河北省邢台市第二中学数列的概念练习题(有答案) 百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题

1.已知数列{}n a 满足11a =,122

n n a a n n

+=++,则10a =( ) A .

259

B .

145 C .

3111

D .

176

2.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫

⎬⎩⎭

的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[

)3,+∞

C .()2,+∞

D .[)2,+∞

3.已知数列{}

ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )

A .13i =,33j =

B .19i =,32j =

C .32i =,14j =

D .33i =,14j =

4.的一个通项公式是( )

A .n a =

B .n a =

C .n a =

D .n a =5.已知数列{}n a 满足11a =,()*11

n

n n a a n N a +=∈+,则2020a =( ) A .

12018 B .12019 C .1

2020 D .

1

2021

6.数列1,3,5,7,9,--的一个通项公式为( )

A .21n a n =-

B .()1(21)n

n a n =--

C .()

1

1(21)n n a n +=--

D .()

1

1(21)n n a n +=-+

7.已知数列{}n a 中,11a =,122

n

n n a a a +=+,则5a 等于( ) A .

25

B .

13 C .

23

D .

12

8.已知数列{}n a 的通项公式为2

n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞

B .(),2-∞

C .(),1-∞

D .(),0-∞

9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有

()()()f x f y f x y ⋅=+,若112

a =

,()()

*

n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .

1324

n S ≤< B .

3

14

n S ≤< C .102

n S <≤

D .

1

12

n S ≤< 10.若数列{a n }满足1112,1n

n n

a a a a ++==-,则2020a 的值为( ) A .2

B .-3

C .12

-

D .

13

11.已知数列{}n a 的前5项为:12a =,232a =,343

a =,454a =,56

5a =,可归纳得

数列{}n a 的通项公式可能为( ) A .1

+=

n n a n

B .2

1

n n a n +=

+ C .3132

n n a n -=-

D .221

n n

a n =

- 12.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤

C .数列{}n a 的最小项为3a 和4a

D .数列{}n a 的最大项为3a 和4a

13.定义:在数列{}n a 中,若满足

21

1n n n n

a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020

2018

a a 等于( ) A .4×20162-1

B .4×20172-1

C .4×20182-1

D .4×20182

14.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且

S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45

B .46

C .47

D .48

15.已知数列{}n a 满足111n n n n a a a a ++-=+,且11

3

a =,则{}n a 的前2021项之积为( ) A .

23

B .

13

C .2-

D .3-

16.数列1

2,16,112,120

,…的一个通项公式是( ) A .()1

1n a n n =-

B .()1

221n a n n =

-

C .111

n a n n =

-+ D .11n a n

=-

17.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,

n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除

后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348

B .1358

C .1347

D .1357

18.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20

1

k

k a

=∑的值不可能是( ) A .2

B .4

C .10

D .14

19.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么

24620201a a a a ++++

+=( )

A .2021a

B .2022a

C .2023a

D .2024a

20.已知数列{}n a 的通项公式为()()2

11n

n a n

=--,则6a =( )

A .35

B .11-

C .35-

D .11

二、多选题

21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:

1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列

数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数

C .202020182022

3a a a =+

D .123a a a +++…20202022a a +=

22.已知数列{}n a 满足112

a =-,11

1n n a a +=-,则下列各数是{}n a 的项的有( )

相关文档
最新文档