不等式解法整式分式、根式
(二)整式、分式、二次根式
3 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nnnb a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:n n aa 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2∙a 3=a 6D.6a 2÷2a 2=3a 2 【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【检测】1.分解因式:39a a -= , _____________223=---x x x 2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中22a b =-=.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.4 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x 有意义;当x 时,该式的值为0. 3.计算22()ab ab的结果为 .4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3) 11322xx x -=--- (4)11-x 1x 1x 22=+--5 二次根式【知识梳理】 1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1a 0b 0≥≥,)(2a 0b 0≥ ,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1有意义,x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,2(0y =,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有52π7-,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π (2)101(1)52-⎛⎫π-+-+-- ⎪⎝⎭【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【检测】1.计算:(1032tan 60(1--+-.(2)cos45°·(-21)-2-(22-3)0+|-32|+121-(3)023cos 304sin 60-++-.2.如图,实数a 、b 在数轴上的位置,化简。
(完整版)初中数学代数知识大全
初中数学代数知识大全一、有理数的运算1、 相反数:::0:0a aa a --的相反数为的相反数为的相反数为2、 绝对值:3、 倒数:1ab =,.a b 和互为倒数 或 1a b=4、 有理数的加法:(||||)a b a b ++=++ ()(||||)a b a b -+-=-+(||||)a b a b -+=-- ()(||||)(||||)a b a b a b +-=+->5、 有理数的减法:()a b a b -=+-6、 有理数的乘法:||||a b a b ⨯=+⨯ ||||a b a b -⨯=-⨯ (0,0)a b ≥≥7、 有理数的除法:||||a b a b ÷=+÷ ||||a b a b -÷=-÷ (0,0)a b ≥≥8、 有理数的乘方:()na a a a n a a=⨯⨯⨯⨯个22()nna a =-2121()n n a a++=-- (0)a ≥二、整式的运算1、 整式的加减:(1) 非同类项的整式相加减:ab mn ab mn ±=±(不能合并!)(2) 同类项的整式相加减:()ab an b n a ±=±(合并同类项,只把系数相加减) 2、 整式的乘除:(1) 幂的八种计算(a ) 同底数幂相乘:mn m na a a+⨯=(b ) 同底数幂相除:(0)mnm na aa a-÷=≠(c ) 零指数:01(0)a a=≠(d ) 负指数:1(0)ppa aa-=≠(e ) 积的乘方:()mmmab a b =⨯(f ) 幂的乘方:()nmnma a =(g ) 同指数的幂相乘:()mmmab ab ⨯=(h ) 同指数的幂相除:(0)()mmmb a a b b÷=≠(2) 整式的乘法:(a ) 单项式乘单项式:ma nb mnab ⨯=(b ) 单项式乘多项式:()m a b c ma mb mc ++=++ (c ) 多项式乘多项式:()()a b m n am an bm bn ++=+++ (3) 乘法公式:(a ) 平方差公式:22()()a b a b ab +-=-(b ) 完全平方公式:2222()ab a b a b =+±±(c ) 三数和的完全平方公式:22222()()ab bc ac a b c a b c =+++++++ (d ) 立方和公式:2233()()a b ab ab a b +-+=+ (e ) 立方差公式:2233()()a b ab ab a b -++=-(f ) 完全立方公式:3322333()b a a b a a b b =±+±±(g ) 三数和的完全立方公式:33333()()abc a b c a b c a b c =+++++++ (4) 整式的除法:(a ) 单项式除以单项式:()()mma nb a b n÷=÷ (b ) 多项式除以单项式:()ma mb mc m ma m mb m mc m a b c ++÷=÷+÷+÷=++三、因式分解的运算1、 提取公因式法:()ma mb mc m a b c ++=++2、 公式法:22()()a b a b ab -=+-2222()ab a b ab ±+=±3、 十字相乘法:2()()()m n a mn a m a n a+++=++四、分式的运算1、 分式的通分:(0,0)m mb a b a ab=≠≠ 2、 分式的化简(约分):(0,0)mb mb b ma b ab ab b a÷==≠≠÷3、 分式的加减:(1) 同分母的分式相加减:(0)m n m n a a a a ±±=≠ (2) 异分母的分式相加减:(0,0)m n mb naa b a b ab±±=≠≠4、 分式的乘除:(1) 分式的乘法:(0,0)m n mn a b a b ab⨯=≠≠ (2) 分式的除法:(0,0,0)m n m b mba b n a b a n an÷=⨯=≠≠≠五、根式的运算1、根式的加减:(m n =± (同类根式才能相加减) 2、根式的乘除:(mn =((0,0)m n b n =≠≠ (同次根式才能相乘除)3、根式的乘方:2(0)a a =≥4、2(0)m a a ==>2))()a b m a mba b a b==- 六、方程的运算1、 一元一次方程步骤:去分母,去括号,移项,合并同类项,化未知数的系数为1。
初中不等式分式与分式方程
不等式分式与分式方程【考纲说明】1. 了解分式的概念,会利用分式的基本性质进行约分和通分,会进行分式的加、减、乘、除、乘方运算;能够根据具体问题数量关系列出简单的分式方程,会解简单的可化为一元一次方程的分式方程;2. 利用二次根式的概念及性质进行二次根式的化简,运用二次根式的加、减、乘、除法的法则进行二次根式的运算.【趣味链接】【知识梳理】一.不等式部分考点一、不等式的相关概念1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左.3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式.要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.考点二、不等式的性质性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a>b,那么a±c>b±c.性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,c>0,那么ac>bc(或ac>bc).性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a>b,c<0,那么ac<bc(或ac<bc).要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.不等式组 (其中a >b )图示解集口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩b ax b <(同小取小)注:不等式有等号的在数轴上用实心圆点表示. 要点诠释:解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集.5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要. 要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案.6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.二.分式与分式方程x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b>⎧⎨<⎩ ba无解 (空集) (大大、小小 找不到)考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.要点诠释:分式的概念需注意的问题:(1)分式是两个整式相除的商,其中分母是除式,分子是被除式,而分数线则可以理解为除号,还含有括号的作用;(2)分式中,A和B均为整式,A可含字母,也可不含字母,但B中必须含有字母且不为0;(3)判断一个代数式是否是分式,不要把原式约分变形,只根据它的原有形式进行判断.(4)分式有无意义的条件:在分式中,①当B≠0时,分式有意义;当分式有意义时,B≠0.②当B=0时,分式无意义;当分式无意义时,B=0.③当B≠0且A = 0时,分式的值为零.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算错误!未找到引用源。
分式不等式的解法有哪些
很多同学对于分时不等式还处于不是很明白的状态,甚至有些不知道怎么做,以下是由编辑为大家整理的“分式不等式的解法(jiě fǎ)有哪些〞,仅供参考,欢送大家阅读。
分式(fēnshì)不等式的解法对于(duìyú)第一类解法如下:(1)令分子(fēnzǐ)、分母等于0,并求出解;(2)画数轴(shùzhóu)在数轴上找出解的位置;(3)判断分子、分母最高次系数乘积正负;假设乘积为正从右上向下依次穿过;假设为负从右下向上依次穿过对于第二类解法如下:(1)移项、通分将右面化为0,左面为分式的形式;(2)令分子、分母等于0,并求出解;(3)画数轴在数轴上找出解的位置;(4)判断分子、分母最高次系数乘积正负;假设乘积为正从右上向下依次穿过;假设为负从右下向上依次穿过拓展阅读:如何学好数学一、数学运算运算是学好数学的根本功。
初中阶段是培养数学运算才能的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。
初中运算才能不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算才能差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步开展。
从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大局部是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎〞掩盖了其背后的真正原因。
帮助学生认真分析运算出错的详细原因,是进步学生运算才能的有效手段之一。
在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学根底知识理解和记忆数学根底知识是学好数学的前提。
初高中数学衔接课程(5)——一元二次不等式与分式不等式讲义
初高中数学衔接课程第五讲 方程与不等式5.1 二元二次方程组解法方程 22260x xy y x y +++++=是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程。
其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项。
我们看下面的两个方程组:224310,210;x y x y x y ⎧-++-=⎨--=⎩ 222220,560.x y x xy y ⎧+=⎪⎨-+=⎪⎩ 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组。
下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法。
一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解。
例1 解方程组22440,220.x y x y ⎧+-=⎨--=⎩解:由②,得x =2y +2, ③把③代入①,整理,得8y 2+8y =0,即y (y +1)=0。
解得y 1=0,y 2=-1。
把y 1=0代入③,得x 1=2;把y 2=-1代入③,得x 2=0。
所以原方程组的解是112,0x y =⎧⎨=⎩,;220,1.x y =⎧⎨=-⎩说明:在解类似于本例的二元二次方程组时,通常采用本例所介绍的代入消元法来求解。
例2解方程组7,12.x y xy +=⎧⎨=⎩解:由①,得7.x y =- ③把③代入②,整理,得27120y y -+= 解这个方程,得123,4y y ==。
把13y =代入③,得14x =;把24y =代入③,得23x =。
所以原方程的解是114,3x y =⎧⎨=⎩,;223,4.x y =⎧⎨=⎩【例3】解方程组11 (1)28 (2)x y xy +=⎧⎨=⎩分析:本题可以用代入消元法解方程组,但注意到方程组的特点,可以把x 、y 看成是方程211280z z -+=的两根,则更容易求解。
数与式、方程、不等式
数与式实数与代数式1、数的分类及概念:整数和分数统称有理数(有限小数和无限循环小数),像√3,π,0.101001∙∙∙叫无理数;有理数和无理数统称实数。
实数按正负也可分为:正整数、正分数、0、负整数、负分数,正无理数、负无理数。
2、实数和数轴上的点是一一对应的.2.(1)互为倒数的积为1;(2)互为相反数的和为0,商为-1;(3)绝对值是距离,非负数。
3、相反数:只有符号不同的两个数互为相反数.若a 、b 互为相反数,则a+b=0,1-=ab (a 、b ≠0) 4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 去绝对值法则:正数的绝对值是它本身;零的绝对值是零; 负数的绝对值是它的相反数⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a数轴:①定义(三要素:原点、正方向,单位长度);②点与实数的一一对应关系。
(2)性质:若干个非负数的和为0,则每个非负数均为0。
5、近似数和有效数字:测量的结果都是近似的;利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
6、科学记数法;一般地,一个大于10的数可以表示成a×10 n 的,其中1≤a ﹤10,n 是正整数,这种记数方法叫做科学记数法。
7、整指数幂的运算: ()()m m mmn n m n m n m b a ab a a a a a ⋅===⋅+,, (a ≠0) 负整指数幂的性质:pp p a a a ⎪⎭⎫ ⎝⎛==-11 零整指数幂的性质:10=a (a ≠0)正数的任何次幂为正数;负数的奇次幂为负数,负数的偶次幂为正数8、实数的开方运算:()a a a a a =≥=22;0)(9、实数的混合运算顺序10、无理数的错误认识:(1)无限小数就是无理数如1.414141···(41 无限循环);(2(3但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,法在数轴上把它找出来,其他的无理数也是如此.11、实数的大小比较:(1).数形结合法(2).作差法比较(3).作商法比较整式1、代数式的有关概念.(1)代数式是由运算符号把数或表示数的字母连结而成的式子.(2)求代数式的值的方法:①化简求值,②整体代入2、整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式.(2)多项式:几个单项式的和,叫做多项式(3)多项式的降幂排列与升幂排列(4)同类项:所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.3、整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:(2)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
不等式解法-图表
解无理不等式的基本思想就是讨论不带根式一边的正负情况并用乘方转化为有理不等式组求解。但一定要注意偶次根式下非负及使用偶次乘方的前提条件: ( 是正偶数)。简单的无理不等式用数形结合法求解更好。
1. 2.
3. 或
对数指数不等式解法
解对数指数不等式的指导思想就是利用对数指数函数的单调性转化为有理不等式(组)求解。但必须注意对数真数大于0,底数大于0且不等于1。
高次分式不等式解法
穿根法:把高次分式不等式分解成一次因式的乘积和商(要求每一个一次因式中 的系数是正数),然后把各因式的根从小到大标在数轴上,从右上方依次通过每一点画曲线(不穿过偶次根),最后根据符号规律写出不等式解集(注意偶次根是否需要排除)
分式不等式一般用移项通分法或分组分解法求解,分组分解法的常见类型为: 或
1.
2.
3. ;
4. 或
绝对值不等式
解绝对值不等式的基本思想就是根据绝对值定义或基本绝对值不等式去掉绝对值。
基本绝. 法一: 或
法二:
2. 法一: 或
法二: 或
3.. (然后移项分解因式)
4.含二个以上绝对值的不等式的解法常用零点分区间去绝对值的思想求解
不等式解法整式分式根式.doc
§不等式的解法(一)【一线名师精讲】基础知识串讲解不等式的基本原则:1、解不等式实质是一个等价变形的过程,当元的取值范围扩大时,应与原有取值范围求交集。
2、解不等式是一个由繁到简的转化过程,其转化的总思路为:分式不等式整不式等根式不等式不式绝对值不等式等的函数不等式式解3、解含有等号的不等式时,应该将等式与不等式分开解答后取并集。
基本类型不等式的解法:( 一 ) 、整式不等式的解法1、一元一次不等式标准形式:ax b 或 ax b(a 0) .解法要点:在不等式的两端同时除以 a 后,若a0 则不等号要反向。
2、一元二次不等式标准形式:ax2 bx c 0 或ax2 bx c 0 (其中 a 0 )。
解法要点:解一元二次不等式一般可按以下步骤进行:(1)整形:将不等式化为标准形式。
(2)求根:求方程ax2bx c 0 的根。
(3)写解:根据方程ax2 bx c 0根的情况写出对应不等式的解集。
当两根明确时,可由“大于 0,两根外;小于 0,两根内”的口诀写解,当0 时,则可由函数 y ax 2 bx c 的草图写解。
3、一元高次不等式(可分解因式型)标准形式:a( x x1 )( x x 2) (x x n)0 或a (x x1 )( x x 2 ) ( x x n ) 0 a 0 。
解法要点:用“数轴穿根”的方法最为简便,一般可按如下步骤进行:(1)整形:将不等式化为标准形式。
(2)求根:求出对应方程的根。
(3)穿根:将方程的根标在数轴上,用一条曲线从右上方开始依次穿过。
方程有重根时,奇数重根按正常情况穿过,偶数重根则不穿过,反弹回来后继续穿根。
即“奇过偶不过”。
( 4 )写解:数轴上方所对应曲线的区间为a( x x1 )( x x2 ) ( x x n ) 0 的解,数轴下方所对应曲线的区间为a(x x1)(x x 2) (x x n) 0 的解。
(二)、分式不等式的解法标准形式:g ( x)0,或 g ( x ) 0 。
不等式的简单变形(上课用)
解不等式 $|2x - 1| < 3$。根据绝对值的定义,该不等式等价于 $-3 < 2x - 1 < 3$。进一步解得 $-1 < x < 2$。
平方去绝对值法
通过平方消去绝对值
对于形如 $|f(x)| < g(x)$ 或 $|f(x)| > g(x)$ 的不等式,可以通过平方的方 式消去绝对值符号,但需要注意平方 后可能产生增根或失根的情况。
举例
解不等式 $|x + 2| > x$。将不等式平方得到 $(x + 2)^2 > x^2$,进一步整理得 $4x + 4 > 0$,解得 $x > -1$。但需要注意,当 $x leq 2$ 时,原不等式也成立,因此最终解集为 $x in (-infty, -2] cup (-1, +infty)$。
04
分式不等式变形
通分去分母法
原理
通过通分,将分式不等式转化为 整式不等式,从而简化问题。
步骤
首先找出分式不等式中所有分母的 最小公倍数,然后将不等式两边同 时乘以这个最小公倍数,消去分母。
注意事项
在消去分母时,需要注意不等号的 方向可能会发生变化。
分离参数法
原理
通过分离参数,将含参数 的分式不等式转化为不含 参数的不等式,从而便于 求解。
配方法适用范围
注意事项
在配方过程中,需要注意配方项的选 择以及符号的处理,避免出现错误。
适用于一元二次不等式标准形式中, $a neq 0$且能够配方的情况。
Байду номын сангаас
公式法
01
02
03
公式法步骤
利用一元二次方程的求根 公式,将不等式转化为根 的形式,然后根据不等式 的性质进行求解。
高中数学会考复习资料基本概念和公式
高中数学会考基础知识汇总 第一章 集合与简易逻辑:一.集合1、 集合的有关概念和运算(1)集合的特性:确定性、互异性和无序性;(2)元素a 和集合A 之间的关系:a ∈A ,或a ∉A ;2、子集定义:A 中的任何元素都属于B ,则A 叫B 的子集 ;记作:A ⊆B , 注意:A ⊆B 时,A 有两种情况:A =φ与A ≠φ3、真子集定义:A 是B 的子集 ,且B 中至少有一个元素不属于A ;记作:B A ⊂;4、补集定义:},|{A x U x x A C U ∉∈=且;5、交集与并集 交集:}|{B x A x x B A ∈∈=且 ;并集:}|{B x A x x B A ∈∈=或6、集合中元素的个数的计算: 若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
二.简易逻辑:1.复合命题: 三种形式:p 或q 、p 且q 、非p ; 判断复合命题真假:2.真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。
3.四种命题及其关系:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ; 互为逆否的两个命题是等价的。
原命题与它的逆否命题是等价命题。
4.充分条件与必要条件:若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;第二章 函数一. 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应, 记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。
2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有唯一确定的数f (x )和它对应,就称f :A →B 为集合A 到集合B 的一个函数,记作y=f (x ), (2)、函数的三要素:定义域,值域,对应法则;3、求定义域的一般方法:①整式:全体实数R ;②分式:分母0≠,0次幂:底数0≠; ③偶次根式:被开方式0≥,例:225x y -=;④对数:真数0>,例:)11(log xy a -=4、求值域的一般方法:①图象观察法:||2.0x y =;②单调函数法: ]3,31[),13(log 2∈-=x x y ③二次函数配方法:)5,1[,42∈-=x x x y , 222++-=x x y④“一次”分式反函数法:12+=x xy ;⑥换元法:x x y 21-+= 5、求函数解析式f (x )的一般方法:①待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x ) ②配凑法:,1)1(22xx xx f +=-求f (x );③换元法:x x x f 2)1(+=+,求f (x ) 6、函数的单调性:(1)定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数; 若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。
不等式解法整式分式根式
§ 不等式的解法一一线名师精讲基础知识串讲解不等式的基本原则:1、解不等式实质是一个等价变形的过程,当元的取值范围扩大时,应与原有取值范围求交集;2、解不等式是一个由繁到简的转化过程,其转化的总思路为:3、解含有等号的不等式时,应该将等式与不等式分开解答后取并集;基本类型不等式的解法: 一、整式不等式的解法 1、一元一次不等式标准形式:b ax >或)0(≠<a b ax .解法要点:在不等式的两端同时除以a 后,若0<a 则不等号要反向;2、一元二次不等式标准形式:02>++c bx ax 或02<++c bx ax 其中0>a ;解法要点:解一元二次不等式一般可按以下步骤进行:1整形:将不等式化为标准形式; 2求根:求方程02=++c bx ax 的根; 3写解:根据方程02=++c bx ax 根的情况写出对应不等式的解集;当两根明确时,可由“大于0,两根外;小于0,两根内”的口诀写解,当0≤∆时,则可由函数c bx ax y ++=2的草图写解;3、一元高次不等式可分解因式型标准形式:0)())((21>---n x x x x x x a 或0)())((21<---n x x x x x x a ()0>a ;解法要点:用“数轴穿根”的方法最为简便,一般可按如下步骤进行:1整形:将不等式化为标准形式; 2求根:求出对应方程的根;3穿根:将方程的根标在数轴上,用一条曲线从右上方开始依次穿过;方程有重根时,奇数重根按正常情况穿过,偶数重根则不穿过,反弹回来后继续穿根;即“奇过偶不过”;4写解:数轴上方所对应曲线的区间为0)())((21>---n x x x x x x a 的解,数轴下方所对应曲线的区间为0)())((21<---n x x x x x x a 的解;二、分式不等式的解法 标准形式:0)()(>x f x g ,或0)()(<x f x g ; 解法要点:解分式不等式的关键是去分母,将分式不等式转化为整式不等式求解;若分母的正负可定,可直接去分母;若分母的正负不定,则按以下原则去分母:0)()(0)()(>⋅⇔>x g x f x g x f 0)()(0)()(<⇔<x g x f x g x f 三、根式不等式的解法 标准形式:)()(x g x f >;)()(x g x f >;以及)()(x g x f <;解法要点:解根式不等式的关键是去根号,应抓住被开方数的取值范围以及不等式乘方的条件这两大要点进行等价变换:⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(x g x f x g x f x g x f ⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(2x g x f x f x g x g x f 或⎩⎨⎧≥<0)(0)(x f x g ⎪⎩⎪⎨⎧<≥>⇐<)()(0)(0)()()(2x g x f x f x g x g x f 基本题型指要【例1】 解下列不等式或不等式组:1⎪⎩⎪⎨⎧+<<-+220)1)(3(2x x x x 20)4)(2()3(2≤-+-x x x 3x x x x x <-+-+222322402)1(2≥---x x x1思路导引:按规范化程序操作,化为标准形式后求解,可以有效的防止错误;解析:将0)1)(3(<-+x x 化为标准形式0)1)(3(>-+x x ,易得:1,3>-<x x 或;由222+<x x 得01)1(2>+-x ,所以R x ∈; 综上所述,原不等式组的解集为{}13|>-<x x x 或,;2解析:由已知,0)4)(2()3(2≥-+-x x x , 用数轴穿根法易得原不等式的解集为:{}342|=≥-≤x x x x 或,,或误区警示:若不化为标准形式求解,易将解集错写为{}42|≤≤-x x ;另外,建议将这类等式与不等式的混合式中的“等式”单独求解,以防止漏掉3=x 这类解;3思路导引:解分式不等式的关键是去分母;但本题分母正负不明,若直接去分母应分类讨论,较为复杂,使用移项通分化为标准形式的方法较好;解析:将x x x x x <-+-+222322化为标准形式,得:0)1)(3()1)(2(2>+-++-x x x x x ,因为12>++x x 恒成立,所以,0)1)(3()2(>+--x x x ;用数轴穿根法易得原不等式的解集为:{}321|><<-x x x 或,;4思路导引:解根式不等式关键是抓住乘方的条件,对原不等式实施等价转换,去除根号;解析:原不等式等价于:02)1(2>---x x x (1)或02)1(2=---x x x (2)由1得:⎪⎩⎪⎨⎧>->--01022x x x ,解得2>x ;由2得12-==x x ,或;所以,原不等式的解集为{}12|-=≥x x x ,或; 误区警示:请找出下面解法的错误: 由022≥--x x ,得01≥-x ,所以,原不等式的解为1≥x ;点评:解等式与不等式的混合型不等式,最好将等式与不等式分开求解,以避免错误; ◆题型二:解含参数的不等式不少同学都怕解含参数的不等式,究其原因,关键是没有把握住解题技巧;其实,解含有参数的不等式在总思路上与解普通不等式完全相同,当参数不影响式子的变形时,与解普通不等式没有差异,在参数影响式子的变形时,就需弄清参数的取值范围或者予以分类讨论,才能顺利的解出不等式;例2解下列关于x 的不等式: 102>+ax 2x t tx )2(22+>+3)1,0(1log 22log 3≠>-<-a a x x a a 1思路导引:本题在求解x 时必须去除系数a ,由于a 的范围不明,无法直接变形,若将a 按变形的要求分为正、负、零三类,则在每一小类中式子就能顺利变形了;解析:由已知,2->ax ; ①、当0>a 时,a x 2->; ②、当0<a 时, ax 2-<; ③、当0=a 时,20->恒成立,R x ∈ ;故,原不等式解集当0>a 时为⎭⎬⎫⎩⎨⎧->a x x 2|,当0<a 时为⎭⎬⎫⎩⎨⎧-<a x x 2|,当0=a 时为R ;2思路导引:解含参数的二次不等式通常是在以下三个地方实施分类讨论:一是平方项系数有参数时需分正、负、零讨论,二是判别式△有参数时的需分正、负、零讨论,三是两根有参数时需根据他们的大小关系分类讨论;本题中的不等式即0)2)(1(>--tx x ,在求解过程中参数会在两个地方影响式子变形:一是平方项系数t 的正、负、零,二是对应的二次方程的根1与t2是否存在、谁大谁小;此时,同一字母t 形成了不同的分类,可将t 在0、2处分段统筹安排进行分类如图;解析:原不等式即0)2)(1(>--tx x ;① 当0<t 时,可以化为0)2)(1(<+--tx x , 易知12<t ,所以12<<x t; ② 当0=t 时,原不等式即022>+-x ,所以 1<x ;③ 当20<<t 时,易知12>t,可得,1<x tx 2>或; ④ 当2=t 时,原不等式即0)1(22>-x ,所 以1≠∈x R x ,且;⑤ 当2>t 时,易知12<t ,可得,tx 2< 1>x 或;综上所述,原不等式的解集当0<t 时,为 ⎭⎬⎫⎩⎨⎧<<12|x t x ;当0=t 时,为{}1|<x x ;当20<<t 时,为⎭⎬⎫⎩⎨⎧><t x x x 21|,或;当2=t 时,为{}1|≠∈x R x x ,且;当2>t 时,为⎭⎬⎫⎩⎨⎧><12|x t x x ,或;误区警示:本题易漏掉20==t t 和两种特殊情况的讨论;另外,在0<t 时,解集易错为⎭⎬⎫⎩⎨⎧><12|x t x x ,或;3思路导引:本题关键是抓住根式不等式的解题特点,对不等式进行乘方处理,去除根号;若令t x a =log 进行换元,会使书写变得更简便;解析:按根式不等式的解题思路,易知原不等式等价于⎪⎩⎪⎨⎧>--<-≥-)3(01log 2)2()1log 2(2log 3)1(02log 32 x x x x a a a a由1得,32log ≥x a 由2得,1log ,43log ><x x a a 或 由3得.21log >x a 由此得,1log ,43log 32><≤x x a a 或 当1>a 时,易求得原不等式的解集为}|{4332a xa x a x ><≤,或;当10<<a 时,易求得原不等式的解集为}0|{3243a x a x ax <<≤<,或;误区警示:在乘方去除根号的过程中,要注意不等式乘方的条件以及根号内式子的取值范围,保证不等式的变形为等价变形;点评:从本例的解答过程可以看出,解含参数的不等式关键是抓住以下两个要点来处理不等式中的参数:一是由“参数是否影响不等式变形”来确定该不该对参数进行分类讨论,二是由“参数是怎样影响不等式变形” 来确定怎样对参数进行分类讨论;已知不等式的解集求参数值或范围是一类很常见也很重要的题型;由于该题型解法较为灵活,我们在解题时若不能把握住它的解题规律,往往会觉得变化莫测而无可适从;解答本题型关键是要抓住以下两个要点:一是按其正向题型“解不等式”变化,试解原不等式;二是利用已知的解集或解集的部分信息去逆向推测它们与参数的关系;两个要点结合,就会比较容易找到所求参数的方程或不等式,从而求出它们的值或范围;例3已知不等式022>++bx ax 1若不等式的解集为31,21-,求b a +;2若不等式的解集为R,求b a 、应满足的条件; 1思路导引:从解集的形式可知:原不等式必为二次不等式;再从解不等式的角度来看,原不等式的解集可由方程022=++bx ax 的二根来得出,但二根不方便写出,自然会想到用韦达定理列式解题;解析:由题意,方程022=++bx ax 的二根为3121和-, 所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+->⨯-<aa b a b a 23121312102402易解得212-=-=b a ,, 所以,14-=+b a ;误区警示:不能遗漏条件0242>⨯-a b 和0<a ;2思路导引:原不等式022>++bx ax 的系数b a 、范围未定,可能形成二次型、一次型、常数型三类不等式;因为原不等式的解集为R,故原不等式只能为二次型、常数型不等式;解析:1当0==b a 时, 原不等式为02>,其解集显然为R,符合题意;2当0≠a 时,因为原不等式解集为R ,所以,⎪⎩⎪⎨⎧<⨯->02402a b a化简得a b a 802<>,且;综上所述,b a 、应满足的条件为:0==b a ;或a b a 802<>且;点评: 已知二次不等式的解集求参数值可分为两种类型:若解集为“两根内外”型,一般用韦达定理求解;若解集为R 或φ,则通常用数形结合解题;例4若不等式组⎪⎩⎪⎨⎧<+++>--05)25(20222k x k x x x 的整数解只有-2,求实数k 的取值范围;思路导引:本题的解题思路与已知不等式的解集求参数值相似,只是要注意不等式组的解集应是各个不等式解集的交集;解析: ⎪⎩⎪⎨⎧<+++>--)2(05)25(2)1(0222 k x k x x x由1解得12-<>x x ,或;由2得0))(52(<++k x x ;因为-2是不等式组的解,故0)2](5)2(2[<+-+-⨯k ,得 2<k ,所以25->-k ,2的解为k x -<<-25; 由此可知,原不等式组的解为Ⅰ⎪⎩⎪⎨⎧-<<--<k x x 251,或⎪⎩⎪⎨⎧-<<->k x x 252;因为2<k ,所以2->-k ,故Ⅰ的整数解为-2;而原不等式组的整数解只有-2,所以Ⅱ应该没有整数解,所以33-≥≤-k k ,即;综上所述,23<≤-k ;阅卷老师评题例51996年全国高考解不等式.1)11(log >-xa命题目的:本题综合考查了对数不等式、分式不等式、二次不等式的解法,以及分类讨论的思想和运算能力;考情分析:该题本身的能力要求并不高,但在解答的过程中却多次涉及易错点,故当年考生的得分率较低,区分度达;思路导引:因为对数函数的单调性与a 有关,故应对a 分类讨论去除对数符号,将原不等式化为分式不等式,然后再化为整式不等式求解;解析:Ⅰ当1>a 时,原不等式等价于: ⎪⎩⎪⎨⎧>->-)2(11)1(011 a x x 因1>a ,故只需解2式,由此得 )3(11 xa >- 因为,01<-a 所以,0<x 由3可得 .011<<-x aⅡ当10<<a 时,原不等式等价于: ⎪⎩⎪⎨⎧<->-)5(11)4(011 a xx 由4得,,01<>x x 或 由5得,011>->a x,故0>x , 易解得5的解为ax -<<111; 所以ax -<<111; 综上所述:当1>a 时,不等式的解集为 };011|{<<-x ax 当10<<a 时,不等式的解集为}.111|{ax x -<< 点评:解不等式要注意不等式变形的等价性,对常见的易错点应熟记于心,这样才能有效地避免错误;此外,在解题时注意充分使用已知条件,常常会得到简便解法;如解不等式25时利用a 的范围判断出x 的正负后,就能很方便的去分母了;本题也可由011>-x得出10><x x ,或后,分0<x 和1>x 两类解答;例62004年上海高考记函数fx=132++-x x 的定义域为A,g x =lg x -a -12a -xa <1 的定义域为B;1 求A ;2 若B ⊆A, 求实数a 的取值范围.命题目的:本小题主要考查集合的有关概念, 考查二次不等式、分式不等式、对数不等式的解法,以及分析问题和推理计算能力;考情分析:此题型在各地高考中经常出现;本题难度较小,得分率较高,但有的考生在求a 的范围时没充分使用1>a 的条件,引起解题过程复杂或出错;解析:1由2-13++x x ≥0, 得11+-x x ≥0, 解得 x <-1或x ≥1, 即A=-∞,-1∪1,+ ∞2 由x -a -12a -x >0, 得x -a -1x -2a <0.因为a <1,所以a +1>2a ,故B=2a ,a +1; 由B ⊆A 知:2a ≥1或a +1≤-1, 解得a ≥21或a ≤-2; 因为a <1, 所以21≤a <1或a ≤-2, 故当A B ⊆时, 实数a 的取值范围是-∞,-2∪21,1 . 好题优化训练基础巩固1、1652->+-x x x 的解集为 A )1,(-∞ B ),2(+∞ C )35,1[ D )35,(-∞答案:D解析:取0=x 可排除B 、C ;取1=x 可排除A;故选D; 2、满足3121-><xx 与的x 的取值范围是 A 2131<<x B 21>x C 31-<x D 3121-<>x x ,或 答案:D解析:解不等式组或验证排除; 3、解不等式212->-x x答案:⎭⎬⎫⎩⎨⎧<≤521|x x解析:原不等式等价于Ⅰ⎩⎨⎧<-≥-02012x x ,或Ⅱ⎪⎩⎪⎨⎧->-≥-≥-2)2(1202012x x x x由Ⅰ解得221<≤x , 由Ⅱ解得52<≤x所以,原不等式的解集为⎭⎬⎫⎩⎨⎧<≤521|x x ;点评:若令t x =-12,则该不等式可化为一个关于t 的二次不等式求解;4、解关于x 的不等式04)1(22<++-x a ax ; 答案:原不等式的解集当0=a 时,为{}2|>x x ;当10<<a 时,为⎭⎬⎫⎩⎨⎧<<a x x 22|;当1=a 时为 φ;当1>a 时,为⎭⎬⎫⎩⎨⎧<<22|x a x ;当0<a 时,为⎭⎬⎫⎩⎨⎧><22|x a x x ,或;解析: 原不等式即0)2)(2(<--x ax ,a 的范围明显会影响不等式的解集,故需分类讨论: 10=a 时,原不等式即042<+-x ,解得2>x ; 210<<a 时,22>a ,不等式的解为ax 22<<; 31=a 时,原不等式为0)2(2<-x ,Φ∈x ; 41>a 时,22<a ,不等式的解为22<<x a; 50<a 时,原不等式可化为0)2)(2(>-+-x ax , 易知22<a ,所以不等式的解为22><x a x ,或; 5、不等式13642222<++++x x m mx x 对一切实数x 均成立,求m 的取值范围; 答案:1,3;解析:已知分母恒正,故原不等式可化为:3642222++<++x x m mx x , 即0)3()26(22>-+-+m x m x , 由题意,该式对一切实数x 恒成立; 所以,0)3(8)26(2<---=∆m m , 容易解得31<<m ;技能培训6、不等式0343>---x x 的解集为:_______; 答案:3,+∞;解析:原不等式等价于⎪⎩⎪⎨⎧->-≥-≥-34303043x x x x ,解得3≥x ;7、设1)(2+-=ax x x f ;若方程0)(=x f 没有正根,则a 的取值范围为____________; 答案:)2(,-∞;解析:因为方程0)(=x f 没有正根,由图 易知;⎪⎩⎪⎨⎧<≥-=∆0242aa , 或042<-=∆a ; 解得:2<a ; 8、若关于x 的不等式0342>+++x x a x 的解是13-<<-x ,或2>x ,则a 的值为 A 2 B 2- C21D 21-答案:B解析:原不等式即0)3)(1)((>+++x x a x ,由其解集易知2-=a ;9、若0)1(3)1()1()(2<-+--+=m x m x m x f 对于 一切实数x 恒成立,则m 的取值范围是 A ),1(+∞ B )1,(--∞ C )1113,(--∞ D ),1()1113,(+∞--∞ 答案:C解析:由已知,⎪⎩⎪⎨⎧<-+--<+0)1)(1(12)1(012m m m m ,解得1113-<x ; 10、解关于x 的不等式)1(12)1(≠>--a x x a ; 答案:不等式的解集当0<a 时为⎭⎬⎫⎩⎨⎧<<--212|x a a x ;当10<<a 时为⎭⎬⎫⎩⎨⎧--<<122|a a x x ;当0=a 时为Φ;当1>a 时,为⎭⎬⎫⎩⎨⎧--<>122|a a x x x ,或; 解析: 原不等式可化为02)2()1(>--+-x a x a ,所以0)]2()1)[(2(>-+--a x a x ; 1当0<a 时,21201<--<-a a a ,,原不等式的解集为⎭⎬⎫⎩⎨⎧<<--212|x a a x ; 2当10<<a 时,212>--a a ,原不等式的解集为⎭⎬⎫⎩⎨⎧--<<122|a a x x ;3当0=a 时,原不等式为10>,所以∈x Φ; 4当1>a 时,212<--a a ,,所以原不等式的解集为⎭⎬⎫⎩⎨⎧--<>122|a a x x x ,或;11、某工厂生产商品M,若每件定价80元,则每年可销售80万件;税务部门对市场销售的商品征收附加费,为了既增加国家收入又有利于活跃市场,必须合理确定征收的税率;根据调查分析,若政府对商品M 征收的税率为p %时,每年销售减少10p 万件,试问:1若税务部门对商品M 每年所收税金不少96万元,求p 的取值范围;2在所收税金不少于96万元的前提下,要让厂家获得最大的销售金额,因如何确定p 值3若仅考虑每年税收金额最高,又应如何确定p 值答案:162≤≤p ;22=p ;34=p ;解析: 1税率为%p 时,销售量为p 1080-万件,销售金额为)1080(80p -万元80<<p ;由题意易得:⎩⎨⎧<<≥⋅-8096%)1080(80p p p ,解得62≤≤p ;2销售金额最大即)1080(80p -最大,由1可知,62≤≤p ,所以,当2=p 时 ,最大销售金额为4800万元;3由1知易知,销售金额为)1080(80p -,故税金为128)4(8%)1080(802+--=⋅-p p p , 因为80<<p ,所以,4=p 时,国家所得税金最多,为128万元;12、若不等式02>++c bx ax 的解集为),(βα,且βα<<0,求不等式02<++a bx cx 的解集; 答案:⎭⎬⎫⎩⎨⎧><αβ1,1|x x x 或解析:依题意,方程02=c bx ax ++的二根为βα、,故有:⎪⎪⎩⎪⎪⎨⎧>=<+-=)2(0)1(0)( αββαac ab所以,)(βα+-=a b ,)(αβa c =,这样即可将不等式02<++a bx cx 化为0)()(2<++-a x a x a βααβ,由题意易知0<a ,所以0)1)(1(>--x x βα; 因为βα<<0,所以αβ110<<,故所求不等式的解集为⎭⎬⎫⎩⎨⎧><αβ11|x x x ,或;13、解不等式)0(122>->-a x a ax答案:⎭⎬⎫⎩⎨⎧≥2|a x x解析:原不等式可化为:Ⅰ⎪⎩⎪⎨⎧->-≥-)2()1(2)1(0122 x a ax x 或Ⅱ⎪⎩⎪⎨⎧≥-<-)4(02)3(012a ax x 由1得1≤x ,由2得a a x a a 2121++<<-+, 由3得1>x , 由4得2ax ≥; 因为0>a ,所以121>++a a ; 1当20≤<a 时,121≤-+a a ,12≤a,故不等式组Ⅰ的解为121≤<-+x a a ,不等式组Ⅱ的解为1>x ,此时,原不等式的解为a a x 21-+>;2当2>a 时,121>-+a a ,12>a,此时不等式组Ⅰ的解为Φ,不等式组Ⅱ的解为2ax ≥,原不等式的解为2a x ≥; 综上所述,原不等式的解集当20≤<a 时为{}a a x x 21|-+>,当2>a 时为⎭⎬⎫⎩⎨⎧≥2|a x x ;点评:本题也可用图形法求解;思维拓展14、k 为何值时,方程0412=++-k kx x 的二实根的绝对值都小于1 答案: 5285-≤<-k 解析: 作函数41)(2++-==k kx x x f y ;因为方程0412=++-k kx x 的二实根的绝对值都小于1,所以函数图象与x 轴的交点的横坐标在-1与1之间如图 ; 分析图形特点可得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>+=->=<⨯--<-≥+--0452)1(045)1(11210)41(4)(2k f f k k k 解得5285-≤<-k ; 点评:已知一元二次方程的根在某个指定区间内时,常常数形结合,抓住判别式△、对称轴的位置以及区间端点的函数值列式解题;。
职高数学——不等式
不等式的性质与证明一、高考要求:掌握不等式的性质、简单不等式的证明和重要不等式及其应用. 二、知识要点:1.实数大小的基本性质: a-b >0⇔a >b; a-b=0⇔a=b; a-b <0⇔a <b.2.不等式的性质:(1)传递性:如果a >b,b >c,则a >c;如果a <b,b <c,则a <c; (2)加法法则:如果a >b,则a+c >b+c;如果a >b,则a-c >b-c; (3)乘法法则:如果a >b,c >0,则ac >bc;如果a >b,c <0,则ac <bc; (4)移项法则:如果a+b >c,则a >c-b;(5)同向不等式的加法法则:如果a >b 且c >d,则a+c >b+d;如果a <b 且c <d,则a+c <b+d;(6)两边都是正数的同向不等式的乘法法则:如果a >b >0,且c >d >0,则ac >bd. 3.几个拓展的性质: a >b >0⇒a n>b n(n∈N,n>1);a >b >0⇒n a >n b (n∈N,n>1);a >b 且c >d ⇒a-d >b-c; a >b >0,且c >d >0⇒cb d a >; a >b >0(或0>a >b)⇒ba 11<; 4.重要不等式:(1) 整式形式: a 2+b 2≥2ab(a 、b∈R); a 2+b 2+c 2≥3abc(a 、b 、c∈R +);ab ≤22⎪⎭⎫ ⎝⎛+b a (a 、b∈R); abc ≤33⎪⎭⎫ ⎝⎛++c b a (a 、b 、c∈R +);(2) 根式形式:2b a +≥ab (a 、b∈R +); 3c b a ++≥3abc (a 、b 、c∈R +); (3) 分式形式:b a a b +≥2(a 、b 同号); c ab c a b ++≥3(a 、b 、c 同号);(4) 倒数形式:a a 1+≥2(a∈R +); aa 1+≤-2(a∈R -). 三、典型例题:例1:已知a >b,则不等式①a 2>b 2;②b a 11<;③ab a 11>-中不能成立的个数是( ) A.0个 B.1个 C.2个 D.3个 例2:证明不等式:(1)对∀实数a 、b,求证:22⎪⎭⎫⎝⎛+b a ≤222b a +; (2)求证:对∀正实数a 、b 、c,a+b+c≥ca bc ab ++;(3)若p >0,q >0,p 3+q 3=2,试用反证法证明p+q≤2; (4)对∀实数x 、y,求证:x 2+xy+y 2≥0; (5)对∀实数a 、b∈R +,且a+b=1,求证:)11)(11(ba ++≥9.四、归纳小结:1.实数大小的基本性质反映了实数运算的性质和实数大小顺序之间的关系,是不等式证明和解不等式的主要依据.2.不等式证明的常用方法:(1)比较法常和配方法结合使用.用比较法证明的一般步骤是:作差→变形→判断符号;(2)综合法和分析法常结合使用.综合法就是“由因导果”,使用不等式的性质和已证明的不等式去直接推证;分析法就是“执果索因”,叙述的形式是:要证A,只要证B;(3)反证法的步骤:假设→推理→矛盾→原命题成立;3.在利用不等式求最大值或最小值时,要注意变量是否为正,和或积是否为定值,等号是否能成立.通过变形,使和或积为定值,是用不等式求最值的基本技巧. 五、基础知识训练: (一)选择题:1. 在下列命题中,是真命题的是( )A.x >y 和|x|>|y|互为充要条件B.x >y 和x 2>y 2互为充要条件 C.a 2>b 2(b≠0)和2211ba >互为充要条件 D.b a 4131-<-和4a >3b 互为充要条件 2. 已知a >b,c∈R,由此能推出下列不等式成立的是( )A.a+c >b-cB.ac >bcC.ac 2>bc 2D.a c2⋅>b c2⋅ 3. 如果ab >0且a >b,则有( )A.a 1>b 1 B.a 1<b1 C.a 2>b2 D.a 2<b 24. “a<b <0”是“a 1>b1”成立的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既不充分又不必要条件 5. 不等式2>+abb a 成立的充要条件是( ) A.ab >0且a≠b B.ab≠0且a≠b C.a>0,b >0且a≠b D.a≠1且b≠1 6. 已知x >2,则函数21-+=x x y 的最小值是( )7. 不等式①a 2+2>2a;②a 2+b 2>2(a-b-1);③(a 2+b 2)(c 2+d 2)>(ac+bd)2中,恒成立的个数是( )A.0个B.1个C.2个D.3个8. 若实数a 、b 、c 满足b+c=3a 2-4a+6,b-c=a 2-4a+4,则a 、b 、c 的大小关系是( ) A.b≥c>a B.b >c >a C.b <c <a D.b <c≤a 9. 若f(x)=3x 2-x+1,g(x)=2x 2+x-1,则f(x)与g(x)的大小关系是( )A.f(x)>g(x)B.f(x)=g(x)C.f(x)<g(x)D.随x 值变化而变化 10. 若a≠2或b≠-1,则M=a 2+b 2-4a+2b 的值与-5的大小关系是( ) A.M >-5 B.M <-5 C.M=-5 D.不能确定 11.已知0<a <1,则aa 1、aa -、aa 的大小关系是( ) A.aa 1>aa >aa- B.aa->aa >aa 1 C.aa >aa 1>aa- D.aa->aa 1>a a12.已知a <b <0,则下列不等式中不能成立的是( ) A.a 2>b 2B.b a >C.b a 11> D. ab a 11>- 13.设a 、b 是不相等的正数,则( )A.2222b a ab ba +<<+ B.2222b a b a ab +<+< C.2222b a b a ab +<+< D.2222ba ab b a +<<+ 14.若0<x <1,0<y <1,且x≠y,而x 2+y 2,x+y,2xy,xy 2中最大的一个是( )A.2xyB.x+yC.xy 2D.x 2+y 215.若a 、b 为非零实数,则在①222b a +≥ab;②22⎪⎭⎫⎝⎛+b a ≤222b a +;③2b a +≥b a ab +;④baa b +≥2中,恒成立的个数是( ) A.4个 B.3个 C.2个 D.1个 16.设正数a,b 满足ab=4,则2a+3b 的最小值是( )A.12B.10C.64D.34 17.设a,b∈R 且a+b=3,则ba 22+的最小值是( )A.6B.8C.24D.22 18.若实数x,y 满足方程x+y-4=0,则x 2+y 2的最小值是( )19.令0<a <b,且a+b=1,则下列四数中最大的是( ) A.21 B.a C.2ab D.a 2+b 220.设a 、b 是两实数,给出下列条件:①a+b>1;②a+b =2;③a+b>2;④a 2+b 2>2;⑤ab>1.其中能推出“a、b 中至少有一个数大于1”的条件是( )A.②③B.①②③C.③④⑤D.③21.下列命题中,(1)x x 1+的最小值是2;(2)1222++x x 的最小值是2;(3)4522++x x 的最小值是2;(4)xx 432--的最小值是2.正确命题的个数是( ) A.1个 B.2个 C.3个 D.4个 (二)填空题:22.若x >y 且a >b,则在“①a -x >b-y ; ②a+x>b+y ; ③ax>by ;④x -b >y-a ; ⑤xby a >”这五个式子中恒成立的不等式的序号是 . 23.已知三个不等式: ①ab>0;②bda c -<-;③bc>ad.以其中两个作为条件,余下的一个作为结论,则可以组成 个正确的命题.24.以下四个不等式: ①a<0<b ;②b<a <0;③b<0<a ;④0<b <a.其中使ba 11<成立的充分条件有 . 25.已知x >0,函数xx y 432--=的最大值是 . 26.已知函数xx y 22+=,(x >0),则y 的最小值是 .一次不等式和不等式组的解法一、高考要求:熟练求不等式组的解集. 二、知识要点:1.能直接表明未知数的取值范围的不等式叫做最简不等式,解集相等的不等式叫做同解不等式,一个不等式变为它的同解不等式的过程叫做同解变形.2.一次不等式ax >b(a≠0)的解法:当a >0时,解集是{a b x x >},用区间表示为(a b,+∞); 当a <0时,解集是{a b x x <},用区间表示为(-∞,ab).3.不等式组的解集就是构成不等式组的各不等式解集的交集. 三、典型例题: 例1:解下列不等式(组):(1) (x-3)2(x-4)≥0. (2) ⎩⎨⎧-<+<-+65430)3)(1(2x x x x .四、归纳小结:一次不等式和不等式组的解法是解各种不等式(组)的基础.解不等式实际上就是利用数与式的运算法则,以及不等式的性质,对所给不等式进行同解变形,直到变形为最简不等式为止.五、基础知识训练: (一)选择题:1.已知方程x 2+(m+2)x+m+5=0有两个正根,则实数m 的取值范围是( ) A.m <-2 B.m≤-4 C.m >-5 D.-5<m≤-4 2.已知方程mx 2+(2m+1)x+m=0有两个不相等的实根,则实数m 的取值范围是( ) A.m <41-B.m >41-C.m≥41-D.m >41-且m≠0 (三)解答题:解不等式(组): (1)52(x-2)≤x -5210(2)250360x x x -<⎧⎪+>⎨⎪-<⎩分式不等式的解法一、高考要求:会解线性分式不等式:0>++d cx b ax 或)0(0≠<++c dcx bax .二、知识要点:在分式的分母中含有未知数的不等式叫做分式不等式.线性分式不等式的一般形式为:0>++d cx b ax 或)0(0≠<++c dcx bax ,不等号也可以是“≥”或“≤”.三、典型例题: 例:解不等式:1523-+>-+x x x x .四、归纳小结:1. 分式不等式的求解可应用同解原理转化为整式不等式求解,常用的解法有: (1)转化为一次不等式组;(2)区间分析法.2. 解分式不等式的关键是利用除法运算的符号法则化成不等式组或用区间分析法. 注意:①不能按解分式方程的方法去分母;②不能忘记分母不能为零的限制. 五、基础知识训练: (一)选择题:1.满足21<x 与31->x 的x 适合的条件是( ) A.2131<<x B. 21>x C. 31-<x D. 3121-<>x x 或2.下列不等式中与xx --34≥0同解的是( )A.(x-4)(3-x)≥0B.43--x x≥0 C.)3(-x Ig ≤0 D.(x -4)(3-x)>03.不等式1212>-+x x 的解集是( )A.{x|0≤x<3}B.{x|-2<x <3}C.{x|-6≤x<3}D.{x|x <-3或x >2} 4.不等式1232+--x x x <0的解集是( ) A.{x|x <3} B.{x|1<x <3} C.{x|x <3或x≠1} D.{x|x<3且x≠1}5.不等式2)1()3(2--+x x x ≤0的解集是( )A.{x|1≤x<2}B.{x|1<x <2或x=-3}C.{x|1≤x<2或x=-3}D.{x|1≤x≤2或x=-3} 6.设a >b >c,则不等式cx b x a x ---))((≥0的解集是( )A.(-∞,c)∪[b,a)B.(c,b]∪[a,+∞)C.(c,b]∪(b,a]D.(c,a]∪[b,+∞) (二)填空题: 7.不等式1312>+-x x 的解集是 . 8.不等式)3)(4()2()1(22x x x x --+-≥0的解集是 .9.若不等式342+++x x ax ≥0的解集为{x|-3<x <-1或x≥2},则a= . (三)解答题: 10. 解下列不等式: (1) 12+<x x (2) 110<-<xx含有绝对值的不等式一、高考要求:熟练求绝对值不等式的解集. 二、知识要点:1.|x-a|(a≥0)的几何意义是x 在数轴上的对应点到a 的对应点之间的距离.2.不等式|x|≤a(a>0)的解集是{x|-a≤x≤a};不等式|x|>a(a >0)的解集是{x|x <-a 或x>a}.3.不等式|ax+b|<c(c >0)的解集是{x|-c <ax+b <c},然后解这个一次不等式,求出原不等式的解集;不等式|ax+b|>c(c >0)的解集是{x|ax+b <-c 或ax+b >c},然后解这个一次不等式,求出原不等式的解集,即这两个一次不等式的解集的并集为原不等式的解集. 三、典型例题: 例:解下列不等式:(1) |x 2-3x|>4 (2) 1≤|2x -1|<5 (3) x+|x-1|<2四、归纳小结:解绝对值不等式时,应先了解基本绝对值不等式|x|<a 、|x|>a (a >0)的解法,并把含有绝对值的不等式转化为不含绝对值的不等式. 五、基础知识训练: (一)选择题:1. 不等式|x-2|>1的解集是( )A.(1,3)B.(3,+∞)C.(-∞,1)D.(-∞,1)∪(3,+∞) 2. 不等式|2-3x|>5的解集是( )A.(-1,37) B.(37,+∞) C.(-1,+∞) D.(-∞,-1)∪(37,+∞) 3. 不等式|2-3x|≤21的解集是( )A.{x|21<x <65}B. {x|x <21或x >65}C. {x|x≤21或x≥65}D. {x|21≤x≤65}4. 已知A={x 2+x ≥5},B={x x -3<2},则A∪B 等于( ) A.{x|x≤7或x >1} B.{x| -7≤x<1} C.{x|x∈R} D.{x|x≤7或x≥3}5. 已知A={x 2-x <3},B={x 1-x >1},则A∩B 等于( ) A.{x|x <0或x >2} B.{x| -1<x <5} C.{x|-1<x <0} D.{x|-1<x <0或2<x <5} (二)填空题:6.若不等式|x-a|<b 的解集为{x|-3<x <9},则ba2log = . 7.若{x||a-2x|>b,b >0}={x|x <-5或x >4},则a 2+b= . 8.若x∈Z,则不等式382<-x 的解集是 . (三)解答题:9.设集合A={x||2x-1|≤3},B={x||x+2|<1},求集合C,使其同时满足下列三条件: (1)C ⊆[(A∪B)∩Z];(2)C 中有三个元素;(3)C∪B≠Φ.10. 解下列不等式: (1) 3<322-x ≤7 (2)123-+x x ≥1一元二次不等式的解法一、高考要求:熟练求一元二次不等式的解集.二、知识要点:三、典型例题:例1:求下列不等式的解集:2x+3>0;(4)x2+6(x+3)>3;(1)2x+3-x2>0;(2)x(x+2)-1≥x(3-x);(3)x2-3(5)3x2+5≤3x.例2:m是什么实数时,方程(m-1)x2-mx+m=0有两个不相等的实数根?例3:已知ax 2+2x+c >0的解集为2131<<-x ,试求a 、c 的值,并解不等式-cx 2+2x-a >0.四、归纳小结:解一元二次不等式的方法主要有:(1)转化为一次不等式组;(2)区间分析法;(3)配方法;(4)利用二次函数的图象. 五、基础知识训练: (一)选择题:1.(97高职-1)不等式x 2+2x+1>0的解集是( )A.ΦB.RC.{x|x= -1}D.{x|x≠-1,x∈R} 2.不等式(x 2-4x-5)(x 2+8)<0的解集是( )A.{x|-1<x <5}B.{x|x <-1或x >5}C.{x|0<x <5}D.{x|-1<x <0} 3.不等式ax 2+2x+c >0(a≠0)的解集是空集的充要条件是( )A.a <0且b 2-4ac >0 B.a <0且b 2-4ac <0 C.a <0且b 2-4ac≥0 D.a<0且b 2-4ac≤0 4.下列不等式中,解集是空集的不等式是( )A.4x 2-20x+25>0 B.2x 2-34x+6≤0 C.3x 2-3x+1>0 D.2x 2-2x+1<05.若x 2-mx+1<0,则实系数m 的取值范围为( )A.m >2或m <-2B.-2<m <2C.m≠±2D.m∈R 6.若ax 2+5x+c >0的解集是}2131{<<x x,则a+c 的值为( ) A.7 B.5 C.-5 D.-7 (二)填空题:7.已知不等式x 2+bx+c >0的解集为{x|x <3-或x >2},则b= ,c= .8.已知(m+3)x 2+(2m-1)x+2(m-1)<0对任意x∈R 都成立,则实系数m 的取值范围为 . (三)解答题:9.设集合A={x|x 2-2x-8≥0, x∈R},B={x|1-|x-a|>0, x,a∈R},A∩B=Φ,求a 的取值范围.10.不等式(a2-1)x2-(a-1)x-1<0的解是全体实数,求实数a的取值范围.11.若函数y=x2-(1+k)x-k+2的值域为非负实数,求实数k的取值范围.12.若关于x的方程x2+(a2-9)x+a2-5a+6=0的一根小于0,另一根大于2,求实数a的取值范围.不等式的应用一、高考要求:了解不等式或不等式组在解决实际问题中的应用,会列不等式或不等式组解简单的实际问题.二、知识要点:列不等式解应用题的主要步骤是:(1)设未知数;(2)根据题意,列出不等式(或不等式组);(3)解不等式(或不等式组);(4)检验结果是否符合实际,并作答.三、典型例题:例1:某渔业公司年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)该船捕捞几年开始盈利(即总收入减去总成本及所有费用为正值)?(2)该船捕捞若干年后,处理方案有两种:①当年平均盈利达到最大值时,以26万元的价格卖出;②当盈利总额达到最大值时,以8万元的价格卖出,问哪一种方案较为合算?请说明理由.例2:某种商品,现在定价每件p 元,每月售货卖出n 件,因而现在每月售货总金额为np 元.设定价上涨x 成,卖出数量减少y 成,售货总金额变成现在的z 倍.(1) 用x 和y 表示z;(2) 设y=kx,其中k 是满足0<k <1的常数,利用k 来表示当售货总金额最大时的x 值;(3) 若x y 32=,求使售货总金额有所增加时的x 的范围.四、归纳小结:应用不等式知识解应用题的关键是建立不等量关系.五、基础知识训练:(一)选择题:1.某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则( ) A.x=2b a + B.x≤2b a + C.x >2b a + D.x≥2b a + (二)填空题:2.(97高职-19)设某型号的汽车在普通路面上的刹车距离S(米)与汽车车速x(千米/时)之间的关系是20005.02x x S +=,为了避免交通事故,规定该车的刹车距离不大于10米,则该车的车速不得超过 (千米/时).3.(98高职-23)1998年世界杯足球赛组委会决定以每张25美元的单价发行普通入场券,预计可发行80万张,如果定价每张提高1美元,发行量就减少2万张,欲使门票收入不低于2000万美元,则入场券的最高定价不超过 .(三)解答题:4.(2003高职-21)(本小题满分12分)某厂若以50元的价格销售一种产品,则可以销售8000件.如果这种产品的单价每增加1元,则销售量就将减少100件.为了使这种产品的销售收入不低于420000元,那么单价的取值范围应为多少?5.工厂生产某种产品,每月固定成本10万元,而每件产品的变动成本为25元,产品销售单价为60元,若每月要获得最低利润3万元,求每月最少要销售多少件产品?。
数学一二单元知识点总结
数学一二单元知识点总结
一、数的认识
1、自然数:正整数,包括零;
2、整数:包括正整数、负整数和零;
3、有理数:包括整数和分数;
4、实数:包括有理数和无理数;
5、数轴及其运算规律。
二、代数
1、乘方;
2、根式;
3、分式;
4、整式的加减及其应用;
5、整式的乘除及其应用;
6、因式及公式。
三、方程及不等式
1、方程解的概念;
2、一元一次方程及其解法;
3、一元二次方程及其解法;
4、分式方程及其解法;
5、一元一次不等式及其解法;
6、一元二次不等式及其解法。
四、函数
1、二元一次方程组;
2、一次函数的概念及表示;
3、一次函数的性质及图象;
4、一元一次函数及其应用;
5、非线性函数及性质;
6、函数的概念;
7、反函数;
8、函数图象。
五、图形与变换
1、平面直角坐标系;
2、平面图形与坐标;
3、多边形的面积;
4、相似图形。
六、三角形
1、三角形的概念;
2、三角形的性质。
七、几何证明
1、几何证明的基本思路;
2、中学初等几何证明方法;
3、几何图形的计算。
以上是数学一二单元的知识点总结,通过学习这些知识点,可以帮助学生更好地理解和掌握数学知识,提高数学学习的能力和水平。
解不等式组,连不等式,绝对值及根式不等式
ii:向量式
a •b | a | | b |
14 排序不等式
已知 a1 ≤ a 2 ≤ a3 ≤…≤ an , b1 ≤ b2 ≤ b3 ≤…≤ bn
若 c1 , c2 , c3 , …, cn 是 b1 , b2 , b3 , …, bn 的任意一个排列,
四、解根式不等式
1.数法: 2.形法:
不等式概述
概念 性质
应用
解不等式 求最值
证不等式
不等式的性质
(一) 作用:变形化简不等式 (二) 性质:多多益善十四条 文字背诵是关键
1.基本性质 2.运算性质 3.重要的不等式
1.基本性质
①大小的定义
如果a-b是正数,那么a>b; a b a b 0 ;
法2:因 (x2-2x-2)(x2-2x-8)≤0 x2-2x-8≠0
解得 -2≤x≤1- 3. 或1 3 ≤x≤4
x≠2且x≠4
即 -2<x≤ 1- 3. 或 1 3 ≤x<4 故所求解集为{x| -2<x≤ 1- 3. 或 1 3 ≤x<4 }
三、解绝对值不等式
1.单绝对值号+右端常数型: 2.单绝对值号+右端变量型: 3.双绝对值号型:
一正二方三穿线 奇穿偶切右上方 上大下小中为等 函数简图是本质
解一元二次不等式
1.图象(标根)法:
2.公式(口诀)法:
口诀1:大于号要两头 口诀2:一正二方三大头
解分式不等式
1.“左右”去分母法
小于号要中间 无根大全小为空
2.“上下”去分母法
§151 解不等式组,连不等式,绝对值及根式不等式 一、解不等式组
整式、分式、二次根式
二次根式(二)一、考点、热点归纳在上节课中,我们讲解了部分二次根式的一些解题方法。
那么在本节课中我们将继续 学习二次根式,本节课的主要内容是练习部分题目并会给你讲解一些解题技巧,希望你在本节课中能够快速地运转你聪明的大脑,并在课后能够及时的去复习。
相信经过你的的努力,你的学习能力会获得很大的提升。
二次根式这一章在经常会在中考中出现,一般会以选择题或填空题的形式出现,偶尔会以计算题或解答题的形式出现,所以希望你重视这一章的学习。
若遇到这一章的计算题,大多数的情况下需要先将能够分解因式的分解因式,后化简就较简便。
若遇到其他类型的题,就需要运用到平时的解题方法去解答了,这类题型变化多端,但所需要的解题方法却是固定的,这就需要你平时的积累。
加油咯!二、典型例题+知识拓展例1、化简(1)221211241x x x x x x --+÷++-- (2)(a 2mn-m ab mn +m nn m )÷a 2b 2mn ; (3)(a +ba abb +-)÷(b ab a ++a ab b --ab b a +)(a ≠b )解析:请计算仔细!例2、当x =1-2时,求2222ax x a x x+-++222222ax x x a x x +-+-+221ax +的值解析:先化简,后代入求值。
例3、已知7979--=--x xx x 且x 为偶数,求132)1(22--++x x x x 的值. 解析:先求得x 的值,再化简求值。
例4、已知:223,223-=+=b a ,求:ab 3+a 3b 的值。
解析:观察式子的特点,在观察ab 的值,后运用其特点简算式子的值。
例5、已知M N==.甲、乙两个同学在18y =的条件下分别计算了M 和N 的值.甲说M 的值比N 大,乙说N 的值比M 大.请你判断他们谁的结论是正确的,并说明理由。
解析:运用平方差公式化简。
例6、已知x x y y x =-+-+7135,求2)3(|1|-+-y x 的值解析:由题先算出x 、y 的值,后计算式子的值。
初三数学知识河北石家庄
初三数学知识河北石家庄初三数学知识河北石家庄是指河北省石家庄市初中数学课程的内容和要求。
根据教育部的要求,初三数学主要包括代数、几何、函数、统计与概率等方面的知识。
其中,代数部分主要包括方程与不等式的解法、分式方程的求解、二次根式等的运算与化简、整式的运算法则、整式的因式分解等内容。
学生需要掌握各种方程、不等式的解法,理解方程的解集、不等式的解集以及它们的图像表示,还需要学会通过因式分解等方法化简和求解复杂的代数式。
几何部分主要包括平面图形和空间图形的性质与判断、平面图形和空间图形的变换、平行线与相交线的性质、三角形的性质与判定等内容。
学生需要掌握各种图形的性质与判断方法,比如圆的性质、多边形的性质、直线与平面的关系等,同时还需要学会进行图形的旋转、翻转、平移等基本变换操作,并能根据图形的特点进行判定和推理。
函数部分主要包括一次函数、二次函数和简单分段函数的表示、性质与应用等内容。
学生需要理解函数的概念和函数图像的特点,能够根据函数的表达式进行图像的绘制,并通过函数的图像分析函数的性质及其在实际问题中的应用。
统计与概率部分主要包括数据的整理与处理、统计指标的计算与解释、事件的概率计算等内容。
学生需要学会根据所给数据制作统计图表,计算统计指标,解读统计结果,并能够计算事件的概率,进行基本的概率推理。
初三数学知识的学习是学生继续深入学习数学的基础,也是培养学生数学思维和解决实际问题能力的重要环节。
希望同学们在学习初三数学知识的过程中,能够用心学习,坚持思考,灵活运用所学知识解决问题,为将来的数学学习打下坚实的基础。
整式,分式,因式分解,二次根式解题技巧
1.整式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:ba 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.2. n 都是正整数)..()n ab =再把注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项. ①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+ ④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数).单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的 322a ⨯;1=+a a ,不是).123、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4.分式一般的,用B A ,表示两个整式,B A ÷就可以表示成BA的形式.如果B 中含有字母,式子B A 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义; (3)当分子等于零而分母不等于零时,分式的值才是零.把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.B A =这个“适解:(1)b a b a b a 34124131413132-=⨯⎪⎭⎫ ⎝⎛-⎭⎝=-; (2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568yx y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcadc d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫⎝⎛(n 为整数).3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cba cbc a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:除运算,此类a 必①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式. 注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.把分母中的根号化去,叫分母有理化.如=+131)13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a .(4)b a 号里的(例烦,解:6321263212--+++--232+=.例2、计算:()()()()751755337533225++++-+++-.分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a ba +-的值.分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< , 54<<∴x .一、例1故有a 例2于是可以发现3+22=()221+,且()21363+=+,通过因式分解,分子所含的1+32-的因式就出来了。
柯西不等式、反柯西不等式与权方和不等式(解析版)
柯西不等式、反柯西不等式与权方和不等式目录01 方法技巧与总结02 题型归纳与总结题型一:柯西不等式之直接套公式型题型二:柯西不等式之根式下有正负型题型三:柯西不等式之高次定求低次型题型四:柯西不等式之低次定求高次型题型五:柯西不等式之整式与分式型题型六:柯西不等式之多变量型题型七:柯西不等式之三角函数型题型八:Aczel不等式题型九:权方和不等式之整式与分式综合型题型十:权方和不等式之三角函数型题型十一:权方和不等式之杂合型03 过关测试1.柯西不等式(Cauchy不等式)(1)二元柯西不等式:对于任意的a,b,c,d∈R,都有(ac+bd)2≤(a2+b2)(c2+d2).(2)n元柯西不等式:(a21+a22+⋯+a2n)(b21+b22+⋯+b2n)≥(a1b1+a2b2+⋯+a n b n)2,取等条件:a i=λb i或b i=λa i(i=1,2,⋯,n).2.Aczel不等式(反柯西不等式)设a1,a2,⋯,a n;b1,b2,⋯,b n均为实数,a21-a22-⋯-a2n>0或b21-b22-⋯-b2n>0,则有(a21-a22-⋯-a2n)(b21-b22 -⋯-b2n)≤(a1b1-a2b2-⋯-a n b n)2.当且仅当a k,b k 成比例时取等.3.权方和不等式(1)二维形式的权方和不等式对于任意的a ,b ,x ,y >0,都有a 2x +b 2y ≥(a +b )2x +y .当且仅当a x =by时,等号成立.(2)一般形式的权方和不等式若a i >0,b i >0,m >0,则a m +11b m 1+a m +12b m 2+⋯+a m +1nb m n ≥(a 1+a 2+⋯a n )m +1(b 1+b 2+⋯b n )m,当a i =λb i 时等号成立.题型一:柯西不等式之直接套公式型1已知x ,y ,z ∈R +且x +y +z =1则x 2+y 2+z 2的最小值是()A.1B.13C.23D.2【答案】B【解析】由柯西不等式可得:x 2+y 2+z 2 ×12+12+12 ≥x +y +z 2=1,即3x 2+y 2+z 2 ≥1所以x 2+y 2+z 2≥13,当且仅当x =y =z x +y +z =1 即x =y =z =13时取等号,故x 2+y 2+z 2的最小值为13,故选:B .2若a 21+a 22+⋯+a 2n =8,则a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1的最小值为()A.25B.8C.-8D.-25【答案】C【解析】由柯西不等式,得(a 21+a 22+⋯+a 2n -1+a 2n )(a 22+a 23+⋯+a 2n +a 21)≥(a 1a 2+a 2a 3+⋯+a n -1a n +a n a 1)2,∴(a 1a 2+a 2a 3+⋯+a n -1a n +a n a 1)2≤8×8,∴-8≤a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1≤8,当a 1a 2=a 2a 3=a 3a 4=⋯=a n -1a n =a n a 1=-1且a 21+a 22+⋯+a 2n =8时,即a 1 =a 2 =a 3 =⋯=a n -1 =a n =22nn,且a 1,a 3,a 5,⋯与a 2,a 4,a 6,⋯异号时,a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1=-8,则a 1a 2+a 2a 3+a 3a 4+⋯+a n -1a n +a n a 1的最小值为-8.选:C .3已知a ,b ,c ∈R ,满足a +2 2+b 2+c +1 2=12,则a +b +c 的最大值为()A.2B.3C.4D.6【答案】B【解析】设a +2=w ,b =v ,c +1=u ,可得w 2+v 2+u 2=12,所以a +b +c =w +v +u -3.因为w +v +u 2≤12+12+12 w 2+v 2+u 2 =36,所以-6≤w +v +u ≤6,当且仅当w =v =u =2,w +v +u 取得最大值6,此时a +2=b =c +1=2,所以a +b +c 的最大值为6-3=3.故选:B .题型二:柯西不等式之根式下有正负型1(2024·高三·山东青岛·期中)柯西不等式(Caulhy -Schwarz Lnequality )是法国数学家柯西与德国数学家施瓦茨分别独立发现的,它在数学分析中有广泛的应用.现给出一个二维柯西不等式:a 2+b 2c 2+d 2 ≥ac +bd 2,当且仅当a c =b d时等号成立.根据柯西不等式可以得知函数f x =34-3x +3x -2的最大值为()A.25 B.23 C.12 D.20【答案】A 【解析】由4-3x ≥03x -2≥0,解得23≤x ≤43,所以函数f x 的定义域为23,43,由柯西不等式得,f x =34-3x +3x -2≤32+12 4-3x +3x -2 =25,当且仅当34-3x =13x -2,即x =1115时等号成立,所以f x 的最大值为2 5.故选:A .2柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a =x 1,y 1 ,b =x 2,y 2 ,由a ⋅b≤a b 得到(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22),当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =5,则2a +2+b +3的最大值为()A.18B.9C.23D.33【答案】D【解析】因为(x 1x 2+y 1y 2)2≤(x 21+y 21)(x 22+y 22),令x 1=2,y 1=1,x 2=a +1,y 2=b +3,又a ≥0,b ≥0,a +b =5,所以2a +2+b +3 2=2⋅a +1+1⋅b +3 2≤2 2+12 ⋅a +1+b +3 =27,当且仅当2⋅b +3=1⋅a +1即a =5,b =0时等号成立,即2a +2+b +3≤33,故选:D .3(2024·浙江·模拟预测)已知x >0,y ∈R ,且x 2+xy -x +5y =30,则2-x +30-3y 的最大值为()A.3B.6C.26D.32【答案】C【解析】由x 2+xy -x +5y =30可得x 2-x -30+xy +5y =0,即x +5 x +y -6 =0.由x >0可知x +y =6,所以2-x +30-3y =2-x +12+3x =2-x +3⋅4+x .由x >0,2-x ≥0可得0<x ≤2,由柯西不等式得2-x +3⋅4+x 2≤12+3 2 ⋅2-x 2+4+x 2=24,所以2-x +3⋅4+x ≤26,当4+x3=2-x 1即x =12时,取等号.所以2-x +30-3y 的最大值为2 6.故选:C .题型三:柯西不等式之高次定求低次型1设a ,b ,c 为正数,且a 2+b 2+c 2=1,则a (a +b +c )的最大值为()A.3+12B.2+12C.32D.22【答案】A 【解析】解法一根据题意,有a (a +b +c )≤a 2+λa 2+1λb 22+μa 2+1μc22=1+λ2+μ2 a 2+12λb 2+12μc 2,其中λ,μ>0,令1+λ2+μ2=12λ=12μ,解得λ=μ=3-12,于是a (a +b +c )≤12λa 2+b 2+c 2 =3+12,等号当a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.解法二令a =cos φ,b =sin φsin θ,c =sin φcos θ,其中0≤φ≤π,0≤θ<2π,则a (a +b +c )=cos 2φ+sin φcos φ(sin θ+cos θ)≤cos 2φ+2sin φcos φ=22sin2φ+12cos2φ+12≤3+12,等号当a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.解法三根据题意,有a (a +b +c )≤a a +2b 2+c 2=a 2+2a 21-a 2=a 2-122+2⋅14-a 2-12 2+12≤3+12,等号当b 2=c 2,且14a 2-12 2=2a 2-12 2即a :b :c =(3+1):2:2时取得,因此所求最大值为3+12.故选:A .2(2024·全国·模拟预测)柯西不等式最初是由大数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的.而后来有两位数学家Buniakowsky 和Schwarz 彼此独立地在积分学中推而广之,才能将这一不等式应用到近乎完善的地步.该不等式的三元形式如下:对实数 a 1,a 2,a 3 和 b 1,b 2,b 3 ,有a 21+a 22+a 23b 21+b 22+b 23 ≥a 1b 1+a 2b 2+a 3b 3 2等号成立当且仅当a 1b 1=a 2b 2=a 3b 3已知 x 2+y 2+z 2=14 ,请你用柯西不等式,求出 x +2y +3z 的最大值是()A.14 B.12C.10D.8【答案】A【解析】由题干中柯西不等式可得x +2y +3z 2≤x 2+y 2+z 2 12+22+32 =14×14=196,所以x +2y +3z 的最大值为14,当且仅当x =1,y =2,z =3时取等号.故选:A3已知实数a i i =1,2,3,4,5 满足(a 1-a 2)2+(a 2-a 3)2+(a 3-a 4)2+(a 4-a 5)2=1,则a 1-2a 2-a 3+2a 5的最大值是()A.22B.25C.5D.10【答案】D【解析】设c =a 1-a 2,b =a 2-a 3,c =a 3-a 4,d =a 4-a 5,则条件为a 2+b 2+c 2+d 2=1,所以a 1-2a 2-a 3+2a 5=a -b -2c -2d≤12+-1 2+-2 2+-2 2⋅a 2+b 2+c 2+d 2=10,等号当a 1=b -1=c -2=d-2且a >0时取得,因此所求代数式的最大值为10.故选:D题型四:柯西不等式之低次定求高次型1若实数a ,b ,c ,d 满足ab +bc +cd +da =1,则a 2+2b 2+3c 2+4d 2的最小值为()A.1B.2C.3D.以上答案都不对【答案】B【解析】根据题意,有ab +bc +cd +da =1⇒(a +c )(b +d )=1,而a 2+3c 2 1+13 ≥a +c 2,当且仅从a =3c 时等号成立.同理2b 2+4d 2 12+14≥b +d 2,当且仅当2b =4d 式等号成立,记题中代数式为M ,于是M =a 2+3c 2+2b 2+4d 2≥(a +c )21+13+(b +d )212+14=34(a +c )2+43(b +d )2≥2(a +c )(b +d )=2,等号当ac =3,bd =2,⇒a :b :c :d =3:2:1:1a +c b +d =43,时取得,因此所求代数式的最小值为2.故选:B .2已知空间向量OA =1,12,0 ,OB =1,2,0 ,OC =0,1,12,OP=xOA +yOB +zOC ,且x +2y +z =2,则OP的最小值为()A.2B.3C.2D.4【答案】B【解析】因为OP =xOA +yOB +zOC =x 1,12,0 +y 1,2,0 +z 0,1,12 =x +y ,12x +2y +z ,12z ,所以OP 2=x +y 2+12x +2y +z 2+12z 2=13x +y 2+12x +2y +z 2+12z 2 1+1+1 ≥13x +y +12x +2y +z +12z 2=1332x +3y +32z 2=34x +2y +z 2=3,当且仅当x +y =12x +2y +z =12z 时等号成立,即x =2,y =-1,z =2时等号成立.所以OP ≥3,所以OP 的最小值为 3.故选:B3已知a ,b ,c 为实数,且a +b +c =5,则a 2+2b 2+c 2的最小值为()A.5B.1C.2D.52【答案】C【解析】由三维柯西不等式:a 12+a 22+a 32 b 12+b 22+b 32 ≥a 1b 1+a 2b 2+a 2b 22当且仅当a 1b 1=a 2b 2=a3b 3时取等,所以12+22 2+12 a 2+2b 2+c 2 ≥1×a +22×2b +c ×1 2=a +b +c 2=5所以a 2+2b 2+c 2≥552=2,当且仅当a 1=2b 22=c1时取等,所以a 2+2b 2+c 2的最小值为:2故选:C题型五:柯西不等式之整式与分式型1(2024·高三·浙江台州·期末)已知正实数a ,b 满足a +2b =1,则a 4b+32b 4a 的最小值为.【答案】12/0.5【解析】由柯西不等式a 4b +32b 4a =a 4b+32b 4a(2b +a )≥(2a 2+42b 2)2=2(a 2+4b 2)2而a 2+4b 2=12(a 2+4b 2)(1+1)≥12(a +2b )2=12,所以a 4b+32b 4a ≥2a 2+4b 2 2≥12,a =12,b =14时等号成立,故答案为:12.2已知a 、b 、c ∈R +,且满足a +2b +3c =1,则1a +12b+13c 的最小值为.【答案】9【解析】因为a 、b 、c ∈R +,且满足a +2b +3c =1,所以,1a +12b +13c =a +2b +3c 1a +12b+13c ≥a a +2b 2b +3c 3c2=9,当且仅当a =2b =3c =13时,等号成立,故1a +12b+13c 的最小值为9.故答案为:9.3已知a ,b ,c ∈(0,1),且ab +bc +ac =1,则11-a +11-b +11-c 的最小值为()A.3-32B.9-32C.6-32D.9+332【答案】D【解析】因为a ,b ,c ∈(0,1)且ab +bc +ac =1,∴(a +b +c )2≥3(ab +bc +ca )=3,∴a +b +c ≥3,因为11-a +11-b +11-c (1-a +1-b +1-c )≥1+1+12所以11-a +11-b +11-c ≥9(1-a +1-b +1-c )≥93-3=9+332,当且仅当a =b =c =33时,11-a +11-b+11-c 的最小值为9+332.故选:D .题型六:柯西不等式之多变量型1已知x ,y ,z >0且x +y +z =1,a ,b ,c 为常数,则a 2x +b 2y +c 2z 的最小值为()A.a 2+b 2+c 2B.3a 2+b 2+c 2C.(a +b +c )3D.前三个答案都不对【答案】D【解析】根据柯西不等式,有a 2x +b 2y +c 2z ≥(a +b +c )2x +y +z=(a +b +c )2,等号当a x =b y =cz >0时取得,因此所求最小值为(a +b +c )2.故选:D .2已知实数a ,b ,c ,d ,e 满足a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16, 则e 的取值范围是()A.[-2,2]B.[0,1]C.[0,2)D.以上答案都不对【答案】D【解析】根据柯西不等式,有-4⋅a 2+b 2+c 2+d 2≤a +b +c +d ≤4⋅a 2+b 2+c 2+d 2,从而|8-e |≤216-e 2⇒0≤e ≤165,因此e 的取值范围是0,165.故选:D .3已知a ,b ,c ∈R +,且(a +b -c )1a +1b -1c =3,则a 4+b 4+c 4 1a 4+1b 4+1c4的最小值是()A.417+2403B.417-2403C.417D.以上答案都不对【答案】A【解析】由(a +b -c )1a +1b -1c =3可得a 2+b 2ab ×1a +b =c ×1ab+1c ,由对称性可设ab =1,则条件即(a +b -c )a +b -1c =3即c +1c =a 2+b 2a +b,从而a 2+b 2a +b≥2⇒a +b ≥1+3,根据柯西不等式a 4+b 4+c 4 a 4+b 4+1c4≥a 4+b 4+1 2=(a +b )4-4(a +b )2+32≥417+2403,等号当c =1,a +b =1+3时取得.因此所求最小值为417+2403.故选:A .题型七:柯西不等式之三角函数型1函数3+23cos θ+cos 2θ+5-23cos θ+cos 2θ+4sin 2θ的最大值为()A.2+3B.22+3C.2+23D.前三个答案都不对【答案】D【解析】题中代数式为3+cos θ+10-(3cos +1)2=3cos θ+13+10-(3cos θ+1)2+23≤13+1×10+23=210+23,等号当10-(3cos θ+1)23cos θ+1=3⇒cos θ=10-223时可以取得,因此所求最大值为210+23.故选:D .2(2024·浙江·一模)若sin x +cos y +sin x +y =2,则sin x 的最小值是()A.0 B.2-3 C.3-7 D.12【答案】C【解析】由已知sin x +cos y +sin x cos y +cos x sin y =2整理得2-sin x =sin x +1 cos y +cos x sin y ,由柯西不等式得sin x +1 cos y +cos x sin y ≤1+sin x2+cos 2x ⋅cos 2y +sin 2y =2+2sin x ,当sin x +1 sin y =cos y cos x 时取等号,所以2-sin x 2≤2+2sin x ,即sin 2x -6sin x +2≤0,解得3-7≤sin x ≤1,所以sin x 的最小值为3-7.故选:C .3函数y =2cos x +31-cos2x 的最大值为()A.22B.5C.4D.13【答案】A【解析】利用柯西不等式进行求最值.y =2cos x +31-cos2x =2cos x +32sin 2x ≤cos 2x +sin 2x 22+(32)2=22当且仅当cos x sin 2x=232,即tan x =±322时,函数有最大值22.故选:A .题型八:Aczel 不等式1f (x )=5x -4-x -4的最小值为.【答案】855【解析】f (x )=5x -4-x -4=5⋅x -45-1⋅x -4≥(5-1)x -45-(x -4) =4×165=85当且仅当x -45x -4=51即x =245时取等号,故f (x )=5x -4-x -4的最小值为855.2为提高学生的数学核心素养和学习数学的兴趣,学校在高一年级开设了《数学探究与发现》选修课.在某次主题是“向量与不等式”的课上,学生甲运用平面向量的数量积知识证明了著名的柯西不等式(二维);当向量a =x 1,y 1 ,b =x 2,y 2 时,有a ⋅b 2≤a 2b 2,即x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时等号成立;学生乙从这个结论出发.作一个代数变换,得到了一个新不等式:x 1x 2-y 1y 2 2≥x 21-y 21 x 22-y 22 ,当且仅当x 1y 2=x 2y 1时等号成立,并取名为“类柯西不等式”.根据前面的结论可知:当x∈R 时,12x 2+1-2x 2+1的最小值是.【答案】-1【解析】由题意得12x 2+1-2x 2+1=12x 2+1-42x 2+2,则12x 2+1-42x 2+22x 2+1 -2x 2+2 =12x 2+1 2-22x 2+222x 2+1 2-2x 2+2 2 ≤12x 2+1⋅2x 2+1-22x 2+2⋅2x 2+22=1,当且仅当12x 2+1⋅2x 2+2=22x 2+2⋅2x 2+1,即x =0时,等号成立,即12x 2+1-42x 2+2 2x 2+1 -2x 2+2≤1,则-12x 2+1-42x 2+2≤1,所以12x 2+1-2x 2+1=12x 2+1-42x 2+2≥-1,最小值为-1,此时x =0.故答案为:-1.题型九:权方和不等式之整式与分式综合型1已知正数x ,y ,z 满足x +y +z =1,则x 2y +2z +y 2z +2x +z 2x +2y的最小值为【答案】13【解析】因为正数x ,y 满足x +y +z =1,所以x 2y +2z +y 2z +2x +z 2x +2y ≥x +y +z 2y +2z +z +2x +x +2y =13,当且仅当x y +2z =y z +2x =z x +2y 即x =y =z =13时取等号.故答案为:13.2权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =b y 时等号成立.根据权方和不等式,函数f (x )=2x+91-2x 0<x <12 的最小值为()A.16 B.25 C.36 D.49【答案】B【解析】因a ,b ,x ,y >0,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时等号成立,又0<x <12,即1-2x >0,于是得f (x )=222x +321-2x ≥(2+3)22x +(1-2x )=25,当且仅当22x =31-2x ,即x =15时取“=”,所以函数f (x )=2x +91-2x 0<x <12的最小值为25.故选:B3已知a ,b ,c 为正实数,且满足a +4b +9c =4,则1a +1+1b +1+1c +1的最小值为.【答案】2【解析】由权方和不等式,可知1a +1+1b +1+1c +1=1a +1+44b +4+99c +9≥1+2+3 2a +1 +4+4b +9c +9=3618=2,当且仅当a =2,b =12,c =0时等号成立,所以1a +1+1b +1+1c +1的最小值为2.故答案为:2.题型十:权方和不等式之三角函数型1已知正实数x 、y 且满足x +y =1,求1x 2+8y2的最小值.【答案】27【解析】设x =cos 2α,y =sin 2α,α∈0,π2,由权方和不等式,可知1x 2+8y 2=13cos 2α 2+23sin 2α 2≥1+2 3cos 2α+sin 2α2=27,当且仅当1cos 2α=2sin 2α,即x =13,y =23时取等号,所以1x 2+8y2的最小值为27.故答案为:272已知θ为锐角,则1sin θ+8cos θ的最小值为.【答案】55【解析】1sin θ+8cos θ=132sin 2θ12+432cos 2θ12≥1+432sin 2θ+cos 2θ12=532=55当且仅当1sin 2θ=4cos 2θ即sin θ=55,cos θ=255时取“=”.故答案为:553(2024·四川·模拟预测)“权方和不等式”是由湖南理工大学杨克昌教授于上世纪80年代初命名的.其具体内容为:设a n >0,b n >0,n ∈N *,m >0,则a m +11b m 1+a m +12b m 2+a m +13b m 3+⋯+a m +1n b m n≥a 1+a 2+a 3+⋯+a nm +1b 1+b 2+b 3+⋯+b nm,当且仅当a 1b 1=a 2b 2=a 3b 3=⋯=a n b n 时,等号成立.根据权方和不等式,若x ∈0,π2 ,当33sin x +1cos x 取得最小值时,x 的值为()A.π12B.π6C.π3D.5π12【答案】C【解析】由题意得,sin x >0,cos x >0,则33sin x +1cos x =332sin 2x12+132cos 2x12≥(3+1)32sin 2x +cos 2x12=432=8,当且仅当3sin 2x =1cos 2x,即cos x =12时等号成立,所以x =π3.故选:C .题型十一:权方和不等式之杂合型1已知x ,y >0,1x +22y =1,则x 2+y 2的最小值是.【答案】33【解析】由题意得,1=1x +22y=132x 212+232y 212≥1+232x 2+y 212=33x 2+y 2.(权方和的一般形式为:a m +11b m 1+a m +12b m 2+a m +13b m 3+⋯+a m +1nb m n ≥a 1+a 2+a 3+⋯+a n m +1b 1+b 2+b 3+⋯+b nm,a i >0,b i >0,当且仅当a i =λb i 时等号成立)当1x 2=2y 21x+22y =1,即x =3,y =32时,x 2+y 2取得最小值33.故答案为:332已知x +2y +3z +4u +5v =30,求x 2+2y 2+3z 2+4u 2+5v 2的最小值为【答案】60【解析】x 2+2y 2+3z 2+4u 2+5v 2=x 21+2y 22+3z 23+4u 24+5v 25≥x +2y +3z +4u +5v 21+2+3+4+5=30215=60当且仅当x =y =z =u =v 时取等号故答案为:603求f x =x 2-3x +2+2+3x -x 2的最大值为【答案】22【解析】f (x )=x 2-3x +2+2+3x -x 2=x 2-3x +2121-12+2+3x -x 2121-12≤x 2-3x +2+2+3x -x 2 121+1-12=22当且仅当x 2-3x +2=2+3x -x 2,即x =0或x =3时取等号故答案为:2 2.1(2024·吉林白山·一模)权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设正数a ,b ,x ,y ,满足a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时,等号成立.则函数f x =3x +161-3x 0<x <13 的最小值为()A.16 B.25 C.36 D.49【答案】D【解析】因为a ,b ,x ,y ,则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =by时等号成立,又0<x <13,即1-3x >0,于是得f x =323x +421-3x ≥3+4 23x +1-3x =49,当且仅当1x =41-3x ,即x =17时取“=”,所以函数的f x =3x +161-3x 0<x <13最小值为49.故选:D2已知a ,b ,c 均大于1,log a 3+log b 9+log c 27=12,则ab 2c 3的最小值为()A.243B.27C.81D.9【答案】B【解析】由log a 3+log b 9+log c 27=12得log a 3+2log b 3+3log c 3=12,所以log 3ab 2c 3 =log 3a +log 3b 2+log 3c 3=log 3a +2log 3b +3log 3c =112log 3a +2log 3b +3log 3c log a 3+2log b 3+3log c 3 ≥112log 3a ⋅log a 3+2log 3b ⋅2log b 3+3log 3c ⋅3log c 3 2=1121+2+3 2=3,当且仅当log 3a log a 3=log 3b log b 3=log 3clog c 3时取等,所以log 3ab 2c 3 ≥3=log 327,所以ab 2c 3≥27,即ab 2c 3的最小值为27,故选:B3(2024·福建·模拟预测)设p 、q ∈R +,x ∈0,π2,则psin x+qcos x的最小值是()A.p 35+q 3553B.p 45+q4554C.p 12+q 122D.p 14+q144【答案】B【解析】设f =psin x+q cos x,因为x ∈0,π2 ,则0<sin x <1且0<cos x <1,因为sin 2x +cos 2x =1,构造数字式5=1+4=1+4p f sin x +qf cos x=4pf sin x+sin 2x+4qf cos x+cos 2x≥55p f sin x4⋅sin 2x +55q f cos x4⋅cos 2x =5⋅5p 4+5q 45f4,所以,5f 4≥5p 4+5q 4=p 45+q 45,故f ≥p 45+q 4554,当且仅当p f sin x =sin 2xq f cos x=cos 2x,即当tan x =pq25时,等号成立,因此,psin x+q cos x的最小值是p 45+q 45 54.故选:B .4由柯西不等式,当x +2y +z =4时,求x +y +z 的最大值为()A.10 B.4C.2D.10【答案】D【解析】由柯西不等式,得(x +2y +z )(4+2+4)≥(2x +2y +2z )2,当且仅当x 4=2y 2=z 4,即x =z =82,y =25时,等号成立.因为x +2y +z =4,所以(x +y +z )2≤10,则x +y +z ≤10,故x +y +z 的最大值为10.故选:D5已知3x +2y +z =3,则x 2+y 2+2z 2的取最小值时,xyz 为()A.7B.83C.3D.73【答案】B【解析】由柯西不等式得:3=3x +2y +z ≤32+22+122⋅x 2+y 2+2z 2则x 2+y 2+2z 2≥23.则根据等号成立条件知3x +2y +z =33x =2y =12z⇒x =23,y =49,z =19,所以xy z =23×4919=83故选:B6已知:a 2+b 2=1,x 2+y 2=1,则ax +by 的取值范围是()A.0,2B.-1,1C.-2,2D.0,1【答案】B【解析】利用柯西不等式,可得1≥ax +by 2,解不等式即可.解:利用柯西不等式,得a 2+b 2=1,1=a 2+b 2 x 2+y 2 ≥ax +by 2,解得-1≤ax +by ≤1.故选:B7实数x 、y 满足3x 2+4y 2=12,则z =2x +3y 的最小值是()A.-5B.-6C.3D.4【答案】A【解析】∵实数x 、y 满足3x 2+4y 2=12,∴x 24+y 23=1,∴x 24+y 2316+9 ≥2x +3y 2,-5≤2x +3y ≤5,当且仅当33x =8y 时取等号,∴z =2x +3y 的最小值是-5.故选:A .8已知a ,b >0,a +b =5,则a +1+b +3的最大值为()A.18B.9C.32D.23【答案】C【解析】由题意,a +1+b +3 2≤1+1 a +1+b +3 =18,当且仅当a +1=b +3时等号成立,∴当a =72,b =32时,故a +1+b +3的最大值为3 2.故选:C .9若实数x +2y +3z =1,则x 2+y 2+z 2的最小值为()A.14B.114C.29D.129【答案】B【解析】根据柯西不等式:x 2+y 2+z 2 1+4+9 ≥2+2y +3z =1,即x 2+y 2+z 2≥114,当且仅当x =114,y =17,z =314时等号成立.故选:B .10函数y =x 2-2x +3+x 2-6x +14的最小值是A.10B.10+1C.11+210D.210【答案】B【解析】y =x 2-2x +3+x 2-6x +14=(x -1)2+2+(3-x )2+5根据柯西不等式,得y 2=(x -1)2+2+(3-x )2+5+2(x -1)2+2 (3-x )2+5 ≥(x -1)2+2+(3-x )2+5+2[(x -1)(3-x )+10]=[(x -1)+(3-x )]2+2+5+210=11+210当且仅当x -13-x =25,即x =210-13时等号成立.此时,y min =11+210=10+1 2=10+1,故选:B .11若x 2+4y 2+9z 2=4,则x +y +3z 的最大值()A.3B.6C.9D.27【答案】A【解析】根据柯西不等式可得:(x +2y +3z )2≤(x 2+4y 2+9z 2)12+12 2+12=4×94=9∴x +y +3z ≤3,当且仅当x =4y =3z ,即x =43,y =13,z =49时,等号成立.故选:A .12函数y =x -5+26-x 的最大值是()A.3B.5C.3D.5【答案】B【解析】利用柯西不等式求解.因为y =x -5+26-x ≤x -52+6-x 2 12+22 =5当且仅当x -5=6-x 2,即x =265时,取等号.故选:B13已知a 21+a 22+⋯+a 2n =1,x 21+x 22+⋯+x 2n =1,则a 1x 1+a 2x 2+⋯+a n x n 的最大值是()A.1B.2C.3D.4【答案】A【解析】利用柯西不等式求解.a 1x 1+a 2x 2+⋯+a n x n 2≤a 21+a 22+⋯+a 2n x 21+x 22+⋯+x 2n =1×1=1,当且仅当x 1a 1=x 2a 2=⋯=xn a n=1时取等号.∴a 1x 1+a 2x 2+⋯+a n x n 的最大值是1故选:A14函数f x =1-cos2x +cos x ,则f x 的最大值是()A.3B.2C.1D.2【答案】A【解析】将f x 化为f x =2sin 2x +cos x ,利用柯西不等式即可得出答案.因为f x =1-cos2x +cos x所以f x =2sin 2x +cos x ≤2+1 sin2x +cos 2x =3当且仅当cos x =33时取等号.故选:A15(2024·高三·河北衡水·期末)已知a ,b ,c >0,且a +b +c =1,则3a +1+3b +1+3c +1的最大值为()A.3B.32C.18D.9【答案】B【解析】由柯西不等式得:3a +1+3b +1+3c +1 2≤12+12+12 3a +1 2+3b +1 2+3c +1 2=3×3a +b +c +3 =18,所以3a +1+3b +1+3c +1≤32,当且仅当a =b =c =13时,等号成立,故选B .16已知x ,y 均为正数,且x +y =2,则x +4xy +4y 的最大值是()A.8 B.9 C.10D.11【答案】C【解析】x +4xy +4y =x +2y 2≤x +2y 2+2x -y 2=5x +y =10当且仅当2x =y ,即x =25,y =85时,等式成立.故选:C17(2024·广西南宁·二模)设实数a ,b ,c ,d ,e 满足关系:a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16,则实数e 的最大值为A.2 B.165C.3D.25【答案】B【解析】根据柯西不等式知:4(a 2+b 2+c 2+d 2)=(1+1+1+1)(a 2+b 2+c 2+d 2)≥(a +b +c +d )2,当且仅当a =b =c =d 时等号成立,所以4(16-e 2)≥(8-e )2,即64-4e 2≥64-16e +e 2,所以5e 2-16e ≤0,解得0≤e ≤165,即实数e 的最大值为165.故选:B .18(2024·山西·二模)柯西不等式是数学家柯西(Cauchy )在研究数学分析中的“流数”问题时得到的一个重要不等式,而柯西不等式的二维形式是同学们可以利用向量工具得到的:已知向量a=x 1,y 1 ,b =x 2,y 2 ,由a ⋅b ≤a b 得到x 1x 2+y 1y 2 2≤x 21+y 21 x 22+y 22 ,当且仅当x 1y 2=x 2y 1时取等号.现已知a ≥0,b ≥0,a +b =9,则2a +4+b +1的最大值为.【答案】6【解析】令x 1=2,y 1=1,x 2=a +2,y 2=b +1,又a ≥0,b ≥0,a +b =9,所以2a +4+b +1 2≤2+1 a +2+b +1 =3×12=36,所以2a +4+b +1≤6,当且仅当2⋅b +1=a +2,即a =6,b =3时取等号,所以2a +4+b +1的最大值为6.故答案为:619若不等式x +y ≤k 5x +y 对任意正实数x ,y 都成立,则实数k 的最小值为.【答案】305/1530【解析】由柯西不等式的变形可知5x +y =x 215+y21≥x +y 15+1,整理得x +y 5x +y ≤305,当且仅当x15=y1,即y=25x时等号成立,则k的最小值为30 5.故答案为:30 520已知x,y,z>0,且x+y+z=9,则x2+4y2+z2的最小值为.【答案】36【解析】由柯西不等式可得x2+4y2+z212+122+12≥(x+y+z)2,所以94x2+4y2+z2≥81,即x2+4y2+z2≥36,当且仅当x1=2y12=z1即x=4y=z也即x=4,y=1,z=4时取得等号,故答案为:36.21(2024·高三·江苏苏州·开学考试)设角α、β均为锐角,则sinα+sinβ+cosα+β的范围是.【答案】1,3 2【解析】因为角α、β均为锐角,所以sinα,cosα,sinβ,cosβ的范围均为0,1,所以sinα+β=sinαcosβ+cosαsinβ<sinα+sinβ,所以sinα+sinβ+cosα+β>sinα+β+cosα+β=2sinα+β+π4因为0<α<π2,0<β<π2,π4<α+β+π4<3π4,所以2sinα+β+π4>2×22=1,sinα+sinβ+cosα+β=sinα+sinβ+cosαcosβ-sinαsinβ=1-sinβsinα+cosαcosβ+sinβ≤1-sinβ2+cos2β+sinβ=21-sinβ+sinβ,当且仅当1-sinβcosα=sinαcosβ时取等,令1-sinβ=t,t∈0,1,sinβ=1-t2,所以=21-sinβ+sinβ=2t+1-t2=-t-2 22+32≤32.则sinα+sinβ+cosα+β的范围是:1,3 2.故答案为:1,3 222在锐角△ABC中,tan A tan B+2tan B tan C+3tan C tan A的最小值是.【答案】6+22+23+26【解析】记题中代数式为M,我们熟知三角形中的三角恒等式:cot A cot B+cot B cot C+cot C cot A=1,于是M=tan A tan B+2tan B tan C+3tan C tan A≥(1+2+3)2cot A cot B+cot B cot C+cot C cot A=(1+2+3)2=6+22+23+26,等号当tan A tan B=2tan B tan C=3tan C tan A⇒tan A:tan B:tan C=2:3:1时取得,因此所求最小值为6+22+23+26故答案为:6+22+23+2623函数f (x )=2020-x +x -2010的最大值与最小值之积为.【答案】102【解析】函数f (x )的定义域为[2010,2020],一方面,2020-x +x -2010≥(2020-x )+(x -2010)=10,等号当x =2010,2020时取得;另一方面,2020-x +x -2010≤2⋅(2020-x )+(x -2010)=20,当且仅当x =2015时等号成立,于是最大值为20,最小值为10,所求乘积为102.故答案为:10 2.24(2024·高三·天津南开·期中)已知正实数a ,b 满足a +b =1,则1a +2a b +1的最小值为.【答案】52/2.5【解析】由题设,a =1-b ,则1a +2a b +1=1a +2-2b b +1=1a +4b +1-2,又(a +b +1)1a +4b +1 =a ⋅1a +b +1⋅2b +12=9,∴1a +4b +1≥92,当且仅当a =b +12时等号成立,∴1a +2a b +1≥92-2=52,当且仅当a =b +12=23时等号成立.∴1a +2a b +1的最小值为52.故答案为:52.25已知a >1,b >1,则a 2b -1+b 2a -1的最小值是.【答案】8【解析】令a +b -2=t >0,则a 2b -1+b 2a -1≥a +b 2a +b -2=t +2 2t =t +4t +4≥24+4=8,当a +b -2=2a b -1=ba -1时,即a =2,b =2时,两个等号同时成立,原式取得最小值8.故答案为:826已知x >0,y >0,且12x +y +1y +1=1,则x +2y 的最小值为.【答案】3+12【解析】解法一:设x +2y =λ1(2x +y )+λ2(y +1)+t ,可解得λ1=12,λ2=32,t =-32,从而x +2y =12(2x +y )+32(y +1)-32=12(2x +y )+32(y +1) 12x +y +1y +1-32≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.解法二:考虑直接使用柯西不等式的特殊形式,即权方和不等式:a 2x +b 2y ≥(a +b )2x +y,1=12x +y +33y +3≥(1+3)22x +4y +3⇒2x +4y +3≥4+23,所以x +2y ≥3+12,当且仅当x =12+33,y =33时取等号.故答案为:3+12.。
整式、分式、二次根式
中考总复习:整式与因式分解—知识讲解【知识梳理】考点一、整式1.单项式数与字母的积的形式的代数式叫做单项式.单项式是代数式的一种特殊形式,它的特点是对字母来说只含有乘法的运算,不含有加减运算.在含有除法运算时,除数(分母)只能是一个具体的数,可以看成分数因数.单独一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式几个单项式的代数和叫做多项式.也就是说,多项式是由单项式相加或相减组成的.要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.(4)把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.3.整式单项式和多项式统称整式.4.同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类项.5.整式的加减整式的加减其实是去括号法则与合并同类项法则的综合运用.6.整式的乘除①幂的运算性质:②单项式相乘:两个单项式相乘,把系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式. ③单项式与多项式相乘: ④多项式与多项式相乘:平方差公式: 完全平方公式:⑤单项式相除:两个单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.⑥多项式除以单项式:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.考点二、因式分解 1.因式分解把一个多项式化成几个整式的积的形式,这样的式子变形叫做把这个多项式因式分解. 2.因式分解常用的方法(1)提取公因式法:)(c b a m mc mb ma ++=++ (2)运用公式法:平方差公式:))((22b a b a b a -+=-;完全平方公式:222)(2b a b ab a ±=+± (3)十字相乘法:))(()(2b x a x ab x b a x ++=+++(4)分组分解法:将多项式的项适当分组后能提公因式或运用公式分解. 3.因式分解的一般步骤(1)如果多项式的各项有公因式,那么先提公因式;(2)提出公因式或无公因式可提,再考虑可否运用公式或十字相乘法; (3)最后考虑用分组分解法及添、拆项法.【典型例题】类型一、整式的有关概念及运算若单项式是同类项,则的值是 .下列各式中正确的是( )A. B.a 2·a 3=a 6C.(-3a 2)3=-9a 6D.a 5+a 3=a 8【变式】下列运算正确的是 ( )A .B .C .D .【变式】下列运算中,计算结果正确的个数是( ).(1)a 4·a 3=a 12; (2)a 6÷a 3=a 2; (3)a 5+a 5=a 10; (4)(a 3)2=a 9; (5)(-ab 2)2=ab 4; (6) 利用乘法公式计算:(1)(2x-3y)(2x+3y) (2) (3a-6b)2(3)(a+b+c)2(4)(2a 2-3b 2+2)(2-2a 2+3b 2) (5)(m-3)(m+5)若多项式x 2+ax+8和多项式x 2﹣3x+b 相乘的积中不含x 2、x 3项,求(a ﹣b )3﹣(a 3﹣b 3)的值.如果a 2+ma+9是一个完全平方式,那么m=______. 已知 a+b=5,ab=3,求代数式的值 (1)a 2+b2(2) a ﹣b⋅=-22212x x已知25mx=,求6155m x -的值. 已知2a x =,3b x =.求32a b x +的值.类型二、因式分解因式分解(1)9x 2﹣81 (3)3x (a ﹣b )﹣6y (b ﹣a ) (4)6mn 2﹣9m 2n ﹣n 3.(4)(2x+y )2﹣(x+2y )2 (5)﹣8a 2b+2a 3+8ab 2. (6)多项式222225x xy y y -+++的最小值是____________.【变式】多项式的最小值是____________. 把3443ax by ay bx +++分解因式.【变式1】分解因式:22244a b ab c +--16x 2-(x 2+4)2;.4412+-x 22212-+-x x 4322+-x x 22233y xy y x x ++--类型三、因式分解与其他知识的综合运用已知a 、b 、c 是△ABC 的三边的长,且满足: a 2+2b 2+c 2-2b(a+c)=0,试判断此三角形的形状.【变式】已知,则xy= .【变式】若△ABC 的三边长分别为a 、b 、c ,且满足222166100a b c ab bc --++=, 求证:2a c b +=.【变式】已知,求的值. 【变式】【变式】321=+xx 441x x +0102622=+++-y y x x 的值,,求已知1013422+=+-x x x x 的值,,求代数式满足已知yx xy y x y x y x ++=++245,22中考总复习:分式与二次根式—知识讲解【知识网络】【考点梳理】考点一、分式的有关概念及性质1.分式设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义.2.分式的基本性质(M为不等于零的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.考点二、分式的运算1.基本运算法则分式的运算法则与分数的运算法则类似(1)加减运算(2)乘法运算(3)除法运算(4)乘方运算(b≠0)2.零指数.3.负整数指数4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.5.约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.(公因式是分子、分母系数的最大公约数和相同字母最低次幂的积.)6.通分根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.确定最简公分母的方法:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母因式的最高次幂的积. 考点三、分式方程及其应用 1.分式方程的概念分母中含有未知数的方程叫做分式方程. 2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程. 3.分式方程的增根问题(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根;(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解. 4.分式方程的应用考点四、二次根式的主要性质;2.;(0)||(0)a a a a a ≥⎧==⎨-<⎩;4. 积的算术平方根的性质:00)a b =≥≥,;5. 商的算术平方根的性质:00)a b =≥>,. 6.若0a b >≥>.考点五、二次根式的运算 1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (3)乘法公式的推广:123123(0000)n n n a a a a a a a a a ⋅=⋅⋅⋅⋅≥≥≥≥,,,,2.二次根式的加减运算先化为最简二次根式,再类比整式加减运算,明确二次根式加减运算的实质; 3.二次根式的混合运算0(0)a ≥≥2(0)a a =≥二次根式的混合运算与整式、分式的混合运算有很多相似之处,整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用. 4.分母有理化把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式: (1(2)a a +-互为有理化因式;一般地a a +-(3. 【典型例题】类型一、分式的意义及性质使代数式有意义的的取值范围是( ) A. B. C.且 D.一切实数 【变式】当x 取何值时,分式12922---x x x 有意义?值为零?【变式】若分式mx x +-212不论x 取何实数总有意义,则m 的取值范围是 .类型二、分式的运算.31211222=⎪⎭⎫⎝⎛+-÷++-x x x x x x ,其中先化简,再求值:12-x xx 0≥x 21≠x 0≥x 21≠x【变式】化简:•..211-134422++⎪⎭⎫ ⎝⎛++÷++-x x x x x x x 化简:已知,求下列各式的值. (1); (2).【变式】已知求的值.已知求的值.14x x+=221x x +2421x x x ++111,a b a b +=+b a a b +,b c c a a b a b c+++==()()()abc a b b c c a +++【变式】已知求的值.类型四、分式方程及应用如果方程 有增根, 那么增根是 . a 为何值时,关于x 的分式方程会产生增根?【变式】a 为何值时,关于x 的分式方程的解为正数?为创建“国家卫生城市”,进一步优化市中心城区的环境,德州市政府拟对部分路段的人行道地砖、花池、排水管道等公用设施全面更新改造,根据市政建设的需要,须在60天内完成工程.现在甲、乙两个工程队有能力承包这个工程.经调查知道:乙队单独完成此项工程的时间比甲队单独完成多用25天,甲、乙两队合作完成工程需要30天,甲队每天的工程费用2500元,乙队每天的工程费用2000元.(1)甲、乙两个工程队单独完成各需多少天?(2)请你设计一种符合要求的施工方案,并求出所需的工程费用.111111111,,,6915a b b c a c +=+=+=abc ab bc ac++11322x x x-+=--223242ax x x x +=--+223242ax x x x +=--+【变式】莱芜盛产生姜,去年某生产合作社共收获生姜200吨,计划采用批发和零售两种方式销售.经市场调查,批发每天售出6吨.受天气、场地等各种因素的影响,需要提前完成销售任务.在平均每天批发量不变的情况下,实际平均每天的零售量比原计划增加了2吨,结果提前5天完成销售任务.那么原计划零售平均每天售出多少吨?甲.乙两人准备整理一批新到的实验器材.若甲单独整理需要40分钟完工:若甲.乙 共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?【变式】小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得( )A .B .C .D . 类型五、二次根式的定义及性质要使式子有意义,则a 的取值范围为 . 00253010(18060x x -=+)00253010(180x x -=+)00302510(18060x x -=+)00302510(180x x-=+)a a 2+若x-3+x-y+1=0,计算322x y+xy +4y . (1)当x 的值最小?最小值是多少? (2)的最小值是是整数,则若m m 128 .化简=-2)3(π .=++-+-1449622x x x x .)(30≤≥x2222,,)()()()(简是三角形的三边长,化已知a b c c a b c b a c b a c b a --+----++--类型六、二次根式的运算计算:1(46438)222-+÷; 328131126-+-;计算:.已知m 是的小数部分. 913x +(1)求m 2+2m+1的值; (2)求的值.的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6.5 不等式的解法(一)【一线名师精讲】 基础知识串讲解不等式的基本原则:1、解不等式实质是一个等价变形的过程,当元的取值范围扩大时,应与原有取值范围求交集。
2、解不等式是一个由繁到简的转化过程,其转化的总思路为:3、解含有等号的不等式时,应该将等式与不等式分开解答后取并集。
基本类型不等式的解法:(一)、整式不等式的解法1、一元一次不等式标准形式:b ax >或)0(≠<a b ax .解法要点:在不等式的两端同时除以a 后,若0<a 则不等号要反向。
2、一元二次不等式标准形式:2>++c bx ax 或02<++c bx ax (其中0>a )。
解法要点:解一元二次不等式一般可按以下步骤进行:(1)整形:将不等式化为标准形式。
(2)求根:求方程02=++c bx ax 的根。
(3)写解:根据方程02=++c bx ax 根的情况写出对应不等式的解集。
当两根明确时,可由“大于0,两根外;小于0,两根内”的口诀写解,当0≤∆时,则可由函数c bx ax y ++=2的草图写解。
3、一元高次不等式(可分解因式型)标准形式:0)())((21>---n x x x x x x a Λ或0)())((21<---n x x x x x x a Λ()0>a 。
解法要点:用“数轴穿根”的方法最为简便,一般可按如下步骤进行:(1)整形:将不等式化为标准形式。
(2)求根:求出对应方程的根。
(3)穿根:将方程的根标在数轴上,用一条曲线从右上方开始依次穿过。
方程有重根时,奇数重根按正常情况穿过,偶数重根则不穿过,反弹回来后继续穿根。
即“奇过偶不过”。
(4)写解:数轴上方所对应曲线的区间为)())((21>---n x x x x x x a Λ的解,数轴下方所对应曲线的区间为0)())((21<---n x x x x x x a Λ的解。
(二)、分式不等式的解法标准形式:0)()(>x f x g ,或0)()(<x f x g 。
解法要点:解分式不等式的关键是去分母,将分式不等式转化为整式不等式求解。
若分母的正负可定,可直接去分母;若分母的正负不定,则按以下原则去分母:(三)、根式不等式的解法标准形式:)()(x g x f >;)()(x g x f >;以及)()(x g x f <。
解法要点:解根式不等式的关键是去根号,应抓住被开方数的取值范围以及不等式乘方的条件这两大要点进行等价变换:⎪⎩⎪⎨⎧>≥≥⇔>)()(0)(0)()()(2x g x f x f x g x g x f 或⎩⎨⎧≥<0)(0)(x f x g 基本题型指要【例1】 解下列不等式或不等式组:(1)⎪⎩⎪⎨⎧+<<-+220)1)(3(2x x x x (2)0)4)(2()3(2≤-+-x x x(3)x x x x x <-+-+222322(4)02)1(2≥---x x x(1)思路导引:按规范化程序操作,化为标准形式后求解,可以有效的防止错误。
解析:将0)1)(3(<-+x x 化为标准形式0)1)(3(>-+x x ,易得:1,3>-<x x 或。
由222+<x x 得01)1(2>+-x ,所以R x ∈。
综上所述,原不等式组的解集为{}13|>-<x x x 或,。
(2)解析:由已知,0)4)(2()3(2≥-+-x x x ,用数轴穿根法易得原不等式的解集为:误区警示:若不化为标准形式求解,易将解集错写为{}42|≤≤-x x 。
另外,建议将这类等式与不等式的混合式中的“等式”单独求解,以防止漏掉3=x 这类解。
(3)思路导引:解分式不等式的关键是去分母。
但本题分母正负不明,若直接去分母应分类讨论,较为复杂,使用移项通分化为标准形式的方法较好。
解析:将xx x x x <-+-+222322化为标准形式,得:0)1)(3()1)(2(2>+-++-x x x x x ,因为012>++x x 恒成立,所以,0)1)(3()2(>+--x x x 。
用数轴穿根法易得原不等式的解集为: {}321|><<-x x x 或,。
(4)思路导引:解根式不等式关键是抓住乘方的条件,对原不等式实施等价转换,去除根号。
解析:原不等式等价于:02)1(2>---x x x ………………… (1)或2)1(2=---x x x ………………………(2)由(1)得:⎪⎩⎪⎨⎧>->--01022x x x ,解得2>x ;由(2)得12-==x x ,或。
所以,原不等式的解集为{}12|-=≥x x x ,或。
误区警示:请找出下面解法的错误:由022≥--x x ,得01≥-x ,所以,原不等式的解为1≥x 。
点评:解等式与不等式的混合型不等式,最好将等式与不等式分开求解,以避免错误。
不少同学都怕解含参数的不等式,究其原因,关键是没有把握住解题技巧。
其实,解含有参数的不等式在总思路上与解普通不等式完全相同,当参数不影响式子的变形时,与解普通不等式没有差异,在参数影响式子的变形时,就需弄清参数的取值范围或者予以分类讨论,才能顺利的解出不等式。
【例2】解下列关于x 的不等式:(1)02>+ax(2)x t tx )2(22+>+(3))1,0(1log 22log 3≠>-<-a a x x a a(1)思路导引:本题在求解x 时必须去除系数a ,由于a 的范围不明,无法直接变形,若将a 按变形的要求分为正、负、零三类,则在每一小类中式子就能顺利变形了。
解析:由已知,2->ax 。
①、当0>a 时,a x 2->;②、 当0<a 时,ax 2-<;③、当0=a 时,20->恒成立,R x ∈。
故,原不等式解集当>a 时为⎭⎬⎫⎩⎨⎧->a x x 2|,当0<a 时为⎭⎬⎫⎩⎨⎧-<a x x 2|,当0=a 时为R 。
(2)思路导引:解含参数的二次不等式通常是在以下三个地方实施分类讨论:一是平方项系数有参数时需分正、负、零讨论,二是判别式△有参数时的需分正、负、零讨论,三是两根有参数时需根据他们的大小关系分类讨论。
本题中的不等式即0)2)(1(>--tx x ,在求解过程中参数会在两个地方影响式子变形:一是平方项系数t 的正、负、零,二是对应的二次方程的根1与t2是否存在、谁大谁小。
此时,同一字母t形成了不同的分类,可将t 在0、2处分段统筹安排进行分类(如图)。
解析:原不等式即0)2)(1(>--tx x 。
① 当<t 时,可以化为0)2)(1(<+--tx x ,易知12<t,所以12<<x t。
② 当=t 时,原不等式即022>+-x ,所以1<x 。
③ 当20<<t 时,易知12>t,可得,1<x tx 2>或。
④ 当2=t 时,原不等式即0)1(22>-x ,所以1≠∈x R x ,且。
⑤ 当2>t 时,易知12<t,可得,tx 2<1>x 或。
综上所述,原不等式的解集当0<t 时,为⎭⎬⎫⎩⎨⎧<<12|x t x ;当0=t 时,为{}1|<x x ;当20<<t 时,为⎭⎬⎫⎩⎨⎧><t x x x 21|,或;当2=t 时,为{}1|≠∈x R x x ,且;当2>t 时,为⎭⎬⎫⎩⎨⎧><12|x t x x ,或。
误区警示:本题易漏掉20==t t 和两种特殊情况的讨论。
另外,在0<t 时,解集易错为⎭⎬⎫⎩⎨⎧><12|x tx x ,或。
(3)思路导引:本题关键是抓住根式不等式的解题特点,对不等式进行乘方处理,去除根号。
若令t x a =log 进行换元,会使书写变得更简便。
解析:按根式不等式的解题思路,易知原不等式等价于⎪⎩⎪⎨⎧>--<-≥-)3(01log 2)2()1log 2(2log 3)1(02log 32ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛx x x x a a a a 由(1)得,32log ≥x a由(2)得,1log ,43log ><x x a a 或由(3)得.21log >x a由此得,1log ,43log 32><≤x x a a 或当1>a 时,易求得原不等式的解集为}|{4332a xa x a x ><≤,或;当10<<a 时,易求得原不等式的解集为}0|{3243a x a x ax <<≤<,或。
误区警示:在乘方去除根号的过程中,要注意不等式乘方的条件以及根号内式子的取值范围,保证不等式的变形为等价变形。
点评:从本例的解答过程可以看出,解含参数的不等式关键是抓住以下两个要点来处理不等式中的参数:一是由“参数是否影响不等式变形”来确定该不该对参数进行分类讨论,二是由“参数是怎样影响不等式变形” 来确定怎样对参数进行分类讨论。
已知不等式的解集求参数值(或范围)是一类很常见也很重要的题型。
由于该题型解法较为灵活,我们在解题时若不能把握住它的解题规律,往往会觉得变化莫测而无可适从。
解答本题型关键是要抓住以下两个要点:一是按其正向题型“解不等式”变化,试解原不等式;二是利用已知的解集(或解集的部分信息)去逆向推测它们与参数的关系。
两个要点结合,就会比较容易找到所求参数的方程或不等式,从而求出它们的值(或范围)。
【例3】已知不等式022>++bx ax (1)若不等式的解集为(31,21-),求b a +;(2)若不等式的解集为R ,求b a 、应满足的条件。
(1)思路导引:从解集的形式可知:原不等式必为二次不等式;再从解不等式的角度来看,原不等式的解集可由方程022=++bx ax 的二根来得出,但二根不方便写出,自然会想到用韦达定理列式解题。
解析:由题意,方程022=++bx ax 的二根为3121和-,所以,⎪⎪⎪⎩⎪⎪⎪⎨⎧=⨯--=+->⨯-<aa b a b a 23121312102402易解得212-=-=b a ,,所以,14-=+b a 。
误区警示:不能遗漏条件0242>⨯-a b 和0<a 。
(2)思路导引:原不等式022>++bx ax 的系数b a 、范围未定,可能形成二次型、一次型、常数型三类不等式。