小升初类奥数题型汇总

合集下载

小升初奥数题必考100道及答案(完整版)

小升初奥数题必考100道及答案(完整版)

小升初奥数题必考100道及答案(完整版)题目1:有一个两位数,十位上的数字是个位上数字的2 倍,如果把十位上的数字与个位上的数字交换,就得到另外一个两位数,把这个两位数与原两位数相加,和是132。

求原两位数。

答案:设原两位数个位上的数字为x,则十位上的数字为2x。

原两位数为20x + x = 21x,交换后的两位数为10x + 2x = 12x。

根据题意可得:21x + 12x = 132,33x = 132,x = 4。

所以原两位数为84。

题目2:小明从家到学校,如果每分钟走50 米,就要迟到3 分钟;如果每分钟走70 米,则可提前5 分钟到校。

小明家到学校的路程是多少米?答案:设小明按时到校要x 分钟。

50(x + 3) = 70(x - 5),50x + 150 = 70x - 350,20x = 500,x = 25。

路程为50×(25 + 3) = 1400(米)题目3:甲乙两数的和是180,甲数的1/4 等于乙数的1/5,甲乙两数各是多少?答案:设甲数为x,则乙数为180 - x。

1/4 x = 1/5 (180 - x),5x = 4×(180 - x),5x = 720 - 4x,9x = 720,x = 80,乙数为100。

题目4:某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:设三个车间总人数为x 人。

第一车间人数为0.25x,第二车间和第三车间人数之和为0.75x。

第二车间人数为0.75x×3/7 = 9/28 x。

0.25x + 40 = 9/28 x,9/28 x - 7/28 x = 40,2/28 x = 40,x = 560 人。

题目5:一桶油,第一次用去2/5 ,第二次用去10 千克,这时剩下的油正好是整桶油的一半。

这桶油有多少千克?答案:设这桶油有x 千克。

小升初奥数题大全100道附答案(完整版)

小升初奥数题大全100道附答案(完整版)

小升初奥数题大全100道附答案(完整版)题目1:有三个连续的自然数,它们的乘积是60。

这三个数分别是多少?答案:3、4、5因为3×4×5 = 60题目2:一个数除以5 余3,除以6 余4,除以7 余5。

这个数最小是多少?答案:2085、6、7 的最小公倍数是210,这个数为210 - 2 = 208题目3:小明在计算两个数相加时,把一个加数个位上的6 错写成2,把另一个加数十位上的5 错写成3,所得的和是374。

原来两个数相加的正确结果是多少?答案:408一个加数个位上的6 错写成2,少加了4;把另一个加数十位上的5 错写成3,少加了20。

所以正确结果是374 + 4 + 20 = 408题目4:鸡兔同笼,共有30 个头,88 只脚。

求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只假设全是鸡,有脚60 只,少了28 只脚。

每把一只鸡换成一只兔,脚多2 只,所以兔有28÷2 = 14 只,鸡有16 只题目5:在一条长400 米的环形跑道上,甲、乙两人同时从同一点出发,同向而行,甲每秒跑6 米,乙每秒跑4 米。

经过多少秒甲第一次追上乙?答案:200 秒甲每秒比乙多跑2 米,多跑一圈400 米追上,所以400÷2 = 200 秒题目6:一个长方体的棱长总和是80 厘米,长、宽、高的比是5 : 3 : 2。

这个长方体的体积是多少?答案:240 立方厘米长方体有4 条长、4 条宽、4 条高,所以一组长、宽、高的和为20 厘米。

按比例分配可得长10 厘米、宽6 厘米、高4 厘米,体积为10×6×4 = 240 立方厘米题目7:某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第二车间少40 人。

三个车间共有多少人?答案:560 人设总人数为x 人,则第一车间人数为1/4 x 人,第二车间人数为3/7×3/4 x 人,可列方程3/7×3/4 x - 1/4 x = 40题目8:一个分数,分子与分母的和是48,如果分子、分母都加上1,所得分数约分后是2/3。

小升初数学常考奥数题100道附答案(完整版)

小升初数学常考奥数题100道附答案(完整版)

小升初数学常考奥数题100道附答案(完整版)1. 计算:1+2-3-4+5+6-7-8+9+10-11-12+...+2017+2018-2019-2020答案:-2020思路:每4 个数的计算结果为-4,2020÷4 = 505,所以结果为-4×505 = -20202. 某数除以4 余3,除以5 余2,除以6 余1,这个数最小是多少?答案:57思路:满足除以4 余3 的数有3、7、11、15、19...;满足除以5 余2 的数有2、7、12、17、22...;满足除以6 余1 的数有1、7、13、19、25...。

所以这个数最小是573. 鸡兔同笼,鸡比兔多15 只,共有脚180 只,鸡兔各有多少只?答案:鸡45 只,兔30 只思路:设兔有x 只,则鸡有x + 15 只。

4x + 2×(x + 15) = 180,解得x = 30,鸡有45 只4. 一个数减去7 的差再乘以7,所得的结果与它减去13 的差再乘以13 的结果相同,这个数是多少?答案:20思路:设这个数为x,(x - 7)×7 = (x - 13)×13,解得x = 205. 甲乙两人同时从A、B 两地相向而行,第一次在离A 地75 千米处相遇,相遇后继续前进,到达目的地后又立即返回,第二次在离 B 地55 千米处相遇,A、B 两地相距多少千米?答案:170 千米思路:第一次相遇时,甲走了75 千米,两人共走了一个全程;第二次相遇时,两人共走了三个全程,所以甲走了75×3 = 225 千米,此时甲走了一个全程多55 千米,所以全程为225 - 55 = 170 千米6. 一个长方体,如果高增加2 厘米,就变成一个正方体,这时表面积比原来增加56 平方厘米,原来长方体的体积是多少?答案:441 立方厘米思路:增加的表面积是4 个相同的长方形的面积,一个面的面积为56÷4 = 14 平方厘米,长方形的长(即正方体的棱长)为14÷2 = 7 厘米,原长方体高为7 - 2 = 5 厘米,体积为7×7×5 = 245 立方厘米7. 有三根铁丝,一根长54 米,一根长72 米,一根长36 米,要把它们截成同样长的小段,不许剩余,每段最长是多少米?答案:18 米思路:求54、72、36 的最大公因数,为188. 一个最简分数,分子、分母的和是50,如果把这个分数的分子、分母都减去5,所得分数的值是2/3,原来的分数是多少?答案:21/29思路:设分子为x,则分母为50 - x,(x - 5) / (50 - x - 5) = 2 / 3,解得x = 21,分数为21/299. 小明买了3 支铅笔和2 支钢笔,共用去22 元,钢笔的单价是铅笔的6 倍,钢笔和铅笔的单价各是多少元?答案:钢笔12 元,铅笔2 元思路:设铅笔单价为x 元,则钢笔单价为6x 元,3x + 2×6x = 22,解得x = 2,钢笔单价12 元10. 一桶油,第一次用去1/5,第二次比第一次多用去20 千克,还剩16 千克,这桶油有多少千克?答案:60 千克思路:设这桶油有x 千克,x - 1/5x - 1/5x - 20 = 16,解得x = 6011. 某工厂有三个车间,第一车间人数占总人数的1/4,第二车间人数是第三车间人数的3/4,第一车间比第三车间少40 人,三个车间共有多少人?答案:560 人思路:设总人数为x 人,第三车间人数为3/7×(3/4x + x),则3/7×(3/4x + x) - 1/4x = 40,解得x = 56012. 学校组织数学竞赛,按参赛人数的1/5 颁奖,分设一、二、三等奖,已知获二等奖的人数比一等奖多20 人,且获二等奖的人数是三等奖的4/5,一共有多少人参赛?答案:1500 人思路:设参赛总人数为x 人,二等奖人数为1/5x×4/9,一等奖人数为1/5x×1/9,1/5x×4/9 - 1/5x×1/9 = 20,解得x = 150013. 有一堆糖果,其中奶糖占45%,再放入16 块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?答案:9 块思路:设原来糖果总数为x 块,45%x = 25%(x + 16),解得x = 20,奶糖有45%×20 = 9 块14. 修一条路,已修的和未修的长度比是1∶3,再修300 米后,已修的和未修的长度比是1∶2,这条路全长多少米?答案:3600 米思路:设已修的长度为x 米,未修的长度为3x 米,(x + 300) / (3x - 300) = 1 / 2,解得x = 900,全长4x = 3600 米15. 甲、乙两仓库存货吨数比为4∶3,如果从甲库中取出8 吨放到乙库中,则甲、乙两仓库存货吨数比为4∶5,两仓库原存货总吨数是多少吨?答案:63 吨思路:设甲仓库原存货4x 吨,乙仓库原存货3x 吨,(4x - 8) / (3x + 8) = 4 / 5,解得x = 9,总吨数7x = 63 吨16. 在一个底面半径是10 厘米的圆柱形杯中装水,在水中放一底面半径为5 厘米的圆锥形铝锤,使铝锤全部被水淹没,当铝锤从杯中取出后,杯里水面下降了 5 毫米,求铝锤的高是多少厘米?答案:6 厘米思路:下降的水的体积等于圆锥形铝锤的体积,3.14×10×10×0.5 = 1/3×3.14×5×5×h,解得h = 6 厘米17. 一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1 小时到达,如果以原速行驶120 千米后,再将速度提高25%,则可提前40 分钟到达,那么甲、乙两地相距多少千米?答案:270 千米思路:设原速度为v,原时间为t,vt = 1.2v×(t - 1),解得t = 6 小时。

小升初最难的奥数题

小升初最难的奥数题

小升初最难的奥数题一、题目列举1. 工程问题类有一项工程,甲单独做需要10天完成,乙单独做需要15天完成。

现在甲先做了3天,剩下的工程由甲乙合作完成,问还需要多少天?这题分值可以占20分。

解题思路就是把这项工程的工作量看作单位“1”,甲的工作效率就是1÷10 = 1/10,乙的工作效率是1÷15 = 1/15。

甲先做3天,完成的工作量是1/10×3 = 3/10,剩下的工作量是1 - 3/10 = 7/10。

甲乙合作的工作效率是1/10+1/15 = 1/6,那么剩下工程需要的时间就是7/10÷1/6 = 4.2天。

2. 行程问题类甲乙两车分别从A、B两地同时出发,相向而行。

甲车速度是每小时60千米,乙车速度是每小时40千米,两车相遇后继续前行,甲车到达B地后立即返回,乙车到达A地后也立即返回,第二次相遇时距离A地80千米,求A、B两地的距离。

这题分值可以是20分。

设A、B两地距离为x千米。

第一次相遇时,甲乙两车行驶的时间相同,所以路程比等于速度比,即甲行驶的路程:乙行驶的路程= 60:40 = 3:2,那么第一次相遇时甲行驶了3/5x千米,乙行驶了2/5x千米。

第二次相遇时,甲乙两车一共行驶了3x千米,甲行驶了2x - 80千米,乙行驶了x+80千米,根据时间相同路程比等于速度比,可列出方程(2x - 80):(x + 80)=3:2,解得x = 200千米。

3. 数论问题类一个数除以5余3,除以6余4,除以7余5,这个数最小是多少?这题分值15分。

这个数加上2就能被5、6、7整除。

5、6、7的最小公倍数是5×6×7 = 210,所以这个数最小是210 - 2 = 208。

4. 几何问题类有一个直角三角形,两条直角边分别是6厘米和8厘米,求这个三角形外接圆的半径。

这题分值15分。

直角三角形外接圆的半径等于斜边的一半。

根据勾股定理,斜边的长度是√(6²+8²)=10厘米,所以外接圆半径是5厘米。

小升初最常考奥数题100道及答案(完整版)

小升初最常考奥数题100道及答案(完整版)

小升初最常考奥数题100道及答案(完整版)1. 一桶水可灌3/4 壶水,1 壶水可以冲2 杯水,1 桶水可以冲几杯水?答案:3/4×2 = 3/2 = 1.5(杯)2. 小明看一本书,第一天看了全书的1/4,第二天看了全书的2/5,第二天比第一天多看了21 页,这本书一共有多少页?答案:21÷(2/5 - 1/4)= 21÷3/20 = 140(页)3. 有一批货物,第一天运走了总数的2/5,第二天运走的货物比总数的1/4 多4 吨,这时还剩17 吨,这批货物共有多少吨?答案:(17 + 4)÷(1 - 2/5 - 1/4)= 21÷7/20 = 60(吨)4. 某工厂有三个车间,第一车间的人数占三个车间总人数的25%,第二车间人数是第三车间的3/4,已知第一车间比第二车间少40 人,三个车间一共有多少人?答案:40÷[(1 - 25%)×3/(3 + 4) - 25%] = 40÷[3/7 - 1/4] = 560(人)5. 师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21 个,这批零件有多少个?答案:21÷(1 - 2/7 - 2/7)= 21÷3/7 = 49(个)6. 仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3 少12 袋,这时仓库里还剩24 袋,两次共取出多少袋?答案:(24 - 12)÷(1 - 2/5 - 1/3)= 12÷4/15 = 45(袋),45 - 24 = 21(袋)7. 甲、乙、丙三个数的和是110,甲与乙的比是3:2,乙与丙的比是4:1,乙数是多少?答案:甲:乙= 3:2 = 6:4,乙:丙= 4:1,所以甲:乙:丙= 6:4:1,乙数:110×4/(6 + 4 + 1) = 408. 一辆汽车从甲地开往乙地,行了全程的3/8,离乙地还有135 千米,两地之间的公路长多少千米?答案:135÷(1 - 3/8)= 216(千米)9. 修一条路,已修的与未修的比是1:5,又修了490 米后,已修的与未修的比是3:1,这时还有多少米未修?答案:490÷(3/4 - 1/6)×1/4 = 180(米)10. 某校有学生465 人,其中女生的2/3 比男生的4/5 少20 人,男、女生各有多少人?答案:设男生有x 人,4/5 x - 2/3×(465 - x) = 20 ,解得x = 225,女生人数:465 - 225 = 240(人)11. 水果店里卖出的梨的重量是苹果的5/7,梨比苹果少卖30 千克,梨卖了多少千克?答案:30÷(1 - 5/7)×5/7 = 75(千克)12. 一筐苹果卖掉1/5 后,又卖掉6 千克,这时卖出的重量正好是剩下的1/2,这筐苹果原来有多少千克?答案:6÷(1/3 - 1/5)= 45(千克)13. 甲、乙两班共有84 人,甲班人数的5/8 与乙班人数的3/4 共有58 人,甲、乙两班各有多少人?答案:设甲班有x 人,5/8 x + 3/4×(84 - x) = 58 ,解得x = 40,乙班:84 - 40 = 44(人)14. 学校买来两种图书共220 本,取出甲种图书的1/4 和乙种图书的1/5 共50 本借给五年级(1)班同学阅读,问甲、乙两种图书各买来多少本?答案:设甲种图书有x 本,1/4 x + 1/5×(220 - x) = 50 ,解得x = 120,乙种图书:220 - 120 = 100(本)15. 某工厂第一车间有工人150 人,第二车间有工人90 人,要使第一车间人数是第二车间的2 倍,需要从第二车间调多少人到第一车间?答案:(150 + 90)÷(2 + 1) = 80(人),90 - 80 = 10(人)16. 甲、乙两堆煤共180 吨,甲堆煤的1/3 比乙堆煤的2/3 多18 吨,甲、乙两堆煤各有多少吨?答案:设甲堆煤有x 吨,1/3 x - 2/3×(180 - x) = 18 ,解得x = 138,乙堆煤:180 - 138 = 42(吨)17. 学校图书馆有科技书和文艺书共3200 本,科技书的本数是文艺书的4/5,科技书和文艺书各有多少本?答案:文艺书:3200÷(1 + 4/5)= 16000/9 ≈1778(本),科技书:3200 - 1778 = 1422(本)18. 一辆汽车从甲地到乙地,已经行了全程的1/5,再向前行50 千米,就比全程的2/3 少6 千米,求甲乙两地的距离。

小升初必会13种奥数题型

小升初必会13种奥数题型

小升初十三种奥数题型(必学)1正方体展开图正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:(1)141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。

(2)231型中间一行3个作侧面,共3种基本图形。

(3)222型中间两个面,只有1种基本图形。

(4)33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。

2和差问题已知两数的和与差,求这两个数。

【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

3鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。

多了几只脚,少了几只足?除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=124浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。

糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)5路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。

小升初奥数必考题型

小升初奥数必考题型

1.一列数按“1,4,2,8,5,7,1,4,2,8,5,7,…”排列,问第30个数字是几?
A.1
B.2
C.5(答案)
D.8
2.在所有的四位数中,各个数位上的数字之和等于34的数有多少个?
A.3
B.4(答案)
C.5
D.6
3.小明从一月一日开始写大字,第一天写了4个,以后每天比前一天多写3个,一月三十
一日写了60个,问小明一月共写多少个大字?
A.1113(答案)
B.1369
C.1596
D.1829
4.小玲沿某公路以每小时4千米速度步行上学,沿途发现每隔9分钟有一辆公共汽车从
后面超过她,每隔7分钟遇到一辆迎面而来的公共汽车。

若汽车发车的间隔时间固定,而且汽车的速度相同,求公共汽车发车的间隔是几分钟?
A.5
B.6(答案)
C.7
D.8
5.乙两车同时从A地出发,在相距60千米的A、B两地之间不断往返行驶,已知甲车的
速度是每小时30千米,乙车的速度是每小时20千米,则多长时间后甲乙两车第五次迎面相遇?
A.6小时
B.12小时(答案)
C.18小时
D.24小时
6.有一类自然数,从第三个数字开始,每个数字都恰好是它前面两个数字之和,直至不能
再写,这类数共有_____个。

A.45
B.60
C.90(答案)
D.120
7.甲、乙、丙、丁四人每两人打一场球赛,已知甲胜了3场,乙胜了1场,那么丙最多胜
_____场。

A.1
B.2(答案)
C.3
D.4。

小升初数学必考奥数题100道附答案(完整版)

小升初数学必考奥数题100道附答案(完整版)

小升初数学必考奥数题100道附答案(完整版)题目1:有四个小朋友,他们的年龄一个比一个大一岁,四个人的年龄乘积是360。

他们中年龄最大的是多少岁?答案:将360 分解因数,360 = 2×2×2×3×3×5 = 3×4×5×6,所以年龄最大的是6 岁。

题目2:计算:1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 +…+ 2014 - 2015 - 2016 + 2017 + 2018答案:原式= (1 + 2 - 3 - 4) + (5 + 6 - 7 - 8) +…+ (2013 + 2014 - 2015 - 2016) + 2017 + 2018 = 2017 + 2018 = 4035题目3:一项工程,甲单独做10 天完成,乙单独做15 天完成。

甲乙合作,几天可以完成?答案:甲每天完成工程的1/10,乙每天完成工程的1/15,两人合作每天完成1/10 + 1/15 = 1/6,所以合作需要6 天完成。

题目4:在一个比例中,两个外项互为倒数,其中一个内项是2.5,另一个内项是多少?答案:两个外项互为倒数,乘积为1。

根据比例的性质,两个内项的积也为1,所以另一个内项是1÷2.5 = 0.4题目5:一个数除以8 余5,除以9 余6,这个数最小是多少?答案:这个数加上3 就能被8 和9 整除,8 和9 的最小公倍数是72,所以这个数最小是72 - 3 = 69题目6:一个圆形花坛的周长是25.12 米,在它的周围加宽1 米,加宽后的面积比原来增加了多少平方米?答案:原来花坛的半径为25.12÷3.14÷2 = 4 米,加宽后的半径为5 米。

增加的面积为3.14×(5²- 4²) = 28.26 平方米题目7:一个长方体的棱长总和是120 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少立方厘米?答案:120÷4 = 30 厘米,3 + 2 + 1 = 6,长为15 厘米,宽为10 厘米,高为5 厘米,体积为750 立方厘米题目8:甲乙两车同时从A、B 两地相对开出,4 小时后相遇。

小升初数学奥数题120道附带完整答案

小升初数学奥数题120道附带完整答案

小升初数学奥数题120道附带完整答案1. 某数加上6,乘以6,减去6,除以6,其结果等于6,求这个数。

答案:1。

解题思路:从后向前来推算,“除以6,结果等于6”,则前一个数是6×6=36;“减去6 等于36”,则前一个数是36+6=42;“乘以6 等于42”,则前一个数是42÷6=7;“加上6 等于7”,所以这个数是7-6=1。

2. 两支蜡烛,第一支4 小时燃尽,第二支3 小时燃尽,如果同时点燃这两支蜡烛,问多长时间后第一支蜡烛的长度是第二支蜡烛的2 倍?答案:12/5 小时。

解题思路:把蜡烛的长度看作单位“1”,第一支蜡烛每小时燃烧1/4,第二支蜡烛每小时燃烧1/3,设x 小时后第一支蜡烛的长度是第二支蜡烛的 2 倍,可列出方程1-x/4=2×(1-x/3),解得x=12/5。

3. 一个最简分数,如果分子加1,分数值就等于1,如果分母加1,分数值就等于2/3,求原来这个分数。

答案:4/5。

解题思路:设分子为x,分母为y,根据条件可列方程组(x+1)/y=1,x/(y+1)=2/3,解方程组可得x=4,y=5,所以原来的分数是4/5。

4. 甲、乙两车分别从A、B 两地同时出发相向而行,它们的速度比是2:3,在途中相遇后,甲车速度提高20%,乙车速度不变,当乙车到达A 地时,甲车距B 地还有28 千米,求A、B 两地相距多少千米?答案:180 千米。

解题思路:相遇时甲乙所行路程比也是2:3,设全程为 5 份,相遇后乙行2 份到 A 地,甲行2×(1+20%)=2.4 份,那么3-2.4=0.6 份是28 千米,一份是28÷0.6=140/3 千米,全程5 份就是140/3×5=700/3=180 千米。

5. 有含盐8%的盐水40 千克,要配制成含盐20%的盐水,需加盐多少千克?答案:6 千克。

解题思路:原来盐水中盐的质量为40×8%=3.2 千克,设加盐x 千克,可列出方程(3.2+x)/(40+x)=20%,解得x=6。

小升初数学奥数经典题型有解析

小升初数学奥数经典题型有解析

小升初数学应用题『奥数经典题型——有解析』1.浓度问题:公式:浓度=溶质÷溶液×100%2.单位“1”:公式:分量=单位“1”的量×分率单位“1”的量=分量÷分率3.相遇问题公式:路程=速度和×相遇时间相遇时间=路程÷速度和速度和=路程÷相遇时间4.追及问题公式:追及路程=速度差×追及时间追及时间=追及路程÷速度差速度差=追及路程÷追及时间5.牛吃草问题解题思路:(1)求出每天长草量;(2)求出牧场原有草量;(3)求出每天实际消耗原有草量;(4)最后求出牛可吃的天数。

浓度问题1.某种溶液由40克浓度为15%的食盐溶液和60克浓度为10%的食盐溶液混合后再蒸发50克水得到,那么这种溶液的食盐浓度为多少?解:溶质:40×15%+60×10%=12(克)溶液:40+60-50=50(克)浓度:12÷50×100%=24%答:这种溶液的食盐浓度为24%。

单位“1”2.一个工厂有工人420人,其中女工占4/7,后来又招进一批女工,这时女工人数占全厂工人总人数的2/3,那么又招进女工多少人?解:原来男工人数:420×(1-4/7)=180(人)后来总人数:180÷(1-2/3)=540(人)招女工人数:540-420=120(人)答:又招进女工120人。

相遇问题3.甲、乙两辆汽车同时从A、B两地相对开出,甲每小时行75千米,乙每小时行65千米。

甲、乙两车第一次相遇后继续前行,分别到达B、A两地后,立即按原路返回,两车从第一次相遇到第二次相遇共行了4小时,求A、B两地相距多少千米?解:速度和:75+65=140(千米/小时)A、B相距:140×4÷2=280(千米)答:AB两地相距280千米。

追及问题4.卡尔和欧拉站在400米环形跑道的同一起跑线上,同时向同一方向跑。

小升初奥数题及答案五篇

小升初奥数题及答案五篇

小升初奥数题及答案五篇第一篇:数与代数1. 某数的三倍加上5等于20,求这个数。

解答:设这个数为x,则根据题意,可以列出方程3x + 5 = 20。

解这个一次方程可以得到x = 5。

2. 一个数增加20%后得到30,求这个数。

解答:设这个数为x,则根据题意,可以列出方程x + 0.2x = 30。

解这个一次方程可以得到x = 25。

第二篇:几何与图形1. 已知长方形的长是5cm,宽是3cm,求其面积和周长。

解答:长方形的面积可以通过长度乘以宽度来计算,即5cm × 3cm = 15cm²。

周长可以通过将长度和宽度相加再乘以2来计算,即(5cm + 3cm) × 2 = 16cm。

2. 在平面直角坐标系中,点A(2,3)和点B(5,1)连线,求线段AB的长度。

解答:根据坐标系中两点间的距离公式,线段AB的长度可以计算为√[(5-2)²+(1-3)²] = √[(3)²+(-2)²] = √(9+4) = √13。

第三篇:概率与统计1. 从1至15中随机抽取一个整数,求这个整数是偶数的概率。

解答:在1至15中,一共有8个偶数(2, 4, 6, 8, 10, 12, 14, 15)和7个奇数(1, 3, 5, 7, 9, 11, 13)。

因此,抽取的整数是偶数的概率为8/15。

2. 一个骰子中的每个面都标有1至6的数字,投掷骰子一次,求投掷结果是5或6的概率。

解答:骰子共有6个面,其中有2个面标有5和6。

因此,投掷结果是5或6的概率为2/6 = 1/3。

第四篇:逻辑与推理1. 小明说他有7本书,其中一半给了朋友,又借了5本回来,这时他还有多少本书?解答:小明有7本书,一半给了朋友,剩下的数量是7/2 = 3.5本。

因为书的数量不能为小数,所以小明实际上只剩下3本书。

2. 汤姆比杰克大三岁,而杰克比肯尼大两岁。

如果汤姆今年10岁,那么肯尼的年龄是多少?解答:根据题意,杰克比肯尼大两岁,汤姆比杰克大三岁,所以汤姆与肯尼之间的年龄差是5岁。

小升初奥数竞赛题100例附答案(完整版)

小升初奥数竞赛题100例附答案(完整版)

小升初奥数竞赛题100例附答案(完整版)1. 计算:2 + 4 + 6 + 8 + …+ 100解:这是一个等差数列求和,项数= (100 - 2)÷2 + 1 = 50和= (2 + 100)×50 ÷2 = 2550答:25502. 若a△b = a×b - a + b,计算5△3解:5△3 = 5×3 - 5 + 3 = 13答:133. 一本书,已看页数与未看页数之比是3 : 5,再看30 页,已看页数与未看页数之比是2 : 3,这本书共有多少页?解:30÷(2/5 - 3/8)= 1200(页)答:1200 页4. 甲、乙、丙三个数的比是5 : 3 : 4,甲数是20,乙数比丙数少多少?解:乙数:20÷5×3 = 12丙数:20÷5×4 = 16乙数比丙数少:16 - 12 = 4答:45. 一个圆柱的底面半径是4 厘米,高是6 厘米,它的侧面积是多少平方厘米?解:侧面积= 2×3.14×4×6 = 150.72(平方厘米)答:150.72 平方厘米6. 一项工程,甲队单独做10 天完成,乙队单独做15 天完成,两队合作几天能完成这项工程的一半?解:1/2÷(1/10 + 1/15)= 3(天)答:3 天7. 有浓度为30%的糖水200 克,要使浓度变为40%,需蒸发掉多少克水?解:糖的质量:200×30% = 60(克)后来糖水质量:60÷40% = 150(克)蒸发掉水:200 - 150 = 50(克)答:50 克8. 一圆形花坛周长36 米,每隔6 米种一棵月季花,在相邻两棵月季花之间种两棵菊花,一共种了多少棵花?解:月季花:36÷6 = 6(棵)菊花:6×2 = 12(棵)共种:6 + 12 = 18(棵)答:18 棵9. 鸡兔共有20 只,脚有56 只,鸡兔各有多少只?解:假设全是鸡,脚有20×2 = 40 只兔:(56 - 40)÷(4 - 2)= 8(只)鸡:20 - 8 = 12(只)答:鸡12 只,兔8 只10. 把一个棱长8 厘米的正方体木块削成一个最大的圆柱,圆柱的体积是多少?解:半径= 8÷2 = 4(厘米)体积= 3.14×4²×8 = 401.92(立方厘米)答:401.92 立方厘米11. 某商品进价100 元,按20%的利润定价,然后打九折出售,赚了多少钱?解:定价:100×(1 + 20%)= 120(元)售价:120×90% = 108(元)利润:108 - 100 = 8(元)答:8 元12. 甲乙两车分别从A、B 两地同时出发,相向而行,甲车每小时行70 千米,乙车每小时行80 千米,3 小时后两车相距60 千米,A、B 两地相距多少千米?解:(70 + 80)×3 + 60 = 450 + 60 = 510(千米)答:510 千米13. 小明读一本书,第一天读了全书的1/5,第二天读了28 页,这时读的页数与剩下页数的比是5 : 6,这本书有多少页?解:两天读了全书的5/(5 + 6)= 5/11全书页数:28÷(5/11 - 1/5)= 110(页)答:110 页14. 在200 克水中加入50 克盐,盐水的含盐率是多少?解:50÷(200 + 50)×100% = 20%答:20%15. 一个数的3/4 比它的40%多70,这个数是多少?解:70÷(3/4 - 40%)= 200答:20016. 修一条路,已修的和未修的长度比是3 : 5,如果再修12 千米,已修的和未修的长度比是9 : 11,这条路全长多少千米?解:原来已修的占全长的3/(3 + 5)= 3/8后来已修的占全长的9/(9 + 11)= 9/20全长:12÷(9/20 - 3/8)= 160(千米)答:160 千米17. 一个圆锥形麦堆,底面直径6 米,高1.2 米。

小升初数学奥数题

小升初数学奥数题

小升初数学奥数题一、鸡兔同笼类型1. 鸡和兔在一个笼子里,一共有15个头,40只脚。

问鸡和兔各有多少只呢?- 嘿呀,咱们可以这么想。

假如这15个头全是鸡的头,那鸡有2只脚,15只鸡就应该有15×2 = 30只脚。

可是实际有40只脚呢,多出来的脚就是兔子的。

每只兔子比鸡多4 - 2 = 2只脚。

多出来的脚数是40 - 30 = 10只脚,所以兔子的数量就是10÷2 = 5只。

那鸡的数量就是15 - 5 = 10只啦。

2. 停车场里停着汽车和摩托车共20辆,这些车一共有56个轮子。

汽车有4个轮子,摩托车有2个轮子,那汽车和摩托车各有多少辆呢?- 咱们先假设这20辆车全是摩托车,那轮子数就应该是20×2 = 40个轮子。

但实际有56个轮子呀,多出来的轮子就是汽车比摩托车多的轮子。

每辆汽车比摩托车多4 - 2 = 2个轮子。

多出来的轮子数是56 - 40 = 16个,所以汽车的数量就是16÷2 = 8辆。

那摩托车的数量就是20 - 8 = 12辆啦。

二、工程问题类型1. 一项工程,甲队单独做10天完成,乙队单独做15天完成。

两队合作,多少天可以完成这项工程呢?- 哟呵,这就像两个人干活儿。

甲队10天能做完,那甲队一天就做这项工程的1/10;乙队15天能做完,乙队一天就做这项工程的1/15。

两队合作一天呢,就做1/10+1/15。

先通分,1/10 = 3/30,1/15 = 2/30,加起来就是3/30+2/30 = 5/30 = 1/6。

那完成整个工程就需要1÷1/6 = 6天啦。

2. 有一个水池,装有甲、乙、丙三根水管,单开甲管6小时可将水池注满,单开乙管8小时可将水池注满,单开丙管12小时可将满池水放完。

如果三管齐开,多少小时能把水池注满呢?- 甲管6小时注满,那甲管一小时注水1/6;乙管8小时注满,乙管一小时注水1/8;丙管12小时放完,丙管一小时放水1/12。

小升初最常考的奥数题100道及答案(完整版)

小升初最常考的奥数题100道及答案(完整版)

小升初最常考的奥数题100道及答案(完整版)1. 已知一张桌子的价钱是一把椅子的10 倍,又知一张桌子比一把椅子多288 元,一张桌子和一把椅子各多少元?答案:桌子320 元,椅子32 元。

解析:设一把椅子的价格为x 元,则一张桌子的价格为10x 元。

根据一张桌子比一把椅子多288 元,可列出方程:10x - x = 288,解得x = 32,那么桌子的价格为10x = 320 元。

2. 3 箱苹果重45 千克。

一箱梨比一箱苹果多5 千克,3 箱梨重多少千克?答案:60 千克。

解析:一箱苹果的重量为45÷3 = 15 千克,一箱梨比一箱苹果多5 千克,所以一箱梨重15 + 5 = 20 千克,3 箱梨的重量为20×3 = 60 千克。

3. 甲乙二人从两地同时相对而行,经过4 小时,在距离中点4 千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?答案:2 千米。

解析:甲比乙在4 小时内多走了4×2 = 8 千米,那么甲每小时比乙快8÷4 = 2 千米。

4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13 支,张强要了7 支,李军又给张强0.6 元钱。

每支铅笔多少钱?答案:0.15 元。

解析:两人付同样多的钱,应得到同样多的铅笔,一共买了13 + 7 = 20 支铅笔,平均每人10 支。

李军多要了13 - 10 = 3 支,给张强0.6 元,所以每支铅笔的价格为0.6÷3 = 0.2 元。

5. 甲乙两辆客车上午8 时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2 点。

甲车每小时行40 千米,乙车每小时行45 千米,两地相距多少千米?(交换乘客的时间略去不计)答案:250 千米。

解析:下午2 点即14 点,从上午8 点到下午2 点经过了6 小时。

小升初数学常见奥数题100道附答案(完整版)

小升初数学常见奥数题100道附答案(完整版)

小升初数学常见奥数题100道附答案(完整版)1. 甲、乙两人同时从A、B 两地相向而行,甲每分钟走52 米,乙每分钟走48 米,两人走了10 分钟后交叉而过,又相距38 米,A、B 两地相距多少米?答案:962 米思路:两人10 分钟走的路程之和为(52 + 48)×10 = 1000 米,减去交叉而过相距的38 米,A、B 两地相距1000 - 38 = 962 米。

2. 一筐苹果,先拿出140 个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?答案:240 个思路:设这筐苹果原来有x 个,(x - 140)×(1 - 60%) = 1/6x ,解得x = 240 。

3. 修一条路,第一天修了全长的1/5 多100 米,第二天修了余下的2/7 ,还剩500 米,这条路全长多少米?答案:1000 米思路:设全长为x 米,第一天修了1/5x + 100 米,余下x - (1/5x + 100) = 4/5x - 100 米,第二天修了2/7×(4/5x - 100) 米,可列方程4/5x - 100 - 2/7×(4/5x - 100) = 500 ,解得x = 1000 。

4. 某工厂三个车间共有180 人,第二车间人数是第一车间人数的3 倍多1 人,第三车间人数是第一车间人数的一半还少1 人,三个车间各有多少人?答案:第一车间40 人,第二车间121 人,第三车间19 人思路:设第一车间有x 人,则第二车间有3x + 1 人,第三车间有1/2x - 1 人,x + 3x + 1 + 1/2x - 1 = 180 ,解得x = 40 ,第二车间121 人,第三车间19 人。

5. 一个书架,上层书的本数是下层的4 倍,如果从上层拿60 本到下层,两层书的本数就相同,上层和下层原来各有多少本书?答案:上层160 本,下层40 本思路:设下层原来有x 本,则上层原来有4x 本,4x - 60 = x + 60 ,解得x = 40 ,上层160 本。

小升初常考的奥数题100道附答案(完整版)

小升初常考的奥数题100道附答案(完整版)

小升初常考的奥数题100道附答案(完整版)1. 有红、黄、白三种颜色的球,红球和黄球一共有21 个,黄球和白球一共有20 个,红球和白球一共有19 个。

三种球各有多少个?答案:三种球的总数:(21 + 20 + 19)÷2 = 30(个)白球:30 - 21 = 9(个)红球:30 - 20 = 10(个)黄球:30 - 19 = 11(个)2. 在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3 倍,那么差等于多少?答案:被减数= 减数+ 差被减数+ 减数+ 差= 120所以被减数= 60差:60÷(3 + 1) = 153. 某班学生去划船,如果增加一条船,那么每条船正好坐6 人;如果减少一条船,那么每条船就要坐9 人。

问:学生有多少人?答案:设原来有x 条船。

6(x + 1) = 9(x - 1)x = 5学生人数:6×(5 + 1) = 36(人)4. 老师把一些苹果分给小朋友。

如果每人分一个,还剩下8 个苹果;如果每人分2 个,那么还少2 个苹果。

一共有多少个小朋友?答案:设小朋友有x 个。

x + 8 = 2x - 2x = 105. 甲、乙两数的和是180,甲数的1/4 等于乙数的1/5,甲、乙两数各是多少?答案:甲:乙= 4 : 5甲:180×4/(4 + 5) = 80乙:180 - 80 = 1006. 一个长方形,如果长增加2 厘米,宽增加5 厘米,那么面积就增加60 平方厘米,这时恰好是一个正方形。

原来长方形的面积是多少平方厘米?答案:设正方形边长为x 厘米。

(x - 2)(x - 5) + 60 = x²x = 10原长方形长8 厘米,宽 5 厘米,面积40 平方厘米。

7. 一筐苹果分给甲、乙、丙三人,甲分得全部苹果的1/5 加5 个苹果,乙分得全部苹果的1/4 加7 个苹果,丙分得其余苹果的1/2,最后剩下的苹果正好等于一筐苹果的1/8。

六年级小升初奥数题目

六年级小升初奥数题目

六年级小升初奥数题目一、工程问题。

1. 一项工程,甲队单独做20天完成,乙队单独做30天完成。

现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天。

从开始到完成共用了16天。

问乙队休息了多少天?- 解析:- 甲队单独做20天完成,则甲队每天的工作效率为1÷20=(1)/(20);乙队单独做30天完成,则乙队每天的工作效率为1÷30=(1)/(30)。

- 甲队工作了16 - 3=13天,甲队完成的工作量为(1)/(20)×13=(13)/(20)。

- 那么乙队完成的工作量为1-(13)/(20)=(7)/(20)。

- 乙队完成这些工作量需要的时间为(7)/(20)÷(1)/(30)=(7)/(20)×30 = 10.5天。

- 所以乙队休息的天数为16 - 10.5 = 5.5天。

2. 有一个水池,单开甲管1小时可以将水池的水注满,单开乙管40分钟可以将水池的水注满,两管同时开10(2)/(5)分钟后,共注水4(1)/(3)吨,水池能装水多少吨?- 解析:- 1小时 = 60分钟,甲管1分钟注水1÷60=(1)/(60),乙管1分钟注水1÷40=(1)/(40)。

- 两管同时开10(2)/(5)分钟,即(52)/(5)分钟,它们注水的效率和为(1)/(60)+(1)/(40)=(2 + 3)/(120)=(5)/(120)=(1)/(24)。

- 那么(52)/(5)分钟的注水量占水池总量的(1)/(24)×(52)/(5)=(13)/(30)。

- 已知共注水4(1)/(3)吨,即(13)/(3)吨,设水池能装水x吨,则(13)/(30)x=(13)/(3),解得x = 10吨。

二、行程问题。

3. 甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点。

如果甲车速度不变,乙车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A、B两地同时出发相向而行,则相遇地点距C点16千米。

小升初经典奥数题20道

小升初经典奥数题20道

【题-007】 浓度问题:(中等难度) 瓶中装有浓度为15%的酒精溶液1000克, 现在又分别倒入100克和400克的A、B 两种酒精溶液,瓶中的浓度变成了 14%.已知A种酒精溶液浓度是B种酒精 溶液浓度的2倍,那么A种酒精溶液的浓 度是百分之几?
【题-008】水和牛奶:(中等难度) 一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶 里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把 A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的 液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进 B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体, 而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶, 而在结束时,每个桶里又有多少水和牛奶?
【题-014】行程:(中等难度) 王强骑自行车上班,以均匀速度行驶.他 观察来往的公共汽车,发现每隔12分钟 有一辆汽车从后面超过他,每隔4分钟迎 面开来一辆,如果所有汽车都以相同的 匀速行驶,发车间隔时间也相同,那么 调度员每隔几分钟发一辆车?
【题-015】跑步:(中等难度)
狗跑5步的时间马跑3步,马跑4步的 距离狗跑7步,现在狗已跑出30米, 马开始追它。问:狗再跑多远,马可 以追上它?
【题-003】奇偶性应用:(中等难度)
桌上有9只杯子,全部口朝上,每次将其中 6只同时“翻转”.请说明:无论经过多少 次这样的“翻转”,都不能使9只杯子全部 口朝下。
【题-004】整除问题:(中等难度)
用一个自然数去除另一个整数,商40, 余数是16.被除数、除数、商数与余数 的和是933,求被除数和除数各是多 少?
01
【题-009】 巧算:(中 等难度)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初类奥数题型汇总文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]
小升初20类奥数题汇总大全
1、(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?
2、(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。

两车距中点40千米处相遇。

东西两地相距多少千米?
3、(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?
4、(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。

已知列车的速度是每分钟1000米,列车车身长多少米?
5、(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。

如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。

客车的速度和货车的速度分别是多少?
6、(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。

已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。

求水流速度是多少?
7、(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?
8、(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?
9、(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?
10、(周期问题)2006年7月1日是星期六,求10月1日是星期几?
11、(鸡兔同笼问题)小丽买回0、8元一本和0、4元一本的练习本共50本,付出人民币32元。

0、8元一本的练习本有多少本?
12、(年龄问题)5年前父亲的年龄是儿子的7倍。

15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?
13、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差2 9本。

求有多少个学生?有多少个笔记本?
14、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。

求水果店里原来一共有多少个芒果?
15、(置换问题)学校买回6张桌子和6把椅子共用去192元。

已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?
16、(最佳安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?
17、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9、75千克,原有油多少千克?桶重多少千克?
⒙(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?
19、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?
20、(相遇问题)甲、乙两人同时从相距2000米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。

这样不断来回,直到甲和乙相遇为止,狗共行了多少米?。

相关文档
最新文档