开关电源光耦反馈控制环路的稳定性设计
开关电源环路设计与实例详解
$ "
2@)
!
第六章
反馈环路的稳定
的时刻开始的, 直到三角波结束时刻 ! ! 为止。对于这类芯片, "#$ 芯片输出晶体管导通 (驱动信号由芯片晶体管射极输出) 被触发导通, 这将使 " &’ 增大 时, %"% 型功率晶体管 时, 功率晶体管的导通时间增加。这时, 系统变成正反馈而不是负反馈。
图()*
一、 电路稳定的增益准则
电路稳定的第一个准则是: 在开环增益为 # 的频率 (通常称为剪切频率、 交越频率或 截止频率) 处, 系统所有环节的总开环相位延迟必须小于 /!01 (译者注: 作者表述和我们习 惯表述不一致。在 $*2%图中, 我们一般习惯讨论, 开环传递函数的相位裕量和幅值裕量是 。在剪 指开环传递函数幅频特性 (增益特性) 和相频特性, 不包括负反馈引起的 #301延迟) 切频率处, 总开环相位延迟小于 /!01 (在此频率处, 总开环增益为 #) 的角度, 称为相位裕 量。 为了使系统中各器件工作在最恶劣的情况下时, 仍然保持稳定, 通常的设计准则是, 使系统至少有 /41 5 641的相位裕量。
图 # $ % ( &) 开关整流 ’( 滤波器的幅频特性; ( )) 开关整流 ’( 滤波器的相频特性
图#$( 和图 # $ ( 所示是对应于不同输出阻抗 ! * 值, % &) % )) ’* (* 滤波器的幅频特性
# !
%+#
"
第六章
反馈环路的稳定
和相频特性。图中的曲线是对应于不同比率 ! ! " " # #( 和 !% " & $ # $$ %$ ) !! $ #$ " ! # %
开关电源环路设计(详细)
开关电源环路设计(详细)6.4 开关电源闭环设计从反馈基本概念知道:放⼤器在深度负反馈时,如输⼊不变,电路参数变化、负载变化或⼲扰对输出影响减⼩。
反馈越深,⼲扰引起的输出误差越⼩。
但是,深反馈时,反馈环路在某⼀频率附加相位移如达到180°,同时输出信号等于输⼊信号,就会产⽣⾃激振荡。
开关电源不同于⼀般放⼤器,放⼤器加负反馈是为了有⾜够的通频带,⾜够的稳定增益,减少⼲扰和减少线性和⾮线性失真。
⽽开关电源,如果要等效为放⼤器的话,输⼊信号是基准(参考)电压U ref ,⼀般说来,基准电压是不变的;反馈⽹络就是取样电路,⼀般是⼀个分压器,当输出电压和基准⼀定时,取样电路分压⽐(k v )也是固定的(U o =k v U ref )。
开关电源不同于放⼤器,内部(开关频率)和外部⼲扰(输⼊电源和负载变化)⾮常严重,闭环设计⽬的不仅要求对以上的内部和外部⼲扰有很强抑制能⼒,保证静态精度,⽽且要有良好的动态响应。
对于恒压输出开关电源,就其反馈拓扑⽽⾔,输⼊信号(基准)相当于放⼤器的输⼊电压,分压器是反馈⽹络,这就是⼀个电压串联负反馈。
如果恒流输出,就是电流串联负反馈。
如果是恒压输出,对电压取样,闭环稳定输出电压。
因此,⾸先选择稳定的参考电压,通常为5~6V 或2.5V ,要求极⼩的动态电阻和温度漂移。
其次要求开环增益⾼,使得反馈为深度反馈,输出电压才不受电源电压和负载(⼲扰)影响和对开关频率纹波抑制。
⼀般功率电路、滤波和PWM 发⽣电路增益低,只有采⽤运放(误差放⼤器)来获得⾼增益。
再有,由于输出滤波器有两个极点,最⼤相移180°,如果直接加⼊运放组成反馈,很容易⾃激振荡,因此需要相位补偿。
根据不同的电路条件,可以采⽤Venable 三种补偿放⼤器。
补偿结果既满⾜稳态要求,⼜要获得良好的瞬态响应,同时能够抑制低频纹波和对⾼频分量衰减。
6.4.1 概述图6.31为⼀个典型的正激变换器闭环调节的例⼦。
环路相位-开关电源稳定性设计
环路相位-开关电源稳定性设计专业技术环路相位-开关电源稳定性设计摘要:环路,相位,增益,负载,开关电源,稳定性,电压,相移,电源,频率, 信号接收机-基于单芯片的GPS接收机硬件设计白光调光-白光和彩色光智能照明系统解决方案设备方案-台达UPS在中小企业中的创新应用方案触摸屏电容-电容式触摸屏系统解决方案测量肺活量-利用高性能模拟器件简化便携式医疗设备设计测量温度-热敏电阻(NTC)的基本参数及其应用动能产品-动能电子企业文化活动丰富员工生活电路板镀锡-无锡华文默克发布PCB/SMT工艺方案引擎电压-采用接近传感器的火花探测器太阳能控制器-太阳能LED街灯的挑战及安森美半导体高能效解决方案众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。
因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。
在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。
因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。
在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。
当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。
1 稳定性指标衡量开关电源稳定性的指标是相位裕度和增益裕度。
相位裕度是指:增益降到0dB 时所对应的相位。
增益裕度是指:相位为-180度时所对应的增益大小(实际是衰减)。
在实际设计开关电源时,只在设计反激变换器时才考虑增益裕度,设计其它变换器时,一般不使用增益裕度。
在开关电源设计中,相位裕度有两个相互独立作用:一是可以阻尼变换器在负载阶跃变化时出现的动态过程;另一个作用是当元器件参数发生变化时,仍然可以保证系统稳定。
开关电源控制环路设计
开关电源控制环路设计前馈环节通常由开关电源的输出电压或电流采样电路、误差放大器、比较器和PWM控制器等组成。
开关电源的输出电压或电流通过采样电路进行实时的电压或电流测量,并将测量值与设定值进行比较。
误差放大器将比较器输出的误差信号放大,并输出给PWM控制器。
PWM控制器根据误差信号调整开关管的导通和关断时间,从而控制开关电源输出电压或电流的稳定性。
反馈环节通常由输出电压或电流反馈回路组成。
反馈回路通过将开关电源输出电压或电流与参考电压或电流进行比较,得到误差信号,并将其输入到前馈环节的比较器中。
反馈环节的作用是通过不断地调整开关电源的工作状态,使输出电压或电流尽量接近设定值,并抵消部分外部环境的影响,以保持开关电源稳定工作。
在开关电源控制环路设计中,需要考虑诸多因素。
首先是前馈环节的设计。
前馈环节应具有高增益和低失真的特性,能够准确地将输出电压或电流的变化转换为误差信号,并将其输出给PWM控制器。
其次是PWM控制器的设计。
PWM控制器应能够按照误差信号的大小和方向,精确地调整开关管的导通和关断时间,并保持开关电源输出电压或电流的稳定性。
最后是反馈环节的设计。
反馈环节应能够准确地测量开关电源的输出电压或电流,并将其输入到前馈环节的比较器中。
同时,反馈环节还需考虑去除噪声和抑制振荡等问题,以保证闭环控制系统的稳定性和可靠性。
开关电源控制环路设计的关键是要平衡稳定性和动态响应速度。
稳定性是指开关电源在加载变化或输入电压波动等情况下,输出电压或电流能够尽快地恢复到设定值并保持稳定;而动态响应速度则是指开关电源对设定值的变化能够迅速地响应。
在设计中,需要根据具体的应用需求和制约条件,选择合适的控制算法、滤波器和补偿网络等,以使开关电源控制环路设计达到较好的稳定性和动态响应速度。
总之,开关电源控制环路设计是一个复杂而关键的任务。
它需要综合考虑前馈环节、反馈环节以及稳定性和动态响应速度等因素,以实现开关电源的稳定性和输出精度要求。
开关电源的稳定性设计
此增益与频率无关 。 图 1中, 由于采样 网络 R. R 和 :的存在 , 产生一个 增 又
益 衰 减 。P WM 芯 片 误 差 放 大 器 的 参 考 输 入 设 为 2 5 因 . V, 此 , 样 + V输出电压时 , 取 5 总增 益 为 一6 B d。 3输 出 L ) C滤 波 器 加 上 P WM 和 采 样 网络 的总 增 益 由上 面 分 析 可 知 , 出 L 输 C滤 波 器 增 益 G 加 上 P WM 增 益G 和采 样 网络 增 益 G 之 和 的 总增 益 G 如 图 3 示 。 从 所
频率纹波。因此 , 一般经验将 定为开关频率 的 14~ / 。 / 15
参 考 图 3中提 供 的开 环 L C滤 波 器 增 益 加调 节 器 增 益 和
2 脉宽调制器的增益特性 ) 误差放大器输 出到 电感 输入 电压 V 的平均 值 V 的增 益是 P WM增益 , 并定义为 G 。该增益 的意 义和幅值说 明如 下。图 1 P 中 WM输 出是直流 电平 V 与 9~ V( 3 实际上是 0 .
运 算放 大 器 的反 相 比例 运 算 可 以获 得 水 平 的 增 益 曲线 , 调 整 G =R / 的大 小 以获 得 所 需 的 增 益 。 :R。 总 的 开 环增 益 总 和 是 误 差 放 大 器 的 增 益 加 上 G , 果 ,如 运 放保 持 常数 增 益 一 直 到 直 流 , 的 开 环 增 益 在 lO z 比 总 OH 就
当 降低 增 益 。 设 计 中 在 误 差 放 大 器 的 反 馈 支 路 由 图 4 b中 R 、 . C 组 成 。在 , 比 R 小 , C及 X : 电路 特 性 与 C 无关 。
电力电子技术中的开关电源稳定性问题解决
电力电子技术中的开关电源稳定性问题解决在电力电子技术领域中,开关电源的稳定性问题一直是一个关注的焦点。
开关电源的稳定性直接影响着整个电力系统的可靠性和效果。
本文将探讨电力电子技术中开关电源稳定性问题的解决方法。
一、开关电源的稳定性问题概述开关电源作为一种常用的电力电子设备,具有高能效、小体积和可调性强等特点,被广泛应用于各个领域。
然而,由于其整流环节存在的开关行为和功率因素调节等原因,导致开关电源在工作过程中容易产生一些稳定性问题。
例如输出电压波动大、远离设定值、负载响应能力差等。
二、稳定性问题的原因分析1. 开关动作不精确:开关电源的稳定性问题往往与开关件的精度有关。
开关电源在开关过程中既要迅速切换又要保持较高的精度,若开关动作不准确,就会导致输出电压波动。
2. 电路参数变化:开关电源的电路参数可能会随着温度变化、元器件老化等因素而发生变化。
这些参数的变化可能导致开关电源的输出电压产生波动或偏离设定值。
3. 输入电源的干扰:开关电源在工作时,输入电源可能会受到外界干扰,如电磁辐射、电压波动等。
这些干扰可能会传导到开关电源输出端,引起输出电压的不稳定性。
三、解决开关电源稳定性问题的方法1. 优化开关设计:通过改进开关电源的设计,提高开关件的精度和动作准确性,减小开关动作带来的波动。
可以采用高精度的开关元器件,优化控制算法,提升开关电源的稳定性。
2. 对电路参数进行补偿调节:通过对开关电源的电路参数进行实时监测和测量,利用反馈控制算法对电路参数进行补偿调节,使得开关电源在工作过程中能够自动适应参数变化,提高稳定性。
3. 增加滤波电路:在开关电源输出端加入滤波电路,能够有效地滤除输入电源的干扰信号和谐波成分。
滤波电路的设计应考虑到频域特性和干扰的消除效果,以提高开关电源的稳定性。
4. 提高工作温度范围和负载适应能力:开关电源在设计中考虑到工作温度范围和负载变化的适应能力,使其在不同工况下能够保持较好的稳定性。
开关电源反馈环路设计
开关电源反馈环路设计开关电源是一种将输入直流电压转换为所需输出电压的电源装置。
为了实现稳定可靠的输出电压,开关电源需要建立反馈环路进行控制。
开关电源的反馈环路主要包括内部反馈环路和外部反馈环路。
内部反馈环路是指内部电路中的反馈控制电路,用于控制开关管的导通与截止,以维持输出电压的稳定。
外部反馈环路是指从输出端以回路的形式连接到内部反馈电路,通过比较输出电压与参考电压的差异,产生一个控制信号,用于调整开关电源的开关时间和频率,从而调整输出电压。
设计开关电源的反馈环路时,需要考虑以下几个方面:1.选择合适的参考电压源:参考电压源是反馈环路的重要组成部分,它提供一个稳定的参考电压,用作与输出电压进行比较的基准。
一般可选择使用稳压二极管、参考电压芯片或者精密电位器来作为参考电压源。
2.设计错误放大器:错误放大器是反馈环路中的核心部分,它承担着将输出电压与参考电压进行比较的作用,并产生一个误差信号。
常见的错误放大器有比较器、运算放大器等。
在设计选择错误放大器时,需要考虑它的稳定性、带宽、输入阻抗等因素。
3.设计补偿网络:由于开关电源在转换过程中存在一定的延迟、输出的电压下降等因素,所以需要通过补偿网络来减小这些不稳定因素对输出电压的影响。
常见的补偿网络包括零点补偿网络和极点补偿网络。
零点补偿网络主要通过增加相位较大的零点,来提高系统稳定性;极点补偿网络主要通过增加相位较小的极点,来提高系统的相位裕度。
4.设计输出滤波器:开关电源的输出电压通常包含一定的纹波,需要通过输出滤波器来降低纹波,使输出电压更加稳定。
输出滤波器一般由电感、电容和电阻组成,通过调整它们的数值和组合方式,可以实现对纹波的去除或衰减。
在进行开关电源反馈环路的设计时,还需要进行一系列的仿真和实验,包括频率响应的模拟分析、稳态和动态的性能测试等,以确保设计的反馈环路能够实现对输出电压的稳定控制。
总之,开关电源的反馈环路设计是一项复杂的任务,需要综合考虑电源的性能要求、稳定性要求和实际应用需求等因素,通过选择适当的参考电压源、设计错误放大器、补偿网络和输出滤波器等,来实现对输出电压的稳定控制。
20140310反馈环路分析及稳定性V0.2
一、复数知识1、复数的表示:2、电感的阻抗这两种无功元件在其电压电流之间会产生相移(滞后或者超前)3、电容的阻抗:jb a F *+=22||b a F +=arctan(ab =φLw X L *=cw X C *1=二、反馈控制基础知识:1、S 平面复平面:w j S *+=σ。
但是一般分析稳态,考虑稳态激励时,w j S *=。
增益和相位定义在稳态时2、波特图:波特图由两个图组成:一个是传递函数幅值(以db 表示)与对数频率之间的关系。
另一个是角度相位与对数频率之间的关系。
因为幅频特性图中,两个坐标都是用对数表示的,单极点(如电容阻抗,在零频率处的为无穷大),或者单一零点(如电感阻抗,在零频率处的为零)的传递函数其波特图是一条直线。
对数幅频特性|))(lg(|*20)(jw G w L =对数相频特性)(jw G ∠=ϕ单位为db/十倍频,横坐标是w 的对数,lg w 每增加单位长度(即w 每增加十倍时),纵坐标)(w L 减少20db ,故斜率为-20db/十倍频。
若x 轴和y 周围同比例刻度坐标,增益曲线将会与x 轴成-45度,此斜率也就为该角度的正切值,即为)45tan(°−=—1。
因此-20db/十倍频(-6/倍频)也称“—1”斜率。
注意这里说的“—1”斜率只是在横坐标和纵坐标取同比例刻度的坐标时成立的,即频率每变化十倍,增益减小十倍,即为“—1”斜率3、零极点:在稳定性设计中,我们对函数的这两部分很感兴趣:在什么参数(即频率)下,函数值为零,什么时候为无穷大。
这两个条件被称之为函数的零点和极点如果在任何一个频率点,闭环传递函数)(s G 为无穷大,也就是说,如果闭环传递函数有一个极点,那么变换器就是不稳定的。
传递函数只有当分母为零时才为无穷大传递函数中分母中含S ,若S 取特定值,可使分母等于0,传递函数则为无限大,定义这样的S 值为极点。
使传递函数分母等于0的S 的频率为谐振频率(或者转折频率),也就是极点位置。
开关电源环路稳定的实验方式方法
开关电源环路稳定的实验方式方法6.5 开关电源环路稳定的试验方法前面频率特性分析方法是以元器件小信号参数为基础,同时在线性范围内,似乎很准确。
但有时很难做到,例如电解电容ESR不准确且随温度和频率变化;电感磁芯磁导率不是常数,还有由于分布参数或工艺限制,电路存在分布参数等等,使得分析结果不可能完全吻合,有时甚至相差甚远。
分析方法只是作为实际调试的参考和指导。
因此,在有条件的情况下,直接通过测量运算放大器以外的环路的频率响应,根据6.4节的理论分析,利用测得的频率特性选择Venable误差放大器类型,对环路补偿,并通过试验检查补偿结果,应当说这是最直接和最可靠设计方法。
采用这个方法,你可以在一个星期之内将你的电源闭环调好。
前提条件是你应当有一台网络分析仪。
6.5.1 如何开环测试响应桥式、半桥、推挽、正激以及Buck变换器都有一个LC滤波电路,输出功率电路对系统性能影响最大。
为了讨论方便,以图6.31为例来说明测试方法,重画为图6.48(a)。
电路参数为:输入电压115V,输出电压为5V,如前所述,滤波电感和电容分别为L=15μH,C=2600μF,PWM控制器采用UC1524,它的锯齿波幅值为3V,只用两路脉冲中的一路,最大占空比为0.5。
为了测量小信号频率特性,变换器必须工作在实际工作点:额定输出电压、占空比和给定的负载电流。
从前面分析知道,如果把开关电源看着放大器,放大器的输入就是参考电压。
从反馈放大器电路拓扑来说,开关电源的闭环是一个以参考电压为输入的电压串联负反馈电路。
输入电源的变化和/或负载变化是外界对反馈控制环路的扰动信号。
取样电路是一个电阻网络的分压器,分压比就是反馈系数,一般是固定的(R2/(R1+R2))。
参考电压(相应于放大器的输入电压)稳定不变,即变化量为零,输出电压也不变(5V)。
如上所述,所有三种误差放大器都有一个原点极点。
在低频闭环时,由于原点极点增益随频率减少而增高(即在反馈回路电容)在很低频率,有一个最大增益,由误差放大器开环增益决定。
开关电源稳定性设计
•众所周知,任何闭环系统在增益为单位增益l,且内部随频率变化的相移为360°时,该闭环控制系统都会存在不稳定的可能性。
因此几乎所有的开关电源都有一个闭环反馈控制系统,从而能获得较好的性能。
在负反馈系统中,控制放大器的连接方式有意地引入了180°相移,如果反馈的相位保持在180°以内,那么控制环路将总是稳定的。
当然,在现实中这种情况是不会存在的,由于各种各样的开关延时和电抗引入了额外的相移,如果不采用适合的环路补偿,这类相移同样会导致开关电源的不稳定。
1 稳定性指标衡量开关电源稳定性的指标是相位裕度和增益裕度。
相位裕度是指:增益降到0dB时所对应的相位。
增益裕度是指:相位为零时所对应的增益大小(实际是衰减)。
在实际设计开关电源时,只在设计反激变换器时才考虑增益裕度,设计其它变换器时,一般不使用增益裕度。
在开关电源设计中,相位裕度有两个相互独立作用:一是可以阻尼变换器在负载阶跃变化时出现的动态过程;另一个作用是当元器件参数发生变化时,仍然可以保证系统稳定。
相位裕度只能用来保证“小信号稳定”。
在负载阶跃变化时,电源不可避免要进入“大信号稳定”范围。
工程中我们认为在室温和标准输入、正常负载条件下,环路的相位裕度要求大于45°。
在各种参数变化和误差情况下,这个相位裕度足以确保系统稳定。
如果负载变化或者输入电压范围变化非常大,考虑在所有负载和输入电压下环路和相位裕度应大于30°。
如图l所示为开关电源控制方框示意图,开关电源控制环路由以下3部分构成。
(1)功率变换器部分,主要包含方波驱动功率开关、主功率变压器和输出滤波器;(2)脉冲宽度调节部分,主要包含PWM脉宽比较器、图腾柱功率放大;(3)采样、控制比较放大部分,主要包含输出电压采样、比较、放大(如TL431)、误差放大传输(如光电耦合器)和PWM集成电路部集成的电压比较器(这些放大器的补偿设计最大程度的决定着开关电源系统稳定性,是设计的重点和难点)。
开关电源环路稳定的试验方法
6.5 开关电源环路稳定的试验方法前面频率特性分析方法是以元器件小信号参数为基础,同时在线性范围内,似乎很准确。
但有时很难做到,例如电解电容ESR 不准确且随温度和频率变化;电感磁芯磁导率不是常数,还有由于分布参数或工艺限制,电路存在分布参数等等,使得分析结果不可能完全吻合,有时甚至相差甚远。
分析方法只是作为实际调试的参考和指导。
因此,在有条件的情况下,直接通过测量运算放大器以外的环路的频率响应,根据6.4节的理论分析,利用测得的频率特性选择Venable 误差放大器类型,对环路补偿,并通过试验检查补偿结果,应当说这是最直接和最可靠设计方法。
采用这个方法,你可以在一个星期之内将你的电源闭环调好。
前提条件是你应当有一台网络分析仪。
6.5.1 如何开环测试响应桥式、半桥、推挽、正激以及Buck 变换器都有一个LC 滤波电路,输出功率电路对系统性能影响最大。
为了讨论方便,以图6.31为例来说明测试方法,重画为图 6.48(a)。
电路参数为:输入电压115V ,输出电压为5V ,如前所述,滤波电感和电容分别为L =15μH ,C =2600μF ,PWM 控制器采用UC1524,它的锯齿波幅值为3V ,只用两路脉冲中的一路,最大占空比为0.5。
为了测量小信号频率特性,变换器必须工作在实际工作点:额定输出电压、占空比和给定的负载电流。
从前面分析知道,如果把开关电源看着放大器,放大器的输入就是参考电压。
从反馈放大器电路拓扑来说,开关电源的闭环是一个以参考电压为输入的电压串联负反馈电路。
输入电源的变化和/或负载变化是外界对反馈控制环路的扰动信号。
取样电路是一个电阻网络的分压器,分压比就是反馈系数,一般是固定的(R2/(R1+R2))。
参考电压(相应于放大器的输入电压)稳定不变,即变化量为零,输出电压也不变(5V)。
如上所述,所有三种误差放大器都有一个原点极点。
在低频闭环时,由于原点极点增益随频率减少而增高(即在反馈回路电容)在很低频率,有一个最大增益,由误差放大器开环增益决定。
开关电源的环路稳定性-总论-工控论坛-技术中心-中国工控网
开关电源的环路稳定性-总论-工控论坛-技术中心-中国工控网环路稳定的标准.只要在增益为1时(0dB),剪切频率下,整个环路的相移小于360度,环路就是稳定的,一般设计相角余量为45度。
对于环路带宽的选择有以下几个限制:根据采样定理,剪切频率不可能大于1/2 Fs;为了抑制电网纹波(120Hz)能够减小并且保证直流控制精度,设计该频率点附近的增益(开环增益)要足够大。
【抑制输入电压的低频噪声和使得输出电压相对于参考电压的直流误差减小】误差放大器的带宽不是无穷大(运放的开环增益随着频率的上升而减小),当把剪切频率设的很高时会受到补偿放大器无法提供增益的限制,及电容零点受温度影响等.所以一般实际剪切频率最大取开关频率的1/6-1/10。
对于三种误差放大器我做了一些推导并导出了它们的图形:1型:“单极点补偿,适用于电流型控制和工作在DCM方式并且滤波电容的ESR零点频率较低的电源.其主要作用原理是把控制带宽拉低,在功率部分或加有其他补偿的部分的相位达到180度以前使其增益降到0dB. 也叫主极点补偿. ”2型:“双极点,单零点补偿,适用于功率部分只有一个极点的补偿.如:所有电流型控制和非连续方式电压型控制.”以2型为例,分析一下,R2,C2,C1的作用。
从以下的分析来看,电阻R1和电容C1在原点(理论上)形成一个极点,受放大器开环增益的限制,这个极点并不是从原点开始的,它的作用是提高低频时候的增益。
电阻R2和电容C2形成一个零点,作用是提升设定的某一点的相位电阻R2和电容C1(忽略C2的影响,频率较高时C2的阻抗很小,近似于短路,导纳=2×pi×f×C,电容越大同样的频率的阻抗越低,导纳越大)形成一个高频极点,它的目的是来衰减高频噪音和开关频率的影响,提高系统的增益裕度.对于元件的取值一般的来说: R3<<R1 C1<<C23型:“三极点,双零点补偿.适用于输出带LC谐振的拓扑,如所有没有用电流型控制的电感电流连续方式拓扑. ”一般的我们要求只要在增益为1时(0dB),剪切频率下,整个环路的相移小于360度,环路就是稳定的,一般设计相角余量为45度。
开关电源环路增益相位裕量测量与稳定性分析
开关电源环路增益相位裕量测量与稳定性分析摘要:本文从小信号的角度来看通过对反馈环路注入一扰动信号对整个产品造成的影响,来衡量产品的稳定性,再利用环路分析仪检测环路做定量的分析,其结果以便于日后工作的改进,从而提高产品的可靠性。
关键词:反馈环路、带宽、相位裕量、增益裕量、稳定性、PSM1700、过零点title: a mearurement of swtich power supply based on FRAABSTRACT:THIS article describes the affection to the whole product, which is because of injecting a perturbation signal into feedback loop,to evaluate the stability, then by the use the frequency response analyzer equepiment gets an accurate result ,and the result is used for improvement ,as well as improve the products' reliablity.keywords:feedback loop bandwidth phase margin gain margin stablity随着电子,自控,航天,通讯,医疗器械等技术不断向深度和广度的发展,势必要求为其供电的电源要有更高的稳定性,即不仅要有好的线性调节率、负载调节率还要有快速的动态负载响应。
而这些因素都和控制环路有关,控制环路一般工作在负反馈状态,称之为电压负反馈。
如果变换器中没有用到反馈控制环路(即下图1中H部分),其传递函数一般为其中G为输入滤波、功率变换、整流滤波部分等因数的乘积(因为其为级联的形式,所以本文中以总的乘积因子G来表示),可以看出输出随着输入的变化而成线性的变化,但是由于整流、滤波网络在整个时域的非线性,实际上这种变化应该是近似于线性,所以当输入电压改变的时候并不能很好的起到稳压的作用;如果反馈环路设计的不好,对于负载的瞬态改变,环路不能做出及时恰当的调整,那么输出电压瞬间会偏高或者偏低,甚至有可能造成电源系统的振荡,对下一级构成损坏。
开关电源的光耦电路设计
光耦(opticalcoupler)亦称光电隔离器、光耦合器或光电耦合器。
它是以光为媒介来传输电信号的器件,通常把发光器(红外线发光二极管LED)与受光器(光敏半导体管)封装在同一管壳内。
当输入端加电信号时发光二极管发出光线,光敏三极管接受光线之后就产生光电流,从输出端流出,从而实现了“电—光—电”转换。
典型应用电路如下图1-1所示。
光耦的主要优点是:信号单向传输,输入端与输出端完全实现了前端与负载完全的电气隔离,输出信号对输入端无影响,减小电路干扰,简化电路设计,工作稳定,无触点,使用寿命长,传输效率高。
光耦合器是70年代发展起来的新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。
在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。
光耦典型电路常用于反馈的光耦型号有TLP521、PC817等。
这里以TLP521为例,介绍这类光耦的特性。
图2-1所示为光耦内部结构图以及引脚图。
TLP521的原边相当于一个发光二极管,原边电流If越大,光强越强,副边三极管的电流Ic越大。
副边三极管电流Ic与原边二极管电流If的比值称为光耦的电流放大系数,该系数随温度变化而变化,且受温度影响较大。
作反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此在环境温度变化剧烈的场合,由于放大系数的温漂比较大,应尽量不通过光耦实现反馈。
此外,使用这类光耦必须注意设计外围参数,使其工作在比较宽的线性带内,否则电路对运行参数的敏感度太强,不利于电路的稳定工作。
通常选择TL431结合TLP521进行反馈。
这时,TL431的工作原理相当于一个内部基准为2.5 V的电压误差放大器(输出的电压进行误差放大比较,然后将取样电压经过光电偶合器反馈控制脉宽占空比,达到稳定电压的目的),所以在其1脚与3脚之间,要接补偿网络。
反激开关电源431+光耦环路设计
反激开关电源431+光耦环路设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言在电子设备中,开关电源作为一种常见的电源形式,具有高效率和小体积等优势,因此被广泛应用于各种领域。
电路反馈控制设计如何设计稳定的反馈控制系统
电路反馈控制设计如何设计稳定的反馈控制系统反馈控制系统是一种常见的控制系统,可以将被控制对象的测量值与所需值进行比较,并将误差信号反馈给控制器调整输出信号,以达到控制目标。
在电路设计中,反馈控制系统也被广泛应用于稳压、滤波、放大和信号调理等方面。
因此,如何设计稳定的反馈控制系统是电路设计的核心问题之一。
本文将从设计反馈控制系统的基本原理、稳定性分析和具体设计方法三个方面来介绍如何设计稳定的电路反馈控制系统。
基本原理反馈控制系统的基本原理是将被控制对象的测量值与所需值进行比较,并计算误差信号。
控制器依据误差信号计算出控制变量,从而影响被控制对象。
在电路反馈控制系统中,被控制对象通常是电路中的某个参数,控制器是一个反馈电路,对电路输出进行反馈控制。
稳定性分析电路反馈控制系统的稳定性在电路设计中非常重要。
在反馈环路中,控制器输出信号经过被控制对象后,会再次返回到控制器。
如何保证反馈信号的稳定性是反馈控制系统设计的关键问题。
稳定性的判断通常采用奈奎斯特准则。
奈奎斯特准则通过画出系统的开环传递函数和零极点图,并通过分析相角和幅值的变化来判断系统是否稳定。
具体而言,奈奎斯特准则可通过以下步骤进行判断:1.根据系统的开环传递函数,计算系统的零点和极点。
2.在复平面上画出系统的零极点图。
3.在单位圆周上绘制新的曲线,即奈奎斯特曲线,计算系统的相角和幅值变化。
4.通过奈奎斯特曲线的相角和幅值变化,判断系统是否稳定。
设计方法在电路反馈控制系统设计中,常用的几种设计方法包括比例反馈、积分反馈和微分反馈。
比例反馈控制器是最简单的控制器之一,它的输出信号与误差信号成比例关系。
具体而言,比例反馈控制器的输出信号Vc可以表示为:Vc=Kp*E其中,Kp是比例系数,E是误差信号。
积分反馈控制器是通过对误差信号进行积分来获得输出信号的,可以消除恒定误差。
积分反馈控制器的输出信号Vc可以表示为:Vc=Ki*∫E dt其中,Ki是积分系数,E是误差信号。
开关电源反馈环路稳定性分析与设计研究
Stability Analyses and Design of Feedback Loop of
Switching Power Supply
作者: 徐巧玲[1];袁会东[2];孙吴松[1]
作者机构: [1]六安职业技术学院汽车与机电工程学院,安徽六安237000;[2]南京拜腾汽车科技有限公司,江苏南京210046
出版物刊名: 安徽职业技术学院学报
页码: 24-27页
年卷期: 2020年 第1期
主题词: 开关电源;反馈环路;动态响应;振荡;补偿;相位裕度
摘要:文章首先对开关电源反馈环路的基本原理以及常用反馈补偿方式及特点进行阐述,然后以反激式开关电源设计为例,对反馈环路和补偿的关键电路进行计算设计后,对反馈环路在PCB 布局方面给出一定的建议,具有一定的参考价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当传递 函数中的分母为零时会产生一个极点 , 它对
应 于 波 特 图上 增 益 以 2 0 d B / 1 0倍 频 程 的斜 率 开始
递减时产生的极点。在频域范 围内, 当传递函数的 分子等于零时会产生一个零点 , 它对应于在波特图
S wi t c h i n g P o we r S u p p l y Op t o c o u p l e r F e e d b a c k Co n t r o l L o o p S t a b i l i t y D e s i g n
S HA Z h a n — y o u , MA H o n g — t a o
沙 占友 , 马洪涛
( 河 北科技 大学 , 河北 石 家庄 0 5 0 0 5 4 )
摘
要 :首先 介绍 对光 耦反馈 控 制环 路 的基 本要 求 ,然后 详 细 阐述 光耦反 馈控 制 环路 的稳 定性设
计, 包括 设计 方 法、 步骤 及典 型 示例 ; 最后给 出提 升相 位裕 量 的设计 实例 。 关键 词 : 光耦 ; 反馈控 制 环路 ; 稳 定性设 计 ; 波特 图; 相 位裕 量
电压调整率 、 负载调整率 、 瞬态响应等技术指标。
利 用 幅频 特 性 曲线 和相 频 特 性 曲线 即可 合 并 成 一 幅波 特 图( B o d e Di a g r a m, 亦 称 伯 德 图) , 其 增 益 和频 率 的坐 标 均采 用对 数 刻 度 , 相 位则 采用 显 性 刻 度 。开关 电源 的波 特 图示 例 如 图 1所示 , 可为 计 算
△
I Hale Waihona Puke 增 止 盆 270.
频 交 越 率
1
里
l
路响应 的影响 ,因为只要合理设计后置滤波器 , 使
,
.
9 O
开关 电源的一次侧绕组 电感 L p - 8 2 7 r u H,二次侧等
1 0 n
\\ … f
.
亘
效 电感 L E - 4 1 r u H ,输 出滤波电容的等效 串联电阻
R - 3 3 m D , , 工作 占空 比 D = 0 . 5 5 , 输 出负 载 阻抗 R 。 = 3 . 2 Q。 设 计 中不必 考 虑后 置滤 波器 的谐振 频率 对 环
Ab s t r a c t :L i g h t d e c o u p i n g f e e d b a c k c o n t r o l l o o p wa s i n t r o d u c e d ,t h e b a s i c r e q u i r e me n t s o f t h e o p t i c a l c o h p l i n g ,t h e s t a b i l i t y o f t h e f e e d b a c k c o n t r o l l o o p d e s i g n h a s b e e n e x p r e s s e d ,i n c l u d i n g t h e d e s i g n me t h o d s , d e s i g n e d s t e p s , a n d a t y p i c a l e x a mp l e .F i n a l l y e n h a n c e d p h a s e ma r g i n d e s i g n e x a mp l e s g i v e n . Ke y wo r d s : o p t o c o u p l e r ; f e e d b a c k c o n t r o l l o o p ; s t a b i l i t y d e s i g n: s o d e p l o t s ; p h a s e ma r g i n
上 增益 以 2 0 d B / 1 0 倍 频 程 的斜 率开 始递 增 的点 , 并
—
5 2一
姨 卷磨 痢
U
频特性 j 频特 性
益G ) l 相位
\
’
出电压 的取样 电阻 。 C 为补 偿 电容 。 R 。 为环路 增益 调整 电阻 。 由R C 构成 相位 提升 网络 ( 可选件) 。 该
中图分类号: T N 8 6
文献标志码 : A 文章编号 : 0 2 1 9 — 2 7 1 3 ( 2 0 1 3 ) 0 6 — 0 0 5 2 — 0 5
1 对光耦反馈控 制环 路的基本要求
开关 电源的光耦反馈控制环路简称反馈环路 , 其作用是控制输 出电压使之在所有情况下都能保
持 稳定 。反馈 环路 的设计 也 直接关 系 到开关 电源 的
环 路增 益 及相 位 并进 行 稳定 性 分 析提 供便 利 条 件 。 波特 图中 的增 益 曲线 , 反 映 的是 开关 电源 主 回路( 亦
称功率级) 和光耦 反馈控制环路( 亦称反馈级) 这两大
部 分 电路 对不 同频 率信 号 的总放 大能 力 。波特 图上 的交 越 频率 , 亦称交叉频率或穿越频率 , 它表 示 幅 频 特性 曲线( 简称 增 益 曲线) 穿越 0 d B线 的频 率 点 。
第1 6 卷
第6 期
奄涤艘 石闵
P O WE R S U P P L Y T E CHN0L 0Gl E S AND AP P L l C ATl ONS
Vo 1 . 1 6 No . 6 J u n e . 2 0 1 3
2 0 1 3 年6 月
开关 电源光耦反馈控制环路 的稳定性设计