2018-2019工程数学试题与答案
国家开放大学《工程数学》综合练习题参考答案

x
1 n
n i 1
xi
,则
D(x) 2 . n
11.设 A, B 均为 3 阶矩阵,且 A 3, B 2 ,则 2 AB1 12 .
12.设 A 为 n 阶方阵,若存在数 和非零 n 维向量 X ,使得矩阵 AX X ,则称 X 为 A 相应于特征值 的 特征向量 . 13.若 r( A) 1 ,则 3 元齐次方程组 AX 0 的一个基础解析系中含有 2 个解向
26.设 A , B 为 n 阶矩阵,则下列等式成立的是(A).
A. AB BA
B. A B A B
C. ( A B)1 A1 B 1
D. ( AB)1 A1B 1
27.
方
程
组
x1
x2 x2 x3
a1 a2 相
容
的
充
分
必
要
条
件
是
(B)
,
其
中
ai
0,
x1 x3 a3
(i 1, 2, 3) .
2.下列命题正确的是(C). A. n 个 n 维向量组成的向量组一定线性相关; B.向量组1,2 ,, s 是线性相关的充分必要条件是以1,2 ,, s 为系数
的齐次线性方程组 k11 k2 2 ks s 0 有解 C.向量组1, 2 ,, s ,0 的秩至多是 s D.设 A 是 m n 矩阵,且 m n ,则 A 的行向量线性相关
0 2 4
8.设 A , B , C 是三个事件,那么 A 发生,但 B,C 至少有一个不发生的事件表示为
A(B C) .
9.设随机变量 X ~ B(100,0.15) ,则 E( X ) 15 .
10. 设
x1
工程数学(线性代数与概率统计)答案(1章)

工程数学(线性代数与概率统计)习题一一、 1.5)1(1222112=-⨯-⨯=-;2.1)1)(1(111232222--=-++-=++-x x x x x x x x x x ;3.b a ab bab a 2222-=4.53615827325598413111=---++=5.比例)第一行与第三行对应成(,000000=dc ba6.186662781132213321=---++=。
二.求逆序数 1. 551243122=↓↓↓↓↓τ即 2. 5213423=↓↓↓↓τ即3. 2)1(12)2()1(12)1(01)2()1(-=+++-+-=-↓↓-↓-↓n n n n n nn n ΛΛτ即 4.2)1(*2]12)2()1[()]1(21[24)22()2()12(31012111-=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n ΛΛΛΛτ三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +- 四.计算行列式值1.07110851700202145900157711202150202142701047110025102021421443412321=++------r r r r r r r r2.310010000101111301111011110111113011310131103111301111011110111104321-=---⋅=⋅=+++c c c c3.abcdef adfbce ef cf bf de cd bdae ac ab4111111111=---=--- 4.dcdcba dcb a1010111011110110011001--------按第一行展开 ad cd ab dc dadc ab+++=-+---=)1)(1(1111115.ba c cbc a b a a c b a c c b c a b a a b b a c c c b c a b b a a a ba c c cbc a b b a a c b a --------------=------202022202022222222222222 其中)3)(()(3522)(22)(12221222122)(2202022202022222220222200222202222222222222ac ab a c a b a ab abc ba c c aa c ab b a a b a abc ba c c aa c a bc c b b a aa cc b b a ac cc b b b aa ab ac c b c b aa b a c c b a b a a b a c c c b b b a a a b a c c c b c a b b a a a ++++++=--+-+-=--+---=--------=----其余同法可求。
《工程数学》电大历年期末试题及答案 (2)

工程数学电大历年期末试题及答案第一章:复数及其运算1.1 复数的定义和性质试题:1.请简要叙述复数的定义和性质。
2.复数的共轭运算是指什么?给出其定义和性质。
3.试证明虚数单位i满足i2=−1。
答案:1.复数是由实数和虚数部分构成的数,通常表示为a+bi的形式,其中a是实数部分,b是虚数部分,i是虚数单位。
复数的性质有:–复数可以相加:(a+bi) + (c+di) = (a+c) + (b+d)i–复数可以相乘:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i–复数的加法和乘法满足交换律和结合律。
2.复数的共轭运算是指改变虚数部分的符号,即将a+bi变为a-bi。
共轭运算的定义和性质如下:–定义:对于任意复数z=a+bi,其共轭复数为z* = a-bi。
–性质:(a+bi) * (a-bi) = a^2 + b^2,即一个复数与其共轭的乘积等于实数部分的平方加虚数部分的平方。
3.可以通过计算i2来证明虚数单位i满足i2=−1:–i2=(0+1i)∗(0+1i)=−1。
1.2 复数的指数表示和三角函数形式试题:1.请简要叙述复数的指数表示形式和三角函数形式。
2.试证明对于任意复数z,有$e^{i\\theta} =\\cos\\theta + i\\sin\\theta$。
答案:1.复数的指数表示形式是通过欧拉公式来表达,即$z= r \\cdot e^{i\\theta}$,其中r是复数的模,$\\theta$是复数的辐角。
复数的三角函数形式是通过复数的实部和虚部来表示,即$z = a + bi = r\\cos\\theta + r\\sin\\theta i$,其中r是复数的模,$\\theta$是复数的辐角。
2.可以通过欧拉公式来证明对于任意复数z,有$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$:–欧拉公式表示为$e^{i\\theta} = \\cos\\theta + i\\sin\\theta$。
2018-2019(1)《工程数学1B》答案

贵州大学2018—2019学年第一学期期末考试卷B参考答案(工程数学1)一、填空填(每空3分,共18分)1、 -2;2、 0或1;3、 0,2,4;4、 8/27;5、 0.7;6、 (5.8684, 6.1316) . 二、选择题(每小题3分,共12分)C, D, B, A三.解: 001101D =01111xx xx+---222143200101101=1(1)111011011011x x x xx x x +x +x +x x x x++++-=-⨯--=+--+- ( 3分) ( 5分) ( 6分) 四、(8分)解: 由T AB A B =-得()T A E B A += …2分T 432321(A E,A )221311111210--⎛⎫ ⎪+=-- ⎪ ⎪----⎝⎭101311023931012521---⎡⎤⎢⎥→-⎢⎥⎢⎥----⎣⎦ 1131110020011410010301001111001111----⎡⎤⎡⎤⎢⎥⎢⎥→-→-⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦ …6分 即()1T 200B A E A 301111--⎡⎤⎢⎥=+=-⎢⎥⎢⎥---⎣⎦…8分五、(10分) 解:435111*********(A b)11111011530115313101310042442 a b a a b a a a b a-5a ----⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---+-+-⎝⎭⎝⎭⎝⎭4 分当2,3a b =≠-,时,R(A)2R(A,b)3=≠=,方程组无解 当2,3a b ==-时,R(A)R(A,b)24==<,方程组有无穷多解6分 此时,原方程组等价于13423424253x x x x x x +-=⎧⎨-+=-⎩7分令3142c ,c x x ==,则方程组的通解为1122121231422c 4c 2242c 5c 3153c c c 100c 010x x x x -++-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪---- ⎪ ⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(12c ,c 为任意常数)10分六、(7分)解:1234232312011025100134711011301130107A (α,α,α,α)1201012100140014011k 011k 000k 3000k 3--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎪---⎪ ⎪ ⎪ ⎪==→→→⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎪⎪----⎝⎭⎝⎭⎝⎭⎝⎭ 4分 当k 3=时,R(A)34=<向量组A 线性相关5分1234123R(α,α,α,α)R(α,α,α)3==, 321 , , ααα是其一最大无关组,且 4123α13α7α4α=-++ 7分七、(10分) 解: 由⎰+∞∞-=1)(dx x f 得 ---------1分 2π/3k sin xdx k 1==⎰, 即 k 1= ---------2分x πx 30x π03π0,x 3πsin xdx cos x 0.5,x 03F(x)f (t)dt πsin xdx sin xdx 1.5cos x,0x 3π1,x 3--∞-⎧<-⎪⎪⎪-=--≤≤⎪⎪==⎨⎪-+=-<≤⎪⎪⎪>⎪⎩⎰⎰⎰⎰ ----5分ππππP{}F()F()24444X -≤≤=--=分π4π4E(X)x k sin dx 0x +-=⋅=⎰222D(X)E(X )[E(X)]E(X )=-=ππ22244π04x sin dx 2x sin dx 4x x ++-===++⎰⎰-----10分 八、(8分)解: 设A 表示“小王迟到”,B 1,B 2,B 3分别表示交通状况正常,轻微堵车和严重堵车,则P(B 1)=3/10, P(B 2)=5/10, P(B 3)=2/10, P(A|B 1)=2%, P(A|B 2)=10%,P(A|B 3)=80%,于是 ---------2分 (1) P(A)= P(A|B 1) P(B 1)+ P(A|B 2) P(B 2)+ P(A|B 3) P(B 3)=0.3×2%+0.5×10%+0.2×80%=0.216 ---------5分(2) 2222P(AB )P(B )P(A |B )0.590%225P(B |A)0.5740.784392P(A)P(A)⨯====≈ ------8分九、(9分)y 0y ,0y 4.8x(2)1xf(x,y)=0-≤≤≤≤⎧⎨⎩其他解:(1)()()1x y dy 2.4)x 1dy 2X 4.8x(2)x(34x+x , 0f x f x,y 0 , +∞-∞⎧-=-≤≤⎪==⎨⎪⎩⎰⎰其它 …2分()()y2y d 2.4y (2y)y 1dx Y 04.8x(2)x 0f y f x,y 0 +∞-∞⎧-=-≤≤⎪==⎨⎪⎩⎰⎰其它 …4分由于()()()y x f y f x f Y X ,≠ 所以Y X ,不相互独立; …6分 (2){}()yy x0.51y0.5P X Y 1dxdy dy y d 2.4(2y)(2y 1)dx 0.711f x,y 4.8x(2)x ≥-+≥==-=--=⎰⎰⎰⎰⎰…9分十、(6分)解: 32θ3θ0()00x x e ,x>f x x ⎧⎪=⎨≤⎪⎩- …1分当i x >0 (i=1~n)时n3i i 1θn n21θθ)enx i 2n i=1L()=f(x )=3x x x =-∑∏(…2分n 3i i i 1θθ2θni=1lnL()=nln3+nln lnx x =+-∑∑令3i θλθn i=1dlnL()n =x =0d -∑ …5分 解得θ的极大似然估计量为 3iˆθni=1nX=∑ …6分十一、(6分)向量组A :ααα1 2 m ,,,, 向量组B :βββ1 2 n ,,,,P 是m n ⨯型矩阵,满足βββ=αααP 1 2 n 1 2 m (,,,)(,,,),已知向量组A 线性无关,证明:向量组B 线性无关的充分必要条件是R P =n ().[证明] “必要性”由βββ=αααP 1 2 n 1 2 m (,,,)(,,,)可得: βββP 1 2 n R R ≤(,,,)() 由向量组B 线性无关得:βββP 1 2 n n=R R n ≤≤(,,,)(),即得 R P =n ()…2分“充分性”反证法 假设向量组B 线性相关,即有不全为零的数 1 2 n k k k ,,,使12n k βk βk β01 2 n ++=+,即 12n k k βββ=0k 1 2 n ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭(,,,) (1) 由R P =n ()得 m 维向量12n k kP 0k ⎛⎫ ⎪ ⎪≠ ⎪ ⎪⎝⎭,又向量组ααα1 2 m ,,,线性无关,即有:12n k kαααP 0k 1 2 m ⎛⎫ ⎪ ⎪≠ ⎪ ⎪⎝⎭(,,,)。
工程数学试卷及标准答案

1.某人打靶3发,事件Ai 表示“击中i 发”,i=0,1,2,3. 那么事件A=A1∪A2∪A3表示( )。
A. 全部击中.B. 至少有一发击中.C. 必然击中D. 击中3发 2.对于任意两个随机变量X 和Y ,若E(XY)=E(X)E(Y),则有( )。
A. X 和Y 独立。
B. X 和Y 不独立。
C. D(X+Y)=D(X)+D(Y)D. D(XY)=D(X)D(Y)3.下列各函数中可以作为某个随机变量的概率密度函数的是( )。
A . 其它1||0|)|1(2)(≤⎩⎨⎧-=x x x f 。
B. 其它2||05.0)(≤⎩⎨⎧=x x fC. 0021)(222)(<≥⎪⎪⎩⎪⎪⎨⎧=--x x e x f x σμπσ D. 其它00)(>⎩⎨⎧=-x e x f x ,4.设随机变量X ~)4,(2μN , Y ~)5,(2μN , }4{1-≤=μX P P ,}5{2+≥=μY P P , 则有( )A. 对于任意的μ, P 1=P 2B. 对于任意的μ, P 1 < P 2C. 只对个别的μ,才有P 1=P 2D. 对于任意的μ, P 1 > P 25.设X 为随机变量,其方差存在,c 为任意非零常数,则下列等式中正确的是( )A .D(X+c)=D(X). B. D(X+c)=D(X)+c. C. D(X-c)=D(X)-c D. D(cX)=cD(X)6. 设3阶矩阵A 的特征值为-1,1,2,它的伴随矩阵记为A*, 则|A*+3A –2E|= 。
7.设A= ⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--10000002~011101110x ,则x = 。
8.设有3个元件并联,已知每个元件正常工作的概率为P ,则该系统正常工作的概率为 。
9.设随机变量X 的概率密度函数为其它Ax x x f <<⎩⎨⎧=002)(,则概率=≥)21(X P 。
工程数学试题A及答案

工程数学试题A及答案一、选择题(每题3分,共30分)1. 函数\( f(x) = x^3 - 3x^2 + 2 \)的导数是:A. \( 3x^2 - 6x \)B. \( 3x^2 - 6x + 2 \)C. \( x^3 - 3x^2 + 2 \)D. \( 3x^2 - 6x + 3 \)答案:A2. 极限\( \lim_{x \to 0} \frac{\sin x}{x} \)的值是:A. 0B. 1C. \( \pi \)D. \( \infty \)答案:B3. 函数\( y = e^x \)的不定积分是:A. \( e^x + C \)B. \( \ln x + C \)C. \( x e^x + C \)D. \( \frac{1}{x} + C \)答案:A4. 微分方程\( y' + 2y = 0 \)的通解是:A. \( y = Ce^{-2x} \)B. \( y = Ce^{2x} \)C. \( y = C\sin(2x) \)D. \( y = C\cos(2x) \)答案:A5. 矩阵\( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)的行列式是:A. 5B. -2C. 2D. -5答案:B6. 函数\( f(x) = x^2 \)在区间\( [1, 2] \)上的定积分是:A. 1B. 2C. 3D. 4答案:C7. 函数\( y = \ln x \)的二阶导数是:A. \( \frac{1}{x^2} \)B. \( \frac{1}{x} \)C. \( x \)D. \( x^2 \)答案:A8. 矩阵\( A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)的逆矩阵是:A. \( \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \)B. \( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)C. \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)D. \( \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \)答案:C9. 函数\( y = x^3 \)的不定积分是:A. \( \frac{x^4}{4} + C \)B. \( \frac{x^3}{3} + C \)C. \( \frac{x^2}{2} + C \)D. \( \frac{x}{3} + C \)答案:B10. 函数\( y = \sin x \)的不定积分是:A. \( \cos x + C \)B. \( \sin x + C \)C. \( -\cos x + C \)D. \( -\sin x + C \)答案:A二、填空题(每题4分,共20分)1. 函数\( f(x) = x^2 - 4x + 4 \)的极小值点是 \( x =\_\_\_\_\_ \)。
2018年最新电大工程数学复习题精选及答案

《工程数学》期末综合练习题工程数学(本)课程考核说明(修改稿)I. 相关说明与实施要求本课程的考核对象是国家开放大学(中央广播电视大学)理工类开放教育专升本土木工程专业及水利水电工程专业的学生。
本课程的考核形式为形成性考核和期末考试相结合的方式。
考核成绩由形成性考核成绩和期末考试成绩两部分组成,考核成绩满分为100分,60分为及格。
其中形成性考核成绩占考核成绩的30%,期末考试成绩占考核成绩的70%。
形成性考核的内容及成绩的评定按《国家开放大学(中央广播电视大学)人才培养模式改革与开放教育试点工程数学形成性考核册》的规定执行。
工程数学(本)课程考核说明是根据《国家开放大学(中央广播电视大学)专升本“工程数学(本)”课程教学大纲》制定的,参考教材是《大学数学——线性代数》和《大学数学——概率论与数理统计》(李林曙主编,中央广播电视大学出版社出版)。
考核说明中的考核知识点与考核要求不得超出或超过课程教学大纲与参考教材的范围与要求。
本考核说明是工程数学(本)课程期末考试命题的依据。
工程数学(本)是国家开放大学(中央广播电视大学)专升本土木工程专业学生的一门重要的必修基础课,其全国统一的结业考试(期末考试)是一种目标参照性考试,考试合格者应达到普通高等学校理工类专业的本科水平。
因此,考试应具有较高的信度、效度和一定的区分度。
试题应符合课程教学大纲的要求,体现广播电视大学培养应用型人才的特点。
考试旨在测试有关线性代数、概率论与数理统计的基础知识,必要的基础理论、基本的运算能力,以及运用所学基础知识和方法,分析和解决问题的能力。
期末考试的命题原则是在考核说明所规定的范围内命题,注意考核知识点的覆盖面,在此基础上突出重点。
考核要求分为三个不同层次:有关定义、定理、性质和特征等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算、解法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次。
三个不同层次由低到高在期末试卷中的比例为:2:3:5。
2019年电大本科《工程数学》期末考试题库及答案

2019年电大本科《工程数学》期末考试题库及答案一、单项选择题1.若10010020*******=aa ,则=a (12).⒊乘积矩阵⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡1253014211中元素=23c (10). ⒋设A B ,均为n 阶可逆矩阵,则下列运算关系正确的是()AB BA --=11).⒌设A B ,均为n 阶方阵,k >0且k ≠1,则下列等式正确的是(D ).D. -=-kA k A n () ⒍下列结论正确的是(A. 若A 是正交矩阵则A -1也是正交矩阵).⒎矩阵1325⎡⎣⎢⎤⎦⎥的伴随矩阵为( C. 5321--⎡⎣⎢⎤⎦⎥ ). ⒏方阵A 可逆的充分必要条件是(A ≠0)⒐设A B C ,,均为n 阶可逆矩阵,则()ACB '=-1(D ). D. ()B C A ---'111⒑设A B C ,,均为n 阶可逆矩阵,则下列等式成立的是(A ).A. ()A B A AB B +=++2222⒈用消元法得x x x x x x 12323324102+-=+=-=⎧⎨⎪⎩⎪的解x x x 123⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥为(C. [,,]--'1122 ).⒉线性方程组x x x x x x x 12313232326334++=-=-+=⎧⎨⎪⎩⎪( 有唯一解).⒊向量组100010001121304⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥,,,,的秩为( 3). ⒋设向量组为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1111,0101,1100,00114321αααα,则(ααα123,, )是极大无关组.⒌A 与A 分别代表一个线性方程组的系数矩阵和增广矩阵,若这个方程组无解,则D. 秩()A =秩()A -1⒍若某个线性方程组相应的齐次线性方程组只有零解,则该线性方程组(A ). A. 可能无解 ⒎以下结论正确的是(D ).D. 齐次线性方程组一定有解⒏若向量组ααα12,,, s 线性相关,则向量组内(A )可被该向量组内其余向量线性表出. A. 至少有一个向量9.设A ,B为n 阶矩阵,λ既是A又是B的特征值,x 既是A又是B的属于λ的特征向量,则结论( A )成立. A.λ是AB 的特征值10.设A,B,P为n 阶矩阵,若等式(C )成立,则称A和B相似.C.B PAP =-1 ⒈A B ,为两个事件,则( B )成立. B.()A B B A +-⊂ ⒉如果( C )成立,则事件A 与B 互为对立事件.C. AB =∅且AB U =⒊10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中恰有1人中奖的概率为( D. 307032⨯⨯..). 4. 对于事件A B ,,命题(C )是正确的.C. 如果A B ,对立,则A B ,对立⒌某随机试验的成功率为)10(<<p p ,则在3次重复试验中至少失败1次的概率为(D.)1()1()1(223p p p p p -+-+-6.设随机变量X B n p ~(,),且E X D X ().,().==48096,则参数n 与p 分别是(6, 0.8).7.设f x ()为连续型随机变量X 的密度函数,则对任意的a b a b ,()<,E X ()=(A ). A. xf x x ()d -∞+∞⎰8.在下列函数中可以作为分布密度函数的是(B ).B. f x x x ()sin ,,=<<⎧⎨⎪⎩⎪020π其它9.设连续型随机变量X 的密度函数为f x (),分布函数为F x (),则对任意的区间(,)a b ,则=<<)(b X a PD.f x x ab()d ⎰).10.设X 为随机变量,E X D X (),()==μσ2,当(C )时,有E Y D Y (),()==01.C. σμ-=X Y1.A 是34⨯矩阵,B 是52⨯矩阵,当C 为( B 24⨯)矩阵时,乘积AC B ''有意义。
工程数学(线性代数与概率统计)答案(2章)

工程数学(线性代数与概率统计)习题二1、设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A ,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,有⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-2294201722213222222222209265085031111111112150421321111111111323A AB⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T2、求下列矩阵的乘积AB(1)()()7201321=⎪⎪⎪⎭⎫⎝⎛(2)⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--121125147103121012132 (3)⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-119912943110231101420121301 (4)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--000021211111 (5)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---0000002412122412(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛n n n nnc b c b c b c b a c b a c b a 2020202000100002211222111 3、求下列矩阵的乘积(1)()⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛∑=ni i i n n b a b b b a a a 12121(2)()⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a 22122212121112121(3)())222(322331132112233322222111321332313232212131211321x x a x x a x x a x a x a x a x x x a a a a a a a a a x x x +++++=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛6、设⎪⎪⎪⎭⎫ ⎝⎛=100110011A ,求与A 可交换的矩阵⎪⎪⎪⎭⎫⎝⎛=333231232221131211b b b b b b b b b B ;即BA AB = BA b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b AB =⎪⎪⎪⎭⎫⎝⎛++++++=⎪⎪⎪⎭⎫⎝⎛++++++=333232313123222221211312121111333231332332223121231322122111 得 为任意数13121133223221312312221121,,00b b b b b b b b b b b b b ====== ⎪⎪⎪⎭⎫⎝⎛=111211131211000b b b b b b B 7、略8、计算矩阵幂(1)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--2221141343214321432143213(2)⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫⎝⎛-2cos2sin2sin2cos 1401104410013401102410010110ππππn n n n k n k n k n k n n(3)n⎪⎪⎭⎫ ⎝⎛--2312,2,1,0122312210012312231223121001100123122312=⎪⎪⎩⎪⎪⎨⎧+=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--k k n kn n ==因(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛k n k k kn λλλλλλ2121(5)⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+1000101011000101011000101011000101011000100110001010110001030110001010110001020110001010110001020110001010110001010113k k kk k(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---kk kk k k kk k k k λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ0002)1(00100100303300100100201200100100201200100100100100100112132323222322229、设()4321=α,()4/13/12/11=β,()()⎪⎪⎪⎪⎪⎭⎫⎝⎛====⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==--13/4244/312/332/13/2124/13/12/114)()()4(43214/13/12/1113/4244/312/332/13/2124/13/12/114/13/12/11432111n n T T n T n T T A A ββααβαβαβα10、分块计算(略),11、12、13、14(略)15、求逆矩阵(1)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛-a c b d bc ad d c b a 11(2)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--θθθθθθθθcos sin sin cos cos sin sin cos 1(3)02145243121≠=---,32,13,4131211-=-=-=A A A ,2,1,0,14,6,2333231232221-=-=====A A A A A A⎪⎪⎪⎭⎫ ⎝⎛-----==*-2143216130242111A A A(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛=----112111n a a a A16.解矩阵方程(1)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-321195532/12/312955343211X (2)⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--861222215768211091614351211187651091614251311X (3)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛---=-98765432112523113501520950381X (4)B A E X B X A E B AX X 1)()(--=⇒=-⇒+=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-1102133502113/13/103/13/213/13/203502112011010111X17、1111)(66)(6-----=⇒=-⇒+=E A B A BA E A BA A BA A⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-=⎪⎪⎪⎭⎫⎝⎛=-⎪⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎪⎭⎫ ⎝⎛=------1236/13/12/16)(66/13/12/1)(,632,743111111E A B E A E A A18、⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫⎝⎛--=--=⇒=-⇒+=---9122692683321011324461351341321011324121011322)2()2()2(2111A E A A E A B A B E A B A AB19、A 为3阶方阵,a A =0≠m ,有a m mA 3-=-;20、A 为3阶方阵,2,2/11=⇒=-A A ;1-*⋅=A A A ,41311112222323===-=-----*-A A A A A A A21、略22、112)(212)(02---=⇒=-⇒=--E A AE E A A E A A A A E E A A E E A A 21)(2)(0212-=-⇒-=-⇒=---因020))(2(=+-⇒=+-E A E A E A E A 23、)2(51)4(05)2)(4(03212E A E A E E A E A E A A --=+⇒=+-+⇒=-+- 24、因0=mA 有1221)((----++++-=-==m m m m m m m A EA A E E A E A E EE所以121)(--++++=-m A A A E A E25、 C A C AC C B m mm11)(--==26、199991--=⇒=⇒=P PB A PBP A PB AP27、28、略29、⎪⎪⎭⎫⎝⎛=⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=22112121,B A O O B A AB B O O B B A OO A A ; 30、(1)设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛214321E OO E A A A A O C B O有⎪⎪⎩⎪⎪⎨⎧====⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛--1214132121430C A A A B A E OO E CA CA BA BA 即逆矩阵为⎪⎪⎭⎫⎝⎛--O B C O11 (2)设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛214231214321E OO E CA AA CA AA BA BA A A A A C A O B 得逆阵为⎪⎪⎭⎫⎝⎛-----1111C AB C O B31、32、略33、求迭(1)200001140432122801140432121101542143211312=⇒⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛---r r r r r (2)4211103000044000100112111011110022201001110011111100222021110=⇒⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----r34、求逆阵(用软件算的与书后答案有些不同,请大家验证) (1)A =3 2 1 3 1 5 3 2 3det(A)= -6 >> inv(A) ans =1.1667 0.6667 -1.5000 -1.0000 -1.00002.0000 -0.5000 0 0.5000(2)B =2 3 11 2 0-1 2 -2det(B)=2>> inv(B)ans =-2.0000 4.0000 -1.00001.0000 -1.5000 0.50002.0000 -3.5000 0.5000(3)C =3 -2 0 -10 2 2 11 -2 -3 -20 1 2 1det(C)=1>> inv(C)ans =1.0000 1.0000 -2.0000 -4.00000 1.0000 0 -1.0000-1.0000 -1.0000 3.0000 6.00002.0000 1.0000 -6.0000 -10.0000(4)D =2 1 0 03 2 0 05 7 1 8-1 -3 -1 -1det(D)=7>> inv(D)ans =2.0000 -1.0000 0.0000 0-3.0000 2.0000 0 -0.00006.4286 -4.4286 -0.1429 -1.14290.5714 -0.5714 0.1429 0.1429。
2019年电大本科《工程数学》期末试题资料三套附答案【电大备考篇】

2019年电大本科《工程数学》期末试题资料三套附答案一、1.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( B )矩阵. A .s n ⨯ B .n s ⨯ C .t m ⨯ D .m t ⨯2.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX = O 的解,则( A )是AX =B 的解. A .213231X X + B .213231ηη+C .21X X -D .21X X + 3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1004. 下列事件运算关系正确的是( A ).A .A B BA B += B .A B BA B +=C .A B BA B +=D .B B -=1 5.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( D ). A .)3,2(-N B .)3,4(-N C .)3,4(2-N D .)3,2(2-N6.设321,,x x x 是来自正态总体),(2σμN 的样本,则( C )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++ C .321535151x x x ++ D .321515151x x x ++ 7.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( B ).A .χ2分布B .t 分布C .指数分布D .正态分布 二、填空题(每小题3分,共15分) 1.设三阶矩阵A 的行列式21=A ,则1-A .2.若向量组:⎥⎥⎥⎤⎢⎢⎢⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k 3.设A B ,互不相容,且A )>0,则P B A ()=4.若随机变量X ~ ]2,0[U ,则=)(X D5.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ三、(每小题10分,共60分)1.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X .解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→110100121010120001110100011110010101即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X . 2.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组.解:因为 (1α 2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是431,,ααα(或432,,ααα).3.用配方法将二次型32312123222132122435),,(x x x x x x x x x x x x f +++++=化为标准型,并求出所作的满秩变换. 解:32312123222132122435),,(x x x x x x x x x x x x f +++++=322322232122)2(x x x x x x x -++++=232322321)()2(x x x x x x +-+++=令333223211,,2x y x x y x x x y =-=++=即得 232221321),,(y y y x x x f ++=由(*)式解出321,,x x x ,即得⎪⎩⎪⎨⎧=+=--=33322321132y x y y x y y y x 或写成⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321*********y y y x x x4.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ).均值得x = 21,求μ的置信度为95%的置信区间.(已知96.1975.0=u )设A 是n 阶矩阵,若3A = 0,则21)(A A I A I++=--.证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--一、 1.设B A ,都是n 阶矩阵)1(>n ,则下列命题正确的是(D ). A . 若AC AB =,且0≠A ,则C B = B .2222)(B AB A B A ++=+C . A B B A '-'='-)(D . 0=AB ,且0≠A ,则0=B2.在下列所指明的各向量组中,(B )中的向量组是线性无关的.A . 向量组中含有零向量B . 任何一个向量都不能被其余的向量线性表出C . 存在一个向量可以被其余的向量线性表出D . 向量组的向量个数大于向量的维数3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100 4. 甲、乙二人射击,分别表示甲、乙射中目标,则AB 表示( A )的事件. A . 至少有一人没射中 B . 二人都没射中C . 至少有一人射中D . 两人都射中 5.设)1,0(~N X,)(x Φ是X的分布函数,则下列式子不成立的是( C ).A .5.0)0(=ΦB . 1)()(=Φ+-Φx xC . )()(a a Φ=-ΦD .1)(2)(-Φ=<a a x P6.设321,,x x x 是来自正态总体的样本,则(D )是μ无偏估计.A . 321x x x ++ B .321525252x x x ++ C . 321515151x x x ++ D . 321535151x x x ++7.对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是(A ).A . 已知方差,检验均值B . 未知方差,检验均值C . 已知均值,检验方差D . 未知均值,检验方差二、填空题(每小题3分,共15分) 1.设A 是2阶矩阵,且9=A ,'-)(31A2为53⨯矩阵,且该方程组有非零解,则)(A r3.2.)(=A P ,则=+)(B A P4.若连续型随机变量X数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则)(X E 5.若参数θ的两个无偏估计量1ˆθ和2θ满足)ˆ()(21θθD D >,则称2ˆθ比1ˆθ三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,问:A1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-520125151051585000500021461351341B A2.线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----112313211151132212322213214242),,(x x x x x x x x x x f ++++=化为标准(C)⎩⎨⎧≤≤=其它,0π0,sin )(x x x f (D)⎪⎩⎪⎨⎧≤≤-=其它,0π2π,cos )(x x x f 7.设总体满足,又,其中是来自总体的个样品,则等式(B )成立. (A)nX E μ=)( (B)μ=)(X E (C)22)(n X D σ=(D)2)(σ=X D1.=⎥⎦⎤⎢⎣⎡-*02132.若λ是A 根.3.已知5.0)(,9.0)(==AB P A P ,则=-)(B A P4.0.4.设连续型随机变量X的密度函数是)(x f ,则<<)(b X a P5三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎤⎢⎢⎢⎡--=101111001A ,求1)(-'A A即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='-211110102)(1A A2.在线性方程组⎪⎩⎪⎨⎧=++-=+-=++153233232121321x x x x x x x x λλ中λ取何值时,此方程组有解.有解的情况下写出方程组的一般解.解:将方程组的增广矩阵化为阶梯形 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--λλλλ21110333032115323011321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→λλλλ2200011102101220001110321由此可知当1≠λ时方程组无解,当1=λ时方程组有解.此时方程组的一般解为⎩⎨⎧+-=--=113231x x x x 3.用配方法将二次型23322231212132162242),,(x x x x x x x x x x x x f +++-+=化为标准型,并求出所作的满秩变换. 解:23322231212132162242),,(x x x x x x x x x x x x f +++-+=232332223231212322217)96()4424(x x x x x x x x x x x x x x -+++--+++=2323223217)3()2(x x x x x x -++-+=令333223211,3,2x y x x y x x x y =+=-+=即得2322213217),,(y y y x x x f -+=由式解出321,,x x x ,即得⎪⎩⎪⎨⎧=-=+-=33322321135yx y y x y y y x或写成。
2018年4月高等教育自学考试《工程数学》试题06268

2018年4月高等教育自学考试《工程数学》试题课程代码:06268一、单项选择题1.设A 、B 是n 阶方阵,则下列命题中一定成立的是(D )A .AB=BAB .(A+B )2=A 2+2AB +B 2C .22))((B A B A B A -=-+D .AB A B A A +=+2)(2.设D 是行列式,ij A 是元素ij a 的代数余子式,下列等式中正确的是(B )A .∑==n k ik ik A a 10B .∑==nk ik ik D A a 1C .∑=≠=n k ik ik j iD A a 1)( D .∑=+=n k k i ik D A a 1,13.设向量组)2,3,1(),3,,1(),,3,1(),1,2,1(121====βαααk k ,若β不能由321,,ααα线性表示,则=k (D )A .0≠kB .3≠kC .0=kD .0=k 或3=k4.A ,B 均为n 阶方阵,满足0=AB 且2)(-=n A R ,则必有(C )A .2)(=B R B .2)(<B RC .2)(≤B RD .1)(≥B R5.设n 元齐次线性方程组0=AX 的系数矩阵A 的秩5)(-=n A R ,则0=AX 的基础解系中含有的向量个数是(C )A .nB .5-nC .5D .16.设A 、B 、C 是任意三个随机事件,则以下命题中正确的是(A )A .B A B B A -=-)( B .A B B A =)(C .)()(C B A C B A -=-D .B A B A B A =)(7.袋中装有4只球,其中2只红球,2只白球,从中取两球,两球都是白球的概率是(B )A .41B .61C .161D .81 8.箱中5件产品中有3件正品,2件次品。
今从中依次取两件产品(不放回),则在第一次取到次品的条件下,第二次取到正品的概率是(D )A .21B .51C .53D .43 9.下列命题中不正确的是(C )A .)(1)(A P A P -=B .0)(=ϕP (ϕ是不可能事件)C .)()()(B P A P B A P -=+D .若B A ⊂,则)()()(A P B P A B P -=-10.设X 服从两点分布,且q p X P p X P =-====1}0{,}1{,则下列等式中不正确的是(C )A .p X E =)(B .p X E =)(2C .22)(p X E =D .pq X D =)(11.设A ,B ,C 为随机事件,则下列等式中不正确的是(D )A .AB B A = B .BA AB =C .)()(C B A C B A =D .B A B A =12.一个盒子中装有10个完全相同的球,分别标有号码1,2,…,10,从中任取三球,其中一个球的号码小于5,一个等于5,一个大于5的概率是(A )A .61B .21C .31D .51 13.下列命题中,正确的是(C )A .0)(=A P ,则A 是不可能事件B .)()()(Y D X D Y X D +=+C .)()()(B P A P B A P += ,则0)(=AB PD .1)()(=-AB P B A P ,则1)()(=+B P A P14.方差0)(=X D 的充分必要条件是(A )A .1)}({==X E X PB .C X =C .)(X E X =D .C XE X =-)(15.设随机变量X 的分布函数为)(x F ,则对Y=4X 的分布函数)(y G ,结论正确的是(B )A .)4()(y F y G =B .)4()(y F y G =C .)(4)(y F y G =D .)(41)(y F y G =二、填空题 16. =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0123)4321( 10 。
工程数学作业题参考答案

《工程数学》作业题参考答案一、填空题(每小题3分,共18分)1. i =5,k = 4;2. 40;3. 2-n A;4. 2442222136x x x x x x --+;5.2-;6. 充分。
7. 1. 16;8.n 2;9. r = n , r<n ; 10. -17; 11. 11<<-t 。
二、简答题(每小题4分,12分)1. 举出任何反例皆可。
当BA AB =时,等式2222)(B AB A B A ++=+成立。
2. 一定不为零。
若A 的特征值0=λ,则存在0 ≠x 使得0 ==x x A λ,即方程0=x A 有非零解,所以0=A ,即A 不可逆,与已知矛盾。
3. 不相似。
否则有可逆阵C 使C -1AC=B ,即A=B ,矛盾。
4. 分别是A B A k B A B ==-=,,(4分)。
5. 不相似(2分)。
否则,存在可逆阵C 使C-1AC=B ,即A=B ,矛盾(2分)。
6.B A +一定为正定阵因为0,00,,>>≠∈∀x B x x A x x R x ,B A T T n有所以为正定阵,从而0)(>+x B A x T ,所以B A +一定为正定阵。
三、计算题(一)(每小题8分,共32分) 1. 值为120(答案错误可适当给步骤分)。
2. 解:由X A E AX +=+2化简得))(()(E A E A X E A +-=-,E A E A --=-故,1可逆,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=201030102E A X 。
3.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡601424527121103121301,,,,54321TT T T T ααααα∽⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000110001011021301, 故421,,ααα 或431,,ααα为一个最大线性无关组(或其他正确答案)。
4. 解:利用分块矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=113232101,8231,2121A A O AA OA ,则 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎦⎤⎢⎣⎡--=--31702431161,1238211211A A ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=⎥⎦⎤⎢⎣⎡=---000211000234216167000313200216110011121O A A OA5.是,⎪⎪⎩⎪⎪⎨⎧+=是奇数;,,是偶数,n n n nS 212dim 6. (1) 121||||2+=e f ;(2)))(41()(2是任意实数b e x b x g +-=。
2018年电大本科《工程数学》期末试题资料三套附答案

2018年电大本科《工程数学》期末试题资料三套附答案一、1.设A 是n m ⨯矩阵,B 是t s ⨯矩阵,且B C A '有意义,则C 是( B )矩阵. A .s n ⨯ B .n s ⨯ C .t m ⨯ D .m t ⨯2.若X 1、X 2是线性方程组AX =B 的解,而21ηη、是方程组AX= O 的解,则( A )是AX =B 的解.A .213231X X + B .213231ηη+ C .21X X - D .21X X +3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) . A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101 B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101 C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011 D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1004. 下列事件运算关系正确的是( A ).A .AB BA B += B .A B BA B +=C .A B BA B+= D .B B -=15.若随机变量)1,0(~N X ,则随机变量~23-=X Y ( D ). A .)3,2(-N B .)3,4(-N C .)3,4(2-ND .)3,2(2-N6.设321,,x x x 是来自正态总体),(2σμN 的样本,则( C )是μ的无偏估计. A .321525252x x x ++ B .321x x x ++C .321535151x x x ++D .321515151x x x ++ 7.对给定的正态总体),(2σμN 的一个样本),,,(21n x x x ,2σ未知,求μ的置信区间,选用的样本函数服从( B).A .χ2分布 B .t 分布 C .指数分布D .正态分布二、填空题(每小题3分,共15分)1.设三阶矩阵A 的行列式21=A ,则1-A . 2.若向量组:⎥⎥⎥⎤⎢⎢⎢⎡-=2121α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1302α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2003k α,能构成R 3一个基,则数k3.设A B ,互不相容,且A )>0,则P B A ()= 4.若随机变量X ~ ]2,0[U ,则=)(X D5.设θˆ是未知参数θ的一个估计,且满足θθ=)ˆ(E ,则θˆ称为θ三、(每小题10分,共60分)1.已知矩阵方程B AX X +=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301111010A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=350211B ,求X . 解:因为B X A I =-)(,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-101210011110001011100201010101001011)(I A I ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→110100121010120001110100011110010101即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=--110121120)(1A I所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-=-334231350211110121120)(1B A I X .2.设向量组)1,421(1'--=,,α,)4,1684(2'--=,,α,)2,513(3'--=,,α,)1,132(4'-=,,α,求这个向量组的秩以及它的一个极大线性无关组.解:因为(1α2α 3α 4α)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------12411516431822341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→1100770075002341⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→0000200011002341所以,r (4321,,,αααα) = 3.它的一个极大线性无关组是 431,,ααα(或432,,ααα). 3.用配方法将二次型32312123222132122435),,(x x x x x x x x x x x x f +++++=化为标准型,并求出所作的满秩变换. 解:32312123222132122435),,(x x x x x x x x x x x x f +++++=322322232122)2(x x x x x x x -++++=232322321)()2(x x x x x x +-+++= 令333223211,,2x y x x y x x x y =-=++=即得232221321),,(y y y x x x f ++=由(*)式解出321,,x x x ,即得⎪⎩⎪⎨⎧=+=--=33322321132yx y y x y y y x或写成⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321*********y y y x x x4.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取P (X < a )=0.9成立的常数a . (8413.0)0.1(=Φ,9.0)28.1(=Φ,9973.0)0.2(=Φ).均值得x = 21,求μ的置信度为95%的置信区间.(已知 96.1975.0=u )设A 是n 阶矩阵,若3A = 0,则21)(A A I A I++=--.证明:因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以21)(A A I A I ++=--一、 1.设B A ,都是n 阶矩阵)1(>n ,则下列命题正确的是(D ). A . 若AC AB =,且0≠A ,则C B = B .2222)(B AB A B A ++=+C . A B B A '-'='-)(D . 0=AB ,且0≠A ,则0=B2.在下列所指明的各向量组中,(B )中的向量组是线性无关的.A . 向量组中含有零向量B . 任何一个向量都不能被其余的向量线性表出C . 存在一个向量可以被其余的向量线性表出D . 向量组的向量个数大于向量的维数3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=211102113A ,则A 的对应于特征值2=λ的一个特征向量α=( C ) .A .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101B .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101C .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011D .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1004. 甲、乙二人射击,分别表示甲、乙射中目标,则AB 表示( A )的事件. A . 至少有一人没射中 B . 二人都没射中C . 至少有一人射中D . 两人都射中 5.设)1,0(~N X,)(x Φ是X的分布函数,则下列式子不成立的是( C ).A .5.0)0(=ΦB . 1)()(=Φ+-Φx xC . )()(a a Φ=-ΦD .1)(2)(-Φ=<a a x P6.设321,,x x x 是来自正态总体的样本,则(D )是μ无偏估计.A . 321x x x ++ B . 321525252x x x ++C . 321515151x x x ++D . 321535151x x x ++7.对正态总体),(2σμN 的假设检验问题中,U 检验解决的问题是(A ).A . 已知方差,检验均值B . 未知方差,检验均值C . 已知均值,检验方差D . 未知均值,检验方差二、填空题(每小题3分,共15分) 1.设A 是2阶矩阵,且9=A ,'-)(31A2为53⨯矩阵,且该方程组有非零解,则)(A r3.2.)(=A P ,则=+)(B A P4.若连续型随机变量X数的是⎩⎨⎧≤≤=其它,010,2)(x x x f ,则)(X E 5.若参数θ的两个无偏估计量1ˆθ和2θ满足)ˆ()(21θθD D >,则称2ˆθ比1ˆθ三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=500050002,322121011B A ,问:A1-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-520125151051585000500021461351341B A2.线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----112313211151132212322213214242),,(x x x x x x x x x x f ++++=化为标准(C)⎩⎨⎧≤≤=其它,0π0,sin )(x x x f (D)⎪⎩⎪⎨⎧≤≤-=其它,0π2π,cos )(x x x f 7.设总体满足,又,其中是来自总体的个样品,则等式(B )成立. (A)nX E μ=)( (B)μ=)(X E (C)22)(n X D σ=(D)2)(σ=X D1.=⎥⎦⎤⎢⎣⎡-*02132.若λ是A 根.3.已知5.0)(,9.0)(==AB P A P ,则=-)(B A P4.0.4.设连续型随机变量X的密度函数是)(x f ,则<<)(b X a P5三、计算题(每小题10分,共60分)1.设矩阵⎥⎥⎥⎤⎢⎢⎢⎡--=101111001A ,求1)(-'A A即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡='-211110102)(1A A2.在线性方程组⎪⎩⎪⎨⎧=++-=+-=++153233232121321x x x x x x x x λλ中λ取何值时,此方程组有解.有解的情况下写出方程组的一般解.解:将方程组的增广矩阵化为阶梯形 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--λλλλ21110333032115323011321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→λλλλ2200011102101220001110321由此可知当1≠λ时方程组无解,当1=λ时方程组有解.此时方程组的一般解为⎩⎨⎧+-=--=113231x x x x 3.用配方法将二次型23322231212132162242),,(x x x x x x x x x x x x f +++-+=化为标准型,并求出所作的满秩变换. 解:23322231212132162242),,(x x x x x x x x x x x x f +++-+=232332223231212322217)96()4424(x x x x x x x x x x x x x x -+++--+++=2323223217)3()2(x x x x x x -++-+= 令333223211,3,2x y x x y x x x y =+=-+=即得2322213217),,(y y y x x x f -+= 由式解出321,,x x x ,即得⎪⎩⎪⎨⎧=-=+-=33322321135yx y y x y y y x 或写成。
大学工程数学试题及答案

大学工程数学试题及答案一、选择题(每题2分,共10分)1. 函数f(x)=\sin(x)在区间[0, π]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增答案:C2. 以下哪个选项是二阶导数的几何意义?A. 切线的斜率B. 函数的增减性C. 函数的凹凸性D. 函数的极值点答案:C3. 复数z=3+4i的模是:A. 5B. 7C. √7D. √5答案:A4. 矩阵A=[1 2; 3 4]的行列式是:A. -2B. 2C. 0D. 5答案:B5. 以下哪个选项是泰勒级数展开的公式?A. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/2!B. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/3!C. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/4!D. f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)^2/1!答案:A二、填空题(每题3分,共15分)6. 函数f(x)=x^3-3x+2的导数是______。
答案:3x^2-37. 曲线y=x^2在点(1,1)处的切线方程是______。
答案:y-1=2(x-1)8. 向量(2, -3)和(1, 2)的点积是______。
答案:-49. 矩阵A=[1 0; 0 2]的逆矩阵是______。
答案:[1 0; 0 1/2]10. 函数f(x)=e^x的不定积分是______。
答案:e^x + C三、解答题(每题10分,共30分)11. 求函数f(x)=x^2-4x+3在区间[1, 3]上的定积分。
答案:∫(x^2-4x+3)dx从1到3 = (1/3x^3 - 2x^2 + 3x) | 从1到3 = 012. 证明函数f(x)=x^3在R上是单调递增的。
工程数学试卷及答案

工程数学试卷及答案2018年1月得分评卷人一、单项选择题(每小题3分,共15分)1.B。
至少有一发击中。
2.A。
X和Y独立。
3.B。
f(x) = 0.5|x|,|x| ≤ 2.4.B。
对于任意的μ,P1 < P2.5.A。
D(X+c) = D(X)。
二、填空题(每空3分,共15分)6.21.7.(1.0.-1)。
8.1 - (1 - P)^3.9.1/2.10.12.三、计算题(每小题10分,共50分)11.XXX变换为F(ω) = 1 / (β + jω),其中j为虚数单位。
证明:由于f(t)为实函数,所以F(ω)的共轭也是F(ω)。
即F*(ω) = 1 / (β - jω)。
因此F(ω)F*(ω) = 1 / (β^2 + ω^2)。
根据傅氏反演公式,得到f(t) = (1 / 2π) ∫F(ω) e^(jωt) dω = (1 / 2π) ∫F(ω) e^(-jωt) dω。
将F(ω)F*(ω)代入可得f(t) = (1 / 2π) ∫e^(-βt) dt = 1 / (2πβ)。
1.发报台发出信号“1”的概率为:0.6*0.8+0.4*0.1=0.53.2.当收报台收到信号“1”时,发报台确是发出信号“1”的概率为:0.6*0.8/0.53=0.905.13.(1) 常数c为1/16;(2) P(X≥Y)=∫∫{ce^[-(2x+4y)]}dxdy=1/2;(3) X与Y不相互独立,因为P(X≥1,Y≥1)=1/16≠P(X≥1)P(Y≥1)=3/16*1/4=3/64.14.设随机变量Xi表示第i个盒子中是否有球,Xi的期望为E(Xi)=n/N,因为每个球放入各个盒子是等可能的。
设随机变量X表示有球的盒子数,则X=∑Xi,所以E(X)=E(∑Xi)=∑E(Xi)=n*N/N=n。
15.(1) X的概率分布律为P(X=1)=1/6,P(X=2)=3/6,P(X=3)=2/6;X的分布函数为F(x)=0 (x<1),1/6 (1≤x<2),4/6 (2≤x<3),1 (x≥3)。
《工程数学》(总)解答

工程数学作业册解答华南理工大学网络教育学院作业一:线性代数一.问答题1.叙述三阶行列式的定义。
答:定义1:用23个数组成的记号111213212223313233a a a a a a a a a 表示数值: 222321232122111213323331333132a a a a a a a a a a a a a a a -+称为三阶行列式,即:111213212223313233a a a a a a a a a =222321232122111213323331333132a a a a a a a a a a a a a a a -+定义2:用2n 个数组成的记号D =1111n n nn a a a a ⎛⎫⎪⎪ ⎪⎝⎭表示数值: 2223232333111123(1)n n n n nn a a a a a a a a a a +- +2123231333121213(1)n n n n nna a a a a a a a a a +-++21222,131323,11112,1(1)n n nnn n n n a a a a a a a a a a --+--称为n 阶行列式。
2.叙述n 阶行列式的余子式和代数余子式的定义,并写出二者之间的关系。
答:定义:在n 阶行列式D 中划去ij a 所在的第i 行和第j 列的元素后,剩下的元素按原来相对位置所组成的(n -1)阶行列式,称为ij a 的余子式,记为ij M ,即ijM=111,11,111,11,11,11,1,11,11,11,1,1,1j j n i i j i j i n i i j i j i nn n j n j nna a a a a a a a a a a a a a a a -+----+-++-+++-+(1)i jij M +-⨯称为ij a 的代数余子式,记为ij A ,即ij A =(1)i jij M +-⨯3.叙述矩阵的秩的定义。
工程数学试题(含答案)

【题型】计算题【题干】计算下列行列式:;.【答案】【难度】3【分数】15【课程结构】00027001001【题型】计算题【题干】设,求矩阵及矩阵的秩;【答案】【难度】3【分数】15【课程结构】00027001002【题型】计算题【题干】已知,,求(1);(2).【答案】(1);(2).【难度】3【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】设,, 求.【答案】,,【难度】3【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】求矩阵的逆矩阵。
【答案】【难度】3【分数】10【课程结构】00027001002【题型】计算题【题干】解矩阵方程【答案】【难度】3【分数】15【课程结构】00027001002;00027001003【题型】计算题【题干】设为三阶方阵,是的伴随矩阵,且,求下列行列式:(1);(2); (3).【答案】 (1)(2)(3)【难度】5【分数】15【课程结构】00027001001;00027001002【题型】计算题【题干】设,,求使.【答案】【难度】4【分数】15【课程结构】00027001002【题型】计算题【题干】两批相同产品分别来自甲、乙两厂,甲厂产品6件,其中一等品2件,乙厂产品5件,其中一等品1件。
现从甲厂产品中任取一件混入乙厂产品中,再从后者中任取一件,求取得一等品的概率。
【答案】【难度】4【分数】10【课程结构】00027001004【题型】计算题【题干】已知随机变量的分布密度为,求⑴分布函数;⑵.【答案】⑴分布函数⑵【难度】4【分数】15【课程结构】00027001005【题型】计算题【题干】求解线性方程组【答案】同解方程组为方程组的解为:【难度】4【分数】15【课程结构】00027001003【题型】计算题【题干】某人去甲、乙、丙三国之一旅游。
注意到这三国在此季节内下雨的概率分别是,他去这三国旅游的概率分别是.据此信息计算:(1)他旅游遇上雨天的概率;(2)若他旅游遇上雨天,求此人去甲国旅游的概率。
高等工程数学I 试题(A)与答案(2019.11.23)

2019年高等工程数学试题答案一、(15分)设210120003⎛⎫⎪= ⎪ ⎪⎝⎭A ,计算()ρA 、225max =x Ax 及()2cond A 。
解:12321012001;3003λλλλλλλ---=--=⇒===-I A ()3ρ=A 2||||()3是正规矩阵ρ∴== A A A 2222515max 5max 5155==∞===x x xAx AA ()2331是正规矩阵∴== A cond A 二、(10分)讲述一下求解矩阵A 的最靠近*λ的特征值的思路、步骤。
答:**对使用逆幂法,求出其按模最小的特征值再加上。
λλ-A I 000u v =≠任取*11()max()k k k k k u A I v u v u λ--⎧=-⎪⎨=⎪⎩*1()max()k k kk k A I u v u v u λ-⎧-=⎪⎨=⎪⎩即**()A I P A I LUλλ--=对进行选列主元的三角分解有1max()k k k kk k k Ly PvUu y u v u -⎧⎪=⎪⎪∴=⎨⎪⎪=⎪⎩1max()max()k ik i u x v x λλ*⎧→⎪⎪⎨⎪→⎪⎩-有三、(18分)已知矩阵200226044-⎛⎫⎪= ⎪ ⎪⎝⎭A ,求P 使得1-P AP 为A 的Jordan 标准型,同时需要求出A 的Jordan 标准型。
解:200226044λλλλ+-=-----I A ()()23+28λλ=-D 211D D ==()()23+28λλ=-d 211d d ==初等因子:()()2+2 8,λλ-Jordan 标准形:2128-⎛⎫ ⎪=- ⎪ ⎪⎝⎭J 1123212,[]8令--⎛⎫⎪==-= ⎪ ⎪⎝⎭P AP J P p p p 11121223332[032]512[0]228[011]∴=-∴=-=-=-==TT TAp p p Ap p p p Ap p p 15002131,2201使得-⎛⎫⎪ ⎪⎪∴=-= ⎪ ⎪- ⎪⎝⎭P P AP J四、(20分)已知241111212,212211⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A b ,(1)求A 的满秩分解;(2)求A +;(3)判断Ax b =是否有解,有解时求极小范数解,无解时求极小范数最小二乘解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( ) ( ) R (r ) = CJ0 λr + DY0 λr . D = 0
( ) 固有值λm = µm(0) 2 , µm(0)为J0 ( x)正零点
( ) 固有函数Rm (r ) = J0 µm(0)r
( ) ( ) Tm
t
= C e−
µm(0)a
2
t
m
∑ ( ) ( ) ( ) u
r,t
=
f ( z=) ( z − z0 )m ϕ ( z),
f ′( z) = m ( z − z0 )m−1 ϕ ( z) + ϕ′( z)( z − z0 )m ,
f f
′((zz))=
(
z
1 −
z0
)
m
+
ϕ′(z) ϕ(z)
(
z
−
z0
)
,
∴Res
f ′(z)
f
(
z)
,
z0
(sin θ
∂u ) ∂θ
=
0,0 <
r
< 1,0 ≤ θ
≤π,
u r=1 = 3cos 2θ + 1,0 ≤ θ ≤ π .
(本题的u 只与 r,θ 有关,与ϕ 无关)
解:由分离变量法,令 u(r,θ ) = R(r)Φ(θ ) ,得到
∞
∑ u(r,θ ) = Cn r n Pn (cosθ ) ,由边界条件有 n=0 ∞
l
anπ
l
l
x sin
0
nπ l
xdx −
l 0
x2 sin
nπ l
xdx
=
4l n4π
3 4
a
(1
−
cos
nπ
)
∑ 所以= u ( x,t )
∞ n=1
4l 3 n4π 4a
1
−
(
−1)n
sin
anπ l
t sin
nπ l
x
五、(10 分)
求解圆盘的热传导问题
= ut
2x3 + 3x= + 4 f0P0 (x) + f1P1(x) + f2P2 (x) + f3P3 (x)
=
f0 1+
f1x +
f2
1 2
(3x2
−1) +
f3
1 2
(5
x3
− 3x)
=
(
f0
−
1 2
f2 ) + ( f1 −
3 2
f3)x +
3 2
f2x2
+
5 2
f3x3
两端比较系数,得
2 3
δ
l
,1
三、(10 分)求 sin z 关于 (z + π ) 的幂级数,并证明: lim sin z = −1.
z→−π z + π
解:
sin z =sin(z + π − π ) =− sin(z + π ),
∴ sin z =−(z + π ) + (z + π )3 − (z + π )5 + (z + π )7 −,
sin
nπ l
x
由初始条件来确定系数An , Bn ,由于
∑
∑ ut
= u ( x, 0) ( x,= 0) l
anπ
n∞= =1 An sin nlπ
∞ n=1
Bn
sin
nπ=x l
0
x(l − x)
故
An = 0
∫ ∫ ∫ Bn
=2 anπ
l x (l − x)sin
0
nπ xdx =2
= x m J m−1 ,(各递推公式中 m ≥ 1)
xJ
′
m
(
x)
−
mJm (x)
= − xJ m+1 ( x),
xJ
′
m
(
x)
+
mJm (x)
= xJ m−1 ( x)
= mJm (x)
x 2
[
J
m+1
(
x)
+
J
m−1
(
x)= ], Jm′(x)
1 2
[ J m−1 (
x)
−
J
m+1 (
x)]
∫1 −1
2018——2019 《工程数学》考试试题
可能用到的公式
∑ = Pl (x)
1 2l l !
dl dxl
(x2
−1)l
,
(1= − 2rx1+ r2 )1/2
∞
Pn (x)rn
n=0
(r < 1)
[ ] d
dx
J
m (x) x m
=
−
J
m+1 (x) xm
d ,dx
xm J m (x)
∫ 解:
dz
z =3 z(z+1)(z+ 2)10
=
2π
i
Res
1 z (z + 1)(z +
2)10
,
0
+
Res
1 z (z + 1)(z +
2)10
,
−1
+
Res
1 z (z + 1)(z +
2)10
,
−2
= −2π i Res z(z+1)1(z+ 2)10
∑ u r=1 = 3cos 2θ + 1 = Cn Pn (cosθ ) ,令 cosθ = x , n=0
∴3(2x 2 − 1) + 1 = 6x 2 − 2 = c0 P0 (x) + c1P1 (x) + c2 P2 (x) ,
6x 2 − 2 = c0 + c1x + c2 12 (3x 2 −1) ,
= lim ( z z → z0
−
z0 )
f ′(z) f (z)
= m
4. 证明 A = y cos xyi + x cos xyj + sin zk; 为有势场。
= 记 P y= cos xy ,Q x= cos xy , R sin z.
则
→→→
i jk
rot A = ∂ ∂ ∂ ∂x ∂y ∂z
,
∞
=
2π i
Res
1 z
1 z
1
+
1
1 z
+
2
10
⋅
1 z2
, 0
z→0
=
2π
i
Res
(1 +
z10 z )(1 +
2 z )10
,
0
=
0
2.1 + z 2 )2
∴ c0
=
0, c1
=
0, c2
=
4
,故 u(r,θ )
=
4r 2
1 2
(3cos2 θ
− 1)
=
6r 2
cos2 θ
−
2r 2
2z n =0
∞
∑ (−1)n −1nz 2(n −1)
n =0
∞
∑ (−1)n(n+ 1)z2n ( z
n = −1
< 1).
3.
设
z0
是函数
f
(
z
)
的
m
阶零点,求
Res
f f
′(z) (z)
,
z0
解: z0为f ( z)的m阶零点,故有z0某邻域内的解析函数ϕ ( z)(ϕ ( z0 ) ≠ 0),使
a2
urr
+
1 r
ur
,
(0
≤
r
< 1,t
>
0)
u (1,t )= 0,u (r, 0)= 1− r2
答:u (r,t ) = R (r )T (t )
T ′ + λa2T = 0
( ) r2R′′ + rR′ + λr2 − 02 R = 0,
= R (1)
0, R (0) < ∞.
3!
5!
7!
∴ sin z =−1+ (z + π )2 − (z + π )4 + (z + π )6 −
z +π
3!
5!
7!
=−1+ (z + π )2[ 1 − (z + π )2 + (z + π )4 −],
3! 5!
7!
而级数 1 − (z + π )2 + (z + π )4 − 在复平面上是收敛的,其和函数记为
∞
∑ ( ) ( ) 于是,u (r,t) = ( ) ( ) m=1
4J2 µm(0) µm(0) 2 J12 µm(0)
J0
µm(0)r
( ) e−
µm(0)a
2