解析行程问题—“多次相遇”
有关多次相遇的行程问题解析
有关多次相遇的行程问题解析 多次相遇 (1)2倍的关系(两头同时出发相向而行):对于单个人来讲,从一次相遇到相邻的下一次相遇走了他从出发到第一次相遇的2倍。
(关注2倍的关系,是因为很多题目,只告诉第一次相遇地点距离一段的路程) 【例1】小明和小英各自在公路上往返于甲、乙两地。
设开始时他们分别从两地相向而行,若在距离甲地3千米处他们第一次相遇,第二次相遇的地点在距离乙地2千米处,则甲、乙两地的距离为多少千米? (2)对于一头同时出发同向行驶或者环型行程中,思路是从路程和或者某一个人在不同时间段的关系找到对应的时间关系,再找到单个人或另外一个人两个时间段的路程关系。
(路程关系~~~时间关系~~~~路程关系) 【例2】一列客车和货车从甲同时同向出发开往乙地,货车速度是80千米/时,经过1小时两车在丙地相遇,两车到达了两端后都立即返回,第二次相遇的地点也在丙地。
求客车的速度。
【例3】甲乙二人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端。
如果他们同时出发,并在甲跑完60米时第一次相遇,在乙跑一圈还差80米时两人第二次相遇,求跑道的长度? (3)根据速度比m:n,设路程为m+n份 【例4】甲、乙两车分别从AB两地出发,在AB之间不断的往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第3次与第4次相遇点恰好为100千米,那幺AB两地之间的距离是多少千米? 【例5】甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断往返行驶。
甲、乙两车的速度比为3:7,并且甲、乙两车第1996次相遇的地点和1997次相遇的地点恰好相距120千米(这里指面对面的相遇),那幺A、B两地之间的距离是多少千米? (4)n次相遇---画平行线并结合周期性分析 【例6】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒钟3米,乙的速度是每秒钟2米。
如果他们同时分别从直路的两端出发,10分钟内共相遇了几次?(平行线+周期性分析) 【例7】A、B两地相距1000米,甲从A地、乙从B地同时出发,在A、B间往返锻炼。
解析汇报行程问题—“多次相遇”
解析行程问题—“屡次相遇〞行程问题是行测数学运算中必考题型。
同时也是相对较难解决的一种题型。
而路程=速度×时间是行程问题中最根本公式。
这个根本公式中暗含着的正反比关系也是考生在复习过程中需要重点注意的地方。
正因如此,比例思想是我们解决行程问题的常用方法。
其次,数形结合也是不可或缺的工具。
即对于行程问题,最主要的是根据题干信息画出行程图,理清路程、速度、时间三者之间的关系,进而解题。
行程问题实际上还包含很多小的模块,比如:简单的相遇和追与、屡次相遇问题、流水行船、时钟问题、牛吃草问题等等。
在此,中公教育专家宋丽娜将对于比拟难以掌握的屡次相遇问题详细的阐述下其中蕴含的原理、公式与考题。
(1)最根本的屡次相遇问题是指两人同时从不同的地点同时相向而行,在第一次相遇后没停,继续向前走到打对方终点后返回再次相遇,如此循环往返的过程是屡次相遇问题。
根本模型如下:从出发开始到等等依次类推到第n次相遇。
在此运动过程中,根本规律如下:(1)从出发开始,到第n次相遇:每一次相遇会比前一次夺走2个全程;即:路程和具有的特点是1:2:2:2:……,含义是第一次走1个全程,第二次开始都增加2个全程;(2)由于二者在运动过程中,速度和是不变的,故每次相遇所用时间和路程和成正比,假如设第一次相遇的时间为t,如此第一次到第二次所用时间为2t,依次类推,每次相遇所用的时间关系也为1:2;2:2……,含义是第一次相遇用时间t,第二次开始相遇时间都会增加2t的时间;(3)各自所走路程也满足这个关系。
设第一次相遇甲走路程为S0,如此从第二次相遇开始甲走的路程会增加2S0,即关系式仍为1:2:2:2……。
例题1:甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,如此A、B两地相距多少千米?【答案】D。
解析:直线屡次相遇问题。
第一次相遇时,两人走的总路程为A、B之间的路程,即1个AB全程。
奥数 行程 多次相遇和追及问题
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键知识框架多次相遇与追及问题多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
奥数行程,多次相遇和追及问答
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程; 第3次相遇,共走5个全程; …………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程; 第3次相遇,共走6个全程; …………, ………………; 第N 次相遇,共走2N 个全程;知识框架多次相遇与追及问题3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。
行程问题之多次相遇问题奥数较难
“多次相遇问题”剖析一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。
“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。
现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。
题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。
1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。
之后的每次相遇都多走了2个全程。
所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。
而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。
即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。
相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。
则第一次背面追及相遇在a 处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。
我们可以观察,第一次背面相遇时,两人的路程差是1个全程,第二次背面相遇时,两人的路程差为3个全程。
同样第二次相遇多走的路程是第一次相遇的2倍,单看每个人多走的路程也是第一次的2倍。
依次类推,得:第n次背面追及相遇两人的路程差为(2n-1)S。
(二)单岸型单岸型是两人同时从一端出发,与两岸型相似,单岸型也有迎面碰头相遇和背面追及相遇两种情况。
1、迎面碰头相遇:如下图,假设甲、乙两人同时从A端出发,假设全程为3份,甲每分钟走2份,乙每分钟走4份,则甲乙第一次迎面相遇在a处,此时甲走了2份,乙走了4份,再过1分钟,甲共走了4份,乙共走了8份,在b处迎面相遇,则第二次相遇多走的跟第一次相遇相同,依次类推,可得出:当第n次碰头相遇时,两人的路程和为2ns。
第十四讲 行程问题 多次相遇问题
第十四讲行程问题多次相遇问题第十四讲行程问题-多次相遇问题第十四讲行程问题――多次相遇问题科学知识要点:(一)由简单行程问题拓展出的多次相遇问题所有行程问题都就是紧紧围绕“路程?速度?时间”这一条基本关系式进行的,多人碰面与赴援问题虽然较繁杂,但只要把握住这个公式,逐步表观题目中所牵涉的数量,问题即可迎刃而解.(二)多次相遇与全程的关系1.两地并肩启程:第1次相遇,共走1个全程;第2次碰面,共跑3个全程;第3次碰面,共跑5个全程;…………,………………;第n次碰面,共跑2n-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了n米,以后每次都走2n米。
2.同地同向出发:第1次碰面,共跑2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第n次相遇,共走2n个全程;3、多人多次相遇追及的解题关键多次碰面赴援的解题关键几个全程多人碰面赴援的解题关键路程高(三)解多次相遇问题的工具――柳卡柳卡图,不必基本公式化解,快速的数学分析就是轻易画时间-距离图,再图画上密密麻麻的交叉线,按建议数交点个数即可顺利完成。
折线示意图往往能准确的彰显运动过程中“碰面的次数”,“碰面的地点”,以及“由碰面的地点谋出来全程”,采用折线示意图法通常须要我们晓得每个物体步上一个全程时所用的时间就是多少。
如果不画图,单凭想象似乎对于像是我这样的通常人儿来说不难。
例题:【例1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟走3.5米,乙每秒钟走4米,问:他们第十次碰面时,甲还需跑多少米就可以返回出发点?【例2】甲、乙两车同时从a地出发,不停的往返行驶于a,b两地之间。
已知甲车的速度比乙车慢,并且两车启程后第一次和第二次碰面都在途中c地。
问:甲车的速度就是乙车的多少倍?【例3】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙跑了100米以后,他们第一次碰面,在甲步上一周前60米处又第二次碰面.谋此圆形场地的周长.【例4】甲、乙两车分别同时从a、b两地相对开出,第一次在离a地95千米处相遇.相遇后继续前进抵达目的地后又立刻回到,第二次在距b地25千米处碰面.谋a、b两地间的距离就是多少千米?【例5】甲、乙二人以均匀的速度分别从a、b两地同时出发,相向而行,他们第一次相遇地点距a地3千米,碰面后二人继续前进,跑至对方出发点后立即回到,在距b地2千米处第二次碰面,谋第2000次碰面地点与第2001次碰面地点之间的距离.【例6】a、b两地相距2400米,甲从a地、乙从b地同时出发,在a、b间往返长跑。
国考行程问题之直线两端多次相遇问题
国考行程问题之直线两端多次相遇问题国家公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公务员职业必须具备的基本素质和潜在能力。
河北华图教育精心整理了国家公务员行测真题及其他公务员笔试资料供考生备考学习。
在行测考试当中,有一类问题叫做行程问题。
行程问题当中有一类问题叫做相遇追及问题。
这类问题中有个知识点叫做直线两端多次相遇问题,今天我们就一起来探讨一下。
直线两端多次相遇问题需要记住的定义:直线型两端出发n 次相遇,共同行走距离=(2n-1)×两地初始距离;下面我们一起来看几道例题:【例】在一次航海模型展示活动中,甲乙两款模型在长100 米的水池两边同时开始相向匀速航行,甲款模型航行100米要72秒,乙款模型航行100米要60秒,若调头转身时间略去不计,在12分钟内甲乙两款模型相遇次数是()。
A.9B.10C.11D.12【解析】根据路程和(2n-1)×S=(100/72+100/60)×720,解得n=11.5。
故两模型相遇了11 次。
答案选C。
我们再来看两道例题:【例】(2011-国家-68)甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5 米,乙每分钟游52.5米。
两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。
如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇了多少次?()A.2B.3C.4D.5【解析】根据路程和(2n-1)×30=(37.5+52.5)×11/6(11/6由1分50秒换算所得),解得n=3.25。
故两模型相遇了3次。
答案选B。
【例】(2013-浙江A-53)甲、乙两地相距210公里,a、b 两辆汽车分别从甲、乙两地同时相向出发并连续往返于两地。
从甲地出发的a汽车的速度为90公里/小时,从乙地出发的b汽车的速度为120公里/小时。
公务员考试行测技巧:巧解异地出发多次相遇问题
公务员考试行测技巧:巧解异地出发多次相遇问题多次相遇问题是行测数量关系考试中的常考题型,所以行程问题是备考过程中的难点之一。
尤其是多次相遇问题,由于相遇次数较多所以在解题过程中可能会感觉繁琐、无思路。
今天就带领各位考生梳理思路,许多多次相遇问题就可以迎刃而解了。
一、常见题目表述对于异地出发的多次相遇问题常常有如下两种表述:①甲、乙两人分别从A、B两地同时出发,相向而行,到达对方的出发点之后立即返回;②甲、乙两人分别从A、B两地同时出发,相向而行,不断往返于A、B之间。
二、多次相遇规律甲、乙分别从A、B两地同时相向出发,C为第一次相遇的点,对于这种普通相遇问题通常研究的是路程和、时间、甲的速度、乙的速度。
而多次相遇问题需要研究的是路程和、时间、甲的路程和乙的路程四个量,而这四个量会随着相遇次数的变化会呈现如下的规律变化:规律一:通过表格可以得出:从第N次-第N+1次相遇路程和、时间、甲的路程和乙的路程都是从出发-第1次相遇的2倍。
规律二:通过表格可以得出:从出发-第N次相遇路程和、时间、甲的路程和乙的路程都是从出发-第1次相遇的(2N-1)倍。
多次相遇的题目可以结合行程图利用以上两条结论来进行分析,这样很多问题便可以迎刃而解。
三、典型例题例1.甲乙两辆汽车分别从A、B两地沿同一公路同时相向开出,第一次相遇地点距离A地60千米,相遇后两车继续以原有的速度前行,各自到达终点后再返回,又在距离B地40千米处相遇,则A、B两地相距多少千米?A.110B.120C.130D.140【答案】D。
解析:通过“相遇后两车继续以原有的速度前行,各自到达终点后再返回”的文字描述,确定此题为多次相遇问题。
根据题目条件已知:从出发到第一次相遇甲的路程为60千米,又由多次相遇的结论可以得到,从出发到第二次相遇,甲的路程为(2×2-1)×60=180千米,则A、B两地的距离等于180-40=140千米,选择D。
六年级培优竞赛-多次相遇问题-课件与答案
A 甲
80米 C
第一次
第二次 D
60米
B 乙
例6.小张与小王分别从甲乙两地同时出发, 在两地之间往返行驶(到达另一地后就 立即返回),他们在离甲地3.5千米处 第一次相遇,在离乙地2千米处第二次 相遇。问他们两人第四次相遇的地点离 乙地多远?(相遇指迎面相遇)
看图解析
第三次
小张
3.5千米
甲
C
8.5千米
第一次
A
BD
乙
小王
即第四次相遇时,小张行了两个全程多7.5千米, 第四次相遇点与乙的距离:8.5-7.5=1千米
1.甲、乙二人分别从A、B两地同时相 向遇而后行继,续乙 行的 进速 ,度 甲是 到甲B地的、32乙,到二A人地相 后立即返回。已知二人第二次相遇的 地点距第一次相遇的地点是20千米, 那么,A、B两地相距多少千米?
速度和×相遇时间 = 路程 路程÷ 速度和 = 相遇时间 路程÷ 相遇时间 =速度和 速度和一甲速度 =乙速度
典型例题精讲 【例1】湖中有A,B两岛,甲、 乙二人都要在两岛间游一个来回 。两人分别从A,B两岛同时出发 ,他们第一次相遇时距A岛700米 ,第二次相遇时距B岛400米。问 :两岛相距多远
例3. 甲村,乙村相距6千米,小张和小王分别从甲、乙两村同时 出发,在两村之间往返行走(到达另一个村后马上返回)。 在出发后40分钟两人第一次相遇,小王到达甲村后返回,在 离甲村2千米的地方两人第二次相遇,问小王和小张的速度各 是多少图解析
第二次
6千米 第一次
40分钟
第一次 A
第四次
第二次 2千米
B
D
乙 小王
二次相遇时,小张行了:3.5×3=10. 5千米 相距:10.5-2=8. 5千米 两人第四次相遇,共行2×4-1=7个全程 小张行了:3.5×7=24.5千米
行测答题技巧:多次相遇问题归纳
行测答题技巧:多次相遇问题归纳题型一:求两地之间的距离1.给出两人的速度以及某次相遇的时间,求两地距离。
例题1:A大学的小李和B大学的小孙分别从自己学校同时出发,不断往返于A、B两地之间。
现已知小李的速度为85米/分钟,小孙的速度为105米/分钟,且经过12分钟后两人第三次相遇。
问AB两地距离为多少?【解析】通过题干条件,我们可以得出两者速度和为85+105=190,时间为12,可求出两者路程和为190×12,第三次相遇路程和等于五倍的两地间距,所以AB=190×12÷5=456。
⒉题干中给出的是相遇地点的位置,比如相遇点距离两地的距离,或者是距离中点的距离,由于相遇时两人处于同一位置,所以我们只需要考虑其中一人的路程变化就可以了。
例题2:甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A、B两地相距多少千米?【解析】题干中给出的是相遇地距A或B地的距离,所以只需要考虑甲乙中一者就可以了。
那我们不妨只考虑甲的情况,从出发到第一次相遇,S甲=6,到第二次相遇甲所走的路程为3S甲=18,第二次相遇距B地3千米,可知甲此时走过的总路程为SAB+3=18,两地相距15千米。
题型二:求相遇次数在题干中会给出两地之间的距离,给出甲,乙两者的速度,让考生解答在一定时间内甲,乙两人会相遇多少次。
面对这种类型的题,我们只需运用(2n-1)SAB≤时间×速度和便可以求解出最后的答案。
例题3:甲、乙两人在相距50米的A、B两端的水池里沿直线来回游泳,甲的速度是1米/秒,乙的速度是2米/秒。
他们同时分别从水池的两端出发,来回游了10分钟,如果不计转向的时间,那么在这段时间内他们共相遇了多少次?【解析】利用式子(2n-1)SAB≤时间×速度和;(2n-1)×50≤10×60×(1+2)可得n≤2.3,n为整数,则n=2。
多次相遇追及问题及详解
多次相遇追及问题及详解多次相遇、追及问题及详解行程问题:多次相遇、追及问题1、五年级行程问题:多次碰面、赴援问题------难度:中难度甲、乙两车分别从a,b两地出发,并在a,b两地间不断往返行驶。
已知甲车的速度是25千米/时,乙车的速度是15千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。
求a,b两地的距离?【分析】:多次相遇问题,最好把全程分成分数去考虑甲乙的速度比是25:15=5:3,第一次碰面两车Jaguaribe了一个全程,其中乙行了。
第三次两车Jaguaribe了5个全程,乙行了5×=个全程,第四次碰面两车Jaguaribe了7个全程,乙行了7×=个全程,两次路程高就是个全程,所以ab两地距离200千米2、六年级行程问题:多次相遇、追及问题------难度:中难度甲、乙二人分别从apb两地同时并肩而行,乙的速度就是甲的,二人碰面后稳步前进,甲至b地,乙至a地后立即回到。
未知二人第二次碰面至地点距第一次碰面的地点就是20千米,那么,apb两地距离多少千米?【分析】:第一次碰面,甲乙的路程和就是一个全程,甲行的路程就是全程的,乙行了全程的,第二次碰面,甲乙的路程和就是3个全程,此时甲行及了×3=个全程,两次碰面的距离就是个全程,即20千米,所以ab的距离就是20÷=50千米。
3、五年级行程问题:多次相遇、追及问题------难度:高难度a、b两地间有条公路,甲从a地启程,步行至b地,乙骑摩托车从b地启程,不停地来往于a、b两地之间,他们同时启程,80分钟后两人第一次碰面,100分钟后乙第一次甩开甲,问:当甲抵达b地时,乙冲上甲几次?【分析】:在第一次碰面与第一次冲上之间,乙在100-80=20(分钟)内所跑的路程恰等同于线段fa的长度再加之线段ae的长度,即为等同于甲在(80+100)分钟内所跑的路程,因此,乙的速度就是甲的9倍(=180÷20),则bf的短为af的9倍,所以,甲从a至b,共需跑80×(1+9)=800(分钟),乙第一次甩开甲时,所用的时间为100分钟,且与甲的路程高为一个ab全程.从第一次甩开甲时已经开始,乙每次冲上甲的路程高就是两个ab全程,因此,赴援时间也变成200分钟,所以,在甲从a至b的800分钟内,乙共计4次冲上甲,即为在第100分钟,300分钟,500分钟和700分钟.4、五年级行程问题:多次相遇、追及问题-----难度:高难度快车与慢车分别从甲、乙两地同时送出,并肩而行,经过5小时碰面。
应用题板块-行程问题之多人多次相遇追及(小学奥数六年级)
应用题板块-行程问题之多人多次相遇追及(小学奥数六年级)考试中,数量关系一直是比较难的一类题目,尤其是其中的行程问题,更是让广大考生头疼,他的特点是考察的小题型特别多,需要分类总结规律。
今天我们分享的是多人多次相遇追及问题,有一定复杂度,但只要分解成多个两人的相遇追及问题,就能找到突破口解题。
如果你对前一篇基础内容“相遇及追及”还想再巩一遍,欢迎翻看。
【一、题型要领】1. 多人多次相遇【基本概念】通常有3个或更多的人,他们的出发地可能一样,也可能不一样,他们有同向而行,也有反向而行,中间就会产生多人多次相遇或追及的情况,需根据题意画出示例图进行理解【基本公式】解决这类题目,要抓住最基本的公式,即路程= 速度* 时间当相遇时,路程和= 速度和* 相遇时间当追及时,路程差= 速度差* 追及时间【解题关键】根据题意能够画出多人相遇和追及的示意图,将复杂的多人相遇问题转化为多个简单的相遇和追及问题。
【二、重点例题】例题1【题目】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。
现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇。
那么,东西两村之间的距离是多少米?【分析】分析整个过程可以得到下图,蓝色部分是甲和乙相遇时三人的情形,甲和乙在A点,丙在C点。
绿色部分是甲和丙相遇时三人的情形,甲和丙在B 点。
路程AC有两个含义,一是甲和丙在6分钟内相向而行共同行走的路程,二是在甲和乙相遇时的乙和丙的路程差,通过这层转化即可计算东西两村的距离【解】AC的距离= (100 + 75)* 6 = 1050(米)甲和乙相遇时花费的时间= 1050 ÷ (80 - 75)= 210(分钟)东西两村的距离= (100 + 80)* 210 = 37800(米)【答】东西两村相距37800米例题2【题目】甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。
行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析
行程体系之多次相遇与追及问题知识点总结:1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差例题训练:【例1】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?解答:画线段示意图(实线表示甲车行进的路线,虚线表示乙车行进的路线):可以发现第一次相遇意味着两车行了一个A、B两地间距离,第二次相遇意味着两车共行了三个A、B两地间的距离.当甲、乙两车共行了一个A、B两地间的距离时,甲车行了95千米,当它们共行三个A、B两地间的距离时,甲车就行了3个95千米,即95×3=285(千米),而这285千米比一个A、B两地间的距离多25千米,可得:95×3-25=285-25=260(千米).【例2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.解答:注意观察图形,当甲、乙第一次相遇时,甲乙共走完0.5圈的路程,当甲、乙第二次相遇时,甲乙共走完1+0.5=1.5圈的路程.所以从开始到第一、二次相遇所需的时间比为1:3,因而第二次相遇时乙行走的总路程为第一次相遇时行走的总路程的3倍,即100×3=300米.有甲、乙第二次相遇时,共行走(1圈-60)+300=1.5圈,解出此圆形场地的周长为480米.【例3】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?解答:第五次相遇时,共合走5各全程:400×5=2000(米)甲乙的速度和:2000÷8=250(米/分)甲乙的速度差:0.1×60=6(米/分)甲的速度(250+6)÷2=128(米/分)乙的速度:(250-6)÷2=122(米/分)8分钟时甲的路程跑的圈数:128×8÷400=2(周)余224米400-224=176(米)【例4】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?解答:从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300×10=3000米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3000÷(3.5+4)×3.5=1400米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300-200=100米才能回到出发点【例5】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?解答:画一张简单的示意图:图上可以看出,从爸爸第一次追上到第二次追上,小明走了8-4=4(千米).而爸爸骑的距离是 4+ 8= 12(千米).这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).但事实上,爸爸少用了8分钟,骑行了4+12=16(千米).少骑行24-16=8(千米).摩托车的速度是8÷8=1(千米/分)爸爸骑行16千米需要16分钟,8+8+16=32.所以这时是8点32分。
奥数行程、多次相遇和追及问题
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N 次相遇,共走2N 个全程;知识框架多次相遇与追及问题3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。
多次相遇和追及问题含答案
多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题【难度】☆☆ 【题型】解答【解析】 17【答案】17【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
行程问题之多次相遇与追及问题 非常完整版题型训练+答案解析
行程问题之多次相遇与追及问题非常完整版题型训练+答案解析本文介绍了行程体系中多次相遇和追及的问题。
其中,对于两地相向出发的情况,第N次相遇共走2N-1个全程;对于同地同向出发的情况,第N次相遇共走2N个全程。
在多人多次相遇追及的解题过程中,需要注意路程差和几个全程的关键。
例1中,甲、乙两车分别从A、B两地相对开出,第一次在离A地95千米处相遇,第二次在离B地25千米处相遇。
根据题意可知,A、B两地间的距离为260千米。
例2中,甲和乙两人在一圆形场地上按相反的方向绕圆形路线运动,第一次相遇时甲乙共走完0.5圈的路程,第二次相遇时甲乙共走完1.5圈的路程。
根据题意可得,此圆形场地的周长为480米。
例3中,甲、乙两人从环形跑道上一点A背向同时出发,8分钟后第五次相遇。
已知甲比乙每秒钟多走0.1米,求第五次相遇的地点与点A沿跑道上的最短路程。
根据题意可得,第五次相遇时共合走5个全程,相遇点与点A沿跑道上的最短路程为2000米。
甲和乙的速度分别为250米/分和122米/分,他们在周长为300米的圆形跑道上背向而行。
甲每秒钟跑3.5米,乙每秒钟跑4米。
他们第十次相遇时,甲还需跑100米才能回到出发点。
___和爸爸在上午8点8分开始在家门口的100米直线跑道上跑步。
___的速度为6米/秒,爸爸的速度为4米/秒。
爸爸在8分钟后追上___,然后回家,再次追上___时离家12千米,此时是8点32分。
___和___在长100米的直线跑道上来回跑步,___的速度为6米/秒,___的速度为4米/秒。
他们同时从跑道两端出发,连续跑了12分钟。
在这段时间内,他们迎面相遇了5次。
甲、乙两人从A、B两地同时出发,相向而行。
已知乙的速度是甲的速度的2倍。
解答:由于甲、乙的速度比是1:2,所以在相同的时间内,两人所走的路程之比也是1:2.第一次相遇时,两人共走完了AB的长度,可以把AB的长度看作3份,甲、乙各走了1份和2份。
第100次相遇时,甲、乙共走了199个AB,甲走了1×199=199份。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析行程问题—“多次相遇”行程问题是行测数学运算中必考题型。
同时也是相对较难解决的一种题型。
而路程=速度×时间是行程问题中最基本公式。
这个基本公式中暗含着的正反比关系也是考生在复习过程中需要重点注意的地方。
正因如此,比例思想是我们解决行程问题的常用方法。
其次,数形结合也是不可或缺的工具。
即对于行程问题,最主要的是根据题干信息画出行程图,理清路程、速度、时间三者之间的关系,进而解题。
行程问题实际上还包含很多小的模块,比如:简单的相遇和追及、多次相遇问题、流水行船、时钟问题、牛吃草问题等等。
在此,中公教育专家宋丽娜将对于比较难以掌握的多次相遇问题详细的阐述下其中蕴含的原理、公式及考题。
(1)最基本的多次相遇问题是指两人同时从不同的地点同时相向而行,在第一次相遇后没停,继续向前走到打对方终点后返回再次相遇,如此循环往返的过程是多次相遇问题。
基本模型如下:从出发开始到等等依次类推到第n次相遇。
在此运动过程中,基本规律如下:(1)从出发开始,到第n次相遇:每一次相遇会比前一次夺走2个全程;即:路程和具有的特点是1:2:2:2:……,含义是第一次走1个全程,第二次开始都增加2个全程;(2)由于二者在运动过程中,速度和是不变的,故每次相遇所用时间和路程和成正比,若设第一次相遇的时间为t,则第一次到第二次所用时间为2t,依次类推,每次相遇所用的时间关系也为1:2;2:2……,含义是第一次相遇用时间t,第二次开始相遇时间都会增加2t的时间;(3)各自所走路程也满足这个关系。
设第一次相遇甲走路程为S0,则从第二次相遇开始甲走的路程会增加2S0,即关系式仍为1:2:2:2……。
例题1:甲从A地、乙从B地同时以均匀的速度相向而行,第一次相遇离A地6千米,继续前进,到达对方起点后立即返回,在离B地3千米处第二次相遇,则A、B两地相距多少千米?A.10B.12C.18D.15【答案】D。
解析:直线多次相遇问题。
第一次相遇时,两人走的总路程为A、B之间的路程,即1个AB全程。
第二次相遇时,甲、乙两人共走了3个全程,即两人分别走了第一次相遇时各自所走路程的3倍。
故第一次相遇甲走了6千米,第二次相遇时甲共走过了6×3=18千米,此时甲距离B地3千米,所以两地相距18-3=15千米。
例题2.甲、乙两人分别从A,B两地同时出发,相向而行,乙的速度是甲的2/3,两人相遇后继续前进,甲到达B地,乙到达A地立即返回。
已知两人第二次相遇的地点距离第一次相遇的地点3000米,求A,B两地的距离是( )米。
A.6000B.6500C.7000D.7500【答案】D。
解析:甲、乙速度比为3∶2,设全程长度为5份。
第一次相遇甲、乙共走一个全程,乙走了2份(距离B地2份);从第一次相遇到第二次相遇甲、乙共走两个全程,乙走了4份。
因此第二次相遇时乙共走了6份,相当于到达甲地后又往回走了1份路程(距离B地4份)。
两次相遇地点相隔2份,总路程为3000÷2×5=7500米。
(2)若甲乙二人同时从相同地点出发,乙比甲块,乙到终点后返回与甲第一相遇,然后继续走第二次相遇,如此反复的运动过程,具有什么规律呢?其实,无非就是第一相遇二者走的路程和变为了2个全程而已,之后和最基本的多次相遇问题没有变化。
只是上述所有的比例关系变为2:2:2:2:……而已。
例题3:A、B两地相距540千米,甲乙两车往返于A、B两地,都是到达一地后离地返回,乙车较甲车块。
设两辆车同时同A第出发第一次和第二次相遇都在途中P点,那么到两辆车第三次相遇为止,乙车共走了多少千米?【答案】2160千米。
解析:第一次相遇甲乙共走了2个全程,从出发到第二次相遇,甲乙共走了4个全程,乙块,相遇在P点,且从第一次相遇到第二次相遇,乙走的路程与第一次相遇走的路程相同。
又从第一次相遇到第二次相遇乙从P点又回到P点,则设全程为3分,第一次相遇甲走了2份,乙走了4份。
到第二次相遇,乙又走了4份,到第三次相遇,乙又夺走4份。
4份路程共(540÷3)×4=720千米,到第三次相遇走了720×3=2160千米。
上述两种多次相遇模型是常考点。
只要区分二者的区别与联系,就可快速解决多次相遇问题。
深度剖析“多次相遇问题”解题技巧教育中国-中国网时间:2012-09-12 16:05责任编辑: 刘昌随着近几年公务员考试“高烧不退”的现象持续升温,国考试题的难度也越来越大。
行程问题做为一种每年必考的题型,在试题的创新性上有很大的出题空间。
综观几年的真题,常规题型虽是每年考试的“主力”,但更加复杂的“多次相遇”问题已在这两年里初试锋芒。
笔者通过归纳总结,对多次相遇问题可能在今后考试中出现的几种模型一一向大家进行展示,希望对备考的广大考生起到抛砖引玉的作用。
“多次相遇”问题有直线型和环型两种模型。
相对来讲,直线型出题的模型更加复杂。
环型只是单纯的周期问题。
现在我们分开一一进行讲解。
首先,来看直线型多次相遇问题。
一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。
“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。
现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。
题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。
1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。
之后的每次相遇都多走了2个全程。
所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。
而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。
即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。
相遇次数全程个数再走全程数111232352472………n2n-122、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。
则第一次背面追及相遇在a处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。
我们可以观察,第一次背面相遇时,两人的路程差是1个全程,第二次背面相遇时,两人的路程差为3个全程。
同样第二次相遇多走的路程是第一次相遇的2倍,单看每个人多走的路程也是第一次的2倍。
依次类推,得:第n次背面追及相遇两人的路程差为(2n-1)S。
(二)单岸型单岸型是两人同时从一端出发,与两岸型相似,单岸型也有迎面碰头相遇和背面追及相遇两种情况。
1、迎面碰头相遇:如下图,假设甲、乙两人同时从A端出发,假设全程为3份,甲每分钟走2份,乙每分钟走4份,则甲乙第一次迎面相遇在a处,此时甲走了2份,乙走了4份,再过1分钟,甲共走了4份,乙共走了8份,在b处迎面相遇,则第二次相遇多走的跟第一次相遇相同,依次类推,可得出:当第n次碰头相遇时,两人的路程和为2ns。
2、背面追及相遇与迎面相遇相似,假设全程为3份,甲每分钟走1份,乙每分钟走7份,则第一次背面相遇在a处,2分钟后甲走了2份,乙走了14份,两人在b处相遇。
第一次相遇,两人走的路程差为2S,第二次相遇两人走的路程差为4S,依次类推,可以得出:当第n次追及相遇时,两人的路程差为2ns。
“直线型”总结(熟记)①两岸型:第n次迎面碰头相遇,两人的路程和是(2n-1)S。
第n次背面追及相遇,两人的路程差是(2n-1)S。
②单岸型:第n次迎面碰头相遇,两人的路程和为2ns。
第n次背面追及相遇,两人的路程差为2ns。
下面列出几种今后可能会考到的直线型多次相遇问题常见的模型:{模型一}:根据2倍关系求AB两地的距离。
【例1】甲、乙两人在A、B两地间往返散步,甲从A,乙从B同时出发,第一次相遇点距B60米,当乙从A处返回时走了10米第二次与甲相遇。
A、B相距多少米?A、150B、170C、180D、200【答案及解析】B。
如下图,第一次相遇在a处,第二次相遇在b处,aB的距离为60,Ab的距离为10。
以乙为研究对象,根据2倍关系,乙从a到A,再到b共走了第一次相遇的2倍,即为60×2=120米,Ab为10,则Aa的距离为120-10=110米,则AB距离为110+60=170米。
{模型二}:告诉两人的速度和给定时间,求相遇次数。
【例2】甲、乙两人在长30米的泳池内游泳,甲每分钟游37.5米,乙每分钟游52.5米。
两人同时分别从泳池的两端出发,触壁后原路返回,如是往返。
如果不计转向的时间,则从出发开始计算的1分50秒内两人共相遇多少次?A、2B、3C、4D、5【答案及解析】B。
题目没说是迎面还是背面,所以两种相遇的次数都应该计算。
分开讨论,如是是迎面相遇,则走的全程的个数为个,根据迎面相遇n次,走的全程为2n-1=5,求得n=3;如果是背面相遇,则走的全程数为,故在1分50秒内,不能背面相遇。
所以共相遇3次。
{模型三}:告诉两人的速度和任意两次迎面相遇的距离,求AB两地的距离。
【例3】甲、乙两车分别从A、B两地同时出发,在A、B间不断往返行驶。
甲车每小时行20千米,乙车每小时行50千米,已知两车第10次与第18次迎面相遇的地点相距60千米,则A、B相距多少千米?A、95B、100C、105D、110【答案及解析】C。
走相同时间内,甲乙走的路程比为20:50=2:5。
将全程看成7份,则第一次相遇走1个全程时,甲走2份,乙走5份。
以甲为研究对象(也可以以乙),第10次迎面相遇走的全程数为2×10-1=19个,甲走1个全程走2份,则走19个全程可走19×2=38份。
7份是一个全程,则38份共有38÷7=5…3份(当商是偶数时从甲的一端数,0也是偶数;当商是奇数时从乙的一端数,比如第1个全程在乙的一端,第2个全程在甲的一端)从乙端数3份。
同理当第18次相遇,甲走的份数为(2×18-1)×2=70份。
共有70÷7=10个全程,10为偶数在甲的端点。
如下图:则第10次相遇与第18次相遇共有4份为60千米,所以AB长为千米。
♦点评:对于给定任意两次的距离,主要是根据速度转化为全程的份数,找一个为研究对象,看在相遇次数内走的全程数,从而转化为份数,然后根据一个全程的份数,将研究对象走的总份数去掉全程的个数看剩余的份数,注意由全程的个数决定剩余的份数从哪一端数。