电缆接地问题 高压电力电缆的铜屏蔽和钢铠一般都需要接地

合集下载

电缆接地问题

电缆接地问题

浅议高压变电所屏蔽电缆接地:摘要:高压变电所内屏蔽电缆屏蔽层的正确接地,对降低外部电磁场对微机型二次设备的干扰水平,起着重要作用。

该文浅议屏蔽电缆屏蔽层一点、两点接地对电磁场屏蔽的机理,并提出了两点接地时应注意的问题。

关键词:电磁干扰;单点接地;两点接地0 引言近年来,耐受电磁干扰能力极低的微机型二次设备,在高压变电所中得到了广泛的应用,为保证微机型二次设备在这样一个高强度电磁场、强电磁干扰环境下的安全可靠运行,需要在两方面取得一致,一是这些二次设备应具有一定的耐受电磁干扰的能力,二是必须确保进入设备的电磁干扰水平必须低于设备自身的耐受水平。

后者要求电力设计及相关部门对可能的最大干扰值预测,并采取各种切实可行的措施。

结合产品的特点合理地进行地线设计,是性价比最高的抗干扰措施。

这也是各级电力部门制定的二次反事故措施反复强调二次地线设计的原因。

本文对二次地线设计中比较重要的屏蔽电缆接地进行简要分析。

1 屏蔽电缆接地屏蔽电缆屏蔽层不接地、一点接地、两点接地将直接影响屏蔽电缆电缆芯的电场屏蔽、磁场屏蔽效果。

请登陆:输配电设备网浏览更多信息1.1屏蔽层接地产生的电场屏蔽由于两根平行导线之间存在耦合电容,屏蔽层与电缆芯也存在耦合电容,这样电场耦合会产生串联干扰,如图1、图2所示(虚线表示屏蔽层接地)假定一根为理想屏蔽电缆,置于干扰电路中。

不考虑干扰源导线对电缆芯的耦合,则源导线的干扰电压U1会通过C12耦合到屏蔽层上,再通过C23耦合到芯线上。

芯线上耦合电压为来源:如果屏蔽层接地,C3被短接,C3为∞,则U2=0,即U1通过C23被屏蔽层短路接地,切断了耦合到芯线上的路径,从而起到了电场屏蔽的作用。

如果屏蔽层不接地,根据文献[3],C12=(πε0)/[ln(2h/r)],h为两导线间距,r为导线半径。

由于屏蔽电缆r值比普通电缆大,耦合电容C12值更高,再根据式(1)产生的耦合电压U2也更高,其结果是不仅不能降低电场干扰水平,而且将比采用普通电缆产生更大的电场干扰。

浅谈高压电缆金属屏蔽层接地问题

浅谈高压电缆金属屏蔽层接地问题

浅谈高压电缆金属屏蔽层接地问题电力安全规程规定:电气设备非带电的金属外壳都要接地,因此电缆的铝包或金属屏蔽层都要可靠接地。

10kV高压电缆金属屏蔽层通常采用两端直接接地的方式。

这是由于10千V电缆多数是三芯电缆的缘故。

上世纪中期前,10kV 电缆均采用油浸纸绝缘三芯电缆。

结构多为统包型,少量为分相屏蔽型。

上世纪末期开始大量使用交联聚乙烯绝缘分相屏蔽三芯电缆,逐步淘汰了油纸电缆。

九十年代以来,随着城市经济建设的迅猛发展,负荷密度增大,环网开关柜等小型设备的应用,城市变电所出线和电缆网供电主干线电缆开始采用较大截面单芯电缆。

单芯电缆的使用提高了单回电缆的输送能力,减少了接头,短段电缆可以使用,方便了电缆敷设和附件安装,也由此带来了金属屏蔽接地方式的问题。

标签:三芯电缆、单芯电缆、一端接地一、单芯电缆金属护套工频感应电压计算单芯电缆芯线通过电流时,在交变电场作用下,金属屏蔽层必然感应一定的电动势。

三芯电缆带平衡负荷时,三相电流向量和为零金属屏蔽上的感应电势叠加为零,所以可两端接地。

单芯电缆每相之间存在一定的距离,感应电势不能抵消。

金属屏蔽层感应电压的大小与电缆长度和线芯负荷电流成正比,还与电缆排列的中心距离、金属屏蔽层的平均直径有关。

1、电缆正三角形排列时,以YJV-8.7/12kV-1×300mm2单芯电缆为例,电缆屏蔽层平均直径40mm,PVC护套厚度3.6mm,当电缆“品”字形紧贴排列,负荷电流为200A时,算得电缆护层的感应电压为每公里10.7V。

2、电缆三相水平排列时,设电缆间距相等,当三相电缆紧贴水平排列,其它条件与1相同时,算得边相的感应电压为每公里16.9V,中相的感应电压为每公里10.7V;当电缆间距200mm时,算得边相的感应电压为每公里36.1V,中相的感应电压为每公里31V。

边相感应电压高于中相感应电压。

(1)当电缆长度与工作电流较大的情况下,感应电压可能达到很大的数值。

高压超高压电缆的屏蔽技术与接地措施分析

高压超高压电缆的屏蔽技术与接地措施分析

高压超高压电缆的屏蔽技术与接地措施分析为了保障电力系统的安全可靠运行,高压超高压电缆的屏蔽技术与接地措施成为了必不可少的环节。

本文将重点分析高压超高压电缆的屏蔽技术和接地措施,以期为电力系统的设计和运维提供一定的理论与实践参考。

一、高压超高压电缆的屏蔽技术1. 电缆屏蔽的概念与作用电缆屏蔽是指在高压超高压电缆的绝缘层外部包覆一层屏蔽材料,以减少外界电磁场的干扰对电缆内部信号的影响。

其作用主要有两方面:一是屏蔽外界电磁辐射,避免电磁波干扰引起的电缆通信质量下降;二是防止电缆内部信号干扰周围设备,保障电力系统的正常运行。

2. 屏蔽材料的选择与设计屏蔽材料的选择应综合考虑电磁屏蔽效果、绝缘性能、机械强度和防水防潮等因素。

常见的屏蔽材料有金属屏蔽、导电橡胶屏蔽和导电聚合物屏蔽等。

金属屏蔽具有良好的电磁屏蔽效果,但相对较重且易腐蚀;导电橡胶屏蔽具有柔软性和耐腐蚀性,但电磁屏蔽效果相对较差;导电聚合物屏蔽具有导电性能和电磁屏蔽效果兼备,但价格较高。

3. 屏蔽结构的设计与优化电缆屏蔽的结构设计应包括内屏蔽和外屏蔽两个层次。

内屏蔽用于避免电缆内部信号的干扰和泄露,外屏蔽则用于减少外界电磁场的干扰。

内屏蔽通常采用螺旋绕包或交联铝等结构,外屏蔽则采用金属网或导电聚合物屏蔽层等结构。

屏蔽结构的优化设计可通过数值模拟和试验验证相结合的方式进行,以提高屏蔽效果和降低电缆成本。

二、高压超高压电缆的接地措施1. 接地系统的重要性与作用接地是电力系统中保证人身及设备安全的重要手段,同时也是保障系统正常运行的基础。

高压超高压电缆的接地系统主要起到以下几个作用:一是保护人身安全,防止触电事故的发生;二是减少设备的绝缘损坏,提高设备的可靠性;三是提供电力系统的正常运行所需的地参考,确保电流具有合适的返回路径。

2. 接地方式的选择与设计高压超高压电缆的接地方式主要包括单点接地和多点接地两种。

单点接地通常适用于电压等级较低、系统规模较小的场合,其优点是结构简单、施工便捷;多点接地适用于电压等级较高、系统规模较大的场合,其优点是接地电流分布均匀、减小接地系统的电阻。

110kV及以上高压电缆线路的接地系统

110kV及以上高压电缆线路的接地系统

110kV及以上高压电缆线路的接地系统摘要:电力企业的发展为高压电缆线路接地系统的优化创造了有利条件,但不同接地系统其应用效果不一,因此需要进行更加深入的探讨,从而可有效保证社会用电安全。

对此,本文将对110kv及以上高压电缆线路的接地系统进行分析,并探讨其在应用过程中存在的一些问题及相关优化措施。

关键词:高压电缆;接地系统;应用;措施高压电缆线路接地系统可有效保证电路安全,具有较高的应用价值。

在此过程中,相关技术人员存在一些误区,如,部分技术人员认为在高压电力电缆的铜屏蔽与钢铠之间的接地没有区别,但实际工作过程中,其接地方式需结合具体情况进行具体分析。

此外,电网规模的扩大也要求高压电缆线路具有更高的可靠性。

接地系统可有效防止感应电压对人身安全产生威胁,因此,在电网建设过程中,应当注重接地系统应用的分析。

1高压电力电缆接地系统概述当电流通过导体时,导体周围会产生感应电压,这一感应电压会影响电路可靠性,因此,在搭建高压电力电缆时,会采取一定的屏蔽措施。

接地系统的应用原理为通过铜网或者钢铠等金属形成一个屏蔽系统,保护电缆运行。

但接地系统在安装及设计上需要注意一系列问题,才能保证其应用效果。

目前,高压电力电缆接地主要包括金属护套一点接地、金属护套两端接地、金属护套两端接地、敷设“三七开”回流线及电缆换位,金属护套交叉互联等五种方式,应用场景不同,接地施工方式也不同[1]。

因此,相关人员应当提升自身素质,为电网可靠性发展提供技术支撑。

2电缆接地系统应用特点2.1金属护套一点接地金属护套一点接地系统中感应电压会随着电缆长度的增长而增加,因而常用于短电缆线路,在应用过程中,基本上不产生环流。

此外,在安装过程中,在无安全措施的情况下,需保证其另一端感应电压小于50v,如超过50v,则需设置绝缘接头。

尤其是在电路短路时,过高的过电压会损坏护层绝缘,因此,为避免此类现象影响接地系统应用性能,需在未接地端安装保护器。

电缆头制作知识介绍

电缆头制作知识介绍

电缆头制作知识介绍电缆附件基本知识介绍电缆附件--是电缆线路⾥各种电缆接头和终端头的统称。

中间接头--是指电缆与电缆相互连接的装置,起着使电路畅通,保证相间或相地绝缘,密封和机械保护作⽤。

终端头-是装配到电缆线路的末端,⽤以保证与电⽹或其它⽤电设备的电⽓连接,并且提供作为电缆导电线芯绝缘引出的⼀种装置。

◆交联电⼒电缆结构及各部分作⽤由⾥向外为:导体,内半导,XLPE绝缘, 外半导层加铜屏蔽,填充物,防⽔内护层,钢带或钢丝铠装,电缆外护套.1.导体线芯:铜芯或铝芯,传导电流。

2.内半导层:体积电阻率100Ω.cm,均匀线芯电场。

3.绝缘层:绝缘体材料。

4.外半导层:均匀铜屏蔽电场。

5.铜屏蔽层:阻⽌外界杂波⼲扰;阻⽌线芯杂波外传(常态下容性电流;事故时短路电流)。

6.填充物:使电缆归圆,便于⼯艺成型。

7.内护套:提供防护,并有防⽔功能。

8.钢铠:保护电缆,免受外机械⼒破坏。

9.外护套:保护钢铠,免受腐蚀。

◆中低压电缆附件产品主要种类中低压电缆附件⽬前使⽤得⽐较多的产品种类主要有热收缩附件、预制式附件、冷缩式附件。

它们分别有以下特点:(1)热收缩附件所⽤材料⼀般为以聚⼄烯、⼄烯-醋酸⼄烯(EVA)及⼄丙橡胶等多种材料组分的共混物组成。

该类产品主要采⽤应⼒管处理电⼒集中问题。

亦即采⽤参数控制法缓解电场应⼒集中。

主要优点是轻便、安装容易、性能尚好。

价格便宜。

应⼒管是⼀种体积电阻率适中(1010-1012Ω·cm),介电常数较⼤(20-25)的特殊电性参数的热收缩管,利⽤电⽓参数强迫电缆绝缘屏蔽断⼝处的应⼒疏散成沿应⼒管较均匀的分布。

这⼀技术只能⽤于35kV及以下电缆附件中。

因为电压等级⾼时应⼒管将发热⽽不能可靠⼯作。

其使⽤中关键技术问题是:要保证应⼒管的电性参数必须达到上述标准规定值⽅能可靠⼯作。

另外要注意⽤硅脂填充电缆绝缘半导电层断⼝出的⽓隙以排除⽓体,达到减⼩局部放电的⽬的。

交联电缆因内应⼒处理不良时在运⾏中会发⽣较⼤收缩,因⽽在安装附件时注意应⼒管与绝缘屏蔽搭盖不少于20mm,以防收缩时应⼒管与绝缘屏蔽脱离。

控制电缆屏蔽层和铠装接地施工措施

控制电缆屏蔽层和铠装接地施工措施

控制电缆屏蔽层和铠装接地施工措施随着现代化建筑的发展和电力设施的不断升级,对于控制电缆的安全与可靠性要求也越来越高。

而控制电缆屏蔽层和铠装接地作为常见的措施,可以有效地提高控制电缆的工作效率和保证其安全性。

下面将从屏蔽层和铠装接地的作用、施工要点和常见问题等方面进行阐述。

屏蔽层和铠装接地的作用屏蔽层控制电缆屏蔽层其实就是一层介于电缆导体和环境之间的屏障,它能够抵御外界干扰或自身干扰,保证电缆信号的可靠传输。

屏蔽层能够实现电磁屏蔽,通过抑制干扰噪声的传播或反射,从而保障电缆的抗干扰能力和传输质量,同时也防止了电缆外部的电磁辐射对环境及人员的影响。

铠装接地控制电缆通常会被铠装,铠装起到了保护电缆脆弱的绝缘层和减缓电缆外在环境的物理作用。

在施工过程中,可以采用铠装接地的方式将铠装层与设备接地,能够最大限度地保障设备和电缆的安全。

屏蔽层选材在选材方面,应该根据电缆的环境条件、电缆的工作频率和工作电压等因素来选材。

常见的屏蔽材料有铝箔、铜带等,选择时应考虑其导电性、耐腐蚀性和工作稳定性等因素。

布置在布置屏蔽层时,要保持其与电缆的紧密接触,避免产生气隙,从而减少电磁泄漏和电阻值的增加。

同时,屏蔽层的高度也应该考虑到与地面的距离,以保证其有效的工作范围。

铠装接地铠装接地方式的选择在选择铠装接地的方式时,应该充分考虑其接地性能和使用寿命等因素。

针对不同的工作场合,可以采用不同的接地方式。

例如,对于要求高防护等级的电缆,可以采用防雷接地方式。

接地电阻的控制铠装接地的目的是为了保障设备和电缆的安全,如果接地电阻太高,会影响其接地效果。

因此在施工中,应采用专业的测试设备对接地电阻进行测试,对于接地电阻过高的地方,需要及时再次重新接地。

接地电流过高在实际使用过程中,有时会发现铠装接地后电流过大,在没有阳极保护的情况下,这可能会导致铠装腐蚀,造成设备损坏。

解决这个问题的方法是加装阳极保护器,从而有效的降低接地电流。

屏蔽层接触不良在布置屏蔽层时,如果与导体接触不良或出现松动等情况,就会出现干扰和损失信号等问题。

对110kV及以上高压电缆线路的接地系统分析

对110kV及以上高压电缆线路的接地系统分析

对110kV及以上高压电缆线路的接地系统分析摘要:本文作者通过实际工作中总结与积累经验,主要针对110kv及以上高压电缆的接地的重要性,并通过分析高压电缆接地的要求、方式和采取的措施等。

关键词:高压电缆接地电流电缆接地方式一、前言:经过十几年高压电力电缆施工我们积累了相当一部分的经验,本文综合各类文献并结合工程实际,意图对110kv及以上高压电缆的接地就重要性等方面进行探索。

二、高压电力电缆接地分析当导体内通过电流时会在其周围产生感应电压,对于在发电厂、变电所等用于低压及二次系统控制的电缆,为了防止继电保护装置误动以保证保护装置可靠性以外,也防止控制电缆屏蔽因感应电压而导致保护装置损坏,所以均采取带屏蔽铜网的电缆,并对屏蔽接地有着非常严格的规定;并且要求电缆支架等都要求接地以防止感应电压危及人身安全;而高压电力电缆同样存在这样的问题,本文将针对高压电力电缆在施工及运行中遇到的的一系列敷衍出的问题进行讨论:首先是敷设时的机械保护(电缆抗弯、防水、防火、腐蚀——采取铝、铜等金属外护套)→其次运行中线芯电流(在金属护套上形成1∶1的单匝变压器产生感应电动势——危害人身安全及电气设备运行经济性、可靠性等,采取外屏蔽接地)→接地电流或环流→各种接地方式的解决方法。

为了尽可能减少护套环流我们可以采取多种金属护套的连接与接地方式,这是我要着重讨论的问题。

高压电缆线路的接地方式有下列几种:.金属护套一点接地(一端或中点):无环流,感应电压与电缆长度成正比,短电缆线路常用;⑵. 金属护套两端接地:有环流,感应电压为零,但影响载流量,轻负荷电缆线路常用;⑶. 金属护套交叉换位连接:两端接地,中间用绝缘接头将护层交叉换位连接,无环流,感应电压与电缆长度成正比,但可以限制在允许的范围内,长电缆线路常用。

⑷.电缆换位,金属护套交叉互联:要求测得电缆金属感应电压必须是小于50v为前提,如果不是的话,必须进行相应的检查,是否是电缆的原因还是由于电缆的长度太长而造成的,还是其他原因造成的,如果是长度的原因(一般要求在500~800m的范围具体看测试结果),应相应调整其长度,比如说一组交叉互联加一组接地(一段接地)或其他方式。

高压电缆终端头制作(精)

高压电缆终端头制作(精)

高压电缆头制作技术1、高压电缆头的基本要求电缆终端头是将电缆与其他电气设备连接的部件,电缆中间头是将两根电缆连接起来的部件,电缆终端头与中间头统称为电缆附件。

电缆附件应与电缆本体一样能长期安全运行,并具有与电缆相同的使用寿命。

良好的电缆附件应具有以下性能:线芯联接好: 主要是联接电阻小而且联接稳定,能经受起故障电流的冲击;长期运行后其接触电阻不应大于电缆线芯本体同长度电阻的1.2倍;应具有一定的机械强度、耐振动、耐腐蚀性能;此外还应体积小、成本低、便于现场安装。

绝缘性能好: 电缆附件的绝缘性能应不低于电缆本体,所用绝缘材料的介质损耗要低,在结构上应对电缆附件中电场的突变能完善处理,有改变电场分布的措施。

2、电场分布原理高压电缆每一相线芯外均有一接地的(铜屏蔽层,导电线芯与屏蔽层之间形成径向分布的电场。

也就是说,正常电缆的电场只有从(铜导线沿半径向(铜屏蔽层的电力线,没有芯线轴向的电场(电力线,电场分布是均匀的。

在做电缆头时,剥去了屏蔽层,改变了电缆原有的电场分布,将产生对绝缘极为不利的切向电场(沿导线轴向的电力线。

在剥去屏蔽层芯线的电力线向屏蔽层断口处集中。

那么在屏蔽层断口处就是电缆最容易击穿的部位。

电缆最容易击穿的屏蔽层断口处,我们采取分散这集中的电力线(电应力,用介电常数为20~30,体积电阻率为108~1012Ω•cm材料制作的电应力控制管(简称应力管,套在屏蔽层断口处,以分散断口处的电场应力(电力线,保证电缆能可靠运行。

要使电缆可靠运行,电缆头制作中应力管非常重要,而应力管是在不破坏主绝缘层的基础上,才能达到分散电应力的效果的。

在电缆本体中,芯线外表面不可能是标准圆,芯线对屏蔽层的距离会不相等,根据电场原理,电场强度也会有大小,这对电缆绝缘也是不利的。

为尽量使电缆内部电场均匀,芯线外有一外表面圆形的半导体层,使主绝缘层的厚度基本相等,达到电场均匀分布的目的。

在主绝缘层外,铜屏蔽层内的外半导体层,同样也是消除铜屏蔽层不平,防止电场不均匀而设置的。

电力电缆金属护套或屏蔽的接地作用

电力电缆金属护套或屏蔽的接地作用

电力电缆金属护套或屏蔽的接地作用电力电缆的金属护套或屏蔽具有重要的接地作用。

其主要功能是保护电缆的绝缘层,防止外界环境对电缆的干扰,同时还能有效地将电缆内部的电荷引导到地下。

首先,金属护套或屏蔽可以防止电缆绝缘层受到外界电磁场的干扰。

在电力输送过程中,周围环境中存在各种电磁辐射,如电力线、电气设备等。

这些外界电磁场可能会对电缆的绝缘层产生不良影响,导致电缆绝缘性能下降,甚至发生故障。

金属护套或屏蔽可以有效地屏蔽这些电磁辐射,保护电缆绝缘层的完整性。

其次,金属护套或屏蔽还能起到防止外界物质对电缆的侵蚀作用。

在地下敷设电缆时,可能会遇到潮湿、腐蚀性环境。

如果电缆的外绝缘层损坏,这些外界物质可能会渗入电缆,导致电缆短路、绝缘击穿等故障。

金属护套或屏蔽可以起到屏蔽外界物质的作用,保护电缆免受侵蚀。

此外,金属护套或屏蔽还能有效地将电缆内部的电荷引导到地下。

在电力供应系统中,电缆内部的电荷会产生静电,如果这些电荷不能及时导出,可能会引起电缆的局部放电,损坏电缆的绝缘层。

金属护套或屏蔽可以作为接地导体,与地下的接地系统连接,将电荷引导到地下,防止电荷积累导致局部放电。

另外,金属护套或屏蔽还能提高电缆的屏蔽效果。

在电力输送过程中,电缆内部的电流会产生电磁场,这个电磁场可能会对周围的电缆或设备产生干扰。

金属护套或屏蔽可以起到屏蔽电磁场的作用,减少对周围设备的干扰,提高电缆的传输质量。

需要注意的是,金属护套或屏蔽的接地需要符合相关的规范和标准。

接地系统需要具有良好的接地电阻,以确保金属护套或屏蔽能够有效地引导电荷到地下。

接地系统的设计和施工需要专业技术人员进行,以确保接地效果符合要求。

总之,电力电缆的金属护套或屏蔽在电力输送系统中扮演着重要的角色。

它们不仅能够保护电缆的绝缘层,防止干扰和侵蚀,还能有效地将电荷引导到地下,提高电缆的安全可靠性和传输质量。

因此,金属护套或屏蔽的接地是电力电缆设计和施工中必不可少的环节。

高压电缆终端制做

高压电缆终端制做

高压电缆终端制做、安装原理及工艺谢农云一、电力电缆附件基本知识1、什么是电缆附件?电缆附件是指电缆线路里各种电缆接头和终端头的统称。

2、什么是电缆接头?电缆接头是指电缆与电缆相互连接的装置,起着使电路畅通。

保证相间或相地绝缘、密封和机械保护作用。

3、什么是电缆终端头?电缆终端头是指装配到电缆线路的末端,用以保证与电网或其它用电设备的电气连接,并且提供作为电缆导电线芯绝缘引出的一种装置。

4、电缆头中间接头的种类:A、塞止接头;B、直通接头;C、分支接头;D、转换接头;E、过渡接头。

5、什么是户外电缆终端头?户外电缆终端头是指电缆终端导体绝缘引出部分能承受大气影响的户外电缆终端装置,也就是说户外电缆终头要能够在各种大气条件(包括日期晒、雨淋、污秽、气温变化)下正常运行。

6、什么是户内电缆终端头?户内电缆终端头与户外电缆终端头相比,不要求承受大气影响,运行环境比户外电缆终优越。

7、电缆附件的种类:A、主要有橡胶自粘带或塑料胶粘带绕包成型的绕包式电缆附件;B、采用弹性材料(如乙丙橡胶、硅橡胶等)将电缆接头和终端头的绝缘与内外屏蔽层,在工厂内注射或模压成一个整体,现场套装在处理过的电缆末端或接头处,这种电缆附件称之为预制式电缆附件;C、应用高分子材料具有“弹性记忆”的特点,将电缆附件各组成部分,分别在工厂内做成管材、手套、雨罩等,再交联扩径,现场安装时加热收缩成型,这种电缆附件称之为热收缩式电缆附件;D、利用弹性材料(常为乙丙乙丙橡胶、硅橡胶等)将电缆附件绝缘和应力控制层在工厂内成型并硫化,再扩径加以衬垫物,现场安装时抽出衬垫,而压紧在经过处理的电缆末端或接头处形成的电缆附件称之为冷收缩式电缆附件;8、评价一个完整的电缆附件应从发下几个方面考虑:1)、电气绝缘性能:包括所用绝缘材料的绝缘电阻,介质损耗(进中压级以上)介电常数,击穿场强,以及由材料与结构所确定的最大工作场强,对于终端头还应考虑外绝缘的结构因素,如干闪距离,湿闪距离。

电缆接地问题 高压电力电缆的铜屏蔽和钢铠一般都需要接地

电缆接地问题 高压电力电缆的铜屏蔽和钢铠一般都需要接地

电缆接地问题高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?35KV高压电缆多为单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能,影响线路的正常运行,为了避免这种现象的发生,通常采用一端接地的方式,当线路很长时还可以采用中点接地和交叉互联等方式。

在制作电缆头时,将钢铠和铜屏蔽层分开焊接接地,是为了便于检测电缆内护层的好坏,在检测电缆护层时,钢铠与铜屏蔽间通上电压,如果能承受一定的电压就证明内护层是完好无损。

如果没有这方面的要求,用不着检测电缆内护层,也可以将钢铠与铜屏蔽层连在一起接地(我们提倡分开引出后接地)。

为什么高压单芯交联聚乙烯绝缘电力电缆要采用特殊的接地方式?电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。

但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。

当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。

感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。

此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的5095,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。

高压电缆钢铠及金属屏蔽层接地问题浅析

高压电缆钢铠及金属屏蔽层接地问题浅析

高压电缆钢铠及金属屏蔽层接地问题浅析作者:王旭升温克波来源:《中国科技纵横》2016年第16期【摘要】在某矿山供电系统中,发生了一起35kV出线电缆故障导致开关速断保护跳闸的故障。

技术人员对电缆线路进行故障点查找,发现B、C相各有一根电缆故障接地,故障点在电缆线路和架空线路连接处铁塔下10m以内。

工作人员对故障电缆进行解除,对电缆故障点进行人工开挖,发现B、C相各一根电缆发生绝缘层击穿现象,外护套小面积烧伤导致A相一根电缆外护套及铠装层损伤。

联系设计院及厂方技术人员,对故障点进行做电缆中间头处理。

结合此次电缆故障,笔者对35kV高压单芯电缆的铜屏蔽及铠装接地问题进行简单的技术分析。

【关键词】高压电缆金属屏蔽接地问题高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?为什么金属屏蔽层非得要接地呢?电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在钢铠或金属屏蔽层外基本上没有磁链,这样,在钢铠或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过钢铠或金属屏蔽层。

但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能。

如果铜屏蔽及钢铠不接地,使电缆芯线-交联聚乙烯-金属屏蔽层之间的电容C1与金属屏蔽层-电缆外皮-大地间的电容C2形成了串联回路,相当于构成了一个电压分压器,如图1所示。

电缆芯线导体上的电压为系统运行电压,即U1=35/√3 kV,因此铜屏蔽对地电压为:U2=U1×C1/(C1+C2)如果金属屏蔽层上的对地电压超过其对地绝缘承受能力,就会发生击穿放电现象,一旦放电金属屏蔽层通过电弧通道接地,铜屏蔽上的电荷得到释放,因而电压立刻降低,电弧熄灭,电容C2又重新充电,直到电压达到绝缘的击穿电压再次放电,这样周而复始发生间歇性电弧放电现象。

浅谈高压电力电缆金属护层保护接地的应用

浅谈高压电力电缆金属护层保护接地的应用

浅谈高压电力电缆金属护层保护接地的应用高压单芯电缆在使用时内部金属护套如何接地?我觉得我们首先应该了解,高压单芯电缆金属护套为什么需要接地?这是因为高压单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。

当高压单芯电缆线芯通过电流时就会有磁力线与电缆金属屏蔽层交链,使它的两端出现感应电压。

感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆较长时,护套上的感应电压叠加起来可达到危及人身安全的程度;而在线路发生短路故障,遭受操作过电压或雷电冲击时,屏蔽层会形成很高的感应电压,甚至可能击穿护套绝缘。

故应在金属护套的一定位置采用特殊的接地方式,同时安装护层保护器。

以防止电缆护层绝缘发生击穿现象,保障电缆线路的安全运行。

高压单芯电缆金属护套主要是由保护电缆的钢铠和屏蔽层组成。

钢铠主要是保护电缆不受外界机械损伤。

屏蔽层主要由铜、铝等非磁性材料制成,并且厚度很薄;屏蔽层的效果主要不是由于金属体本身对电场、磁场的反射、吸收而产生的,而是由于屏蔽层的接地产生的。

接地的形式不同将直接影响屏蔽效果。

对于电场、磁场屏蔽层的接地方式不同,其屏蔽效果也大不相同。

高压单芯电缆金属护套通常采用以下几种接地方式。

一、金属护套一端接地,另一端保护接地电缆线路较短时(500m以内),金属护套通常采用一端直接接地,另一端通过保护器接地,其他部位对地绝缘没有构成回路,可以减少及消除环流,有利于提高电缆的传输容量及电缆的安全运行。

根据《电力工程电缆设计规范》GB 50217— 94要求:非直接接地一端金属护套中的感应电压不超过5O V;若采取不能任意接触金属护套的安全措施,该电压可提高到1O0 V。

采用金属护套一端接地的电缆线路在与架空线路连接时,直接接地一般装设在与架空线路相接的一端,保护器装设在另一端,这样可以降低金属护套上的冲击过电压。

在直接接地端接地线应先互联后再接地。

如图1图1金属护套一端接地,另一端通过保护器接地二、金属护套中点接地,两端保护接地电缆线路较长时(1 000m以内),若电缆线路采用一端接地,其金属护套感应电压将不满足设计规范要求,可以在电缆线路的中点将电缆的金属护套进行单点互联接地,而电缆金属护套的2个终端通过保护器接地,且保证电缆金属护套感应电压不超过5O V,因此,中点接地安装方式的电缆线路可看作2个一端接地电缆线路连接在一起安装方式(见图2)。

高压电缆终端头制作

高压电缆终端头制作

高压电缆终端头制作 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高压电缆终端头制作、安装原理及工艺高压电缆头制作原理问题解答(一)从交联聚乙烯电缆的结构中可以看出,在电缆主绝缘层外面有一层外半导体和铜屏蔽,如果电缆中这层外半导体层和铜屏蔽不存在,那么三芯电缆中芯与芯之间会发生绝缘击穿?在电缆结构上的所谓“屏蔽”,实质上是一种改善电场分布的措施。

电缆导体由多根导线绞合而成,它与绝缘层之间易形成气隙,导体表面不光滑,会造成电场集中。

在导体表面加一层半导电材料的屏蔽层,它与被屏蔽的导体等电位并与绝缘层良好接触,从而避免在导体与绝缘层之间发生局部放电,这一层屏蔽为内屏蔽层。

同样在绝缘表面和护套接触处也可能存在间隙,是引起局部放电的因素,故在绝缘层表面加一层半导电材料的屏蔽层,它与被屏蔽的绝缘层有良好接触,与金属护套等电位,从而避免在绝缘层与护套之间发生局部放电,这一层屏蔽为外屏蔽层。

没有金属护套的挤包绝缘电缆,除半导电屏蔽层外,还要增加用铜带或铜丝绕包的金属屏蔽层。

这个金属屏蔽层的作用,在正常运行时通过电容电流;当系统发生短路时,作为短路电流的通道,同时也起到屏蔽电场的作用。

可见,如果电缆中这层外半导体层和铜屏蔽不存在,三芯电缆中芯与芯之间发生绝缘击穿的可能性非常大。

(二)在三芯电缆终端头中必然有一小段电缆的外半导体和铜屏蔽层被剥除,那么该小段电缆是不是薄弱环节?制作电缆终端或接头时剥除一小段屏蔽层,主要目的是用来保证高压对地的爬电距离的,这个屏蔽断口处应力十分集中,是终端头中最薄弱的环节!必须采取适当的措施进行应力处理 (用应力锥或应力管) 。

(三)能否通过少剥除外半导体和铜屏蔽层(尽量保留较长的外半导体和铜屏蔽层)的办法来克服这个问题保留较长外半导体和铜屏蔽层有什么坏处剥除屏蔽层的长度以保证爬电距离、增强绝缘表面抗爬电能力为依据。

屏蔽层剥切过长,将增加施工的难度,增加电缆附件的成本,完全没有必要。

屏蔽线接地要求电缆屏蔽线为什么要两端都接地呢

屏蔽线接地要求电缆屏蔽线为什么要两端都接地呢

屏蔽线接地要求电缆屏蔽线为什么要两端都接地呢电缆屏蔽线为什么要两端都接地呢对电缆屏蔽两端同时接地,目前主要是如下考虑的:一般情况电缆是从一次设备引入二次设备柜的,如果室外一次设备故障或雷电冲击,由于电磁感应可能会使电缆屏蔽层室外的一端电压升高,如果只有一端接地,将使电缆屏蔽层两端形成电压差,造成二次微电子元器件元件的误动甚至击穿,因此必须两端同时接地,以平衡这种电压。

这是由于集成电路、芯片等技术广泛应用而产生的新的技术问题而派生的,而此前,正如楼上所说,是规定一端接地(二次设备侧)的,以防止屏蔽层形成环流。

屏蔽线接地需要做接地性检验吗?采用什么方法做呢?1、屏蔽线接地一般不需要检验。

规范上没有明确要检验。

tumblr2.要是需要检验,用500v(弱点的用250v)摇表检查即可。

在电缆(一般你说的屏蔽线基本是电缆的)不带电的情况下,将屏蔽线按照规范接好,将摇表的一端触到屏蔽线上、另一端触到接地网线上,摇动摇表,看其是否已接通即可。

什么叫等电位接地, PROFIBUS电缆屏蔽线要等电位接地 - 。

等电位接地原本是防雷系统中的概念汽车用品,见:GB50057-1994 (2000版) 《建筑物防雷设计规范》附录八名词解释等电位连接(Equipotential bonding,bonding):将分开的装置、诸导电物体用等电位连接导体或电涌保护器连接起来以减小雷电流在它们之间产生的电位差。

在工程实践中,特别是自动化仪表工程,系统接地不但要防雷,而且要对意外的线路过载、短路进行有效的安全保护,更重要的是通过等电位连接来抑制电位差达到消除电磁干扰的目的板材。

这里的等电位连接导体,通常指工程现场俗称的“接地网”。

至于你所用的Profibus电缆也不例外,不论是西门子的,还是国产的,其单层屏蔽(含没有彼此绝缘的双层屏蔽)须一端接在等。

屏蔽接地通常采用两种方式来处理:屏蔽层单端接地和屏蔽层双端接地。

① 屏蔽层单端接地是在屏蔽电缆的一端将金属屏蔽层直接接地,另一端不接地或通过保护接地。

电力电缆各屏蔽层作用及金属屏蔽层接地方式的探讨

电力电缆各屏蔽层作用及金属屏蔽层接地方式的探讨

电力电缆各屏蔽层作用及金属屏蔽层接地方式的探讨摘要:本文对电力电缆内、外屏蔽层及金属屏蔽的作用做了简要区分,并结合相关国标规范对电力电缆金属屏蔽层接地方式的选择进行了一些探讨,以期对现场施工中遇到类似问题起到一定的参考作用。

关键词:电力电缆屏蔽层接地1 各屏蔽层的区别大家都知道一般10KV交联聚氯乙烯电缆的基本结构由导体、内屏蔽层、绝缘层、外屏蔽层、金属屏蔽、填充物、内衬层和阻燃外护套组成。

首先我们区别一下内、外屏蔽层与金属屏蔽:内外屏蔽一般为半导体材料制成,作用是改善电缆内电场的分布,以内屏蔽层为例,电缆导体由多根导线绞合而成,它与绝缘层之间易形成气隙,导体表面不光滑,会造成电场集中。

在导体表面加一层半导电材料的屏蔽层,它与被屏蔽的导体等电位并与绝缘层良好接触,从而避免在导体与绝缘层之间发生局部放电,提高了电缆的绝缘性能。

同样外屏蔽是防止绝缘层对金属屏蔽层放电的。

而金属屏蔽层的作用一般有两个:1、屏蔽自身电场,正常运行时通过电容电流。

2、是可以起到一定的接地保护作用,如果电缆芯线内发生破损,泄露出来的电流可以通过屏蔽层流入接地网,起到安全保护的作用。

2 金属屏蔽层接地方式的选择电力电缆金属屏蔽层需要接地,且以金属层上的电压、电流来决定接地方式。

现场施工中,接地方式的选择往往未得到充分地重视。

根据《电力工程电缆设计规范》GB 50217—2007(下称《规范》)的规定:电力电缆金属层必须直接接地。

交流系统中三芯电缆的金属层,应在电缆线路两终端和接头等部位实施接地。

三芯电缆正常运行时其三芯流过的总电流为零,在金属屏蔽层外的磁通一般为0,这样在电缆的两端就不会产生感应电压,使流过金属屏蔽层的环流较小,因此一般用电缆终端头两端接地的方式。

对于单芯电缆《规范》则要求:电缆线路的正常感应电势最大值应满足下列规定:1、未采取能有效防止人员任意接触金属层的安全措施时,不得大于50V。

2、除上述情况外,不得大于300V。

高压电力电缆金属屏蔽层接地问题探讨

高压电力电缆金属屏蔽层接地问题探讨

高压电力电缆金属屏蔽层接地问题探讨摘要:伴随着我国经济的快速发展以及城市化进程的加深,城市规模越来越大,城市人口越来越多,因此城市对于电能的需求也在不断高涨,在这种情况下,城市供配电网络中高压电力电缆线路的应用也愈来愈广泛。

但是在电缆使用过程中,在单芯电缆线芯存在电流流通的情况下就会在金属屏蔽层产生磁链,金属屏蔽层两端部位形成感应电势。

选择使用高压电力电缆金属屏蔽层接地方式之后,可以非常有效的避免人身触电的问题,从而使得电力系统得以更加平稳的进行工作。

基于此,本文对高压电力电缆金属屏蔽层基地问题进行了一些探讨,希望给相关工作人员提供一些参考。

关键词:高压电缆;金属屏蔽层;接地问题高压电力电缆金属屏蔽层接地可以有效的解决线路与电气设备发生损伤的现象,这样就能够更好的保障现代电力系统的平稳安全运行。

然而实际上,在目前我国电力系统中,对于高压电力电缆金属屏蔽层接地方式的应用,并没有设立统一标准,假如实际工作中无法应用正确的接地方式,就可能会引发电力事故问题,这样不但会危及人们的生命安全,同时也会给企业造成深重的灾难。

因此,对于不同长度下电缆金属屏蔽层接地问题,工作人员需要结合实际情况进行不断的研究,这样有利于找到最佳的接地方式。

一、高压单芯电力电缆与统包电力电缆接地方式差异性分析高压电力电缆作为电力系统的重要组成部分,有着良好的市场前景,对于国家经济发展和推动社会发展有至关重要的作用,因此相关人员对于高压电力电缆的检测工作越来越重视。

为了能使电缆更好地运行、发挥重要作用,必须掌握高压电力电缆运行中常见的故障,并能够做出正确处理,同时运用正确的试验方法对其进行质量评估和检测,需要具备一定的专业素质。

在统包电力电缆中,涉及到三芯或者四芯电缆,电力电缆内的芯线分布方式就是“品字形”,而且具有对称性特点。

如果在三相负荷平衡的状态中,就会得到相等大小的流经各芯线电流,以及三相电流矢量和是零。

因此,感应电压并不会发生于金属护套或金属屏蔽层中。

高压电力电缆金属屏蔽层接地问题分析

高压电力电缆金属屏蔽层接地问题分析

加装金属保护器:矿馨线9#塔到馨瑞站进 线刀闸的下口之间。在9#塔一端接地。馨 瑞站进线刀闸的下口一端加装金属保护器。
2 35kV矿刘I回线路加装金属保护器 分析
矿刘f回线路电力电缆长度为700m, 3根电缆按直线并列排列。接带的负荷仅 为250A左右,根据根据规范GB50217— 2007《电力工程电缆设计规范》附录F交 流系统单芯电缆金属层正常感应电势算式, 计算电缆线路的正常感应电势小于50V。 故金属屏蔽层采用一端直接接地,另一端 装设护层保护器接地,具体如下:35kV矿 刘l回线路11撑塔一端直接接地,12#塔 一端加装金属保护器。
四、对前期需加装金属保护器的电缆 敷设要求
1电缆敷设温度不应低于O℃,当施工 现场的环境温度不能满足要求时,应避免 在寒冷期间施工或采取适当的预加温措施 加热至0。C及以上后及时敷设。敷设前应将 电缆在Occ以上的环境中放置至少24h,确 保电缆内外温度一致。
2电缆在敷设时,A、B、C三相做到 长度相等。
5 2.5高压电力电缆中因三相负荷不平 衡产生的零序电流引起的感应电势。通过 接地线与大地形成短路,防止高压电力电 缆与接地支架存在电位差而产生放电现象。
三、35kV电缆加装金属保护器应用 1 35kV矿馨线双回线路加装金属保护 器分析 由于矿馨双回电力电缆长度均在500m 以内,3根电缆按直线并列排列,且现在 所接带的负荷仅为10A左右,根据规范 GB5021 7—2007《电力工程电缆设计规范》 附录F交流系统单芯电缆金属层正常感应 电势算式,计算电缆线路的正常感应电势 小于50V。故金属屏蔽层采用一端直接接地。 另一端装设护层保护器接地,具体如下:矿 站35kV出线龙门架到矿馨线3#塔之间。 在3样塔一端接地,矿站35kV出线龙门架 一端加装金属保护器:矿馨线5拌塔到7# 塔之间,矿馨1挣线在矿馨5样塔一端直接 接地。7{≠塔一端加装金属保护器,矿罄2襻 线在矿馨7#塔一端直接接地,5#塔一端

高压电力电缆金属屏蔽层接地问题分析

高压电力电缆金属屏蔽层接地问题分析

高压电力电缆金属屏蔽层接地问题分析王文【摘要】随着城市高速发展,110 kV以下高压电缆在城市供配网中被大量用于地下电力电缆线路.当单芯电缆线芯有电流流通时,金属屏蔽层上会有磁链,金属屏蔽层两端就会出现感应电势.高压电力电缆金属屏蔽层接地可防止人身触电,确保电力系统正常运行,保护线路和电气设备免遭损坏,但高压电力电缆金属屏蔽层接地方式一直没有统一的规定,高压电力电缆金属屏蔽层因接地不当而引发的电力事故给企业造成了巨大的经济损失.通过对不同长度下电缆金属屏蔽层接地问题分析,得出不同长度下电缆金属屏蔽层的推荐接地方式,为现场接地提供相应指导.【期刊名称】《山东电力技术》【年(卷),期】2018(045)001【总页数】4页(P47-49,53)【关键词】高压电缆;金属屏蔽层;磁链;一端接地;两端接地【作者】王文【作者单位】贵州黔源电力股份有限公司普定发电公司,贵州安顺562100【正文语种】中文【中图分类】TM2470 引言高压单芯电力电缆线路金属屏蔽层或金属护套上感应电势的幅值,与线路的长度和电流大小成正比关系。

当电缆越长或电流越大时,感应电势叠加起来就越大,会危及人身安全和电缆绝缘安全;当高压单芯电力电缆线路发生短路故障、遭受雷电冲击或操作过电压时,该感应电势很高,有可能击穿金属屏蔽层绝缘[1-2]。

1 高压单芯电力电缆与统包电力电缆接地方式的不同三芯或四芯电缆都属于统包电力电缆,其芯线在电力电缆中呈品字形对称分布,若三相负荷平衡,则流过每条线芯的电流大小相等、三相电流矢量和为零,所以金属护套或金属屏蔽层上不会产生感应电压。

然而对于单芯电力电缆,当线芯中有交流电流流过时,高压单芯电力电缆在金属屏蔽层或金属护套上就会存有磁链,金属护套或金属屏蔽层两端就会出现感应电势。

如果把单芯电力电缆金属屏蔽层一端接地,另一端不接地,当单芯电力电缆线芯有过电压或雷电流波流过时,很高的冲击电压会出现在单芯电力电缆金属屏蔽层不接地端;当电力系统发生短路故障时,高压单芯电力电缆的金属屏蔽层不接地端因电力电缆线芯流过较大的短路电流,从而在金属屏蔽层不接地端出现很高的工频感应电势,如果电缆金属屏蔽层的绝缘强度承受不了这种感应过电压的冲击,那么电缆金属屏蔽层的绝缘将被损坏,高压单芯电力电缆上将会出现多点接地现象,形成环流,这就是统包电力电缆和高压单芯电力电缆接地方式的不同之处[3-4]。

高压电缆头的基本要求

高压电缆头的基本要求

一、高压电缆头的基本要求电缆终端头是将电缆与其他电气设备连接的部件,电缆中间头是将两根电缆连接起来的部件,电缆终端头与中间头统称为电缆附件。

电缆附件应与电缆本体一样能长期安全运行,并具有与电缆相同的使用寿命。

良好的电缆附件应具有以下性能:线芯联接好:主要是联接电阻小而且联接稳定,能经受起故障电流的冲击;长期运行后其接触电阻不应大于电缆线芯本体同长度电阻的1.2倍;应具有一定的机械强度、耐振动、耐腐蚀性能;此外还应体积小、成本低、便于现场安装。

绝缘性能好:电缆附件的绝缘性能应不低于电缆本体,所用绝缘材料的介质损耗要低,在结构上应对电缆附件中电场的突变能完善处理,有改变电场分布的措施。

2、电场分布原理高压电缆每一相线芯外均有一接地的(铜)屏蔽层,导电线芯与屏蔽层之间形成径向分布的电场。

也就是说,正常电缆的电场只有从(铜)导线沿半径向(铜)屏蔽层的电力线,没有芯线轴向的电场(电力线),电场分布是均匀的。

在做电缆头时,剥去了屏蔽层,改变了电缆原有的电场分布,将产生对绝缘极为不利的切向电场(沿导线轴向的电力线)。

在剥去屏蔽层芯线的电力线向屏蔽层断口处集中。

那么在屏蔽层断口处就是电缆最容易击穿的部位。

电缆最容易击穿的屏蔽层断口处,我们采取分散这集中的电力线(电应力),用介电常数为20~30,体积电阻率为108~1012Ωcm 材料制作的电应力控制管(简称应力管),套在屏蔽层断口处,以分散断口处的电场应力(电力线),保证电缆能可靠运行。

要使电缆可靠运行,电缆头制作中应力管非常重要,而应力管是在不破坏主绝缘层的基础上,才能达到分散电应力的效果的。

在电缆本体中,芯线外表面不可能是标准圆,芯线对屏蔽层的距离会不相等,根据电场原理,电场强度也会有大小,这对电缆绝缘也是不利的。

为尽量使电缆内部电场均匀,芯线外有一外表面圆形的半导体层,使主绝缘层的厚度基本相等,达到电场均匀分布的目的。

在主绝缘层外,铜屏蔽层内的外半导体层,同样也是消除铜屏蔽层不平,防止电场不均匀而设置的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电缆接地问题高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?35KV高压电缆多为单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能,影响线路的正常运行,为了避免这种现象的发生,通常采用一端接地的方式,当线路很长时还可以采用中点接地和交叉互联等方式。

在制作电缆头时,将钢铠和铜屏蔽层分开焊接接地,是为了便于检测电缆内护层的好坏,在检测电缆护层时,钢铠与铜屏蔽间通上电压,如果能承受一定的电压就证明内护层是完好无损。

如果没有这方面的要求,用不着检测电缆内护层,也可以将钢铠与铜屏蔽层连在一起接地(我们提倡分开引出后接地)。

为什么高压单芯交联聚乙烯绝缘电力电缆要采用特殊的接地方式?电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。

但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。

当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。

感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。

此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可
达线芯电流的5095,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。

个别情况(如短电缆或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。

然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端会出现很高的冲击电压;在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现多点接地,形成环流。

因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。

据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》
的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V,并应对地绝缘。

如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。

为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。

对于电缆长度不长的情况下,可采用单点接地的方式。

为保护电缆护层绝缘,在不接地的一端应加装护层保护器。

单芯电缆的金属护套为什么要采取单点互联或交叉互联?
单芯电缆的金属护套为什么要采取单点互联或交联? 答:当电缆导体中有电流通过时,在与导体平行的金属护套中必然产生纵向感应电动势。

如果把两端金属护套直接接地,护套中的感应电压将产生以大地为回路的循环电流。

护套中有电流通过,增加了电能损耗,同时减小了电缆的输送容量。

为了解决这个
问题,可采取单点互联,仅一端接地,另一端对地绝缘,护套中就没有电流通过。

但是,感应电压与电缆长度成正比,当电缆线路较长时,过高的护套感应电压可能会危及人身安全,并可能导致设备事故,因此,电缆运行规程规定,单芯电缆金属护套感应电压不得超过50V。

对于较长的电缆线路,应用绝缘接头将金属护套分隔成多段,使每段的感应电压限制在小于50V的安全范围以内。

通常将三段长度相等或基本相等的电缆组成一个换位段,其中有两套绝缘接头,每套绝缘接头的绝缘隔板两侧不同相的金属护套用交叉跨越法相互连接。

为了减少电缆线路的损耗,提高电缆的输送容量,高压单芯电缆的金属护套,一般均采取交叉互联或单点互联方式。

相关文档
最新文档