放大器的交流环路的动态特性,所以能够影响带宽和稳定性两个方面。加之具有非常高的压摆率和基于反馈电阻的可调节带宽,你可以获得与器件的小信号带宽非常接近的大信号带宽。在甚至更好的情况下,该带宽在很宽的增益范围内大部分都维持不变。而因为具有固有的线性度,你也可以在高频大信号时获得较低的失真。
如何发现最佳的反馈电阻RF
由于放大器的交流特性部分地取决于反馈电阻,这就让我们能够针对每一个特定的应用“量身定制”放大器。降低反馈电阻的数值将提升环路增益。为了保持稳定性和最大的带宽,在低增益时,反馈电阻要设置为较高的数值;随着增益的上升,环路增益自然降低。如果需要高的增益,可以利用较小的反馈电阻来部分地恢复环路增益。
图1:具有Z(s)和反馈电阻的电路示意图
图2:能够体现LMH6714特色的不同RF条件下的频率响应
在图2中你可以看到随着你改变反馈电阻带宽所发生的变化。在右手曲线的远处,反馈电阻RF等于147Ω,你可以看到频率响应具有相当大的峰值。该曲线也具有最高的带宽。减小该电阻到远远低于这个147Ω,会导致你的脉冲响应出现振铃,如果再进一步减小该电阻,实际上就会发生振荡。RF等于300Ω的曲线具有优异的平坦度和增益,并仍然具有与峰值频率响应可比的良好带宽。
所以,我们不必牺牲太多的带宽就已经获得了很高的稳定性。利用600Ω的反馈电阻,你就能调节回你的频率响应。例如,如果一个应用仅仅需要5060MHz的带宽,在该频段内的任何信号都会对噪声有所贡献,你可以利用反馈电阻来调节你的器件的频率响应。在如此有限的带宽内,利用如此高速的放大器的原因在于它提供优异的信号保真度。
图3:建议反馈电阻与正相增益的关系
图3来自相同器件的数据表,该图说明了对给定正相增益的推荐反馈电阻。正如预期的那样,对增益为2的放大器推荐采用300Ω的电阻,它具有最佳的增益平坦度、建立时间和速度的组合。此外,从该图中可以看到,对增益为1的放大器需要采用600Ω的反馈电阻来获得最优化的性能。这是因为环路增益非常高,较大的电阻值对于稳定性是必需的。这就是与电压反馈架构的主要差异。电流反馈放大器在使用时不能把输出与反相输入短路连接。