《随机过程》第二章习题
西安交通大学汪荣鑫随机过程第二版课后答案
随机过程习题解答第一章习题解答1.设随机变量X 服从几何分布,即:(),0,1,2,kP X k pqk ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ =()1jt k jtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑(其中 0(1)nnnn n n nx n x x ∞∞∞====+-∑∑∑)令 0()(1)nn S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰同理 2(1)2kkkk k k k k kx k x kx x ∞∞∞∞=====+--∑∑∑∑令2()(1)kk S x k x ∞==+∑ 则211()(1)(1)xkk kk k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为(2) 其期望和方差;(3)证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则 (2)'1()(0)Xp E X fjb∴==(4)若(,)i i X p b Γ 1,2i = 则同理可得:()()i i P X b f t b jt∑=∑-3、设ln (),()(kZ F X E Zk =并求是常数)。
X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
(1)(),(0,)Y aF X b a b =+≠是常数; (2)ln (),()(kZ F X E Z k =并求是常数)。
解(1)11{()}{()}[()]P F x y P x F y F F y y --<=<==(01y ≤≤) ∴00()0111y F y yy y <⎧⎪=≤≤⎨⎪>⎩∴()F x 在区间[0,1]上服从均匀分布()F x ∴的特征函数为11001()(1)jtx jtx jt X e f t e dx e jt jt ===-⎰ (2)ln ()()()[]jtz jt F x Z f t E e E e ===1ln 01jt ye dy ⋅⎰=111jty dy jt =+⎰4、设12n X X X ,,相互独立,且有相同的几何分布,试求1nkk X =∑的分布。
随机过程-习题-第2章
2.1 设)(t ξ是一马尔可夫过程,又设k n n n t t t t t ++<<<<<< 121。
试证明:)/(),,/(1/1,,/11++++++=n n t t k n n n t t t x x f x x x f n n k n n n即一个马尔可夫过程的反向也具有马尔可夫性。
证明:首先,由条件概率的定义式得),,(),,,(),,/(1,,1,,,1,,/111k n n t t k n n n t t t k n n n t t t x x f x x x f x x x f k n n k n n n k n n n ++++++++++++=根据马尔可夫性将上式中的分子和分母展开,并化简得)()()/()()/()/()()/()/()/(),,/(11/112/1/1/12/1/1,,/11112111211+++++-+++++-+++++++++-+++++-++++==n t n t n n t t n t n n t t k n k n t t n t n n t t n n t t k n k n t t k n n n t t t x f x f x x f x f x x f x x f x f x x f x x f x x f x x x f n n n n n n n k n k n n n n n n k n k n k n n n于是,)/()(),(),,/(1/11,1,,/1111++++++++++==n n t t n t n n t t k n n n t t t x x f x f x x f x x x f n n n n n k n n n2.2 试证明对于任何一个马尔可夫过程,如“现在”的)(t ξ值为已知,则该过程的“过去”和“将来”是相互统计独立的,即如果有321t t t <<,其中2t 代表“现在”,1t 代表“过去”,3t 代表“将来”,若22)(x t =ξ为已知值。
(解答)《随机过程》第二章习题
第二章 Markov 过程 习题解答1、 设}1,{≥n n ξ为相互独立同分布的随机变量序列,其分布为:01}0{,0}1{>-===>==p q P p P n n ξξ定义随机序列}2,{≥n X n 和}2,{≥n Y n 如下:⎪⎪⎩⎪⎪⎨⎧=========----;1,1,3;0,1,2;1,0,1;0,0,01111n nn n n n n nn X ξξξξξξξξ ⎩⎨⎧===-;,1;0,0,01其它n n n Y ξξ试问随机序列}2,{≥n X n 和}2,{≥n Y n 是否为马氏链?如果是的话,请写出其一步转移概率矩阵并研究各个状态的性质。
不是的话,请说明理由。
解:(1)显然,随机序列}2,{≥n X n 的状态空间为}3,2,1,0{=S 。
任意取S i i i j i n ∈-132,,,,, ,由于当i X n =给定时,即1,-n n ξξ的值给定时,就可以确定1+n X 的概率特性,即我们有:}{},,,,{12233111i X j X P i X i X i X i X j X P n n n n n n ========+--+因此}2,{≥n X n 是齐次马氏链,其一步转移概率矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=p qp q p q p qP 0000000 由于01,0>-=>p q p ,画出状态转移图,可知各个状态都相通,且都是非周期的,因此此链是不可约的遍历链。
(也可以利用02>P 判定此链是不可约的遍历链)(2)显然,}2,{≥n Y n 的状态空间为}1,0{=S ,由于:}1,1{}1,1,0{}1,10{23234234=========Y Y P Y Y Y P Y Y Y P}0,1{}0,1,0{}0,10{23234234=========Y Y P Y Y Y P Y Y Y P由}2,{≥n Y n 的定义,可知}1,1,1{}1,1,0{}0,1,1{}0,1,0{}1,0,1{}1,1{12312312312312323===⋃===⋃===⋃⋃===⋃======ξξξξξξξξξξξξξξξY Y}1,1,0,0{}0,1,0,0{}1,1,0{12341234234====⋃========ξξξξξξξξY Y Y}0,0,1{}0,1{12323======ξξξY Y , ∅====}0,1,0{234Y Y Y利用}1,{≥n n ξ是相互独立同分布的随机变量序列及其分布,我们有:322233}1,1{q q p pq Y Y P ++=== 223234}1,1,0{q p pq Y Y Y P +==== 223}0,1{pq Y Y P ===0}0,1,0{234====Y Y Y P即有:22222343}1,10{q p pq qp pq Y Y Y P +++==== 0}0,10{234====Y Y Y P由于01,0>-=>p q p ,因此有}0,10{}1,10{234234===≠===Y Y Y P Y Y Y P根据马氏链的定义可知}2,{≥n Y n 不是马氏链。
概率论与随机过程题集(第2章)
第二章 概率论与随机过程2-16 图P2-16中的电路输入为随机过程X(t),且E[X(t)]=0,xx φ(τ) =2σδ(τ),即X(t)为白噪过程。
(a )试求谱密度yy Φ(f )。
(b )试求yy φ(τ)和E[Y 2(t)]。
图P2-16解:(a )xx φ=2222)()(σττδσττφτπτπ==⎰⎰+∞∞--+∞∞--d e d e f j f j xx又系统函数)(f H =)()(f X f Y =fc j fcj R fc j πππ2112121+=+∴2222222241)2(11)()()(c f R fcR f H f f xx yy πσπσφφ+=+== (b) E [)(2t y ]=)0(yy φτπττπσπσφτφRcfj f j yy yy eRcdf ecf R df ef 122222222241)()(-∞+∞-∞+∞-=+==⎰⎰∴E [)(2t y ]=Rcyy 2)0(2σφ=2-20 一离散时间随机过程的自相关序列函数是kk )2/1()(=φ,试求其功率密度谱。
解:由功率密度谱的定义知 )(f Φ=∑+∞-∞=-k fkj e k πφ2)( =∑+∞-∞=-k fk j k e π2)21(=fk j k k e π21)21(----∞=∑+fk j k k e π20)21(-+∞=∑=k f j k e)21(21π∑+∞=+kf j k e )21(20π-+∞=∑ =f j fj e eππ2221121-+fj e π22111--∴ )(f Φ =f j fj e eππ2221121-+fj eπ22111-- 即为所求。
2-23 试证明函数)(t f k =)2(2)]2(2sin[Wkt W W k t W --ππ,k = 0,1±,2±,… 在区间[+∞∞-,]上为正交的,即所以,抽样定理的重建公式可以看作带限信号)(t s 的级数展开式,其中权值为)(t s 的样值,且{)(t f k }是级数展开式中的正交函数集。
随机过程第二章作业及参考答案
第二章 平稳过程2. 设随机过程()sin X t Ut =,其中U 是在[]02π,上均匀分布的随机变量。
试证 (1)若t T ∈,而{}12T = ,,,则(){}12X t t = ,,,是平稳过程; (2)若t T ∈,而[)0T =+∞,,则(){}0X t t ≥,不是平稳过程。
证明:由题意,U 的分布密度为:()10220u f u ππ⎧<<⎪=⎨⎪⎩,,其它数学期望()()[]sin X m t E X t E Ut ==⎡⎤⎣⎦()()2220001111sin sin cos cos 212222ut du ut d ut ut t t t t ππππππππ=⋅==-=--⎰⎰.相关函数()()()()()sin sin X X R R t t E X t X t E Ut U t ττττ=+=+=⋅+⎡⎤⎡⎤⎣⎦⎣⎦,()()()2200111sin sin cos 2cos 222ut u t du ut u u du ππτττππ⎛⎫=⋅+⋅=⋅-+--⎡⎤ ⎪⎣⎦⎝⎭⎰⎰ ()()2220001111cos 2cos sin 2sin 442u t u du u t u t πππττττππττ⎡⎤=-+-=-+-⎡⎤⎢⎥⎣⎦+⎢⎥⎣⎦⎰()()11sin 22sin 2424t t πτπτπτπτ=-+++.(1)若t T ∈,而{}12T = ,,时,()0X m t =,()X R τ只与τ有关,二者均与t 无关,因此,(){}12X t t = ,,,是平稳过程。
(2)若t T ∈,而[)0T =+∞,时,()X m t 可能取到不是常数的值,所取到的值与t 有关,()X R τ取到的值也与t 有关,因此,(){}0X t t ≥,不是平稳过程。
3. 设随机过程()()0cos X t A t ωΦ=+,t -∞<<+∞其中0ω是常数,A 和Φ是独立随机变量。
随机过程第二章期末练习题
应用统计与随机过程课程习题集
湖南大学信息科学与工程学院
<答案> X(t)的均值和相关函数都具有各态历经性 7、平稳过程 X(t)=u sin(ω t+ Φ)是否具有各态历经性? m 0 <答案>具有各态历经性
计算题
1、已知随机过程 X(t)和 Y(t)的功率谱密度为
分别求 X ( t ) 和 Y ( t ) 的自相关函数和均方值。 2、随机过程 X ( t ) 定义为 X ( t ) = f ( t + ε ) ,其中 f ( t ) 是具有周期 T 的周期信号,ε是在 区间[0,T]内均匀分布的随机变量。证明 X ( t ) 是平稳随机过程。 (提示:利用周期函数的性 质 )
3
1
应用统计与随机过程课程习题集
湖南大学信息科学与工程学院
2 2 机变量序列,已知 E[X (k)]=0, E[X (k)] = σ 。则 X(t)既是广义平稳随机过程, X 又是狭义平稳随机过程。 (V)
填空题
1、自然界的信号通常可以分两大类:____信号和____信号。 2、随机过程 X(t)的一维分布函数取决于____和____。 3、随机过程的数学期望表示____。 4、随机过程的方差描述了____。 5、自相关函数反映了____。 6、____、____与____是刻画随机过程在某个孤立时刻状态的数字特征, 而____和____则是刻画随机过程自身在两个不同时刻状态之间的线性依从关系的 数字特征。 7、对于均值为 mX 、相关函数为 RX ( ) 的各态经历随机过程的任意样本函数 x(t ) ,必 有: lim
1 T 2T
T
T
随机过程课后题答案
第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtkk X k f t E eepq ∞===∑()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 10(())x p p e x dx ∞--Γ=⎰ (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+同理可得:()()iiP X b f t b jt∑=∑-3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。
《随机过程答案》第二章习题答案
第二章Markov 过程习题完整答案,请搜淘宝1、 设}1,{≥n n ξ为相互独立同分布的随机变量序列,其分布为:01}0{,0}1{>-===>==p q P p P n n ξξ定义随机序列}2,{≥n X n 和}2,{≥n Y n 如下:⎪⎪⎩⎪⎪⎨⎧=========----;1,1,3;0,1,2;1,0,1;0,0,01111n nn n n n n nn X ξξξξξξξξ ⎩⎨⎧===-;,1;0,0,01其它n n n Y ξξ试问随机序列}2,{≥n X n 和}2,{≥n Y n 是否为马氏链?如果是的话,请写出其一步转移概率矩阵并研究各个状态的性质。
不是的话,请说明理由。
2、 天气预拨模型如下:今日是否下雨依赖于前三天是否有雨(即一连三天有雨;前两天有雨,第三天是晴天;…),试将此问题归纳为马尔可夫链,并确定其状态空间。
如果过去一连三天有雨,今天有雨的概率是0.8;过去三天连续为晴天,而今天有雨的概率为0.2;在其它天气情况时,今日的天气和昨日相同的概率为0.6。
试求此马氏链的转移概率矩阵。
3、 设}0;{≥n X n 是一齐次马氏链,状态空间为}2,1,0{=S ,它的初始状态的概率分布为:4/1}0{0==X P ,2/1}1{0==X P ,4/1}2{0==X P ,它的一步转移转移概率矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=4341031313104341P (1) 计算概率:}1,1,0{210===X X X P ; (2) 计算)3(12)2(01,p p 。
4、 独立地连续抛掷一颗质地均匀的骰子,以n ξ表示前n 次抛掷出的最大点数,试证明}1;{≥n n ξ是一马氏链,并求其n 步转移概率矩阵。
5、 设有一个三个状态}2,1,0{=S 的齐次马氏链,它的一步转移概率矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=33221100p q q p q p P 试求:(1) )3(01)2(01)1(01)3(00)2(00)1(00,,,,,f f f f f f ; (2) 确定状态分类,哪些属于常返的,哪些属于非常返的。
《随机过程及其在金融领域中的应用》习题二答案
0
sin
ux
f
xdx
0
sin
ux
f
xdx
0
0
sin
u
x
f
xdx
sin ux 0
f
x dx
0
令其中一式中的 x t
0
sin
ut
f
t
d
t
0
sin
ux
f
xdx
0
sin ut 0
证明:
X u
eiux f xdx
cos ux i sin ux f xdx
cos ux
f
xdx
i
sin
ux
f
xdx
(a)充分性:
当f
x
f
x时,sin ux
f
x
为奇函数
,
则i
c o vY Y, E Y 2 E Y 2 3 80
故(X,Y)的协方差矩阵为
cov X , X cov Y , X
1
cov X ,Y cov Y ,Y
18 0
0
3 80
4、已知二维随机变量(X,Y)服从联合正态分布,且
dFX
x
e tx f xdx
etxexdx etxdx
南京大学随机过程练习题附中文解释及答案
8、(3.8)An unbiased die is successively rolled. Let X and Y denote, respectively, the number of rolls necessary to obtain a six and a five. Find (a) E[X], (b) E[X|Y=1] 相继地掷一颗不均匀的骰子。令 X 和 Y 分别记得到一个 6 和一个 5 所必须的抛 掷次数。求(a)E[X],(b)E[X|Y=1]。 重要:E[E[X|Y]]=E[X]
3、(4.32) Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off? 在一天中两个开关或者开或者关。在第 n 天,每个开关独立地处于开的概率是[1+ 第 n-1 天是开的开关数]/4。例如,如果在第 n-1 天两个开关都是开的,那么在第 n 天,每个开关独立地处于开的概率是 3/4。问两个开关都是开的天数的比例是 多少?两个开关都是关的天数的比例是多少?
随机过程课后题答案
《随机信号分析》复习备考题第一章概率论简介第二章随机信号概论参考答案:(1))(t X 的一个样本函数的草图(2)时间连续,状态离散,离散型随机过程。
(3)一维概率密度函数:nT t T n A x A x t x p X <<-++-=)1(),(21)(21),(δδ二维概率密度函数:[][]⎪⎩⎪⎨⎧>-<<<-++-++-<<-+++--=nTt T n t nT t T n A x A x A x A x nT t t T n A x A x A x A x t t x x p X 22122112121212121)1(,)1(,)()()()(41,,)1(),()(21)()(21),;,(或δδδδδδδδ参考答案:[][]625.3341683241181)()()(111=⨯+⨯+⨯+⨯==∑t x P t x t X E[][]625.2141283441581)()()(222=⨯+⨯+⨯+⨯==∑t x P t x t X E[]()875.7)13(41)62(83)42(41)51(81,)()(212121=⨯⨯+⨯⨯+⨯⨯+⨯⨯==∑x x P x x t X t X E )1()3(41)2()6(83)4()2(41)5()1(81),;,(212121212121--+--+--+--=x x x x x x x x t t x x p X δδδδδδδδ参考答案:Φ的概率密度为⎪⎩⎪⎨⎧≤≤=Φ其它,020,21)(πϕπϕp均值:[][]021)cos()cos()()(2000=Φ⋅Φ+=Φ+==⎰d t a t a E t X E t m X ππωω 方差:01(t)cos(t)cos(t)X a b ωω=+ 自相关函数:[][12120102011202110102011202(,)()()cos()cos()cos()cos()cos()cos()cos()cos()][cos()cos()][cos()X R t t E X t X t E a t a t a t b t a t b t E a t a t E a t b t E a t b ωωωωωωωωωωω==+Φ⋅+Φ++Φ⋅+Φ++Φ⋅+Φ=+Φ⋅+Φ++Φ⋅+Φ++Φ⋅[[][][]1010*******01020102111201022201211cos(cos()cos()][cos()cos()cos()cos(2)cos()cos(2)22cos ()cos (22E a t a t E b t b t a b E t t t t E t t t t a b t t t t ωωωωωωωωωωωωωωω≈+Φ⋅+Φ++Φ⋅+Φ=-+++Φ+-+++Φ=-+-22201)cos ()cos ()22a b ωτωτ=++第三章平稳随机过程参考答案:0)sin(cos )cos(21)(21)(000lim lim lim=Φ=Φ+==∞→-∞→-∞→⎰⎰T T A dt t A T dt t x T t x T TT T T T T ωωω)cos(2)cos()cos(21)()(020002limτωτωωωτA dt t t A T t x t x T T T =Φ++Φ+=+⎰-∞→由于A 和Φ为统计独立的随机变量,于是有[][][][]021)cos()cos()(2000=ΦΦ+⋅=Φ+⋅=⎰ππωωd t A E t E A E t X E[][][][][][])cos(21)22cos()cos(21)cos()cos()()(),(020*******τωτωωτωτωωωττA E t E A E t t E A E t X t X E t t R X =Φ+++⋅=Φ++Φ+⋅=+=+由图3.5可看出,不同样本函数的A 不同,则相应的时间平均自相关函数)()(τ+t x t x 也不同,),()()(ττ+=+t t R t x t x X 不能以概率1成立,因此该随机过程不具有各态历经性。
随机过程习题解答第1,2章
习题11. 令X(t)为二阶矩存在的随机过程,试证它是宽平稳的当且仅当EX(s)与E[X(s)X(s+t)]都不依赖s.证明:充分性:若X(t)为宽平稳的,则由定义知EX(t)=μ, EX(s)X(s+t)=r(t) 均与s 无关必要性:若EX(s)与EX(s)X(s+t)都与s 无关,说明EX(t)=常数, EX(s)X(s+t)为t 的函数2. 记1U ,...,n U 为在(0,1)中均匀分布的独立随机变量,对0 < t , x < 1定义I( t , x)=⎩⎨⎧>≤,,,,t x t x 01并记X(t)=),(11∑=nk k U t I n ,10≤≤t ,这是1U ,...,n U 的经验分布函数。
试求过程X (t )的均值和协方差函数。
解: EI ()k U t ,= P ()t U k ≤= t , D()),(k U t I = EI ()k U t ,-()2),(kU t EI= t -2t = t(1-t)j k ≠, cov ()),(),(j k U s I U t I ,=EI(t,k U )I(s,j U )-EI(t, k U )EI(s, j U ) = st -st=0k = j , cov ()),(),(j k U s I U t I ,= EI(t,k U )I(s,j U )-st = min(t,s)-stEX(t)=),(11∑=n k k U t EI n =∑=nk tn 11= tcov ())(),(s X t X =()()),(),,(cov 1),(),,(cov 1212j kjk nk k k U s I Ut I n U s I U t I n ∑∑≠=+=[]∑=nk st t s n12),min(1-=()st t s n-),min(13.令1Z ,2Z 为独立的正态分布随机变量,均值为0,方差为2σ,λ为实数,定义过程()t Sin Z t Cos Z t X λλ21+=.试求()t X 的均值函数和协方差函数,它是宽平稳的吗?Solution: ()221,0~,σN Z Z . 02221==EZ EZ .()()221σ==Z D Z D ,()0,21=Z Z Cov ,()0=t EX ,()()()()()[]s Sin Z s Cos Z t Sin Z t Cos Z E s X t X Cov λλλλ2121,+⋅+=[]t C o s S i n Z Z s t S i n C o s Z Z s t S i n S i n Z t C o s C o s Z E λλλλλλλλ12212221+++=()02++=s t S i n S i n s t C o s C o s λλλλσ =()[]λσs t Cos -2(){}t X 为宽平稳过程.4.Poisson 过程()0,≥t t X 满足(i )()00=X ;(ii)对s t >,()()s X t X -服从均值为()s t -λ的Poisson 分布;(iii )过程是有独立增量的.试求其均值函数和协方差函数.它是宽平稳的吗?Solution ()()()()t X t X E t EX λ=-=0,()()t t X D λ= ()()()()()s t s X t EX s X t X Cov λλ⋅-=,()()()()()ts s EX s X s X t X E 22λ-+-= ()()()()ts s EX s X D 220λ-++=()ts s s 22λλλ-+=()t s s λλλ-+=1 显然()t X 不是宽平稳的.5. ()t X 为第4题中的Poisson 过程,记()()()t X t X t y -+=1,试求过程()t y 的均值函数和协方差函数,并研究其平稳性. Solution ()λλ=⋅=1t Ey , ()()λ=t y DCov(y(t),y(s))=Ey(t)y(s)-Ey(t)y(s)=E(x(t+1)-x(t))(x(s+1)-x(s))-λ2(1)若s+1<t, 即s≤t-1,则Cov(y(t),y(s))=0-λ2=-λ2(2)若t<s+1≤t+1, 即t>s>t-1, 则Cov(y(t),y(s))=E[x(t+1)-x(s+1)+x(s+1)-x(t)][x(s+1)-x(t)+x(t)-x(s)] -λ2=E(x(t+1)-x(s+1))(x(s+1)-x(t))+E(x(t+1)-x(s+1))(x(t)-x(s))+E(x(s+1)-x(t))+E(x(s+1)-x(t))(x(t)-x(s))- λ2=λ(s+1-t)= λ-λ(t-s)- λ2(3) 若t<s<t+1Cov(y(t),y(s))= E [x(t+1)-x(s)+x(s)-x(t)] [x(s+1)-x(t+1)+x(t+1)-x(s)]- λ2 =(x(t+1)-x(s))(x(s+1)-x(t+1))+E(x(t+1)-x(s))(x(t+1)-x(s))+E(x(s)-x(t))(x(s+1)-x(t+1))+E(x(s)-x(t))(x(t+1)-x(s))- λ2=0+λ(t+1-s)+0-λ2=λ+λ(t-s)- λ2(4) 若s>t+1 Cov(y(t),y(s))=0-λ2=-λ2由此知,故方差只与t-s有关,与t,s无关故此过程为宽平稳的。
[应用随机过程][习题][01]
Page 17
上海理工大学
2010-7-30
第三章习题
(2)在宽平稳的基础上讨论各态历经性 时间均值:
1 T 1 X (t ) = lim ∫T X (t )dt = Tlim 2T T →∞ 2T →∞ 1 T 1 +T = ∫ s (t + )dt = ∫ s (θ )dθ T 0 T = E[ X (t )]
∫
T
T
s (t + )dt
X(t)的均值具有各态历经性
Page 18
上海理工大学
2010-7-30
第三章习题
时间相关性:
1 T X (t ) X (t + τ ) = lim X (t ) X (t + τ )dt T → ∞ 2T ∫T 1 T = lim s (t + ) s (t + τ + )dt T →∞ 2T ∫T 1 T = ∫ s (t + ) s (t + τ + )dt T 0 1 +T = ∫ s (θ ) s (θ + τ )dθ = RX (t ) T
Page 7 上海理工大学 2010-7-30
第二章习题
R X (t1 , t 2 ) = E[ X (t1 ) X (t 2 )] = E{[ A cos(ω 0 t1 ) + B sin(ω 0 t1 )][ A cos(ω 0 t 2 ) + B sin(ω 0 t 2 )]} = E[ A 2 cos(ω 0 t1 ) cos(ω 0 t 2 ) + B 2 sin(ω 0 t1 ) sin(ω 0 t 2 )] = E[ A 2 ] cos(ω 0 t1 ) cos(ω 0 t 2 ) + E[ B 2 ] sin(ω 0 t1 ) sin(ω 0 t 2 ) = σ 2 [cos(ω 0 t1 ) cos(ω 0 t 2 ) + sin(ω 0 t1 ) sin(ω 0 t 2 )] = σ 2 cos[ω 0 (t1 t 2 )]
最新西安交通大学汪荣鑫随机过程第二版课后答案
西安交通大学汪荣鑫随机过程第二版课后答案------------------------------------------作者xxxx------------------------------------------日期xxxx随机过程习题解答第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ 0()k jtkk p q e∞==∑ =0()1jtkjt k pp qe qe ∞==-∑ 又20()kk k k q qE X kpq p kq pp p∞∞======∑∑ 222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 100()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
随机过程第一、二章测验题答案(2010)
随机过程测试题一答案每题10分1. 在一汽车工厂中,一辆汽车有两道工序是由机器人完成的。
其一是紧固三只螺栓,其二是焊接两处焊点。
以X 表示由机器人紧固的螺栓不良的数目,以Y 表示由机器人焊接的焊点不良的数目。
据积累资料知),(Y X 具有分布律: Y X 0 1 2 3 0 0.840 0.030 0.020 0.010 1 0.060 0.010 0.008 0.002 20.0100.0050.0040.001(1)求EX ;(2)求]|[j Y X E =,2,1,0=j ;(3)验证 ∑====2}{]|[j j Y P j Y X E EX .解: (1) X 的分布律为 X 0 1 2 3 P0.9100.0450.0320.013148.0=EX .(2) Y 的分布律为 Y 0 1 2 P0.9000.0800.0200=Y 时,X 的条件分布律为X|0=Y 0 123P0.840/0.90.030/0.90.020/0.90.010/0.991]0|[==Y X E ;1=Y 时,X 的条件分布律为X|1=Y 0 123P0.060/0.080.010/0.080.008/0.080.002/0.084.0]1|[==Y X E ;2=Y 时,X 的条件分布律为X|2=Y0 1 2 3P 0.010/0.02 0.005/0.02 0.004/0.02 0.001/0.028.0]2|[==Y X E .(3) EX j Y P j Y X E j ==⨯+⨯+⨯===∑=148.002.08.008.04.09.091}{]|[2.2.设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<=-.,00,),(其他,y x e y x f y(1)求EX;(2)对任意0>y ,求]|[y Y X E =;(3)验证⎰+∞==0)(]|[dy y f y Y X E EX Y .解: (1)当0>x 时, X 的概率密度为x xy xX e dy e dy y x f x f -+∞-+∞===⎰⎰),()(.1)(0===⎰⎰+∞-+∞dx xe dx x xf EX x X .(2) 对任意0>y , Y 的概率密度为y yy yY ye dx e dx y x f y f --===⎰⎰0),()(.⎪⎩⎪⎨⎧<<==.,0,0,1)(),()|(|其他y x y y f y x f y x f Y Y X21)|(]|[0|ydx y xdx y x f x y Y X E yY X ====⎰⎰+∞ (3)EX dy ye y dy y f y Y X E y Y ==Γ=⋅==⎰⎰+∞-+∞1)3(212)(]|[03.写出六种常见分布(退化、二项、泊松、均匀、指数、正态)的特征函数.分布 记号 概率密度或分布律)x (f特征函数)t (ψ退化 {c} 1}{==c X Pict e0-1 b(1,p) .1,0,}{1===-x q p x X P x x q pe it +二项b(n,p) 独立同分布于b(1,p)的n 个r.v.的和..,,1,0,}{1n x q p C x X P x x x n ===-n it q pe )(+泊松 )(P λ.,2,1,0,!}{ ===-x e x x X P xλλ)1(-it e eλ均匀U(a,b))(1)(),(x I ab x f b a -=t a b i e e iatibt )(--标准正态 N(0,1)2221)(x e x f -=π22t e-正态),(N 2σμ222)(21)(σμσπ--=x e x f2)(2t t i eσμ-指数 )(E λ)()(),0(x I e x f x +∞-=λλit-λλ4.关于独立随机变量序列}{n X ,下列哪些命题是正确的. (1)若 ,2,1,||=+∞<k X E k ,则∏∏===nk k nk k EX X E 11;(2) 若 ,2,1,2=+∞<k EX k ,则∑∑===nk k n k n VarX X Var 11)(;(3) 设)(t f k 为k X 的特征函数,)(t f n S 为∑==nk k n X S 1的特征函数,则∏==nk k S t f t f n 1)()(.(4) 设)(t k φ为k X 的矩母函数,)(t n S φ为∑==nk k n X S 1的矩母函数,则∑==nk k S t t n1)()(φφ.解:(4)错,应为 ∏==nk k S t t 1)()(φφ.5.设ηξ,是相互独立,且都为均值0,方差1的随机变量,令t t X ηξ+=)(,求随机过程}0),({≥t t X 的均值函数和相关函数. 解:;0)()()]([)(=+==ηξμtE E t X E t X;1)()()()]([)(222t D t D t D t X D t x +=+=+==ηξηξσ.1)()()()()()]()([),(22ts E E s t tsE E s X t X E s t R x +=+++==ηξηξ6.X (t )=Y cos(t )+Z sin(t ), t >0,Y , Z 相互独立,且 EY =EZ =0,DY =DZ =σ2. 讨论随机过程{X (t ), t >0}的平稳性.解: 0sin cos )]([)(=+==tEZ tEY t X E t X μ;)]()([),(s X t X E s t R X =).cos(sin sin cos cos )()cos sin sin (cos sin sin cos cos 22222s t EZ s t EY s t YZ E s t s t EZ s t EY s t -=⋅+⋅=++⋅+⋅=σ因)(t X μ为常数,),(s t R X 仅与s t -=τ有关,故)}({t X 是宽平稳过程.7.在电报信号)(t X 的传输过程中,信号由不同的电流符号A A -,给出,而电流的发送又有一个任意的持续时间,电流符号的转换是随机的. 设)(t X 在],0(t 时间内的变号次数)(t N 是参数为λ的泊松过程,且可以表示为)()1)(0()(t N X t X -=,又设)0(X 与}0),({≥t t N 独立,且5.0})0({})0({=-===A X P A X P ,求}0),({≥t t X 的均值函数.解:=)]([t X E 0.8.考虑电子管中的电子发射问题,设单位时间内到达阳极的电子数目N 服从参数为λ的泊松分布. 每个电子携带的能量构成一个随机变量序列 ,,21X X 已知}{k X 与N 独立,}{k X 之间互不相关并且具有相同的均值和方差2,σμ==k k DX EX . 单位时间内阳极接收到的能量为∑==Nk kXS 1. 求S 的均值.解:∑∑+∞=====1}{]|[n Nk kn N P n N XE ES∑∑+∞====01}{][n nk k n N P X E ∑+∞===01}{n n N P nEX∑+∞===01}{n n N nP EX λμ=⋅=1EX EN .9.随机过程}0),({≥t t W 称为参数为2σ的维纳过程, 如果 (1) 0)0(=W ;(2),0t s <≤∀))(,0(~)()(2s t N s W t W --σ;(3) ,0v u t s <<<≤∀ 增量)()(s W t W -与)()(u W v W -相互独立.(1)求}0),({≥t t W 的均值函数)]([t W E 和相关函数)]()([s W t W E . (2)}0),({≥t t W 是否为宽平稳过程?证明:(1),0≥∀t ),0(~)(2t N t W σ, 故0)]([)(==t W E t W μ;又,0t s <≤∀))(,0(~)()(2s t N s W t W --σ, 且增量)()(s W t W -与)(s W 相互独立,故)]()([)]())()([()]()([),(s W s W E s W s W t W E s W t W E s t R W +-==s s W D s W E s W t W E 2)]([)]([)]()([σ=+-=从而),min(),(2s t s t R W σ=.(2)由于),(s t R W 与出发时刻),min(s t 有关,因而}0),({≥t t W 不是宽平稳过程.10. 下面四个随机过程中哪些不是宽平稳过程(A) 随机相位正弦波过程:}0),cos()({≥Φ+=t t t X λ,其中),(~ππ-ΦU ,λ是常数. (B) 白噪声序列: },1,0,{ =n X n 是一列两两互不相关(即m n X EX m n ≠=,0)的随机变量序列,且满足2,0σ==n n DX EX . (C) 移动平均序列:},2,1,0,{11 ±±==∑=-+n a X ki in i n ε,其中},2,1,0,{ ±±=n n ε为白噪声序列,k a a a ,,,21 为任意实数.(D) 强度为λ的泊松过程}0),({≥t t N ,其中)(t N 表示到时刻t 为止事件A 发生的次数. 解: D .。
随机过程第2章习题
= x m-1 • exp{− xm xm −1} ( xm ≥ 0, xm −1 ≥ 0)
4
fξ (m)/ξ (1),ξ (2),L,ξ (m-1) ( x m /x1 , x 2 , L, x m-1 ) 只与 ξ ( m − 1) 有关,该过程是马尔可夫过程。
第7题 有三个黑球和三个白球。把这六个球任意等分给甲、乙两个袋中,并把甲袋中的白球数 定义为该过程的状态,则有四种状态:0,1,2,3。现每次从甲、乙两袋中各取一球,然后 相互交换,即把从甲袋取出的球放入乙袋,把从乙袋取出的球放入甲袋,经过 n 次交换,过 程的状态为 ξ ( n ), n = 1,2,3, L 。 (1)试问该过程是否为马尔可夫链; (2)计算它的一步转移概率矩阵。 解(1) : 该过程是马尔可夫链; 解(2) :
⎧e − x1 ( x1 ≥ 0) f ξ (1) ( x1 ) = f1 ( x1 ) = ⎨ ⎩0 (其它xi 值)
ξ (1), ξ (2), L , ξ ( m) 的 m 维联合概率密度为
⎧f1,2,L,m (x1 ,x 2 ,L ,x m ) ⎪ ⎪ = x1x 2 L x m-1 • exp{−( xm xm −1 + xm −1 xm − 2 + L + x2 x1 + x1 )} ⎨ ( x1 ≥ 0, x2 ≥ 0,L , xm ≥ 0) ⎪ ⎪f1,2,L,m (x1 ,x 2 ,L ,x m ) = 0 (其它xi 值) ⎩
= ftm+2 / tm+1 ( xm + 2 / xm +1 ) ftm+1 / tm ( xm +1 / xm ) = ftm=1 ,tm+2 / tm ( xm +1 , xm + 2 / xm )
随机过程部分习题2
′ (0) = RY
证毕。
∫
∞
−∞
(− jω ) S Y (ω )dω =
1 2π
∫
∞
−∞
− jω c dω = 0 (1 + ω 2 ) 2
14.解: (1)由课本 2.11.2 节可知,
ωT 1 ωc E (( X (t ) − X n (t )) 2 ) = S (ω )(2 sin 1 ) 2 n dω ∫ 2π −ωc 2 2 要使 lim E (( X (t ) − X n (t )) ) = 0 则
n→∞
| 2 sin
ω c T1
2
|< 1 ,即
2kπ
ωc
−
2kπ π π < T1 < + 3ω c ω c 3ω c
(k是整数, k > 0)
或 0 < T1 <
π 3ω c π ,结合(1)中结果,最大取值区间为 ωc
(2)根据抽样定理, T1 ≤
0 < T1 ≤
π 3ωc
15.解: (1)均方连续性:
(2)
R XY (τ ) = E[ X (t )Y (t − τ )] = E{ X (t )[ X (t − τ ) + dX (t − τ ) / dt ]} = R(τ ) + R XX ′ (τ ) = R(τ ) − dR (τ ) / dτ
11.解:由第 8 题知, E ( X (t )) = 0 , R(τ ) = cosωτ (1)均值遍历性: 因为 lim
Δt →0
lim ∑ X (a + iΔt )Δt = lim ∑ [U (a + iΔt ) + V ]Δt
《随机过程》第二章题目与答案
第二章一、填空题1、随机过程若按状态空间与参数集分类可分为__、__、__、__四类.2、__是随机过程{X(t),t∈T}在时刻t的平均值,__是随机过程在时刻t对均值m x(t)的偏离程度,而__和__则反映随机过程{X(t),t∈T}在时刻s和t 时的线性相关度.3、若随机变量x服从(01)分布,即p k=p{x=k}=,k=0,1则其特征函数g(t)=__.4、若随机变量X服从参数为的指数分布,则其特征函数g(t)=__.5、若随机变量X服从退化分布,即p(X=c)=1,其中c为常数,则其特征函数g(t)=__.二、计算题1、已知Γ分布,X~Γ(α,β),若其中α,β>0,试求Γ分布的特征函数.2、设随机变量X服从泊松分布,即p k=p(X=k)=,k=0,1,…,n,求其特征函数.3、设随机过程X(t)=Y+Zt,t>0,其中Y,Z是相互独立的N(0,1)随机变量,求{ X(t),t>0}的一,二维概率密度族.4、设随机过程:0),sin()cos()(>+=t t Z t Y t X θθ,其中Y 、Z 是相互独立的随机变量,且EY=EZ=0,DY=DZ=δ2,求{X(t),t>0}的均值函数、协方差函数和方差函数.5、设随机变量Y 具有概率密度f(y),令)0,0(,)(>>=-Y t t X eYt,求随机过程X(t)的一维概率密度及EX(t),R x (t 1,t 2).6、设随机过程Z t =,t 0,其中X 1,X 2,…,X n 是相互独立的,且服从N(0,)的随机变量,ω1, ω2,…, ωn 是常数,求{Z t ,t}的均值函数m(t)和相关函数R(s,t).参考答案:一、填空题1、离散参数链,连续参数链,随机序列,随机过程2、均值函数m X(t),方差函数D X(t),协方差函数B X(s,t),相关函数R X(s,t)3、q+p4、5、二、解答题1、1、g(t)===其中:Γ(α)=2、g(t)= = ===3、由于X与Z是相互独立的正态随机变量,故其线性组合仍为正态随机变量,要计算{X(t),t>0}的一、二维随机概率密度,只要计算数字特征m x(t),D X(t),即可. m x(t)=E(Y+Zt)=EY+tEZ=0,D X(t)=D(Y+Zt)=DY+t2DZ=1+t2,B X(s,t)=EX(s)X(t)- m x(s) m x(t)=E(Y+Zs)(Y+Zt)=1+st,==,故随机过程{X(t),t>0}的一、二维概率密度分别为f t(x)=exp{-},t>0,f s,t(x1,x2)=.exp{[]}, s,t>0,其中4、由数学期望的性质)sin()cos()]sin()cos([)(=+=+=EZ t EY t t Z t Y E t EX θθθθ又因为Y 、Z 相互独立,故])cos[()()sin()sin()()cos()cos()]sin()cos()][sin()cos([)]()([),(),(σ222θθθθθθθθθs t Z E t s Y E t s t Z t Y s Z s Y E t X s X E t s t s RBxX-=+=++===DX(t)=5、有随机变量函数的概率密度公式知:X(t)的一维概率密度:0,/)/ln ()(/)()()()(>-='='=t tx t x f y x y f x y y f x fX(t)的均值函数和相关函数为:dy e y f E t EX ytYte ⎰∞--==0)()()( dy y f e eeE t X t X E t t R t t y Yt Yt x )(][)]()([),(0)(21212121⎰∞+---===6、m(t)=E(Z t )=E[]=0,R(s,t)=E(Zs )=E===。
最新西安交通大学汪荣鑫随机过程第二版课后答案
西安交通大学汪荣鑫随机过程第二版课后答案------------------------------------------作者xxxx------------------------------------------日期xxxx随机过程习题解答第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===。
求X 的特征函数,EX 及DX 。
其中01,1p q p <<=-是已知参数。
解()()jtxjtk k X k f t E ee pq ∞===∑ 0()k jtkk p q e∞==∑ =0()1jtkjt k pp qe qe ∞==-∑ 又20()kk k k q qE X kpq p kq pp p∞∞======∑∑ 222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 100()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰22201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。
随机过程(汪荣鑫版)第一、二、四章习题答案.pdf
第一章随机过程的基本概念1.设随机过程X(t)=X cosω0t,-∞ <t< +∞,其中ω0是正常数,而X是标准正态变量。
试求X(t)的一维概率分布解:∵当cosω0t=0 即ω0 t =(k + 1)π 即t=1(k+1)π时2 ω0 2p{x(t)=0}=1若 c o ωs0t≠ 0 即t ≠1 (k+ 1 )π时2ω0F (x, t)= P{X (x)≤ x}= P{X cosω0t ≤ x} 当 c o ωs0t> 0 时此时若 c o ωs0t同理有⎧ x ⎫ 1 x - ξ 22F (x, t)= P⎨X ≤ ⎬ = cosω0t e dξ⎩ cosω0t ⎭ 2π⎰0∂F (x, t ) 1 - x2 1f (x, t)= = e 2 c o 2sω 0t⋅∂x c o sω0tπ< 0 时⎧ x ⎫ ⎧ x ⎫F (x, t)= P⎨X ≥ ⎬ = 1 -P⎨x< ⎬⎩ cosω0t⎭ ⎩ cosω0t⎭1 x e- ξ 2= 1 - cosω0t 2 dξ⎰0- x21f (x, t)= - 2 c o 2sω t ⋅c o ωs0t综上当:cosω0t≠0 即t ≠1 (k+ 1 )π时ω0 21 1 - x2f (x, t) e 2 cos2 ω0t| cosω0 t |π2.利用投掷一枚硬币的试验,定义随机过程为⎧cos πt , 出现正面X (t ) = ⎨⎩ 2t , 出现反面1假定“出现正面”和“出现反面”的概率各为 1 2 。
试确定 X (t ) 的一维分布函数 F (x , 2)和 F (x ,1) ,以及二维分布函数 F (x 1 , x 2 ;12 ,1)解:(1)先求 F (x , 1 )2⎧ π 出现正面 ⎧0⎛ 1 ⎫ ⎪cos 2 , 出现正面显然 X⎪ = ⎨= ⎨1出现反面 ⎝ 2 ⎭ ⎪2 - , 出现反面 ⎩12⎩⎛ 1 ⎫随机变量 X ⎪ 的可能取值只有 0,1 两种可能,于是⎝ 2 ⎭⎧ ⎛ 1 ⎫ ⎫ 1⎧ ⎛ 1 ⎫⎫ 1 P ⎨X⎪ = 0⎬ =P ⎨X⎪ = 1⎬ =⎩ ⎝ 2 ⎭⎭ 2 ⎩ ⎝ 2 ⎭⎭ 2所以⎧ 0 x < 0⎛1 ⎫ ⎪ 1F x ,⎪ =⎨ 0 ≤ x < 1⎝2 ⎭ 2⎪1 x ≥ 1⎩再求 F (x ,1)⎧cos π 出现正面 ⎧-1 出现正面显然 X (1) = ⎨= ⎨⎩2出现反面 ⎩2出现反面p {X (1) = -1}= p {X (1) = 2}= 12所以⎧0x < -1⎪ 1F (x ,1) = ⎪-1 ≤ x < 2⎨ 2⎪⎪1x ≥ 2⎩1(2) 计算 F (x 1 , x 2 ; 2 ,1)1 0 出现正面-1 出现正面X () = ⎨出现反面, X (1) = ⎨出现反面2⎩1⎩2于是⎛ 1 ⎫⎧ ⎛ 1 ⎫ ⎫ F x x 1 , x 2 ; ,1⎪ =p ⎨X ⎪ ≤ x 1 ; X (1) ≤ x 2 ⎬⎝2 ⎭⎩⎝ 2 ⎭⎭⎧0 x 1 < 0- ∞ < x 2 < +∞⎪或 x 1 ≥ 0, x 2 < -1⎪⎪ 10 ≤ x 1 < 1, 2 ≤ x 2= ⎨2 ⎪ 或 x 1> 1,⎪ -1 ≤ x 2 < 2⎪⎩1x 1 > 1,x 2 ≥ 23.设随机过程 {X (t ),-∞ < t < +∞}共有三条样本曲线X (t,ϖ1 ) = 1, X (t,ϖ 2 ) = sin t , X (t,ϖ 3 ) = cos t且 p(ϖ1 ) = p(ϖ 2 ) = p(ϖ 3 ) = 1 , 试求随机过程 X (t ) 数学期望 EX(t) 和相关函数3 R x (t 1,t 2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S 0 { 0} 为吸收态集, 为瞬时态集, 且转移矩阵为 P
~
P P0 , 其中 P0 ( I P) e , 0 1
e (1,1,1) 。定义从瞬时态集到吸收态集的首达时间为:
inf{ n : n 0, X n S 0 } 。
g
k 0
kk 。Biblioteka k 1 P0 P k 1 ( I P)e ;
1
(b) 对于任意 0 1 ,有: G( ) 0 ( I P) ( I P)e 。 13、 设有一生灭过程 { (t ); t 0} ,其中参数 n , n n , 和 均为大于零的
(1) 试求概率 P{ X 0 0, X 1 1, X 2 1} ; (2) 计算 p 01 ;
( 2)
中国科学院大学 2014~2015 第一学期
随机过程讲稿
孙应飞
(3) 试求首达概率 f 00 , n 1,2,3, ;
(n)
(4) 写出四个状态的常返性、周期性;此链是否遍历?说明理由。 9、 考虑三个状态的齐次马氏链,其转移概率矩阵为
j k t
) k (1 e t ) j k , j k 1 是上述方程的解,并计算
E{ X (s t ) X (s) X (s) m }。
15、 在 一 个 线 性 生 灭 过 程 中 , 假 定 人 口 中 每 个 人 在 间 隔 (t , t t ) 内 以 概 率
知正常工作的机器在某天出故障的概率为 a , 机器处于故障修理状态在某天恢复正常工 作的概率为 b ,其中 0 a, b 1 。令 X n 表示第 n 天车间正常工作的机器数,试求: (1) 证明 X n ; n 1,2, 是一齐次马氏链,并写出其一步转移概率矩阵; (2) 此马氏链是否存在极限分布?存在的话,计算其平稳分布; (3) 若车间里有 m 台独立工作的机器,假设条件不变,问其平稳分布是什么? 12、 设 { X n ; n 0} 是一齐次马氏链, 状态空间为 S S 0 S , 其中: S {1, 2,, m}
p00 (1) P p10 p 20
p 00 p10 (2) P p 20 p30 p 40 p00 p10 (3) P p 20 p30 p 40
p01 p11 p 21
p 01 p11 p 21 p31 p 41 p 01 p11 p 21 p31 p 41
(b) 写出三个状态的常返性、周期性;此链是否遍历?说明理由。 8、 设 { X n ; n 0,1,2,} 是一齐次马氏链,其初始分布为
P{X 0 0} p0 , P{X 0 1} p1 , P{X 0 2} p2 , P{X 0 3} p3
一步转移概率矩阵为:
t o(t ) 生一个儿女,假定这些人是统计独立的,则如果在时刻 t 人口中有 n 个人,
在 (t , t t ) 中出生的概率是 nt o(t ) 。同样地,如果在 (t , t t ) 内一个人死亡的 概率是 t o(t ) ,则如果在 t 时刻有 n 个人活着,在 (t , t t ) 内死亡的概率是
0, 1, Xn 2, 3,
n n n n
0, n 1 0; 0, n 1 1; 1, n 1 0; 1, n 1 1;
0, n 0, n 1 0; Yn 其它; 1,
试问随机序列 { X n , n 2} 和 {Yn , n 2} 是否为马氏链?如果是的话,请写出其一步转 移概率矩阵并研究各个状态的性质。不是的话,请说明理由。 2、 天气预拨模型如下:今日是否下雨依赖于前三天是否有雨(即一连三天有雨;前两天有 雨,第三天是晴天;…) ,试将此问题归纳为马尔可夫链,并确定其状态空间。如果过 去一连三天有雨,今天有雨的概率是 0.8;过去三天连续为晴天,而今天有雨的概率为 0.2;在其它天气情况时,今日的天气和昨日相同的概率为 0.6。试求此马氏链的转移 概率矩阵。 3、 设 { X n ; n 0} 是一齐次马氏链,状态空间为 S { 0,1, 2} ,它的初始状态的概率分布 为: P{ X 0 0} 1 / 4 , P{ X 0 1} 1 / 2 , P{ X 0 2} 1 / 4 ,它的一步转移转移概 率矩阵为:
死去。假设在长为 t 的一段时间内,一个细菌分裂为两个,即产生新细菌的概率为
t o(t ) ,令 X (t ) 表示时刻 t 的细菌群体的大小。
(a) 试说明 { X (t ), t 0} 是生灭过程; (b) 试证 i i , i 0 ,并列出其前进方程和后退方程; (c) 验证 pk j (t ) C j 1 (e
1 4 1 P 3 0
3 4 1 3 1 4
0 1 3 3 4
(1) 计算概率: P{ X 0 0, X 1 1, X 2 1} ; (2) 计算 p01 , p12 。 4、 独立地连续抛掷一颗质地均匀的骰子,以 n 表示前 n 次抛掷出的最大点数,试证明
常数,其起始状态为 (0) 0 。试求: (a) 该过程的 Q 矩阵; (b) 列出福克-普朗克微分方程; (c) 其均值函数 M (t ) E{ (t )} ; (d) 证明 lim p0 (t ) exp{ / } 。
t
14、
有一个细菌群体,在一段时间内假定可以通过分裂等方式产生新的细菌,并不会
p00 P p10 p 20
其中: p, q, r 0, p q r 1,
p01 p11 p 21
p02 1 0 0 p12 p q r p 22 0 0 1
(a) 假定过程从状态 1 出发,试求过程被状态 0(或 2)吸收的概率; (b) 试求过程进入吸收态而永远停留在那里所需的平均时间。 10、 设齐次马氏链 X n , n 0, S 1,2,3,4, 一步转移概率矩阵如下:
令: (0) ( 0 , 1 ,, m ) 为马氏链的初始分布,记: (1 ,, m ) ,且满足:
k 0 (k 0,1,, m) , k 1 。
k 0
m
中国科学院大学 2014~2015 第一学期
随机过程讲稿
孙应飞
令: g k P{ k } (称为 Phase-Type 分布) , G ( ) E{ } 试证明: (a) 对于任意 k N ,有: g 0 0 , g k P
p02 0 1 / 2 1 / 2 p12 1 / 2 0 1 / 2 ; p 22 1 / 2 1 / 2 0
p 02 p12 p 22 p32 p 42 p02 p12 p 22 p32 p 42 p 03 p13 p 23 p33 p 43 p 03 p13 p 23 p33 p 43 p04 1 / 2 0 1 / 2 0 0 p14 1 / 4 1 / 2 1 / 4 0 0 p 24 1 / 2 0 1 / 2 0 0 ; p34 0 0 0 1/ 2 1/ 2 p 44 0 0 1/ 2 1/ 2 0 p 04 1 / 4 3 / 4 0 0 p14 1 / 2 1 / 2 0 0 p 24 0 0 1 0 p34 0 0 1/ 3 2 / 3 p 44 1 0 0 0 0 0 0 。 0 0
独立的。设 (t ) 表示在 t 时刻正在用电的焊工数。 (a) 试写出此过程的状态空间及 Q 矩阵; (b) 设 (0) 0 ,写出福克-普朗克方程; (c) 当 t 时,求极限分布 Pn 。
中国科学院大学 2014~2015 第一学期
随机过程讲稿
孙应飞
第二章 Markov 过程习题
1、 设 { n , n 1} 为相互独立同分布的随机变量序列,其分布为:
P{ n 1} p 0, P{ n 0} q 1 p 0
定义随机序列 { X n , n 2} 和 {Yn , n 2} 如下:
( 2) ( 3)
{ n ; n 1} 是一马氏链,并求其 n 步转移概率矩阵。
5、 设有一个三个状态 S { 0,1, 2} 的齐次马氏链,它的一步转移概率矩阵为:
p1 P 0 q 3
q1 p2 0
0 q2 p3
中国科学院大学 2014~2015 第一学期
nt o(t ) , X (t ) 表示 t 时刻人口的数目,且已知 X (0) n0 ,则 X (t ) 是一马氏过
程。 (a) 试写出过程的状态空间及 Q 矩阵,求 pn (t ) P{ X (t ) n} 满足的微分方程; (b) 试导出 m X (t ) E{ X (t )} 满足的微分方程; (c) 求解 m X (t ) 。 16、 一条电路供给 m 个焊工用电,每个焊工均是间断地用电。现假设(1)若一焊工在
0 1/ 2 1/ 2 0 0 1/ 2 1/ 2 0 P 1/ 2 1/ 2 0 0 1 / 2 1 / 2 0 0
(1) 写出切普曼-柯尔莫哥洛夫方程(C-K 方程) ; (2) 求 n 步转移概率矩阵; (3) 试问此马氏链是平稳序列吗? 为什么? 11、 某车间有两台独立工作的机器,每台机器有两种状态:正常工作和故障修理。已
随机过程讲稿
孙应飞
试求: (1) f 00 , f 00 , f 00 , f 01 , f 01 , f 01 ; (2) 确定状态分类,哪些属于常返的,哪些属于非常返的。 6、 试确定下列齐次马氏链的状态分类,哪些属于常返的,哪些属于非常返的。已知该链的 一步转移矩阵为: