4.4电磁感应中的双杆问题分类例析

合集下载

高考一轮复习:电磁感应中“单杆、双杆、线圈”问题归类例析

高考一轮复习:电磁感应中“单杆、双杆、线圈”问题归类例析

电磁感应中“单杆、双杆、线圈”问题归类例析导体杆在磁场中运动切割磁感线产生电磁感应现象,是历年高考的一个热点问题。

因此在高三复习阶段有必要对此类问题进行归类总结,使学生更好的掌握、理解它的内涵。

通过研究各种题目,可以分类为“单杆、双杆、线圈”三类电磁感应的问题,最后要探讨的问题不外乎以下几种:1、运动状态分析:稳定运动状态的性质(可能为静止、匀速运动、匀加速运动)、求出稳定状态下的速度或加速度、感应电流或安培力。

2、运动过程分析:分析运动过程中发生的位移或相对位移,运动时间、某状态的速度等3、能量转化分析:分析运动过程中各力做功和能量转化的问题:如产生的电热、摩擦力做功等4、求通过回路的电量解题的方法、思路通常是首先进行受力分析和运动过程分析。

然后运用动量守恒或动量定理以及能量守恒建立方程。

按照不同的情景模型,现举例分析。

一、“单杆”切割磁感线型1、杆与电阻连接组成回路例1、如图所示,MN、PQ是间距为L的平行金属导轨,置于磁感强度为B、方向垂直导轨所在平面向里的匀强磁场中,M、P间接有一阻值为R的电阻.一根与导轨接触良好、阻值为R/2的金属导线ab垂直导轨放置(1)若在外力作用下以速度v向右匀速滑动,试求ab两点间的电势差。

(2)若无外力作用,以初速度v向右滑动,试求运动过程中产生的热量、通过ab电量以及ab发生的位移x。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m,上、下两端各有一个电阻R0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B=2T.ab为金属杆,其长度为L=0.4 m,质量m=0.8 kg,电阻r=0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R0产生的热量Q0=0.375J(已知sin37°=0.6,cos37°=0.8;g取10m/s2)求:(1)杆ab的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距l , 导轨一端接有一个电容器, 电容为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用. 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。

例谈电磁感应中的_双杆问题_杨西伦

例谈电磁感应中的_双杆问题_杨西伦

例谈电磁感应中的“双杆问题”杨西伦(凤冈县第二中学 贵州遵义 564200)(收稿日期:2011-06-13) 电磁感应中“双杆问题”是课程内部的综合问题,涉及到电磁感应、安培力、牛顿运动定律、动量定理、动量守恒定律及能量守恒定律等.要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考查的热点.现将常见的四大类型归纳总结如下,供大家参考.1 “双杆”向相反方向做匀速运动规律:当两杆分别向相反方向运动时,相当于两个电池正向串联.【例1】如图1所示,两根相距d=0.20m的平行光滑金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s.求(1)作用于每条金属细杆的拉力的大小;(2)两金属细杆在间距增加0.40m的滑动过程中产生的热量.图1解析:(1)当两金属杆都以速度v匀速滑动时櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆櫆,频率也不会变,不过始终大于声源的实际频率f.相互远离的情况可进行类似的分析.4 形象类比以讨论“电磁波传播过程中,为何电场强度和磁感应强度同时达到最大”为例.在介绍电磁波特点时,课本上给出一幅图,如图5所示.图5每年笔者教毕业班,都有学生针对这幅图提出疑问,因为这跟学生已有观念中的结论“磁感应强度的变化率越大,感应电场的场强越大”有冲突.该问题实际上只能借助于麦克斯韦方程组、微积分等才能完美解释.高中阶段可采用类比法说明.如图6所示,设想是“横波在弹性绳中向右传播”.在竖直线1,2中央,质点处在平衡位置,其速度最大,动能也最大.同时,该质点与两侧相邻质点间距离最大,说明此处弹性绳的形变程度最大,具有的弹性势能也最大;在竖直线3,4中央,质点处在端点处,质点的速度为零,动能也为零.同时,该质点与相邻质点间距离很小,说明此处弹性绳的形变程度很小,具有的弹性势能也很小.电磁波传播过程中,空间电场强度、磁感应强度的大小分布与横波传播时空间动能、弹性势能的大小分布类似.图6学生遇到难题的时候,也正是体现教师智慧的时候.对一些难以理解的知识点运用巧妙的方法适当深入,有助于学生全面的理解和掌握.也只有及时解决了学生心中的疑惑,才能让他们轻装前行,在探索物理学奥秘的道路上勇往直前.—34—每条金属杆中产生的感应电动势分别为E1=E2=Bdv根据闭合电路的欧姆定律,回路中的电流强度大小为I=E1+E22r由于拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd联立各式,代入数据得F1=F2=B2 d2vr=3.2×10-2 N(2)设两金属杆之间增加的距离为ΔL,则两金属杆共产生的热量为Q=I22rΔL2v代入数据得Q=1.28×10-2 J2 “双杆”同向运动一杆加速另一杆减速规律:当两杆分别沿相同方向运动时,相当于两个电池反向串联.【例2】如图2所示,两根足够长且固定的平行光滑金属导轨位于同一水平面内,两导轨间的距离为L,导轨上面横放着两根导体棒ab和cd,构成矩形回路,两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B,开始时,棒cd静止,棒ab有指向棒cd的初速度v0,若两导体棒在运动中始终不接触.求:(1)在运动中产生的焦耳热最多是多少;(2)当ab棒的速度变为初速度的34时,cd棒的加速度是多少.图2解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流,ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v作匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,则有mv0=2 mv.根据能量守恒,整个过程中产生的总热量Q=12mv20-122 mv2=14mv20(2)设ab棒的速度变为初速度的34时,cd棒的速度为v1,则由动量守恒可知mv0=m34v0+mv1此时回路中的感应电动势和感应电流分别为E=34v0-v()1BL I=E2Rcd棒所受的安培力 F=IBL所以cd棒的加速度为 a=Fm联立各式,可得 a=B2 L2v04 mR3 “双杆”中两杆都做同方向上的加速运动“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动.【例3】如图3所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.2 0m.两根质量均为m=0.10kg的平行金属杆A,B可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20N的恒力F作用于金属杆A上,使金属杆在导轨上滑动.经过t=5.0s,金属杆A的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?图3解析:设任一时刻t,A和B两金属杆的速度分—44—别为v1和v2.根据法拉第电磁感应定律,回路中的感应电动势为 E=BL(v1-v2)回路中的电流i=E2R杆A的运动方程 F-Bli=ma由于作用于杆A和杆B的安培力总是大小相等,方向相反,所以两杆的动量(t=0时为零)等于外力F的冲量Ft=mv1+mv2.代入数据解得v1=8.15m/s v2=1.85m/s点评:题中感应电动势的计算也可以直接利用导体切割磁感线时产生的感应电动势公式和右手定则求解:设A,B速度分别为v1和v2,两杆切割磁感线产生的感应电动势分别为E1=Blv1 E2=Blv2由右手定则知两电动势方向相反,故总电动势为E=E2―E1=Bl(v2-v1)分析A,B两杆的运动,还可以求出A,B两杆的最大速度差Δvm:开始时,金属杆A在恒力F作用下做加速运动,回路中产生感应电流,金属杆B在安培力作用下也将做加速运动,但此时A的加速度肯定大于B的加速度,因此A,B的速度差将增大.根据法拉第电磁感应定律,感应电流将增大,同时A,B两杆所受安培力增大,导致B的加速度增大,A的加速度减小.但只要aA>aB,A,B的速度差就会继续增大,所以当A,B两杆的加速度相等时,速度差最大.此后,A,B两杆做加速度相等的匀加速直线运动.设金属杆A,B的共同加速度为a,回路中感应电流最大值Im.对系统和B杆分别应用牛顿第二定律有 F=2 ma BLIm=ma根据闭合电路欧姆定律,有E=2ImR而E=BLΔvm联解可得 Δvm=FRB2 L2=10m/s.4 “双杆”在不等宽导轨上同向运动“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题.【例4】如图4所示a1b1c1d1和a2b2c2d2为在同一竖直平面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直于导轨所在平面(纸面)向里.导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2.x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为和m1和m2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R.F为作用于金属杆x1y1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.图4解析:设杆向上的速度为v,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少.根据法拉第电磁感应定律,回路中的感应电动势的大小为E=B(l2-l1)v回路中的电流I=ER,电流沿顺时针方向.作用于杆x1y1的安培力为f1=Bl1I,方向向上.作用于杆x2y2的安培力为f2=Bl2I,方向向下.当杆做匀速运动时,根据牛顿第二定律有F-m1g-m2g+f1-f2=0作用于两杆的重力的功率的大小为P=(m1+m2)gv电阻上的热功率 Q=I2 R各式联解得P=F-(m1+m2)gB2(l2-l1)2R(m1+m2)gQ=F-(m1+m2)gB(l2-l1[])2R总之,在处理磁场中的“双杆问题”时,首先是要通过题意抽象出物理情景,理清其双杆类型,挖掘出题目中的有用信息,找出其中遵循的物理规律,正确联系和应用相关知识,就会水到渠成.—54—。

电磁感应双杆问题

电磁感应双杆问题

电磁感应双杆问题(排除动量范畴)1.导轨间距相等例3. (04广东)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。

匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。

两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。

已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。

求此时杆2克服摩擦力做功的功率。

解法1:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 )(0v v Bl E -= ①感应电流 21R R EI += ②杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得 )]([2122202R R lB gm v g m P +-=μμ ⑤解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ①对杆2有 02=-g m BIl μ ② 外力F 的功率 0Fv P F = ③以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④ 由以上各式得 )]([212202R R l B g m v g m P g +-=μμ ⑤2. 导轨间距不等例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。

11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。

电磁感应中的动力学问题“双杆”滑轨问题

电磁感应中的动力学问题“双杆”滑轨问题
分析:ab 在F作用下向右加速运动,切割磁感应线,产生感应 电流,感应电流又受到磁场的作用力f,画出受力图:
a=(F-f)/m
v
E=BLv
I= E/R
f=BIL
最后,当f=F 时,a=0,速度达到最大,
F=f=BIL=B2 L2 vm /R
a
vm=FR / B2 L2
vm称为收尾速度.
R f1
F
f2
⑴在运动中产生的焦耳热最多是多少 ⑵当ab棒的速度变为初速度的3/4时, cd棒的加速度是多少?
精选版ppt
21
例4:如图所示,两根平行的金属导轨,固定在同一水平面上,磁 感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导轨的电阻 很小,可忽略不计。导轨间的距离l=0.20m。两根质量均为 m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动 过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0 时刻,两杆都处于静止状态。现有一与导轨平行、大小为0.20N 的恒力F作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s, 金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为 多提少高?:两金属杆的最大速度差为多少?
作业一:两根足够长的固定的平行金属导轨位于同一水 平面内,两导轨间的距离为L。导轨上面横放着两根导 体棒ab和cd,构成矩形回路,如图所示.两根导体棒的 质量皆为m,电阻皆为R,回路中其余部分的电阻可不 计.在整个导轨平面内都有竖直向上的匀强磁场,磁感 应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开 始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导
由于安培力和导体中的电流、运动速度
均有关, 所以对磁场中运动导体进行动态分
析十分必要。

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

电磁感应中的双杆模型问题与强化训练(附详细参考答案)一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止,受力平衡。

另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

题型一:一杆静止,一杆运动【题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,则它所受摩擦力可能A.变为0 B.先减小后不变C.等于F D.先增大再减小【答案】AB【题2】如图所示,两条平行的金属导轨相距L =1 m ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。

金属棒MN 和PQ 的质量均为m =0.2 kg ,电阻分别为R MN =1 Ω和R PQ =2 Ω。

MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。

从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1 m/s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态。

t =3 s 时,PQ 棒消耗的电功率为8 W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动。

求:(1)磁感应强度B 的大小;(2)t =0~3 s 时间内通过MN 棒的电荷量;(3)求t =6 s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移 x 满足关系:v =0.4x ,PQ 棒仍然静止在倾斜轨道上。

电磁感应中(双杆)归类

电磁感应中(双杆)归类

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行光滑金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2、质量为m 的金属导线ab 垂直导轨放置(1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

解析:(1)ab 运动切割磁感线产生感应电动势E ,所以ab 相当于电源,与外电阻R 构成回路。

∴U ab =232R BLv BLvRR =+(2)若无外力作用则ab 在安培力作用下做减速运动,最终静止。

动能全部转化为电热,221mv Q =。

由动量定理得:mv Ft =即mv BILt =,It q =∴BLmv q =。

3322BLx mv q BL R R φ∆===,得 2223L B mvRx =。

例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.解析:该题是一道考察电磁感应、安培力、闭合电路欧姆定律及力学有关知识的综合题,解题的关键是要正确分析金属杆的运动及受力的变化情况。

电磁感应中的双杆类问题(适合各年级使用) ppt课件

电磁感应中的双杆类问题(适合各年级使用)  ppt课件

1
2
2.电流特点 I Blv2 Blv1 Bl( v2 v1 )
R1 R2
R1 R2
随着棒2的减速、棒1的加速,两棒的相对速
度v2-v1变小,回路中电流也变小。
v1=0时: 电流最大
Im

Blv0 R1 R2
v2=v1时: 电流 I=0
ppt课件
21
无外力等距双棒
3.两棒的运动情况
在着垂直轨道平面向上的匀强磁场(图中未画出),
磁感应强度 B 的大小相同.让a’, b’固定不动,将金属
棒ab 由静止释放,当 ab 下滑速度达到稳定时,整个
回路消耗的电功率为 8W .求 ( 1 ) ab 达到的最大速
度多大? ( 2 ) ab 下落了 30m 高度时,其下滑速度已
经达到稳定,则此过程中回路电流的发热量 Q 多大?
安培力对导体棒做的功:
W安

1 2
mvm2

m(BlCE)2 2(m B2l 2C)
易错点:认为电容器最终带电量为零
ppt课件
17
电容放电式:
7.几种变化 (1)导轨不光滑
(2)光滑但磁场与导轨不垂直
ppt课件
18
电容无外力充电式
1.电路特点 导体棒相当于电源;电容器被充电.
v0
2.电流的特点
Q1 R1 Q2 R2
8.流过某一截面的电量
Bl2q m2v2 0
ppt课件
28
无外力不等距双棒
9.几种变化
(1)两棒都有初速度
(2)两棒位于不同磁场中
v1
v2
2 1
ppt课件
29
有外力等距双棒

电磁感应中“双杆同时 切割磁感线”问题分析

电磁感应中“双杆同时 切割磁感线”问题分析
2 双 杆 反 向 运 动 切 割 磁 感 线
这类 问题 可将 两棒 等效 为两 电源 , 并 同 向 串联 来
处理 , 进行 分 析可求 解.
例 2 水 平 面 上有 两 根 相 互平 行 的 金 属 导 轨 , 相距 d 一
◇ 江苏 李 全备
0 . 2 0 m. 磁 感 应 强 度 B- =0 . 2 0
将 两 金属杆 等效 为 2个 电源. 不 论磁 场方 向
, 解析 如 何 两者 均构 成反 向 串联 关 系. 设时刻 t 时

共产 生 的 热量 为 : Q一 , Rt
据 可得 : Q一 1 _ 2 8 ×1 O J .
・ 2 r ・
, 代 入 已 知 数
金 属杆 甲、 乙速度 大小 为 ・ U 干 n . _ 者 产 生 的 电动势 分别为: E 一B z 。 , E 。 一B £ u . 则 路 中的感 应 电动势
I 一 1 2 , 一

金 属 柯: 甲: F~Bl l —l Y l a . 金 属 杆 甲 和 乙 上 的 安 培
始终 保持 大 小 相 等 、 方 向相 反 , 因 此两 杆 的 动 量 等 于拉 F的 冲量 : F t — +I f t ; U 2 .
串联 电路 性 质 、 电功 率 等 公 式 的应 片 j . 力
联关系. 两 金 属 杆 各 自产 生 的 电 动 势 为 : E 一E , 一
B d v , 则 同路 中的 总感 应 电 动势 E— E +E! 一2 B d v , 故 同路 中 的电流 为 j 一 . 由于拉 力 与安培 力平 衡 , 作 于 每 根 金属 杆 的拉
何下手, 还有 些 同学 冈考虑 欠周 到 , 往 往 分 析不 到 位 ,

电磁感应现象中的双杆模型归类与剖析

电磁感应现象中的双杆模型归类与剖析

电磁感应现象中的双杆模型归类与剖析
双杆模型是电磁感应现象中最常用的模型之一。

它描述了一个电流源和一个磁场源之间的相互作用。

当电流源改变时,它会产生磁场,而磁场源也会影响电流源。

双杆模型由两个磁杆组成,分别代表电流源和磁场源。

电流源可以是电流或电压,而磁场源可以是磁场或磁通量。

两个磁杆之间的相互作用由磁力线来描述,磁力线是由磁场源产生的路径,它们与电流源的电流方向相反。

双杆模型可以用来描述电磁感应现象,包括磁感应、电磁感应和电磁耦合等。

它可以用来解释电磁感应的基本原理,也可以用来分析电磁感应现象的物理机制。

此外,双杆模型还可以用来设计电磁感应器件,例如变压器、发电机和电机等。

电磁感应应中的双杆模型

电磁感应应中的双杆模型

双杆金属棒在磁场中滑轨上运动归类例析:一、问题分析这类问题常规的要用到能量观点,求解能的转化,常见的有机械能能间转移,机械能向电能转化,电能向内能即系统内能转化。

常用到一种平衡一一回路中的1=0,而不是两棒的速度相等。

当两导轨平行时,系统动量守恒,稳定态为两棒速度相等;若两导轨不平行,系统(两棒)受合力不为0,动量不守恒,这时稳定态为两棒运动通过的①相同,即1=0( △①=0),两棒的速度比与两棒对应有效长成反比关系,这一点有些学生受思维定势影响,套用结论,从而导致错误•二、问题分类A.两根棒,无其它力:例1.如图所示,光滑水平导轨间距为L,电阻不计,处在竖直方向的匀强磁场中,磁感应强度为B,质量均为m,电阻均为R的导体棒ab和cd静止于导轨上,若给 ab棒一个水平向右的瞬时冲量I,求两导体棒最终的运动速度。

例2.如图所示,固定于同一水平面内的光滑平行金属导轨分为两段且相连,AB段的宽为CD段宽的2倍,BC两侧两段导轨足够长且处在竖直方向的同一匀强磁场B中,两质量均为m的直金属棒a、b分别放在AB、CD段且均与导轨垂直。

现给 a施以作用时间极短的冲击,使其获得大小为V。

的初速度。

求;(1)若a、b距离两端导轨的连接处 BC足够远,则a在AB段上,b在CD段上的最终速度各为多大?(2)从a获得的初速度 V0到a和b达到上述最终速度的过程中,系统中产生的热量是多少?(3)如果a和b分别在AB段和CD段上达到上述最终速度后进入同一段导轨AB或CD 上且永不相碰,则 a和b在AB或CD上的最终速度各为多大?B.两根棒,受其它力:(3) ab 杆和cd 杆的瞬时速度 V ab 与V cd 大小关系怎样?练习:1.杆平行的金属导轨,固定在同一水平面上,磁感强度B = 0.50T 的匀强磁场与导轨所在平 面垂直,导轨的电阻很小,可不计。

导轨间的距离I = 0.20m 。

两根质量均为 m = 0.10kg的平行杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电 阻R=0.50 Q, t = 0时刻,两杆都处于静止状态。

电磁感应中的动力学问题双杆滑轨问题

电磁感应中的动力学问题双杆滑轨问题

外力F的功率 PF=Fv0 ……,则有
P P F I 2 (1 R R 2 ) μ m 1 g 0 4 v
由以上各式得
P μm 2 g0 [ v μ B m 2 lg 2 g(R 1R 2)M]52
1N
v0
P
Q
例5.(15分)如图所示,两足够长平行光滑的金属导轨 MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨 电阻不计。磁感应强度为B的匀强磁场垂直导轨平面 向上,两根长为L的完全相同的金属棒ab、cd垂直于MN、 PQ放置在导轨上,且与导轨电接触良好,每根棒的质量 为m、电阻为R.现对ab施加平行导轨向上的恒力F, 当ab向上做匀速直线运动时,cd保持静止状态.
双杆滑轨问题电磁感应中产生的感应电流在磁场中将受到安培力的作用因此电磁感应问题往往跟力学问题联系在一起解决这类电磁感应中的力学问题不仅要应用电磁学中的有关规律如楞次定律法拉第电磁感应定律左右手定则安培力的计算公式等还要应用力学中的有关规律如牛顿运动定律动量定理动能定理动量守恒定律机械能守恒定律等
电磁感应中产生的感应电流在磁场中将受 到安培力的作用,因此,电磁感应问题往往跟 力学问题联系在一起,解决这类电磁感应中的 力学问题,不仅要应用电磁学中的有关规律, 如楞次定律、法拉第电磁感应定律、左右手定 则、安培力的计算公式等,还要应用力学中的 有关规律,如牛顿运动定律、动量定理、动能 定理、动量守恒定律、机械能守恒定律等。要 将电磁学和力学的知识综合起来应用。
vm=FR / B2 L2
例2. 光滑平行导轨上有两根质量均为m,电阻均为R的 导体棒1、2,给导体棒1以初速度 v 运动, 分析它们的 运动情况,并求它们的最终速度。….
对棒1,切割磁感应线产生感应电流I,I又受到磁场的作用力F

电磁感应双杆问题含电容器问题

电磁感应双杆问题含电容器问题

电磁感应双杆问题+含电容器电路1. “双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两 个电池正向串联。

2. “双杆”在等宽导轨上同向运动, 但一杆加速另一杆减速相当于两个电池反向串联。

3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。

做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

4.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的 安培力不等大反向,所以不能利用动量守恒定律解题。

典型例题1.如图所示,间距为I 、电阻不计的两根平行金属导轨MN 、PQ (足够长)被固定在同一水平面内,质量均为 m 、电阻均为R 的两根相同导体棒 a 、b 垂直于导轨放在导轨上,一根轻 绳绕过定滑轮后沿两金属导轨的中线与a 棒连接,其下端悬挂一个质量为M 的物体C,整个装置放在方向竖直向上、磁感应强度大小为 B 的匀强磁场中。

开始时使 a 、b 、C 都处于静止状态,现释放 C,经过时间t , C 的速度为v1 、b 的速度为v2 。

不计一切摩擦,两 棒始终与导轨接触良好, 重力加速度为g ,求: (1) t 时刻C 的加速度值;(2) t 时刻a 、b 与导轨所组成的闭合回路消耗的总电功率。

当两杆分别沿相同方向运动时, “双杆”中的一杆在外力作用下3.两根足够长的固定的平行金属导轨位于同一水平面内, 两导轨间的距离为 放着两根导体棒 ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量均为R 回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强 度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒 cd 静止,棒ab 有指向棒cd 的初速度V0.若两导体棒在运动中始终不接触,求: (1 )在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的 3/4时,cd 棒的加速度是多少?以白为研究村奴.根据牛顿朗一定惮 T-R — ma 匚対冊咒对卑 槪ItTF 帧第-定律 Mg- 7- Ma 叹电以上并式解得£1=竺竺出辿土2<1;2X (M 斗眄解法-:单依时问内.通过《捽克服宜萍力做功.吧厂物体的■部分爲力势能转化为闭作 回跷的电能,価闭合0路电能的-邸勿以使4热的形」Ci"豺;L.拥-部分则转化为机棒的动能, 所IX /时刻闭合回路的电功率等于"榨必服安培ZH 故功的功率”船F ==护叫-5)心fj 棒可尊效为S 电机.b 捽町等谀为电功机 GJ 棒的感应电动势为 © = 叭闭合回路消範的总电功車为尸二理朕工①②⑥⑥删亠RH 诂=B 十⑹-6)心2R解法三飞合蹄稠加府为览雹丿办桂的机械功率为 冷=出5 =丹*厲」\用2R战闭合回路消耗的总电功率为/> =卩超+绻=时giJS2/f说明:在单位旳间」内.g 个系统的功能按系和能量转化关系如卜‘: 模型:导体棒等效为发电机和电动机, 发电机相当于闭合回路中的电源, 电动机相当于闭合回路中的用电元件2. (2003年全国理综卷)两根平行的金属导轨,固定在同一水平面上,磁感强度 B = 0.05T的匀强磁场与导轨所在平面垂直, 导轨的电阻很小,可忽略不计.导轨间的距离1= 0.20 m .两 根质量均为m = 0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨 保持垂直,每根金属杆的电阻为R = 0.50 Q.在t = 0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动. 金属杆甲的加速度为 a = 1.37 m / s 2,问此时两金属杆的速度各为多少?经过 t = 5.0s ,L 导轨上面横 m ,电阻均为(3)4.两根相距d=0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场 中,磁场的磁感应强度 B=0.2T ,导轨上面横放着两条金属细杆, 杆的电阻为r=0.25 Q,回路中其余部分的电阻可不计 的作用下沿导轨朝相反方向匀速平移,速度大小都是 擦.(1 )求作用于每条金属细杆的拉力的大小 .(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量5.如图所示,在倾角为30°的斜面上,固定两条无限长的平行光滑导轨,一个匀强磁场垂直于斜面向上,磁感强度B = 0.4T ,导轨间距L = 0.5m 。

电磁感应中的单杆和双杆问题

电磁感应中的单杆和双杆问题

电磁感应中“滑轨”问题归类例析一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。

(2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。

例2、如右图所示,一平面框架与水平面成37°角,宽L= m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =为金属杆,其长度为L = m ,质量m = kg ,电阻r =Ω,棒与框架的动摩擦因数μ=.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=(已知sin37°=,cos37°=;g 取10m /s2)求: (1)杆ab 的最大速度;(2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程中通过ab 的电荷量.关键:在于能量观,通过做功求位移。

2、杆与电容器连接组成回路例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大?例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。

求导体棒的最终速度。

专题19 电磁感应中的双轨道运动学问题(解析版)

专题19 电磁感应中的双轨道运动学问题(解析版)

专题十九电磁感应中的双轨道运动学问题基本知识点电磁感应中的“双杆”模型:1.模型分类:“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡。

另一类是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

例题分析一、斜面上的双杆问题例1如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m。

导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。

在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。

然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω 的光滑导体棒cd置于导轨上,由静止开始下滑。

cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,g取10 m/s2。

求:(1)cd下滑的过程中,ab中的电流方向;(2)ab刚要向上滑动时,cd的速度v;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab 上产生的热量Q。

(对应训练)如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为B =0.2 T ,棒ab 在平行于导轨向上的拉力F 作用下,沿导轨向上匀速运动,而棒cd 恰好保持静止,取g =10 m/s 2.求:(1)通过cd 棒的电流I 是多少,方向如何?(2)棒ab 受到的拉力F 多大?(3)拉力F 做功的功率P 是多少?二、 导轨间距不等的双杆问题例2 如图所示中1111d c b a 和2222d c b a 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

电磁感应中的“双杆问题

电磁感应中的“双杆问题

电磁感应中的“双杆问题”1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

[例1] 两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计。

已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。

(1)求作用于每条金属细杆的拉力的大小。

(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。

解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E1=E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F1=F2=IBd。

由以上各式并代入数据得N(2)设两金属杆之间增加的距离为△L,则两金属杆共产生的热量为,代入数据得Q=1.28×10-2J。

2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

[例2] 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。

两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计。

在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。

设两导体棒均可沿导轨无摩擦地滑行。

开始时,棒cd静止,棒ab有指向棒cd的初速度v0。

若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少。

(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少?解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流。

ab棒受到与运动方向相反的安培力作用作减速运动,cd棒则在安培力作用下作加速运动。

电磁感应双杆问题

电磁感应双杆问题

电磁感应双杆问题电磁感应双杆问题(排除动量范畴)1.导轨间距相等例3. (04广东)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。

匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。

两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。

已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。

求此时杆2克服摩擦力做功的功率。

解法1:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 )(0v v Bl E -= ① 感应电流21R R EI +=②杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③导体杆2克服摩擦力做功的功率 gvm P 2μ=④解得)]([2122202R R lB gm v g m P +-=μμ ⑤解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--B I l g m F μ ①对杆2有2=-g m B I l μ ②v外力F 的功率Fv P F = ③以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P Fμ-+-= ④由以上各式得)]([212202R R lB g m v g m P g +-=μμ ⑤2. 导轨间距不等例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。

导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。

11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。

电磁感应现象中的双杆问题探讨

电磁感应现象中的双杆问题探讨

电磁感应现象中的双杆问题探讨摘要:“双杆”作为电磁感应现象中一项重要考点,历年来都是高考的热点,这主要是该项内容是电学和力学的综合问题,是考察学生综合应用知识能力的一类问题。

该问题在分析过程中涉及到了动量、力学、能量等多个方面的知识,而且还会涉及到极值、临界等问题,因此,是学生在学习过程中的一个难点。

关键词:电磁感应;双杆问题;磁场力;电流电磁感应现象中的双杆问题涉及到物理过程部分,状态变化期间涉及到变量较多,在对这一问题分析期间,需要明确状态变化期间的变量中“变”的与特点,对物理变化期间的最终稳定状态进行确定,这是分析与解题的关键。

1 竖直面“双杆”问题分析1.1间距相对的竖直“双杆”问题分析ab和cd两个金属杆的长度都为L,两者对电阻值都为R,ad的质量为M,cd质量为m,利用两根不可伸长,其电阻与质量都可以忽略不计的导线连接,从而形成一个闭合回路,悬挂在水平光滑不导电圆棒两侧,金属杆处于水平位置,具体情况如图1所示,该装置位于与平面垂直匀强磁场中,磁钢强度为B,若装置内的ab杆可以匀速向下运行,求ab杆速度。

图1问题分析:通过分析可以发现,磁场垂直指向直面内侧,因为ab与cd两者由不可伸长的导线连接,ab匀速向下运动,cd受导线的牵引,将会匀速向上运动,在该状态下,两杆做切割磁感线运动,将会形成同方向感应电流和电动势,两杆在运行期间受到的安培力方向相反,而随着运行速度的变大,电流也会变大,产生的安培力也会进一步加大,最终ad和cd两个金属杆受力处于平衡时,保持匀速直线运动。

对整个回路中形成的感应电动势进行分析,感应电动势E=E1+E2=2BLv;回路中电流I=E/2R=BLv/R;ab与cd两者的受力方向相反,ab受力竖直向上,cd受力竖直向下,连这个和大小相同,F=BIL=B2L2v/R;设软导线对两杆的拉力都为T,因为ad与cd两者都处于匀速状态,因此,两者受力处平衡状态,通过对ab和cd受力平衡条件分析:ad的受力平衡条件分析:T+F=Mg;cd的受力平衡条件分析:T=mg+F;因此可以得到,2B2L2v/R=(M-m)g,最终得到v=(M-m)gR/2B2L2。

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)电磁感应中的双杆模型问题与强化训练一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动。

其实质是单杆问题,但要注意问题包含着一个条件:甲杆静止,受力平衡。

另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态,有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

题型一:一杆静止,一杆运动题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,则它所受摩擦力可能为A。

变为B。

先减小后不变C。

等于F D。

先增大再减小答案】AB解析:由于b静止不动,所以它所受的摩擦力只有在a运动时才会产生。

当a向上运动时,b所受的摩擦力会逐渐减小,直到a停止运动时,b所受的摩擦力为0.因此,选项A和B是正确的。

题2】如图所示,两条平行的金属导轨相距L=1m,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。

金属棒MN和PQ的质量均为m=0.2kg,电阻分别为RMN=1Ω和RPQ=2Ω。

MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。

从t=时刻起,MN棒在水平外力F1的作用下由静止开始以a=1m/s²的加速度向右做匀加速直线运动,PQ则在平行于斜面方向的力F2作用下保持静止状态。

t=3s时,PQ棒消耗的电功率为8W,不计导轨的电阻,水平导轨足够长,XXX始终在水平导轨上运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁感应中的双杆问题分类例析“双杆”类问题是电磁感应中常见的题型,也是电磁感应中的一个难道,下面对“双杆”类问题进行分类例析1、“双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。

2.“双杆”在等宽导轨上同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。

3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。

“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。

4.“双杆”在不等宽导轨上同向运动。

“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。

【例5】如图所示,间距为l、电阻不计的两根平行金属导轨MN、PQ(足够长)被固定在同一水平面内,质量均为m、电阻均为R的两根相同导体棒a、b垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a棒连接,其下端悬挂一个质量为M 的物体C ,整个装置放在方向竖直向上、磁感应强度大小为B 的匀强磁场中。

开始时使a 、b 、C 都处于静止状态,现释放C ,经过时间t ,C 的速度为1υ、b 的速度为2υ。

不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g ,求:(1)t 时刻C 的加速度值;(2)t 时刻a 、b 与导轨所组成的闭合回路消耗的总电功率。

解析:(1)根据法拉第电磁感应定律,t 时刻回路的感应电动势12()E Bl tφυυ∆==-∆ ① 回路中感应电流 2E I R =② 以a 为研究对象,根据牛顿第二定律 T BIl ma -= ③以C 为研究对象,根据牛顿第二定律 Mg T Ma -= ④联立以上各式解得 22122()2()MgR B l a R M m υυ--=+ (2)解法一:单位时间内,通过a 棒克服安培力做功,把C 物体的一部分重力势能转化为闭合回路的电能,而闭合回路电能的一部分以焦耳热的形式消耗掉,另一部分则转化为b 棒的动能,所以,t 时刻闭合回路的电功率等于a 棒克服安培力做功的功率,即221211()2B l P BIl Rυυυυ-⋅== 解法二:a 棒可等效为发电机,b 棒可等效为电动机a 棒的感应电动势为 1a E Blv = ⑤闭合回路消耗的总电功率为 a P IE = ⑥联立①②⑤⑥解得 221211()2B l P BIl Rυυυυ-⋅==解法三:闭合回路消耗的热功率为 222212()22B l v v E P R R-==热 b 棒的机械功率为 221222()2B l v v v P BIl v R-=⋅=机 故闭合回路消耗的总电功率为 P P P =+=热机22121()2B l Rυυυ-⋅ 说明:在单位时间t 内,整个系统的功能关系和能量转化关系如下:【例1】两根平行的金属导轨,固定在同一水平面上,磁感强度B =的匀强磁场与导轨所在平面垂直,导轨模型:a 棒可等效为发电机,b 棒可等效为电动机的电阻很小,可忽略不计.导轨间的距离l=0.20 m.两根质量均为m=0.10 kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为 N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t=,金属杆甲的加速度为a=1.37 m/s,问此时两金属杆的速度各为多少本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.解析:设任一时刻t,两金属杆甲、乙之间的距离为x,速度分别为v l和v2,经过很短的时间△t,杆甲移动距离v1△t,杆乙移动距离v2△t,回路面积改变△S=[(x一ν2△t)+ν1△t]l—lχ=(ν1-ν2) △t由法拉第电磁感应定律,回路中的感应电动势E=B△S/△t=Bι(ν)l一ν2回路中的电流 i=E/2 R杆甲的运动方程 F—B l i=ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量. Ft=mνl+mν2联立以上各式解得ν1=[Ft/m+2R(F一ma)/B2l2]/2 ν2=[Ft/m一2R(F 一ma)/B2l2]/2代入数据得移νl=8.15 m/s,v2=1.85 m/s【例2】两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。

导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量均为m,电阻均为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd的初速度v0.若两导体棒在运动中始终不接触,求:(1)在运动中产生的焦耳热最多是多少.(2)当ab棒的速度变为初速度的3/4时,cd棒的加速度是多少解析:ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 作匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= 根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-= (2)设ab 棒的速度变为初速度的3/4时,cd 棒的速度为v 1,则由动量守恒可知:10043mv v m mv += 此时回路中的感应电动势和感应电流分别为:BL v v E )43(10-=,RE I 2= 此时cd 棒所受的安培力: IBLF = ,所以cd 棒的加速度为 m F a =由以上各式,可得 mRv L B a 4022= 。

【例3】两根相距d =0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B =,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r =Ω,回路中其余部分的电阻可不计.已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v =5.0m/s ,如图所示.不计导轨上的摩擦.(1)求作用于每条金属细杆的拉力的大小.(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量. 解析:(1)当两金属杆都以速度v 匀速滑动时,每条金属杆中产生的感应电动势分别为: E 1=E 2=Bdv 由闭合电路的欧姆定律,回路中的电流强度大小为:r E E I 221+=因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F 2=IBd 。

由以上各式并代入数据得22221102.3-⨯===rv d B F F N (2)设两金属杆之间增加的距离为△L ,则两金属杆共产生的热量为vL r I Q 222∆⋅⋅=, 代入数据得 Q =×10-2J.【例4】如图,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l ,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B ,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为12m m 、和R 1、R 2,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度0v 沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。

解法1:设杆2的运动速度为v ,由于两杆运动时,两杆间和导轨构成的回路中的磁通量发生变化,产生感应电动势 )(0v v Bl E -= ①感应电流 21R R E I += ② 杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③导体杆2克服摩擦力做功的功率 gv m P 2μ= ④解得 )]([2122202R R l B gm v g m P +-=μμ ⑤解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ①对杆2有 02=-g m BIl μ ②外力F 的功率 0Fv P F = ③以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④由以上各式得 )]([212202R R l B gm v g m P g +-=μμ ⑤【例5】如图所示,在倾角为300的斜面上,固定两条无限长的平行光滑导轨,一个匀强磁场垂直于斜面向上,磁感强度B =,导轨间距L =0.5m 。

两根金属棒ab 、cd 平行地放在导轨上,金属棒质量m ab =0.1kg ,m cd =0.2kg ,两金属棒总电阻r =Ω,导轨电阻不计。

现使金属棒ab 以v =1.5m/s 的速度沿斜面向上匀速运动,求(1)金属棒cd 的最大速度;(2)在cd 有最大速度时,作用在金属棒ab 上的外力做功的功率。

说明:(1)分析清楚棒的受力情况和运动情况是解决本题的关键。

在第(1)问的分析中,也可以对cd 棒的运动方向进行判断,因为不管cd 的运动方向如何,它速度最大时m cd gsin300=I ’lB 式一定成立 。

直接解m cd gsin300=I ’lB 、ε=Blv +Blv m 、I ’=ε/r 式,若v m 为正值则表示方向沿轨道向下,若为负值则表示方向向上。

(2)对第(2)问的求解方法比较多。

选研究对象时,可以用“整体法”,也可以用隔离法。

求功率时,可以根据定义P =Fv 计算,也可以根据能的转化和守恒定律求解。

【例6】如图4所示,金属棒a 跨接在两金属轨道间,从高h 处以速度v 0沿光滑弧形平行金属轨道下滑,进入轨道的光滑水平部分之后,在自下向上的匀强磁场中运动,磁场的磁感应强度为B.在轨道的水平部分另有一个跨接在两轨道间的金属棒b,在a棒从高处滑下前b棒处于静(1)a棒进入磁场后做什么运动b棒做什么运动(2)a棒刚进入磁场时,a、b两棒加速度之比.(3)如果两棒始终没有相碰,a和b的最大速度各多大(4)在整个全过程中,回路中消耗的电能是多大[解析] 1.a棒在下滑过程中只有重力做正功,动能增加,做加速运动.进入轨道的水平部分后在磁场中运动,因切割磁感应线产生感应电动势,从而在a、b棒与两滑轨组成的闭合回路中产生感应电流,a棒由此而受到向左的安培力F a作用,运动受阻而开始减速.由于速度变小,感应电动势、感应电流及安培力都在减小,所以a棒的运动性质是加速度逐渐减小的减速运动.与此同时,b棒则受到向右的安培力F B作用自静止起做加速运动.随上述感应电流的减小,受到的F B也会相应减小,所以b棒的运动性质是加速度逐渐减小的加速运动.当a、b两棒速度相等时,回路中磁通量不再变化,因而不再有感应电流产生,a、b棒所受安培力都变为零,自此以后,两棒将以相等的速度——即b棒所能达到的最大速度向右做匀速运动.2.从a棒进入磁场后直到做匀速运动以前,a、b棒都做加速度不断在变化的变速运动.由于是在同一匀强磁场中,回路中的感应电流各处相等,a、b两棒跨接在滑轨之间部分的长度也相等,所以各时刻a、b两棒分别所受的安培力总是等值反向的(F a=|F B|=ilB).因此,根据牛顿第二定律,尽管加速度随时间都在逐渐减小,但对于同一时刻来说,这一比值则总是确定的.3.a棒进入磁场之初的速度最大,设为v a.根据动能定理,在水平轨道上运动过程,由于在两棒与轨道组成的系统中,F a与F B总是等值反向的,即合外力始终为零,所以这个系统动量守恒.设两棒最后共同运动速度为v ',则有v ' 也就是b棒的最大速度v B.4.在整个相互作用过程中,回路中的电流总在变化,且回路电阻未知,所以其中消耗的电能E电必须根据能量守恒计算,【例7】如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a和b,与导轨紧密接触且可自由滑动。

相关文档
最新文档