人教版高中数学必修一《幂函数》教案

合集下载

高中数学教案《幂函数

高中数学教案《幂函数

高中数学教案《幂函数》章节一:幂函数的定义与性质教学目标:1. 理解幂函数的定义;2. 掌握幂函数的性质;3. 能够运用幂函数的性质解决问题。

教学内容:1. 幂函数的定义:一般形式为f(x) = x^a,其中a为实数,a≠0;2. 幂函数的性质:a) 当a>0时,函数在x>0时单调递增,在x<0时单调递减;b) 当a<0时,函数在x>0时单调递减,在x<0时单调递增;c) 当a=1时,函数为常值函数f(x)=x;d) 当a=0时,函数为常值函数f(x)=1;e) 当a为负偶数时,函数在x>0时单调递增,在x<0时单调递减;f) 当a为负奇数时,函数在x>0时单调递减,在x<0时单调递增。

教学活动:1. 引入幂函数的概念,引导学生理解幂函数的一般形式;2. 通过示例,引导学生掌握幂函数的性质;3. 进行练习,巩固学生对幂函数性质的理解。

章节二:幂函数的图像与性质教学目标:1. 能够绘制幂函数的图像;2. 理解幂函数图像的性质;3. 能够运用幂函数图像解决问题。

教学内容:1. 幂函数的图像:一般形式为一条曲线,当a>0时,图像在x轴正半轴上单调递增,在x轴负半轴上单调递减;当a<0时,图像在x轴正半轴上单调递减,在x轴负半轴上单调递增;2. 幂函数图像的性质:a) 当a>0时,图像在x轴正半轴上无界,在x轴负半轴上有界;b) 当a<0时,图像在x轴正半轴上有界,在x轴负半轴上无界;c) 当a=1时,图像为一条直线,穿过原点;d) 当a=0时,图像为一条水平线,位于y轴上;e) 当a为负偶数时,图像在x轴正半轴上单调递增,在x轴负半轴上单调递减,且过原点;f) 当a为负奇数时,图像在x轴正半轴上单调递减,在x轴负半轴上单调递增,且过原点。

教学活动:1. 通过示例,引导学生绘制幂函数的图像;2. 分析幂函数图像的性质,引导学生理解幂函数图像的特点;3. 进行练习,巩固学生对幂函数图像性质的理解。

【人教A版高一数学必修1教案】幂函数

【人教A版高一数学必修1教案】幂函数

1 《幂函数》教案
一、教学目的:
使学生掌握幂函数的概念,会画幂函数的图象,能判定一个幂函数是增函 数还是减函数,能判断一个幂函数的奇偶性。

二、教学重难点:
1.教学重点:幂函数的图象、幂函数的增减性的证明。

2.教学难点:幂函数增减性的证明。

三、教学过程:
(一)新课引入
课本P90,p=w, S=a 2, V=a 3 ,a=S 21,v=t -1,
上述问题中的函数具有什么共同特征?
(二)新课讲授:
上述问题中涉及的函数,都是形如y =x a 的函数。

一般地,函数y =x a 叫做幂函数(power function )。

其中x 是自变量,a 是常数。

当a =1,2,3,2
1,-1时,得到下列的幂函数,画出它们的图象,并观察图象, 将你发现的结论写在下表中:
y =x y =x 2 y =x 3 y =x 2
1
y =x -1 定义域 R R R [0,+∞) (-∞,0)∪(0,+∞) 值域 R [0,+∞) R [0,+∞) (-∞,0)∪(0,+∞) 奇偶性 奇 偶 奇 非奇非偶 奇
单调性 增 [0,+∞)增 增 增 (-∞,0)减
(-∞,0)减 [0,+∞)减
定点 (1,1) (1,1) (1,1) (1,1) (1,1)
例1、证明幂函数f (x )=x 在[0,+∞)上是增函数。

高中数学必修一幂函数教案

高中数学必修一幂函数教案

高中数学必修一幂函数教案教案主题:幂函数教案目标:1.了解幂函数的定义和性质;2.掌握幂函数图像的特点以及对称性;3.准确理解幂函数的增减性质并能应用到解题中;4.能够分析幂函数与线性函数、指数函数和对数函数的关系。

教学准备:1.多媒体教学工具;2.手写板或黑板;3.课本及教学参考书。

教学过程:一、导入(5分钟)教师利用多媒体工具或手写板呈现一幂函数的图像,并提问学生对于该图像的感受和认知。

引导学生逐渐了解幂函数。

二、输入与解释(10分钟)教师在黑板上写下幂函数的定义,并对每一部分进行解释。

幂函数定义:幂函数是指以自变量x为底数,以常数a(a>0且a≠1)为指数的函数。

它可以表示为y=x^a。

三、图像特点与对称性(20分钟)1.通过幂函数的图像和函数表达式的关系,教师解释幂函数的图像特点:(1)当a>1时,函数图像在x轴正半轴上逐渐上升;当0<a<1时,函数图像保持下降的趋势。

(2)当a为整数时,函数图像在坐标原点有一个翻转对称轴,如a为奇数,则函数图像在原点处且坐标原点是函数图像的一个特殊点。

2.教师通过实例讲解幂函数图像的对称性,并要求学生在黑板上绘制出幂函数图像,并观察其对称轴和特殊点。

四、增减性质与应用(30分钟)1.幂函数的增减性质:(1)a>1时,函数递增;(2)0<a<1时,函数递减。

教师通过函数的图像和定义,对幂函数的增减性质进行讲解,强调函数图像的上升和下降趋势。

2.教师通过例题引导学生应用增减性质去解题。

五、幂函数与其他函数的关系(20分钟)1.幂函数与线性函数的关系:幂函数的特殊情况即a=1时,函数变为y=x。

教师通过图像和式子对比,指出线性函数就是幂函数的特殊情况。

2.幂函数与指数函数及对数函数的关系:幂函数与指数函数和对数函数正好是互为反函数,即幂函数和指数函数是对方的反函数。

3.教师通过例题和实例分析,引导学生理解以上关系。

六、总结与归纳(10分钟)教师与学生共同总结幂函数的定义、图像特点以及与其他函数的关系。

高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修一、教学目标1. 知识与技能:(1)理解幂函数的定义和性质;(2)会求幂函数的导数;(3)能够运用幂函数解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳幂函数的性质,培养学生的逻辑思维能力;(2)利用信息技术手段,展示幂函数的图象,提高学生的直观认知能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神。

二、教学重点与难点1. 重点:幂函数的定义和性质,幂函数的导数。

2. 难点:幂函数在实际问题中的应用。

三、教学过程1. 导入新课:(1)复习指数函数、对数函数的性质;(2)提问:幂函数是什么?它的图象和性质是怎样的?2. 自主学习:(1)学生自主探究幂函数的定义和性质;3. 课堂讲解:(1)讲解幂函数的定义和性质;(2)讲解幂函数的导数;(3)举例说明幂函数在实际问题中的应用。

4. 课堂练习:(1)学生独立完成练习题;(2)教师点评答案,解答疑问。

5. 课堂小结:(2)教师点评并补充。

四、课后作业1. 完成教材课后练习题;2. 选取两个不同的幂函数,分析它们的性质和图象;五、教学反思1. 反思教学目标是否达成,学生掌握情况如何;2. 反思教学过程中是否存在问题,如何改进;3. 针对学生的反馈,调整教学策略,为下一节课做好准备。

六、教学评价1. 评价内容:学生对幂函数的定义、性质和导数的掌握程度,以及运用幂函数解决实际问题的能力。

2. 评价方式:课堂练习、课后作业、课堂讨论、小组合作等。

3. 评价指标:准确性、逻辑性、创新性、合作精神等。

七、教学拓展1. 对比分析幂函数、指数函数和对数函数的性质及其应用;2. 探讨幂函数在其他学科领域的应用,如物理学、化学等;3. 引入复合幂函数的概念,引导学生进一步探究。

八、教学资源1. 教材:新人教A版高中数学必修教材;2. 课件:幂函数的定义、性质和导数的课件;3. 练习题:幂函数相关练习题及答案;4. 信息技术手段:多媒体投影、网络资源等。

新人教A版必修1《幂函数》教案

新人教A版必修1《幂函数》教案
其次,在实践活动环节,学生们在分组讨论和实验操作中表现出了很高的积极性。他们能够将所学的幂函数知识应用到实际问题中,这让我感到很欣慰。但同时我也注意到,有些学生在讨论过程中过于依赖公式,缺乏对问题的深入思考。针对这一问题,我计划在今后的教学中,多引导学生从不同角度分析问题,培养他们的创新意识和解决问题的能力。
-强调幂函数的单调性、奇偶性、过定点等性质。
-结合具体幂函数,如f(x) = x^2、f(x) = x^3等,讲解其性质并举例说明。
-核心内容三:常见幂函数的图像与性质
-详细分析正比例函数、反比例函数、二次函数、三次函数的图像及其性质。
-引导学生观察图像,总结性质,并能运用性质解决相关问题。
2.教学难点
4.数学抽象:帮助学生从具体实例中抽象出幂函数的一般规律,培养学生的数学抽象思维。
三、教学难点与重点
1.教学重点
-核心内容一:幂函数的定义及其一般形式
-重点讲解幂函数的一般形式f(x) = x^a,强调a为常数的特点。
-通过实例展示,让学生理解不同a值对应的幂函数图形差异。
-核心内容二:幂函数的性质
-难点三:幂函数在实际问题中的应用
-学生可能不知道如何将幂函数应用于实际问题,如计算面积、体积等。
-教师应设计相关实际问题,引导学生运用幂函数知识解决问题,提高应用能力。
-难点四:幂函数性质的应用与拓展
-学生可能难以将幂函数性质应用于更广泛的数学问题。
-教师可通过举例,如数学竞赛题等,展示幂函数性质在更复杂问题中的应用,拓展学生思维。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解幂函数的基本概念。幂函数是形如f(x) = x^a的函数,其中a为常数。幂函数在数学中具有重要地位,广泛应用于实际问题中。

2023年高中数学幂函数教学教案(7篇)

2023年高中数学幂函数教学教案(7篇)

2023高中数学幂函数教学教案(7篇)高中数学必修1《幂函数》教案篇一1、教学目标学问目标:(1)把握幂函数的形式特征,把握详细幂函数的图象和性质。

(2)能应用幂函数的图象和性质解决有关简洁问题。

力量目标:培育学生发觉问题,分析问题,解决问题的力量。

情感目标:(1)加深学生对讨论函数性质的根本方法和流程的阅历。

(2)渗透辨证唯物主义观点和方法论,培育学生运用详细问题详细分析的方法分析问题、解决问题的力量。

2、教学重点:从详细函数归纳熟悉幂函数的一些性质并简洁应用。

教学难点:引导学生概括出幂函数的性质。

3、教学方法和教学手段:探究发觉法和多媒体教学4、教学过程:问题情境问题1写出以下y关于x的函数解析式:①正方形边长x、面积y②正方体棱长x、体积y③正方形面积x、边长y④某人骑车x秒内匀速前进了1m,骑车速度为y⑤一物体位移y与位移时间x,速度1m/s问题2是否为指数函数?上述函数解析式有什么共同特征?(教师将解析式写成指数幂形式,以启发学生归纳,)板书课题并归纳幂函数的定义。

(二)新课讲解幂函数的定义:一般地,我们把形如的函数称为幂函数(powerfunction),其中是自变量,是常数。

为了加深对定义的理解,请同学们判别以下函数中有几个幂函数?①y=②y=2x2我们了解了幂函数的概念以后我们一起来讨论幂函数的性质。

问题3幂函数具有哪些性质?用什么方法讨论这些性质的呢?我们请同学们回忆一下在前面学习指数函数、对数函数我们一起讨论了哪些性质呢?(学生争论,教师引导)(引发学生作图讨论函数性质的兴趣。

函数单调性的推断,既可以使用定义,也可以通过图象解决,直观,易理解。

)在初中我们已经学习了幂函数的图象和性质,请同学们在同一坐标系中画出它们的图象。

依据你的学习经受,你能在同一坐标系内画出函数的图象吗?(学生作图,教师巡察。

将学生作图用实物投影仪演示,指出优点和错误之处。

教师利用几何画板演示,通过超级链接几何画板演示。

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案

人教版高中必修一《幂函数》教案一、教学目标1.了解幂函数的定义和特点;2.学习叠加思想,并掌握简单的幂函数叠加方法;3.能够解决一些实际问题。

二、教学重难点1.幂函数的定义及其特点;2.幂函数的叠加思想;3.幂函数的绘图方法;三、教学过程1.引入幂函数的定义:$y=x^p(p\\in \\mathbb{R})$让学生发现x的取值范围对函数图象的影响,并对函数图象进行描述。

2. 概念讲解1.首先讲解幂函数的定义,指出它是一种基本函数;2.介绍幂函数的性质,让学生知道幂函数的图像不可能横切x轴;3.引入幂函数的叠加思想,让学生知道可以将不同的函数图像叠加在一起。

3. 具体例子讲解1.书写公式,说明函数图象的性质;2.给出幂函数的图象,描出函数的图象;3.确定函数图象的性质,让学生明白函数图象的变化。

4. 例题解析1.给出实际问题,提供数据;2.根据实际问题列出函数式,确定函数图象;3.通过实际问题,解释函数图象的意义。

5. 分组讨论1.将学生分成若干小组,每组做一道练习题;2.每组向其他组展示自己的想法、方法及结果;3.学生之间相互交流,共同探讨出最佳答案。

四、教学方法1.板书法:结合具体例子进行讲解;2.案例法:让学生通过实际问题练习解题思路;3.分组讨论法:提高学生探究问题、思考问题和解决问题的能力。

五、教学帮助1.帮助学生理解定义和性质;2.尤其帮助学生掌握幂函数的叠加思想,找出函数图象的变化规律。

六、课堂反馈1.倾听学生提出的疑问和问题;2.鼓励并指导学生提出自己的解决方案;3.搜集学生反馈,及时调整教学进度和方法。

七、课堂作业1.完成教师布置的作业;2.阅读教材给出的例题;3.自己找出一些幂函数的例子进行探究。

幂函数人教版 高中数学幂函数教案

幂函数人教版 高中数学幂函数教案

幂函数人教版高中数学幂函数教案教案标题:幂函数教学目标:1. 理解幂函数的定义和性质;2. 掌握幂函数的图像和一般式的确定方法;3. 能够应用幂函数进行实际问题的求解。

教学重点:1. 幂函数的定义和性质;2. 幂函数图像的确定;3. 幂函数的一般式求解。

教学难点:1. 幂函数图像的确定;2. 幂函数的一般式求解。

教学准备:课件、教科书、练习题、学生练习册等教学资源。

教学过程:Step 1:引入幂函数的概念1. 提问:你们知道什么是幂函数吗?幂函数有什么特点?2. 学生回答并讨论。

3. 教师解释幂函数的定义,并给出一些幂函数的例子。

Step 2:幂函数的性质1. 教师引导学生回顾指数函数的性质,并与幂函数进行比较。

2. 教师讲解幂函数的性质,包括定义域、值域、奇偶性、增减性等。

Step 3:幂函数的图像1. 教师引导学生思考幂函数图像的特点。

2. 教师讲解如何用平移和伸缩法确定幂函数的图像,并结合具体例子进行讲解。

Step 4:幂函数的一般式求解1. 教师讲解幂函数的一般式及其推导方法。

2. 教师给出一些带有参数的幂函数的例子,并引导学生通过一般式求解。

Step 5:应用幂函数解决实际问题1. 教师引入一些与幂函数有关的实际问题,如物体自由落体问题、人口增长问题等。

2. 学生分组进行讨论和解答,教师进行辅导和点评。

Step 6:总结与拓展1. 教师总结本节课的重点和难点。

2. 鼓励学生思考其他与幂函数相关的问题,并拓展知识。

Step 7:作业布置布置练习题和思考题,巩固所学知识。

教学反思:在教学过程中,我对幂函数的定义和性质进行了详细地讲解,通过图像确定和一般式求解等方法,帮助学生理解幂函数的特点和求解方法。

在实际问题的应用中,让学生运用所学知识解决问题,培养了学生的实际应用能力。

此外,通过拓展问题,激发了学生进一步思考和学习的兴趣。

高中数学幂函数的优秀教案

高中数学幂函数的优秀教案

高中数学幂函数的优秀教案教学目标:1. 了解幂函数的定义和性质;2. 掌握幂函数的图像特点和变化规律;3. 能够应用幂函数解决实际问题。

教学重点:1. 幂函数的定义和性质;2. 幂函数图像的特点;3. 幂函数的变化规律。

教学难点:1. 幂函数图像的绘制;2. 幂函数的应用解题。

教学准备:1. 教学PPT;2. 幂函数的相关教学素材;3. 面板书和彩色粉笔;4. 计算器。

教学过程:一、导入新知识(5分钟)教师通过举例引导学生回顾幂函数的定义和性质,激发学生对幂函数的兴趣。

二、讲解幂函数的定义和性质(15分钟)1. 介绍幂函数的定义,并解释指数、底数的含义;2. 讲解幂函数的性质,包括奇偶性、增减性和对称性等;3. 通过实例让学生理解幂函数的基本特点。

三、分组讨论与展示(15分钟)1. 将学生分成小组,让他们结合所学内容,讨论幂函数的图像特点和变化规律;2. 每组选派一名代表进行展示,分享小组讨论的结论。

四、幂函数图像的绘制(15分钟)1. 通过教学PPT,展示幂函数图像的绘制方法;2. 让学生自行绘制不同幂函数的图像,并与同学分享。

五、应用解题(15分钟)1. 以实际问题为例,让学生应用幂函数解题;2. 指导学生合理建立数学模型,解决问题。

六、课堂小结(5分钟)教师总结本节课的重点知识,强调幂函数的重要性和应用场景,激励学生继续深入学习。

七、作业布置让学生完成相关习题,巩固所学知识。

教学反思:1. 教学重点突出,学生参与度高;2. 演示环节设计合理,能够引导学生深入思考;3. 学生绘制图像能力需要进一步培养,需要增加训练。

这份教案是一份比较完整的高中数学幂函数的教学设计,建议教师在教学中根据学生的实陵情况做出适当的调整,以达到更好的教学效果。

高中数学幂函数的教案

高中数学幂函数的教案

高中数学幂函数的教案
一、教学目标:
1. 理解幂函数的基本概念和特点;
2. 掌握幂函数的图像特征和性质;
3. 能够解决幂函数相关的问题。

二、教学重点:
1. 幂函数的定义和基本特点;
2. 幂函数的图像性质。

三、教学难点:
1. 幂函数的特殊情况的解决方法;
2. 幂函数的应用问题的解决。

四、教学过程:
1. 导入:通过实际生活中的例子引入幂函数的概念,引发学生的兴趣。

2. 概念讲解:介绍幂函数的定义和基本特点,解释幂函数的图像特征和性质。

3. 实例演练:通过案例分析,让学生运用所学知识解决幂函数相关的问题。

4. 拓展应用:引导学生探讨幂函数在实际问题中的应用,开拓思维。

五、课堂讨论:组织学生讨论幂函数的特殊情况和解决方法,促进学生之间的交流和思考。

六、练习测试:布置与幂函数相关的习题,检验学生对知识的掌握程度。

七、总结反思:引导学生总结本节课的重点知识,反思学习过程中的问题和感悟。

八、课后复习:提醒学生及时复习幂函数相关知识,完成作业,并准备下节课内容。

九、教学手段:采用多媒体教学、案例分析、讨论互动等方式,激发学生学习兴趣。

十、教学评估:根据学生的学习情况和表现,及时调整教学策略,确保教学效果。

十一、教学延伸:鼓励学生主动学习,拓展幂函数相关知识,提高数学思维能力。

以上是高中数学幂函数的教案范本,仅供参考。

祝教学顺利!。

《幂函数》教学设计

《幂函数》教学设计

普通高中教科书数学必修第一册(人教A版2019)3.3幂函数一、教学目标:(一)了解幂函数的概念,会求幂函数的解析式.(二)通过具体实例,会画y=x,y=x2,y=x3,y=x-1,y=x12的图象,描述它们的变化规律,总结掌握幂函数的性质.(三)能利用幂函数的单调性比较指数幂的大小.二、教学重难点重点:幂函数的概念、图象和性质.难点:利用幂函数的性质解决有关问题.三、教学用具:ppt、geogebra软件四、教学过程:(一)情境导入前面学习了函数的概念,利用函数概念和对函数的观察,研究了函数的一些性质.本节我们利用这些知识研究一类新的函数.先看几个实例. 1.如果张红以1元/kg的价格购买了某种蔬菜wkg,那么她需要支付 p=w元,这里p是w的函数;2.如果正方形的边长为x,那么正方形的面积y=x2,这里y是x的函数; 3.如果立方体的棱长为b,那么立方体的体积V=b3,这里V是b的函数; 4.如果一个正方形场地的面积为S,那么正方形场地的边长c=√S,这里c是S的函数;5.如果某人t s内骑车行进了1km,那么他骑车的平均速度v=1km/s,t 即v=t−1,这里v是t的函数.(二)探究活动1:请观察1—5中的函数解析式,讨论它们有何共同特征.1.p=w;2.y=x2;3.V=b3;,即v=t−1.4.c=√S,即c=s12;5.v=1t实际上,这些函数的解析式都有幂的形式,而且都是以幂的底数为自,-1;它们都是形如y=xα的变量;幂的指数都是常数,分别是1,2,3,12函数.【设计意图】将实际问题转化为数学问题,引导学生经历从实例中用函数思维方式抽象出幂函数的形式,进而引出新知识的定义和形式. (三)概念新知幂函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.1.练习:(1)下列函数哪些是幂函数()①y=x3②y=(1)x③y=4x2④y=x5+12⑤y=(x-1)2 ⑥y=x ⑦y=2x(2)若f(x)=(m2-4m-4)x m是幂函数,则m=_____.结论:底数只能是自变量x,指数只能是常数,幂的系数只能是1, 解析式只能是一项;判断一个函数是不是幂函数的依据是该函数是否为y=xα(α为常数)的形式;反过来,若一个函数为幂函数,那么它也一定具有这个形式.在我们解决某些问题的时候这个结论有奇效.【设计意图】通过引导学生从函数的思维方式归纳出幂函数的定义,然后再通过练习和思考,学生进一步理解幂函数的定义.(四)探究活动2(数到形),−1时的图象与性质.现对于幂函数,我们只研究α=1,2,3,12请同学们尝试在同一坐标系中画出这五个函数的大致图象.(取点要具有代表性)老师用geogebra软件进行展示【设计意图】通过课前预习的网络作业让学生先独立画出三个幂函数的图像,然后课堂上在同一直角坐标系中通过描点法画出另外两个幂函数,在画的过程中体会图像的变化趋势,掌握幂函数的特征.(五)探究活动3(形到数)结合幂函数图像和解析式,将你发现的结论填写在下表.【设计意图】由形到数,发现并归纳5个常见幂函数的图像性质. (六)性质探究探究活动4:观察α=1,2,3,1/2 ,-1时幂函数的图形,填写以下研究报告1.特殊幂函数的性质(1) y=x,y=x2,y=x3,y=x12,y=x-1主要分布在第象限,第象限无图像.(2)函数y=x,y=x2,y=x3,y=x12和y=x-1的图像都通过点;(3)函数y=x,y=x3,y=x-1是,函数y=x2是;(4)在区间(0,+∞)上,函数y=x,y=x2,y=x3,y=x12,函数y=x-1;(5)在第一象限内,函数y=x-1的图像向上与y轴,向右与x轴.2.一般幂函数的性质:(1)第一象限均有图像,第四象限均无图像(2)幂函数图像都过点(1,1);α>0,函数过(0,0)(3)α为偶数时,幂函数是偶函数;α为奇数时,幂函数是奇函数.(4)当α>0时,幂函数在区间(0,+∞)上单调递增;当α<0时,幂函数在区间(0,+∞)上单调递减(5)一般地,幂函数的图像在直线x=1的右侧,指数大的在上,指数小的在下(指大图高),在y轴与直线x=1之间正好相反(指大图低).【设计意图】引导学生通过观察函数的图像,分析归纳出五个函数图像各自性质的基础上,再归纳幂函数的共性和差异性,进而得出幂函数的基本性质.(七)应用提升例1.在下列四个图形中,y =x-12的大致图像是( )例2 比较下列各组数的大小.(1) (2) (3)(八)当堂检测1.下列函数是幂函数的是( )A .y =5x 2B .y =x 5−1 C .y =x 8D.y =(x +1)22.若 f (x )=(m 2-2m -2)x m是幂函数,且在第一象限为增函数,则m =( )A .−1 B. 3 C. -1或3 D.13.已知幂函数y =f(x)的图像经过点(4, 12 ),则 f (2)=( )A .14B.4C.√22D.√24.下列正确的是( )A.(1.5)3<(1.4)3B. (0.1)0.3>(0.2)0.3C. (11.5)−3<(11.6)−3D. (0.6)3<(0.6)0.5111.5 1.4--,1.23,1.330.53 ,0.50.55.若(3-2m)12>(m+1)12,求实数m的取值范围.五.归纳总结1.幂函数概念:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数.2.幂函数性质:(1)幂函数图象都过点(1,1).(2)α为偶数时,幂函数是偶函数。

人教版高中必修1幂函数教案

人教版高中必修1幂函数教案

人教版高中必修1幂函数教案《人教版高中必修1幂函数教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!§2.3幂函数一.教学目标:1.知识技能(1)理解幂函数的概念;(2)通过具体实例了解幂函数的图象和性质,并能进行初步的应用.2.过程与方法类比研究一般函数,指数函数、对数函数的过程与方法,研究幂函数的图象和性质.3.情感、态度、价值观(1)进一步渗透数形结合与类比的思想方法;(2)体会幂函数的变化规律及蕴含其中的对称性.二.重点、难点重点:从五个具体的幂函数中认识的概念和性质难点:从幂函数的图象中概括其性质三.学法与教具(1)学法:通过类比、思考、交流、讨论,理解幂函数的定义和性质 ;(2)教学用具:多媒体四.教学过程:1导入新课1.如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?根据函数的定义可知,这里p是w的函数.2.如果正方形的边长为a,那么正方形的面积S=a2,这里S是a的函数.3.如果正方体的边长为a,那么正方体的体积V=a3,这里V是a的函数.4.如果正方形场地面积为S,那么正方形的边长a=S,这里a是S的函数.5.如果某人t s内骑车行进了1 km,那么他骑车的速度v=t-1km/s,这里v是t的函数.以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量).(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题:幂函数).2新知探究提出问题:问题①:给出下列函数:y=x,y=x,y=x2,y=x-1,y=x3,考察这些解析式的特点,总结出来,是否为指数函数?问题②:根据①,如果让我们起一个名字的话,你将会给他们起个什么名字呢?请给出一个一般性的结论.讨论结果:①通过观察发现这些函数的变量在底数位置,解析式右边都是幂,因为它们的变量都在底数位置上,不符合指数函数的定义,所以都不是指数函数.②由于函数的指数是一个常数,底数是变量,类似于我们学过的幂的形式,因此我们称这种类型的函数为幂函数,如果我们用字母α来表示函数的指数,就能得到一般的式子,即幂函数的定义:一般地,形如y=xα(x∈R)的函数称为幂函数,其中x是自变量,α是常数.如y=x2,y=x,y=x3等都是幂函数,幂函数与指数函数、对数函数一样,都是基本初等函数.练1判断下列函数哪些是幂函数.(1)y=0.2x;(2)y=x-3;(3)y=x-2;(4)y=x;(5)y=2x2 ;(6)y=-x-1活动:学生独立思考,讨论回答,教师巡视引导,及时评价学生的回答.根据幂函数的定义判别,形如y=xα(x∈R)的函数称为幂函数,变量x的系数为1,指数α是一个常数,严格按这个标准来判断.解:(1)y=0.2x的底数是0.2,因此不是幂函数;(2)y=x-3的底数是变量,指数是常数,因此是幂函数;(3)y=x-2的底数是变量,指数是常数,因此是幂函数;(4)y=x的底数是变量,指数是常数,因此是幂函数.(5)的变量x2的系数为2,因此不是幂函数;(6)的变量x3的系数为-1,因此不是幂函数点评:判断函数是否是幂函数要严格按定义来判断.提出问题:问题③:我们前面学习指对数函数的性质时,用了什么样的思路?研究幂函数的性质呢?问题④:画出y=x,y=x,y=x2,y=x-1,y=x3五个函数图象,完成下列表格.讨论结果:③我们研究指对数函数时,根据图象研究函数的性质,由具体到一般;一般要考虑函数的定义域、值域、单调性、奇偶性;有时也通过画函数图象,从图象的变化情况来看函数的定义域、值域、单调性、奇偶性等性质,研究幂函数的性质也应如此.④学生用描点法,也可应用函数的性质,如奇偶性、定义域等,画出函数图象.利用描点法,在同一坐标系中画出函数y=x,y=x,y=x2,y=x3,y=x-1的图象.列表:图1让学生通过观察图象,分组讨论,探究幂函数的性质和图象的变化规律,教师注意引导学生用类比研究指数函数、对数函数的方法研究幂函数的性质.通过观察图象,完成表格.提出问题:问题⑤:通过对以上五个函数图象的观察,哪个象限一定有幂函数的图象?哪个象限一定没有幂函数的图象?哪个象限可能有幂函数的图象,这时可以通过什么途径来判断?问题⑥:通过对以上五个函数图象的观察和填表,你能类比出一般的幂函数的性质吗?讨论结果:⑤第一象限一定有幂函数的图象;第四象限一定没有幂函数的图象;而第二、三象限可能有,也可能没有图象,这时可以通过幂函数和定义域和奇偶性来判断.⑥幂函数y=xα的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1)(原因:1x=1);(2)当α>0时,幂函数的图象都通过原点,并且在[0,+∞)上是增函数(从左往右看,函数图象逐渐上升).特别地,当α>1时,x∈(0,1),y=x2的图象都在y=x图象的下方,形状向下凸,α越大,下凸的程度越大.当0<α<1时,x∈(0,1),y=x2的图象都在y=x的图象上方,形状向上凸,α越小,上凸的程度越大.(3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x向原点靠近时,图象在y轴的右方无限逼近y轴正半轴,当x慢慢地变大时,图象在x轴上方并无限逼近x轴的正半轴.活动:考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开,学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳,学生作图,教师巡视,学生小组讨论,得到结论,必要时,教师利用几何画板演示.3典例精析例1比较下列各组数的大小:(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;(3)0.20.3,0.30.3,0.30.2.活动:学生先思考或回忆,然后讨论交流,教师适时提示点拨.比较数的大小,常借助于函数的单调性.对(1)(2)可直接利用幂函数的单调性.对(3)只利用幂函数的单调性是不够的,还要利用指数函数的单调性,事实上,这里0.30.3可作为中间量.解:(1)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x0.1的单调性,在第一象限内函数单调递增,又因为1.1<1.2,所以1.10.1<1.20.1.(2)由于要比较的数的指数相同,所以利用幂函数的单调性,考察函数y=x-0.2的单调性,在第一象限内函数单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.(3)首先比较指数相同的两个数的大小,考察函数y=x0.3的单调性,在第一象限内函数单调递增,又因为0.2<0.3,所以0.20.3<0.30.3.再比较同底数的两个数的大小,考察函数y=0.3x的单调性,它在定义域内函数单调递减,又因为0.2<0.3,所以0.30.3<0.30.2.所以0.20.3<0.30.3<0.30.2.另外,本题还有图象法,计算结果等方法,留作同学们自己完成.点评:指数相同的幂的大小比较可以利用幂函数的单调性;底数相同的幂的大小比较可以利用指数函数的单调性例2.证明幂函数f(x)=在[0,+∞)上是增函数.活动:学生先思考或讨论,再回答,教师根据实际,可以提示引导.证明函数的单调性一般用定义法,有时利用复合函数的单调性.证明:任取x1,x2∈[0,+∞),且x1f(x1)-f(x2)===,因为x1-x2<0,x1+x2>0,所以<0.所以f(x1)点评:证明函数的单调性要严格按步骤和格式书写,利用作商的方法比较大小,f(x1)与f(x2)的符号要一致.4知能训练1.下列函数中,既是幂函数又是奇函数的是( )A.y=2xB.y=2x3C.y=D.y=2x2.下列结论正确的是( )A.幂函数的图象一定过原点B.当α<0时,幂函数y=xα是减函数C.当α>0时,幂函数y=xα是增函数D.函数y=x2既是偶函数,也是幂函数3.下列函数中,在(-∞,0)是增函数的是( )A.y=x3B.y=x2C.y=D.y=x4.已知某幂函数的图象经过点(2,),则这个函数的解析式为. 。

人教版高中数学必修1: 2.3幂函数教案

人教版高中数学必修1: 2.3幂函数教案

2.3 幂函数(教学设计)教学目的:1.通过实例,了解幂函数的概念.2.具体结合函数12132,,,,-=====x y x y x y x y x y 的图象,了解幂函数的变化情况.3.在归纳五个幂函数的基本性质时,应注意引导学生类比前面研究一般的函数、指数函数、对函数等过程中的思想方法,对研究这些函数的思路作出指导. 教学重点:从五个具体的幂函数中认识幂函数的一些性质.教学难点:画五个幂函数的图象并由图象概括其性质是教学中可能遇到的困难. 一、新课导入先看五个具体的问题:(1)如果张红购买了每千克1元的蔬菜w 千克,那么她需要支付p=w 元,这里p 是w 的函数; (2)如果正方形的边长为a ,那么正方形的面积2a S =,这里S 是a 的函数; (3)如果立方体的边长为a ,求立方体的体积3a V =,这里V 是a 的函数;(4)如果一个正方形场地的面积为S ,那么这个正方形的边长21S a =,这里a 是S 的函数; (5)如果某人t s 内骑车进行了1km ,那么他骑车的平均速度1-=t v km/s ,这里v 是t 的函数.讨论:以上五个问题中的函数具有什么共同特征?它们具有的共同特征:幂的底数是自变量,指数是常数. 从上述函数中,我们观察到,它们都是形如y x α=的函数.二、师生互动,新课讲解: 1、幂函数的定义一般地,函数αx y =)(R a ∈叫做幂函数(power function ),其中x 是自变量,α是常数.对于幂函数αx y =,我们只讨论1,21,3,2,1-=α时的情形. 2、幂函数的图象在同一直角坐标系内作出幂函数x y =; 21x y =; 2x y =;1-=x y ;3x y =的图象.观察以上函数的图象的特征,归纳出幂函数的性质.3、幂函数的性质 1).五个具体的幂函数的性质(1)函数x y =; 21x y =; 2x y =;3x y =和1-=x y 的图象都通过点(1,1);(2)函数x y =;3x y =;1-=x y 是奇函数,函数2x y =是偶函数;(3)在区间),0(+∞上,函数x y =,2x y =,3x y =和21x y =是增函数,函数1-=x y 是减函数;(4)在第一象限内,函数1-=x y 的图象向上与y 轴无限接近,向右与x 轴无限接近. 2).一般的幂函数的性质(1)所有的幂函数αx y =在(0,+∞)都有定义,并且图象都过点(1,1); (2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数; α>1时,图象向上,靠近y 轴; 0<α<1,图景向上,靠近x 轴; α=1是条直线。

高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修

高中数学(幂函数)示范教案新人教A版必修一、教学目标知识与技能:1. 理解幂函数的定义和性质;2. 掌握幂函数的图像和几何特征;3. 学会运用幂函数解决实际问题。

过程与方法:1. 通过观察、分析和探究,培养学生的抽象思维和逻辑推理能力;2. 利用信息技术辅助教学,提高学生对幂函数图像的理解和应用能力。

情感态度与价值观:1. 激发学生对数学的兴趣和好奇心,培养学生的自主学习能力;2. 引导学生运用数学知识解决实际问题,培养学生的应用意识。

二、教学重点与难点重点:1. 幂函数的定义和性质;2. 幂函数的图像和几何特征;3. 幂函数在实际问题中的应用。

难点:1. 幂函数的性质的推导和证明;2. 幂函数图像的分析和理解;3. 幂函数在实际问题中的灵活运用。

三、教学过程1. 导入:1.1 复习相关概念:函数、指数函数、对数函数;1.2 提问:幂函数在实际生活中有哪些应用?2. 知识讲解:2.1 引入幂函数的概念;2.2 讲解幂函数的性质;2.3 分析幂函数的图像和几何特征。

3. 案例分析:3.1 分析实际问题,引入幂函数;3.2 利用幂函数解决实际问题。

4. 课堂练习:4.1 练习幂函数的性质和图像分析;4.2 运用幂函数解决实际问题。

四、作业布置1. 复习幂函数的定义和性质;2. 分析幂函数的图像和几何特征;3. 运用幂函数解决实际问题。

五、教学反思本节课通过引入幂函数的概念,讲解幂函数的性质,分析幂函数的图像和几何特征,以及运用幂函数解决实际问题,旨在培养学生对幂函数的理解和应用能力。

在教学过程中,注意引导学生观察、分析和探究,培养学生的抽象思维和逻辑推理能力。

利用信息技术辅助教学,提高学生对幂函数图像的理解和应用能力。

在作业布置方面,注重巩固所学知识,培养学生的自主学习能力。

在教学反思中,要关注学生的学习情况,针对学生的薄弱环节进行针对性教学,提高教学效果。

六、教学拓展1. 介绍幂函数在其他领域的应用,如物理学、化学、经济学等;2. 探讨幂函数与其他函数的关系,如指数函数、对数函数等;3. 引导学生进行课外阅读,了解幂函数的历史和发展。

高中数学教案《幂函数》

高中数学教案《幂函数》

教学计划:《幂函数》一、教学目标1.知识与技能:学生能够理解幂函数的概念,掌握幂函数的一般形式及其图像特征;能够识别并绘制基本幂函数的图像;理解幂函数在特定区间内的单调性、奇偶性等基本性质。

2.过程与方法:通过观察、分析幂函数的图像,引导学生发现幂函数的性质;通过小组合作、讨论交流,培养学生探究问题的能力和团队合作精神;通过实例分析,提高学生运用幂函数解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的观察力和数学思维能力;通过幂函数的学习,让学生体会数学中的对称美、变化美,增强对数学美的感受力;培养学生的严谨治学态度和科学探索精神。

二、教学重点和难点●教学重点:幂函数的概念、一般形式及其图像特征;幂函数的基本性质(如单调性、奇偶性)及其判断方法。

●教学难点:理解幂函数图像与性质之间的关系,能够准确判断幂函数在特定区间内的性质;运用幂函数性质解决实际问题。

三、教学过程1. 引入新课(约5分钟)●情境创设:通过生活中的实例(如细胞分裂、面积与边长的关系等)引出幂的概念,进而引出幂函数的概念。

●问题导入:提出“这些关系能否用函数来表示?它们具有怎样的图像特征?”等问题,激发学生的好奇心和探究欲。

●明确目标:介绍本节课的学习目标,即掌握幂函数的概念、图像特征及基本性质。

2. 讲授新知(约15分钟)●定义讲解:详细讲解幂函数的概念和一般形式,强调底数为常数且不为0,指数为自变量。

●图像特征:利用多媒体展示基本幂函数(如y=x, y=x², y=x³, y=√x, y=1/x等)的图像,引导学生观察并总结它们的共同特征和不同点。

●性质阐述:结合图像,阐述幂函数在特定区间内的单调性、奇偶性等基本性质,并给出判断方法。

3. 观察探究(约10分钟)●图像分析:引导学生分组观察并分析更多幂函数的图像,记录它们的特征,并尝试从图像中判断幂函数的性质。

●小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究幂函数性质的图像表示方法。

高中数学幂幂函数教案

高中数学幂幂函数教案

高中数学幂幂函数教案教学目标:1. 了解幂函数的概念和性质;2. 掌握幂函数的图像、基本形式和变形形式;3. 能够应用幂函数解决实际问题。

教学重点:1. 幂函数的定义和性质;2. 幂函数的图像和基本形式。

教学难点:1. 幂函数的变形形式;2. 幂函数的实际应用。

教学准备:1. 幂函数的教学PPT;2. 白板、彩色粉笔。

教学过程:一、导入(5分钟)1. 引入幂函数的概念,让学生回顾一下函数的定义和特点;2. 引出幂函数的定义和形式,引发学生对幂函数的兴趣。

二、讲解(15分钟)1. 介绍幂函数的定义和性质,包括定义域、值域、增减性和奇偶性等;2. 讲解幂函数的图像和基本形式,让学生理解幂函数的特点和规律;3. 展示幂函数的实例,帮助学生掌握幂函数的应用方法。

三、练习(20分钟)1. 让学生做一些幂函数的练习题,巩固所学知识;2. 指导学生解决实际问题,让学生体会幂函数在生活中的应用。

四、总结(5分钟)1. 总结幂函数的定义、性质和应用;2. 引导学生认识到幂函数在数学中的重要性和实用性。

五、作业布置(5分钟)1. 布置作业,要求学生完成相关幂函数的练习题;2. 提醒学生复习幂函数的知识,为下节课的学习做好准备。

教学反思:本节课主要介绍了幂函数的基本概念和性质,通过理论讲解和实例练习,帮助学生掌握了幂函数的相关知识。

同时,通过生动有趣的教学方式,激发了学生对数学的兴趣,提高了学生的学习积极性和主动性。

在今后的教学中,要继续加强实例讲解和实际应用,培养学生的数学思维和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 幂函数
一、教学目标:
知识与能力
1、通过实例,了解幂函数的概念;
2、会画简单幂函数的图象,并能根据图象得出这些函数的性质;
3、能应用幂函数的图像和性质解决有关简单问题。

过程与方法
培养学生数形结合能力,合作交流能力,以及应用数学的能力。

情感态度与价值观
让学生感受到数学来源于生活,应用于生活,并认识到现代信息技术在人们认识世界过程中的作用,激发学生的学习动力。

二、重点难点
重点:从五个具体的幂函数中认识幂函数的一些性质
难点:画五个幂函数的图象并由图象概括其性质是教学中可能遇到的困难.
三、教学方法
通过让学生作图,观察、思考、交流、讨论、发现幂函数的性质.。

四、教学过程
(一)实例观察,引入新课
(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付P = W元P是W的函数
(y=x)
(2)如果正方形的边长为a,那么正方形的面积S=a2S是a的函数(y=x2)
(3)如果立方体的边长为a,那么立方体的体积V =a3S是a的函数(y=x3)
(4)如果一个正方形场地的面积为S,那么正方形的边长a=
1
2
S a是S的函数
(y=
1
2 x)
(5)如果某人t s内骑车行进1 km,那么他骑车的平均速度v=t-1 V是t的函数(y=x-1)问题一:以上问题中的函数具有什么共同特征?
学生反应:底数都是自变量,指数都是常数.
【设计意图】引导学生从具体的实例中进行总结,从而自然引出幂函数的一般特征.
(二)类比联想,探究新知
1.幂函数的定义;一般地,函数y=xɑ叫做幂函数(power function) ,其中x为自变量,ɑ为常数。

注意:幂函数的解析式必须是y=xɑ的形式,其特征可归纳为“系数为1,只有1项”.
【设计意图】加深学生对幂函数定义和呈现形式的理解.
2.幂函数的图像与简单性质
同前面的指数函数和对数函数一样,先画出函数的图像,再由图像来研究幂函数的相关性质(定义域,值域,单调性,奇偶性,定点)不妨也找出典型的函数作为代表:
y=x y=x2y=x3 y=
1
2
x y=x-1
让学生自主动手,用计算器在同一坐标系中画出这5个函数的图像
问题三:所有图像都过第几象限,所有图像都不过第几象限,为什么?
学生反应:都过第一象限,而都不过第四象限,因为当x>0时所有幂函数都有意义,且函数值都为正.
问题四:第一象限内函数图像的变化趋势与指数有什么关系,为什么?
学生反应:当指数为正时是增函数,指数为负时是减函数.为什么却讲不清楚.
教师讲解:指数为正分为正分数和正整数,正无理数我们高中不做研究,当是正整数时很显然递增,当是正分数时,可以化成根式,很显然当被开方数为正时,被开方数越大,整个
根式值越大。

而负指数可以化为正指数的倒数,分母递增,整个函数递减.
问题五:所有图像都过哪些点,为什么?
学生反应:都过点(1,1),因为1的任何指数幂都为1.
问题六:对于原点,什么样的幂函数过,什么样的幂函数不过,为什么?
学生反应:指数为正过,为负则不过,因为负指数幂可以化成分数形式,分母不能为零,所以在原点没有意义.
问题七:图像在第一象限的位置关系是什么样子的,为什么?
学生反应:当0<x<1时,指数小的图像在上方,当x>1时,指数大的图像在上方,对于原因大部分学生不能很快反应过来.
教师活动:在0<x<1内任取个x值,例如a,肯定有o<a<1,此时联系到指数函数的单调性,有指数小的函数值越大,同样,当x>1时,指数大的函数值就大.
【总结】幂函数不同于指数函数和对数函数拥有共同的定义域,所以幂函数的性质不可能全部总结清楚,但我们在探索性质的过程中知道了研究方法:指数是分数则化为根式,指数为负数则化为分式,这样对于定义域、值域、单调性、奇偶性都可以很容易看出来,不过要严格判断单调性和奇偶性还要用定义进行证明,接下来不看图像很快得出5个幂函数的相关性质:
【设计意图】通过创设问题情境,激发学生的思维,并在新知探究的过程中自然形成一般方法的呈现,使学生易于领悟和接受.
(三)新知应用
例1.证明幂函数[0,+∞)上是增函数
证明:
1212
,[0,),,
x x x x
∈+∞<
任取且则
12
()()
f x f x
-=-==
1212
0,0,
x x x x
≤<-<+>
因为所以
12
()()
f x f x
<
所以
()[0,).
f x=+∞
即幂函数上的增函数
教师活动:强调教材中此例题的地位和作用:(1)复习定义证明单调性的过程.(2) 幂函数的单调性很容易观察,强调严格判断的时候要用单调性进行证明。

(3)幂函数的单调性很容
<
例2.比较下列各组数种两个值的大小
【设计意图】增强学生对新知的应用能力,从而达到能力的转型和对知识理解的深化.
五、课堂小结
(1)知识总结:回顾幂函数的定义和一些简单的幂函数性质.
(2)思想方法:主要涉及到了归纳总结的思想,回顾研究一般具体幂函数的可行方法.
六、课后作业
课时练与测
七、教学反思。

相关文档
最新文档