河北省邢台市第二中学数列的概念练习题(有答案) 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.已知数列{}n a 满足11a =,122
n n a a n n
+=++,则10a =( ) A .
259
B .
145 C .
3111
D .
176
2.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫
⎨
⎬⎩⎭
的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[
)3,+∞
C .()2,+∞
D .[)2,+∞
3.已知数列{}
ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )
A .13i =,33j =
B .19i =,32j =
C .32i =,14j =
D .33i =,14j =
4.的一个通项公式是( )
A .n a =
B .n a =
C .n a =
D .n a =5.已知数列{}n a 满足11a =,()*11
n
n n a a n N a +=∈+,则2020a =( ) A .
12018 B .12019 C .1
2020 D .
1
2021
6.数列1,3,5,7,9,--的一个通项公式为( )
A .21n a n =-
B .()1(21)n
n a n =--
C .()
1
1(21)n n a n +=--
D .()
1
1(21)n n a n +=-+
7.已知数列{}n a 中,11a =,122
n
n n a a a +=+,则5a 等于( ) A .
25
B .
13 C .
23
D .
12
8.已知数列{}n a 的通项公式为2
n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞
B .(),2-∞
C .(),1-∞
D .(),0-∞
9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有
()()()f x f y f x y ⋅=+,若112
a =
,()()
*
n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( ) A .
1324
n S ≤< B .
3
14
n S ≤< C .102
n S <≤
D .
1
12
n S ≤< 10.若数列{a n }满足1112,1n
n n
a a a a ++==-,则2020a 的值为( ) A .2
B .-3
C .12
-
D .
13
11.已知数列{}n a 的前5项为:12a =,232a =,343
a =,454a =,56
5a =,可归纳得
数列{}n a 的通项公式可能为( ) A .1
+=
n n a n
B .2
1
n n a n +=
+ C .3132
n n a n -=-
D .221
n n
a n =
- 12.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤
C .数列{}n a 的最小项为3a 和4a
D .数列{}n a 的最大项为3a 和4a
13.定义:在数列{}n a 中,若满足
21
1n n n n
a a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则2020
2018
a a 等于( ) A .4×20162-1
B .4×20172-1
C .4×20182-1
D .4×20182
14.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且
S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45
B .46
C .47
D .48
15.已知数列{}n a 满足111n n n n a a a a ++-=+,且11
3
a =,则{}n a 的前2021项之积为( ) A .
23
B .
13
C .2-
D .3-
16.数列1
2,16,112,120
,…的一个通项公式是( ) A .()1
1n a n n =-
B .()1
221n a n n =
-
C .111
n a n n =
-+ D .11n a n
=-
17.意大利数学家斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…即()()121F F ==,()()()12F n F n F n =-+- (3n ≥,
n *∈N ),此数列在现代物理、化学等方面都有着广泛的应用,若此数列的每一项被2除
后的余数构成一个新数列{}n a ,则数列{}n a 的前2020项的和为( ) A .1348
B .1358
C .1347
D .1357
18.已知数列{}n a 满足00a =,()11i i a a i +=+∈N ,则20
1
k
k a
=∑的值不可能是( ) A .2
B .4
C .10
D .14
19.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么
24620201a a a a ++++
+=( )
A .2021a
B .2022a
C .2023a
D .2024a
20.已知数列{}n a 的通项公式为()()2
11n
n a n
=--,则6a =( )
A .35
B .11-
C .35-
D .11
二、多选题
21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:
1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列
数称为斐波那契数列.下面关于斐波那契数列{}n a 说法正确的是( ) A .1055a = B .2020a 是偶数
C .202020182022
3a a a =+
D .123a a a +++…20202022a a +=
22.已知数列{}n a 满足112
a =-,11
1n n a a +=-,则下列各数是{}n a 的项的有( )