山东省2019年高考文科数学试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2019年高考文科数学试题及答案
(满分150分,考试时间120分钟)
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符
合题目要求的。
1.设3i
12i
z -=+,则z = A .2
B .3
C .2
D .1
2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则
A .{}1,6
B .{}1,7
C .{}6,7
D .{}1,6,7
3.已知0.20.3
2log 0.2,2,0.2a b c ===,则
A .a b c <<
B .a c b <<
C .c a b <<
D .b c a <<
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是
51
2
- (
51
2
-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此. 此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
51
-. 若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长 度为26 cm ,则其身高可能是 A .165 cm B .175 cm
C .185 cm
D .190 cm
5.函数f (x )=
2
sin cos x x
x x ++在[-π,π]的图像大致为
A .
B .
C .
D .
6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到
的是 A .8号学生 B .200号学生
C .616号学生
D .815号学生
7.tan255°= A .-2-3
B .-2+3
C .2-3
D .2+3
8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为
A .π
6 B .
π3
C .2π3
D .5π6
9.如图是求
112122
+
+的程序框图,图中空白框中应填入
A .A =1
2A + B .A =12A +
C .A =1
12A
+
D .A =1
12A
+
10.双曲线C :22
221(0,0)x y a b a b
-=>>的一条渐近线的倾斜角为130°,则C 的离心率为
A .2sin40°
B .2cos40°
C .
1
sin50︒
D .
1
cos50︒
11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14
,则
b c
=
A .6
B .5
C .4
D .3
12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,
1||||AB BF =,则C 的方程为
A .2
212x y +=
B .22
132x y +=
C .22
143x y +=
D .22
154
x y +=
二、填空题:本题共4小题,每小题5分,共20分。
13.曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 14.记S n 为等比数列{a n }的前n 项和.若133
14
a S ==
,,则S 4=___________.
15.函数
3π
()sin(2)3cos
2
f x x x
=+-的最小值为___________.
16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC,那么P到平面ABC的距离为___________.
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试
题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(本小题共12分)
某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:
2
2
()
()()()()
n ad bc
K
a b c d a c b d
-
=
++++
.
18.(本小题共12分)
记S n为等差数列{a n}的前n项和,已知S9=-a5.
(1)若a3=4,求{a n}的通项公式;
(2)若a1>0,求使得S n≥a n的n的取值范围.
19.(本小题共12分)
如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 20.(本小题共12分)
已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 21.(本小题共12分)
已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切. (1)若A 在直线x +y =0上,求⊙M 的半径;
(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为22
21141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩
,(t 为参数),以坐标原点O 为极点,
x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ+=. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 23.[选修4−5:不等式选讲](10分)
已知a ,b ,c 为正数,且满足abc =1.证明: (1)
222111
a b c a b c
++≤++; (2)333
()()()24a b b c c a +++≥++.
参考答案
一、选择题
1.C 2.C 3.B 4.B 5.D 6.C 7.D 8.B 9.A 10.D 11.A 12.B 二、填空题
13.y =3x 14.
58
15.−4
16
三、解答题 17.解:
(1)由调查数据,男顾客中对该商场服务满意的比率为40
0.850
=,因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为30
0.650
=,因此女顾客对该商场服务满意的概率的估计值为0.6.
(2)2
2
100(40203010) 4.76250507030
K ⨯⨯-⨯=
≈⨯⨯⨯. 由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异. 18.解:
(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.
因此{}n a 的通项公式为102n a n =-.
(2)由(1)得14a d =-,故(9)(5),2
n n n n d
a n d S -=-=
. 由10a >知0d <,故n n S a 等价于2
11100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N . 19.解:
(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且11
2
ME B C =
.又
因为N 为1A D 的中点,所以11
2
ND A D =
. 由题设知11=A B DC ∥,可得11=B C A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE .
(2)过C 作C 1E 的垂线,垂足为H .
由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故417
17
CH =
. 从而点C 到平面1C DE 的距离为
417
17
.
20.解:
(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.
当π(0,)2
x ∈时,()0g x '>;当π,π2x ⎛⎫
∈
⎪⎝⎭
时,()0g x '<, 所以()g x 在π(0,)2单调递增,在π,π2⎛⎫
⎪⎝⎭
单调递减. 又π(0)0,0,(π)22g g g ⎛⎫
=>=-
⎪⎝⎭
,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.
(2)由题设知(π)π,(π)0f a f =,可得a ≤0.
由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减. 又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x . 又当0,[0,π]a x ∈时,ax ≤0,故()f x ax . 因此,a 的取值范围是(,0]-∞.
21.解:(1)因为⊙M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,
且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a . 因为⊙M 与直线x +2=0相切,所以
M 的半径为|2|r a =+.
由已知得||=2AO ,又MO AO ⊥,故可得22
24(2)a a +=+,解得=0a 或=4a .
故⊙M 的半径=2r 或=6r .
(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:
设(, )M x y ,由已知得
M 的半径为=|+2|,||=2r x AO .
由于MO AO ⊥,故可得222
4(2)x y x ++=+,
化简得M 的轨迹方程为2
4y x =.
因为曲线2
:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线, 所以||=+1MP x .
因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .
22.解:(1)因为221111t t --<≤+,且()
2
2
2
22
222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+, 所以C 的直角坐标方程为2
2
1(1)4
y x x +=≠-. l
的直角坐标方程为2110x ++=.
(2)由(1)可设C 的参数方程为cos ,
2sin x y αα
=⎧⎨
=⎩(α为参数,ππα-<<).
C 上的点到l
π4cos 11
α⎛
⎫-+ ⎪=
当2π3α=-
时,π4cos 113α⎛
⎫-+ ⎪⎝
⎭取得最小值7,故C 上的点到l
.
23.解:(1)因为2
2
2
2
2
2
2,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有
222111
ab bc ca a b c ab bc ca abc a b c
++++≥++=
=++.
所以
222111
a b c a b c
++≤++. (2)因为, , a b c 为正数且1abc =,故有
333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c
3≥⨯⨯⨯
=24.
所以3
3
3
()()()24a b b c c a +++++≥.。