高考数学填空题专项训练(含详细答案)

合集下载

高三数学填空题专项练习(含答案解析)

高三数学填空题专项练习(含答案解析)

1.O是锐角△ABC所在平面内的一定点,动点P满足:,λ∈(0,+∞),则动点P的轨迹一定通过△ABC的心.2.对于使﹣x2+2x≤M成立的所有常数M中,我们把M的最小值l做﹣x2+2x的上确界,若a,b∈R+,且a+b=1,则﹣﹣的上确界为.3.如图,正方体ABCD﹣A1B1C1D1的棱长为1,点M在AB上,且AM=,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xoy中,动点P的轨迹方程是.4.设函数f(x)=a1+a2x+a3x2+…+a n x n﹣1,f(0)=,数列{a n}满足f(1)=n2•a n,则数列{a n}的通项=.5.函数f(x)是奇函数,且在[﹣1,1]是单调增函数,又f(﹣1)=﹣1,则满足f(x)≤t2+2at+1对所有的x∈[﹣1,1]及a∈[﹣1,1]都成立的t的范围是.6.已知O为坐标原点,,,=(0,a),,记、、中的最大值为M,当a取遍一切实数时,M的取值范围是.7.已知三数x+log272,x+log92,x+log32成等比数列,则公比为.8.(5分)已知5×5数字方阵:中,,则=.9.(5分)已知函数f(x)=x2﹣cosx,x∈,则满足f(x0)>f()的x0的取值范围为.10.(5分)甲地与乙地相距250公里.某天小袁从上午7:50由甲地出发开车前往乙地办事.在上午9:00,10:00,11:00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11:00时,小袁距乙地还有公里.11.(5分)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣|x ﹣3|.若函数的所有极大值点均落在同一条直线上,则c=.12.(5分)设F1,F2分别是双曲线=1(a>0,b>0)的左、右焦点,若双曲线左支上存在一点M,使=0,O为坐标原点,且|MF1|=|MF2|,则该双曲线的离心率为.13.(5分)在锐角△ABC中,角A、B、C的对边分别为a、b、c,若+=6cosC,则+的值是.14.(5分)设⊙O为不等边△ABC的外接圆,△ABC内角A,B,C所对边的长分别为a,b,c,P是△ABC所在平面内的一点,且满足=•+(P与A不重合).Q为△ABC所在平面外一点,QA=QB=QC.有下列命题:①若QA=QP,∠BAC=90°,则点Q在平面ABC上的射影恰在直线AP上;②若QA=QP,则;③若QA>QP,∠BAC=90°,则;④若QA>QP,则P在△ABC内部的概率为(S△ABC,S⊙O分别表示△ABC与⊙O的面积).其中不正确的命题有(写出所有不正确命题的序号).参考答案解:∵=∴=+)++﹣=a=时取等号.﹣的上确界是﹣]=x,x=,=××…××,=××…××,,.解:∵,,),M22,∴2∴∴,在公里,时,函数取极大值≤4,共线,∴=0|=a=e==+1解:∵+∴+=== =解:∵=•+∴﹣=•),∴|c•cos的中点,∴∴,故②。

高考备考数学直线与圆选择填空专题练习(含答案)

高考备考数学直线与圆选择填空专题练习(含答案)

一、选择题1.已知直线l :20ax y a +--=在x 轴和y 轴上的截距相等,则a 的值是( ) A .1B .1-C .2或1D .2-或12.若点102⎛⎫⎪⎝⎭,到直线():300l x y m m ++=>m =( )A .7B .172C .14D .173.若直线l 过点()12-,且与直线2340x y -+=垂直,则l 的方程为( ) A .3210x y +-= B .2310x y +-= C .3210x y ++=D .2310x y --=4.已知直线310x y -+=的倾斜角为α,则1sin 22α=( )A .310 B .35C .310-D .1105.点()23A -,关于直线1y x =-+的对称点为( ) A .()3,2-B .()4,1-C .()5,0D .()3,16.若直线20ax y a --=与以()3,1A ,()1,2B 为端点的线段没有公共点,则实数a 的取值范围是( )A .()1,1,2⎛⎫-∞-+∞ ⎪⎝⎭B .11,2⎛⎫- ⎪⎝⎭C .()(),21,-∞-+∞D .()2,1-7.已知直线l :y x m =+与曲线x m 的取值范围是( )A .⎡-⎣B .(1-⎤⎦C .⎡⎣D .(⎤⎦8.已知点()2,0A -,()0,2B ,点C 是圆2220x y x +-=上任意一点,则ABC △面积的最大值是( )A .6B .8C .3D .3+9.过点()1,3A -,()3,1B -,且圆心在直线210x y --=上的圆的标准方程为( ) A .()()22114x y +++= B .()()221116x y +++= C .()22113x y -+=D .()2215x y -+=10.已知()0,4A -,()2,0B -,()0,2C 光线从点A 射出,经过线段BC (含线段端点)反射,恰好与圆()()22925x a y a -+-=相切,则( )A .11a -≤≤B .115a ≤≤C .115a ≤≤D .11a -≤≤ 11.已知圆22:4C x y +=,直线:l y x b =+.当实数[]0,6b ∈时,圆C 上恰有2个点到直线l 的距离为1的概率为( )A B C .12D .1312.t ∀∈R ,[]t 表示不大于t 的最大整数,如[]0.990=,[]0.11-=-,且x ∀∈R ,()()2f x f x =+,[]1,1x ∀∈-,()[]()221,,4D x y x t y ⎧=-+≤⎨⎩[]}1,3t ∈-.若(),a b D ∈,则()f a b ≤的概率为( )A B C D13.已知直线()2350t x y -++=不通过第一象限,则实数t 的取值范围__________. 14.已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为________________.15.分别在曲线ln y x =与直线26y x =+上各取一点M 与N ,则MN 的最小值为__________. 16.已知直线0x y b -+=与圆229x y +=交于不同的两点A ,B .若O 是坐标原点,且2OA OB AB +≥,则实数b 的取值范围是________________.参考答案: 1.【答案】D【解析】当0a =时,直线方程为2y =,显然不符合题意, 当0a ≠时,令0y =时,得到直线在x 轴上的截距是2aa+,令0x =时,得到直线在y 轴上的截距为2a +, 根据题意得22aa a+=+,解得2a =-或1a =,故选D . 2.【答案】B【解析】=∴3102m +=±,∵0m >,∴172m =.故选B . 3.【答案】A【解析】∵2340x y -+=的斜率23k =,∴32k '=-,由点斜式可得()3212y x -=-+,即所求直线方程为3210x y +-=,故选A . 4.【答案】A【解析】直线310x y -+=的倾斜角为α,∴tan 3α=,∴22211sin cos tan 33sin 22sin cos 22sin cos tan 19110a αααααααα=⋅====+++,故选A . 5.【答案】B【解析】设点()23A -,关于直线1y x =-+的对称点为(),P a b ,则()312AP b k a --==-,∴5a b -=,①,又线段AP 的中点23,22a b +-⎛⎫⎪⎝⎭在直线1y x =-+上,即32122b a -+=-+,整理得3a b +=,②, 联立①②解得4a =,1b =-.∴点()23A -,关于直线1y x =-+的对称点P 点的坐标为()4,1-,故选B . 6.【答案】D【解析】直线20ax y a --=可化为2y ax a =-,∵该直线过点()3,1A ,∴3120a a --=,解得1a =; 又∵该直线过点()1,2B ,∴220a a --=,解得2a =-;又直线20ax y a --=与线段AB 没有公共点,∴实数a 的取值范围是()2,1-.故选D . 7.【答案】B【解析】根据题意,可得曲线x =y x m =+表示平行于y x =的直线,其中m 表示在y 轴上的截距,作出图象,如图所示,从图中可知1l ,2l 之间的平行线与圆有两个交点,1l ,2l 在y 轴上的截距分别为1-, ∴实数m 的取值范围是(1-⎤⎦,故选B .8.【答案】D【解析】∵AB 为定值,∴当C 到直线AB 距离最大时,ABC △面积取最大值, ∵点C 是圆2220x y x +-=,()2211x y -+=上任意一点,∴C 到直线AB 距离最大为圆心()1,0到直线AB :20x y -+=距离加半径1,11=+,从而ABC △面积的最大值是1132⎫+⨯+⎪⎪⎝⎭D . 9.【答案】B【解析】过AB 的直线方程为2y x =-+,A 、B 的中点为()1,1,∴AB 的垂直平分线为y x =,∴圆心坐标为210y x x y =⎧⎨--=⎩,解得11x y =-⎧⎨=-⎩,即圆心坐标为()1,1--,半径为4r =,∴圆的方程为()()221116x y +++=;故选B .10.【答案】D 【解析】如图,A 关于BC 对称点()6,2D -,要使反射光线与圆()()22925x a y a -+-=相切, 只需使得射线DB ,DC 与圆相切即可,而直线DB 的方程为220x y ++=,直线DC 为2y =.=22a -=1a =-,15,111a -≤≤.故选D .11.【答案】A【解析】圆C 的圆心坐标为()0,0O ,半径为2,直线l 为:0x y b -+=.3=,即b =1,1=,即b =时,圆上恰有3个点到直线距离为1.∴当b ∈时,圆上恰有2个点到直线l 的距离为1,故概率为63=.故选A .12.【答案】D【解析】由x ∀∈R ,()()2f x f x =+得函数()f x 的周期为2T =.函数()f x 的图像为如图所示的折线部分,事件()f a b ≤对应的区域为图中的阴影部分,D 13.【解析】由题意得直线()2350t x y -++=恒过定点()0,5-,且斜率为()23t --, ∵直线()2350t x y -++=不通过第一象限,∴()230t --≤,解得故实数t 的取值范围是14.【答案】660x y -+=或660x y --= 【解析】设直线l 的方程为1x y a b +=,∴132ab =,且16b a -=,解得6a =-,1b =或6a =,1b =-,∴直线l 的方程为16x y +=-或16xy -=,即660x y -+=或660x y --=.. 答案:660x y -+=或660x y --=.15.【答案】(7ln 25+【解析】由()ln 0y x x =>,得1y x '=,令12x =,即12x =,1ln ln 22y ==-, 则曲线ln y x =上与直线26y x =+平行的切线的切点坐标为1,ln 22⎛⎫- ⎪⎝⎭,由点到直线的距离公式得(7ln 25d +==,即(7ln 25MN +=.16.【答案】(6,32⎡-⎣【解析】设AB 的中点为D ,则2OA OB OD +=,故2OD AB ≥,即2218OD AB ≥,再由直线与圆的弦长公式可得:2AB =(d 为圆心到直线的距离),又直线与圆相交故d r <3b <⇒-<根据2218OD AB ≥,2AB ⎡=⎣得23OD ≥,由点到线的距离公式可得222b OD =,即要232b b ≥⇒≥b ≤综合可得:b 的取值范围是(6,32⎡-⎣.。

高考数学选择、填空题专项训练(共40套)[附答案](最新版)

高考数学选择、填空题专项训练(共40套)[附答案](最新版)

三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =,sin B =,则cos C 的值为 ( )13553A.B.-C.-D.65566556651665163.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34.函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y ) B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y ) D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a α,b β,α∩β=l ,则下列命题中是真⊂⊂命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线-y 2=1的两个焦点,点P 在双曲线上,且·=0,则||·|42x 1PF 2PF 1PF |的值等于( )2PF A.2B.2C.4D.8210.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为()A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是,,,这个长方体对角线的236长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次第2次第3次第4次第5次第6次第7次第8次甲成绩(秒)12.112.21312.513.112.512.412.2乙成绩(秒)1212.412.81312.212.812.312.5根据测试成绩,派_________(填甲或乙)选手参赛更好,理由是____________________.答案:一、1.A 2.D 3.B 4.B 5.C 6.C 7.B 8.D 9.A 10.C 11.B 12.B二、13.(,1) 14. 15. 21621三基小题训练二一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( )A . 21B . 1C . 2D . 43.若(3a 2 -) n 展开式中含有常数项,则正整数n 的最小值是 ( )312a A .4 B .5 C . 6 D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ()A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b ) B.(-a ,b ) C.(b ,-a ) D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠T8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m β.给出四个命题:(1)若α∥β,则l ⊥m ; (2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.2EF DOC B A10.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4) B.(-4,4] C.(-∞,-4)∪[2,+∞) D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵 B .3本书贵 C .二者相同 D .无法确定12.若α是锐角,sin(α-)=,则cos α的值等于6π31A.B.C.D.6162-6162+4132+3132-二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上.13.在等差数列{a n }中,a 1=,第10项开始比1大,则公差d 的取值范围是___________.25114.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。

高中数学新高考填空题训练(二)共五套(附答案)

高中数学新高考填空题训练(二)共五套(附答案)

高中数学新高考填空题(二)共五套(附答案)填空题训练(1)1.已知443322104)1()1()1()1()12(-+-+-+-+=+x a x a x a x a a x ,则420a a a ++的值为________. 2.已知F 为椭圆:C 13422=+y x 的左焦点,定点)3,3(--A ,点P 为椭圆C 上的一个动点,则PF PA +的最大值为_______.3.已知正三棱锥的底边边长为32,侧棱长为7,则该正三棱锥的外接球半径和内切球半径的比值为_______.4.定义函数⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛≤≤--=2,22121,23126)(x x f x x x f ,则函数9)()(-⋅=x f x x g 在区间[])(2,1*∈N n n 内的所有的零点之和为_______.填空题训练(2)1.中国古典数学有完整的理论体系,其代表作有《算数书》、《九章算术》、《周髀算经》、《孙子算经》等,有3名中学生计划去图书馆阅读这四种古典数学著作(这四种著作每种各一本),要求每人至少阅读一种古典数学著作,每种古典数学著作有且只有一人阅读,则不同的阅读方案的总数有_________种.(用数字作答)2.已知的最小值为_________.3.张衡是中国东汉时期伟大的天文学家、数学家,他曾经得出圆周率的平方除以十六等于八分之五.已知三棱锥的每个顶点都在球O 的球面上,底面BCD ,,利用张衡的结论可得球O 的表面积为______.4.已知函数,若关于的不等式的解集中恰好有一个整数,则实数m 的取值范围是__________.填空题训练(3)1.已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边经过点(-1 , 2 ) ,则cos 2α = .2.若2(n x 的展开式中第5项为常数项,则该常数项为 (用数字表示).()20,02x y xy x y x y +=>>+,则A BCD -AB⊥2BC CD AB CD BC ⊥===,且()()231,x f x x x g x e =++=x ()()f x mg x <3.已知奇函数 y =f ( x ) 满足条件f (x -1)=f (x + 1) , 且当 x ∈ ( 0 , 1 ) 时,f (x ) =2x +34,则f (12log 5)=4.矩形 ABCD 中,AB =3BC =1, 现将△ACD 沿对角线AC 向上翻折,得到四面体D -ABC , 则该四面体外接球的表面积为;若翻折过程中BD的长度在范围内变化,则点D 的运动轨迹的长度是.(第一空2 分,第二空3分) 填空题训练(4)1.若直线与直线平行,则实数 a 的值为____________.2.在三棱柱中,底面ABC ,是正三角形,若,则该三棱柱外接球的表面积为____________.3.若等比数列满足,则其公比为____________.4.对于△,有如下判断,其中正确的是____________.(1)若,则△必为等腰三角形(2) 若,则(3) 若,则符合条件的△有两个(4) 若,则△必为钝角三角形填空题训练(5)1.已知球O 的体积为323π,则球O 的表面积为___________.2.已知向量,a b 不共线,若a b λ+与2a b +平行,则λ的值为___________.3.一般把数字出现的规律满足如图的模型称为蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则第21行从左至右的第4个数字应是____________.4.已知等比数列{}n a 的公比为q ,且101a <<,20201a =,则q 的取值范围为_________;能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成立的最大正整数m =_________.(注:前一空2分,后一空3分)参考答案:填空题训练(1)1、3132、93、274、()2123-n 填空题训练(2)1、362、9 3、、(2-e ,e ⎤-⎦ 填空题训练(3)1、3-52、353、-24、4π,填空题训练(4) 1. -3 2. 3.9 4.(2)(4)填空题训练(5)1.16π 2.12 3.228 4.1q > 4039。

高考数学填空题专项训练含详细答案

高考数学填空题专项训练含详细答案

高考填空题提升训练1.已知函数()()sin f x a x b ωθ=+-的部分图象如下图,其中π0,,2ωθ><,a b 分别是ABC 的角,A B 所对的边, cos ()+12C C f =,则ABC ∆的面积S =. 2.在平面直角坐标系上,设不等式组00(4)x y y n x >⎧⎪>⎨⎪≤--⎩所表示的平面区域为n D ,记n D 内的整点(即横坐标和纵坐标均为整数的点)的个数为()n a n N *∈.则1a =,经猜想可得到n a =.3.若两个球的表面积之比为1:4,则这两个球的体积之比为.4.若不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩所表示的平面区域被直线2y kx =+分为面积相等的两部分,则k 的值为;若该平面区域存在点00(,)x y 使0020x ay ++≤成立,则实数a 的取值X 围是.5.已知数列{}n a 满足11(2)n n n a a a n +-=-≥,121,3a a ==,记12n n S a a a =+++.则3a =,2015S =.6.已知,,a b c 为非零实数,(),ax b f x x R cx d+=∈+,且(2)2,(3)3f f ==.若当d x c ≠-时,对于任意实数x ,均有(())f f x x =,则()f x 值域中取不到的唯一的实数是.7.若ABC ∆的重心为G ,5,4,3===BC AC AB ,动点P 满足GC z GB y GA x GP ++=(1,,0≤≤z y x ),则点P 的轨迹所覆盖的平面区域的面积等于.8.如图,若6OFB π∠=,6OF FB ⋅=-,则以OA 为长半轴,OB 为短半轴,F 为左焦点的椭圆的标准方程为.9.如图所示,在确定的四面体ABCD 中,截面EFGH 平行于对棱AB 和CD .(1)若AB ⊥CD ,则截面EFGH 与侧面ABC 垂直;(2)当截面四边形EFGH 面积取得最大值时,E 为AD 中点;(3)截面四边形EFGH 的周长有最小值;(4)若AB ⊥CD ,AC BD ⊥,则在四面体内存在一点P 到四面体ABCD 六条棱的中点的距离相等.上述说法正确的是.10.阅读右边的程序框图,运行相应的程序,则输出i 的值为11.如图是导函数)(x f y '=的图象:①2x 处导函数)(x f y '=有极大值;②在41,x x 处导函数)(x f y '=有极小值;③在3x 处函数)(x f y =有极大值;④在5x 处函数)(x f y =有极小值;以上叙述正确的是____________。

2023高考数学填空题

2023高考数学填空题

2023高考数学填空题2023高考数学填空题第一章:数与式整数1.整数等于________的和减去________的和。

答案:0,0解析:整数的定义是包含正整数、负整数和0,因此整数可以看作是正整数的和减去负整数的和,加上0,所以答案是0。

2.表示负整数-8的绝对值为______。

答案:8解析:负整数的绝对值是对应正整数的数值,所以负8的绝对值是8。

有理数1.有理数的定义包括________和________。

答案:整数,分数解析:有理数包括整数和分数,整数可以是正整数、负整数和0。

2.-用分数表示为______。

答案:-3/2解析:-可以理解为-1和的和或差。

将转化为分数形式为1/2,所以-用分数表示为-3/2。

第二章:函数与方程一次函数1.一次函数的函数图像为直线,直线上任意两点的连线斜率为______。

答案:恒定不变解析:一次函数的函数图像为直线,直线上任意两点的连线斜率是恒定不变的。

2.函数y = 2x + 1的解为______。

答案:无数个解析:一次函数的解是指该函数对应的方程的解。

对于y = 2x + 1,由于存在无数个(x, y)点可以满足这个方程,所以解的个数是无限个。

二次函数1.二次函数的函数图像为______。

答案:抛物线解析:二次函数的函数图像为抛物线。

2.函数y = x^2 + 4x + 4的解为______。

答案:x = -2解析:解二次函数的方程可以使用因式分解、配方法或求根公式等方法。

对于y = x^2 + 4x + 4,可以对其进行因式分解得到(x + 2)(x + 2) = 0,即x + 2 = 0,解得x = -2。

高三数学填空题专项训练(含答案解析)

高三数学填空题专项训练(含答案解析)

1.(5分)已知函数y=f(x),x∈D,若存在常数C,对∀x 1∈D,∃唯一的x2∈D,使得,则称常数C是函数f(x)在D上的“翔宇一品数”.若已知函数,则f(x)在[1,3]上的“翔宇一品数”是.2.(5分)如右图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+B,(0≤φ<2π),则温度变化曲线的函数解析式为.3.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.4.(5分)如图,A,B,C是直线l上三点,P是直线l外一点,已知AB=BC=a,∠APB=90°,∠BPC=45°,记∠PBA=θ,则=.(用a表示)5.(5分)已知函数f(x)=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|100x﹣1|,则当x=时,f(x)取得最小值.6.设定义在R上的函数f(x)=若关于x的方程f2(x)+bf(x)+c=0有3个不同的实数解x1,x2,x3,则x1+x2+x3= .7.设△ABC的BC边上的高AD=BC,a,b,c分别表示角A,B,C对应的三边,则+的取值范围是.8.给出下列命题,其中正确的命题是(填序号).①若平面α上的直线m与平面β上的直线n为异面直线,直线l是α与β的交线,那么l至多与m,n中的一条相交;②若直线m与n异面,直线n与l异面,则直线m与l异面;③一定存在平面γ同时与异面直线m,n都平行.9.在△ABC中,AH为BC边上的高,=,则过点C,以A,H为焦点的双曲线的离心率为.10.若不等式a+≥在x∈(,2)上恒成立,则实数a的取值范围为.11.如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f (x),则f(x)在其相邻两个零点间的图象与x轴所围区域的面积为.12.(5分)已知一个数列的各项是1或2,首项为1,且在第k个1和第k+1个1之间有2k﹣1个2,即1,2,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,1,…则该数列前2010项的和s2010=.13.(5分)已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h (2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是.14.(5分)已知数列{a n}满足:a1=1,a2=x(x∈N*),a n+2=|a n+1﹣a n|,若前2010项中恰好含有666项为0,则x的值为.答案1.解答:解:由已知中翔宇一品数的定义可得C即为函数y=f(x),x∈D最大值与最小值的几何平均数又∵函数为减函数故其最大值M=,最小值m=故C==故答案为2.解答:解:图中从6时到14时的图象是函数y=Asin(ωx+∅)+B的半个周期的图象,∴•=14﹣6⇒ω=.又由图可得A==10,B==20.∴y=10sin(x+∅)+20.将x=6,y=10代入上式,得sin(π+∅)=﹣1.∴π+∅=π⇒∅=π.故所求曲线的解析式为y=10sin(x+π)+20,x∈[6,14].故答案为y=10sin(x+π)+20,3.解答:解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.4.解答:解:=asinθ,=acosθ,=,且=a2+a2cos2θ+2a2cos2θ=a2+3a2cos2θ,∴2a2sin2θ=a2+3a2cos2θ,解得sin2θ=,则==,故答案为:.5.解答:解:f(x)=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|100x﹣1|=|x﹣1|+2|x﹣|+3|x﹣|+…+100|x﹣|=|x﹣1|+|x﹣|+|x﹣|+|x﹣|+|x﹣|+|x﹣|+…+|x﹣|共有(1+100)×100×=5050项又|x﹣a|+|x﹣b|≥|a﹣b|(注:|x﹣a|为x到a的距离…|x﹣a|+|x﹣b|即为x到a的距离加上x到b的距离,当x在a,b之间时,|x﹣a|+|x﹣b|最小且值为a到b的距离)所以f(x)的5050项前后对应每两项相加,使用公式|x﹣a|+|x﹣b|≥|a﹣b|f(x)≥(1﹣)+(﹣)+…+…当x在每一对a,b之间时,等号成立由于70×(1+70)×=248571×(71+1)×=2556所以f(x)最中间的两项(第2525,2526项)是|x﹣|所以f(x)≥(1﹣)+(﹣)+…+(﹣)当x=时等号成立则当x=时f(x)取得最小值6.解答:解:易知f(x)的图象关于直线x=1对称对于方程f2(x)+bf(x)+c=0,是一个关于f(x)的一元二次方程,若此一元二次方程仅有一根,则必有f(x)=1,此时x1,x2,x3三个数中有一个是1,另两个关于x=1对称,此时有x1+x2+x3=3若关于f(x)的一元二次方程f2(x)+bf(x)+c=0有两个根,则必有f(x)=1与f(x)=m≠1此时f(x)=1的根为1,f(x)=m≠1有两根,且此两根关于x=1对称,此时有x1+x2+x3=3综上知x1+x2+x3=3故答案为3.7.解答:解:∵BC边上的高AD=BC=a,∴S△ABC==,∴sinA=,又cosA==,∴+=2cosA+sinA=(cosA+sinA)=sin(α+A)≤,(其中si nα=,cosα=)又+≥2,∴+∈[2,].故答案为:[2,]8.解答:解:①是错误的,因为l可以与m,n都相交;②是错误的,因为m与l可以异面、相交或平行;③是正确的,因为只要将两异面直线平移成相交直线,两相交直线确定一个平面,此平面就是所求的平面.故答案为:③9.解答:解:如图所示,由=,得tanC==.由题可知AH⊥BC,以A,H为焦点的双曲线的离心率e=.∵△AHC为直角三角形,且tanC==,∴可设AH=4a,CH=3a,则AC=5a,所以离心率e===2.故答案为 210解答:解:不等式即为a≥+,在x∈(,2)上恒成立.而函数f(x)=+=的图象如图所示,所以f(x)在(,2)上的最大值为1,所以a≥1.故答案为:a≥111.解答:解:作出点A的轨迹中相邻两个零点间的图象,如图所示.其轨迹为两段圆弧,一段是以C为圆心,CA为半径的四分之一圆弧;一段是以B为圆心,BA为半径,圆心角为的圆弧.其与x轴围成的图形的面积为×22×+×2×2+××=2+4π.故答案为:2+4π.12.解答:解:由题意可得,当k=11时,有11个1,有1+2+…+210=211﹣1=2047个2 该数列中前2010项中共有11个1,有共有1999个2S2010=11+1999×2=4009故答案为:400913.解答:解:f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和∴g(x)+h(x)=2x①,g(﹣x)+h(﹣x)=﹣g(x)+h(x)=2﹣x②①②联立可得,h(x)=,g(x)=ag(x)+h(2x)≥0对于x∈[1,2]恒成立a对于x∈[1,2]恒成立对于x∈[1,2]恒成立t=2x﹣2﹣x,x∈[1,2],t∈则t在t∈单调递增,t=时,则t=a故答案为:14.解答:解:当x=1时,数列数列{a n}的各项为1,1,0,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=670项为0;当x=2时,数列数列{a n}的各项为1,2,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=669项为0,即有669项为0;当x=3时,数列数列{a n}的各项为1,3,2,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=669项为0;当x=4时,数列数列{a n}的各项为1,4,3,1,2,1,1,0,1,1,0,…所以在前2010项中恰好含有=668项为0;即有668项为0;当x=5时,数列数列{a n}的各项为1,5,4,1,3,2,1,1,0,1,1,0…所以在前2010项中恰好含有=668项为0;…由上面可以得到当x=6或x=7时,在前2010项中恰好含有667项为0;当x=8或x=9时,在前2010项中恰好含有666项为0;故答案为8或9.。

2023年新高考数学选择填空专项练习题(附答案解析)

2023年新高考数学选择填空专项练习题(附答案解析)

则该展开式中 x3 的系数是( )
A.-184
B.-84
C.-40
D.320
A
a+x3 [∵ x
x-2 x
6
的展开式中各项系数和为
3,令
x=1,得(1+a)(1-2)6
=3,解得 a=2.

2+x3 x
x-2 x
6
=2
x-2 x
6
+x3
x-2 x
6

x
x-2 x
6
的展开式中含
x4 的项的系数为
C16(-2)1=-12,常数项为
C36(-2)3
=-160,
2+x3 ∴x
x-2 x
6
的展开式中
x3
项的系数是
2×(-12)+1×(-160)=-184.
故选 A.]
12.(2019·潮州模拟)若 A、B、C、D、E 五位同学站成一排照相,则 A、B
2023 年新高考数学选择填空专项练习题
一、选择题
1.已知集合 A={2,3,4},集合 B={m,m+2},若 A∩B={2},则 m=( )
A.0
B.1
C.2
D.4
A [因为 A∩B={2},所以 m=2 或 m+2=2.当 m=2 时,A∩B={2,4},不
符合题意;当 m+2=2 时,m=0.故选 A.]
M∪∁RN=R.故选 B.]
5.设 a∈R,i 为虚数单位.若复数 z=a-2+(a+1)i 是纯虚数,则复数a-3i 2-i
在复平面上对应的点的坐标为( )
1,-8 A. 5 5
-7,-4 B. 5 5
第1页共6页
-4,7 C. 5 5
7,-4 D. 5 5

(完整)高考数学填空题100题.

(完整)高考数学填空题100题.

江苏省高考数学填空题训练100题1.设集合}4|||}{<=x x A ,}034|{2>+-=x x x B ,则集合A x x ∈|{且=∉}B A x I __________; 2.设12)(2++=x ax x p ,若对任意实数x ,0)(>x p 恒成立,则实数a 的取值范围是________________; 3.已知m ba ==32,且211=+ba ,则实数m 的值为______________; 4.若0>a ,9432=a,则=a 32log ____________; 5.已知二次函数3)(2-+=bx ax x f (0≠a ),满足)4()2(f f =,则=)6(f ________; 6.已知)(x f y =是定义在R 上的奇函数,当),0(+∞∈x 时,22)(-=xx f , 则方程0)(=x f 的解集是____________________;7.已知)78lg()(2-+-=x x x f 在)1,(+m m 上是增函数,则m 的取值范围是________________;8.已知函数x x x f 5sin )(+=,)1,1(-∈x ,如果0)1()1(2<-+-a f a f ,则a 的取值范围是____________; 9.关于x 的方程aa x-+=535有负数解,则实数a 的取值范围是______________; 10.已知函数)(x f 满足:对任意实数1x ,2x ,当2`1x x <时,有)()(21x f x f <,且)()()(2121x f x f x x f ⋅=+.写出满足上述条件的一个函数:=)(x f _____________;11.定义在区间)1,1(-内的函数)(x f 满足)1lg()()(2+=--x x f x f ,则=)(x f ______________;12.函数122)(2+++=x x x x f (1->x )的图像的最低点的坐标是______________;13.已知正数a ,b 满足1=+b a ,则abab 2+的最小值是___________; 14.设实数a ,b ,x ,y 满足122=+b a ,322=+y x ,则by ax +的取值范围为______________;15.不等式032)2(2≥---x x x 的解集是_________________; 16.不等式06||2<--x x (R x ∈)的解集是___________________; 17.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式2)(≤+x x xf 的解集是_________________;18.若不等式2229xx a x x +≤≤+在]2,0(∈x 上恒成立,则a 的取值范围是___________; 19.若1>a ,10<<b ,且1)12(log >-x b a ,则实数x 的取值范围是______________;20.实系数一元二次方程022=+-b ax x 的两根分别在区间)1,0(和)2,1(上,则b a 32+的取值范围是_____________;21.若函数()m x x f ++=ϕωcos 2)(图像的一条对称轴为直线8π=x ,且18-=⎪⎭⎫⎝⎛πf ,则实数m 的值等于____; 22.函数⎪⎭⎫⎝⎛-=x y 24sin π的单调递增区间是_______________________; 23.已知52)tan(=+βα,414tan =⎪⎭⎫ ⎝⎛-πβ,则=⎪⎭⎫ ⎝⎛+4tan πα__________;24.已知()542sin =-απ,⎪⎭⎫⎝⎛∈ππα2,23,则=-+ααααcos sin cos sin ___________;25.函数()()010cos 520sin 3-++=x x y 的最大值是____________;26.若224sin 2cos -=⎪⎭⎫⎝⎛-παα,则ααsin cos +的值为___________; 27.若()51cos =+βα,()53cos =-βα,则=⋅βαtan tan ___________; 28.如果4||π≤x ,那么函数x x x f sin cos )(2+=的最小值是___________;29.函数34cos 222sin )(+⎪⎭⎫⎝⎛++=x x x f π的最小值是___________; 30.已知向量)sin ,1(θ=a ρ,)cos ,1(θ=b ρ,则||b a ρρ+的最大值为_________; 31.若非零向量a ρ与b ρ满足||||b a b a ρρρρ-=+,则a ρ与b ρ的夹角大小为_________; 32.已知向量)1,(n a =ρ,)1,(-=n b ρ,若b a ρρ-2与b ρ垂直,则=||a ρ_________;33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若1=a ,4π=B ,△ABC 的面积2=S ,那么△ABC 的外接圆直径为__________;34.复数i z +=31,i z -=12,则=⋅211z z __________; 35.若复数iia 213++(R a ∈,i 为虚数单位)是纯虚数,则实数a 的值为_________; 36.若C z ∈,且1|22|=-+i z ,则|22|i z --的最小值是__________; 37.等差数列{}n a 的前n 项之和为n S ,若31710a a -=,则19S 的值为_________;38.已知数列{}n a 中,601-=a ,31+=+n n a a ,那么||||||3021a a a +++Λ的值为_________;39.首项为24-的等差数列,从第10项起为正数,则公差d 的取值范围是_________;40.已知一个等差数列的前五项之和是120,后五项之和是180,又各项之和是360,则此数列共有______项;40.已知数列{}n a 的通项公式为5+=n a n ,从{}n a 中依次取出第3,9,27,…,n3,…项,按原来的顺序排成一个新的数列,则此数列的前n 项和为______________;41.在正项等比数列{}n a 中,1a ,99a 是方程016102=+-x x 的两个根,则605040a a a ⋅⋅的值为_______;42.数列{}n a 中,21=a ,12=a ,11112-++=n n n a a a (2≥n ),则其通项公式为=n a __________; 43.如果直线l 与直线01=-+y x 关于y 轴对称,那么直线l 的方程是________________;44.若平面上两点)1,4(-A ,)1,3(-B ,直线2+=kx y 与线段AB 恒有公共点,则k 的取值范围是________; 45.已知△ABC 的顶点)4,1(A ,若点B 在y 轴上,点C 在直线x y =上,则△ABC 的周长的最小值是______;46.设过点)22,2(的直线的斜率为k ,若422=+y x 上恰有三个点到直线l 的距离等于1,则k 的值是__________;47.直线01=+-y x 与0122=--y x 的两条切线,则该圆的面积等于_________; 48.已知),(y x P 为圆1)2(22=+-y x 上的动点,则|343|-+y x 的最大值为______;49.已知圆4)3(22=+-y x 和过原点的直线kx y =的交点为P 、Q ,则||||OQ OP ⋅的值为________;50.已知1F 、2F 为椭圆13610022=+y x 的两个焦点,),(00y x P 为椭圆上一点, 当021>⋅PF PF 时,0x 的取值范围为________________;51.当m 满足___________时,曲线161022=-+-m y m x 与曲线19522=-+-my m x 的焦距相等; 52.若椭圆122=+n y m x (0>>n m )和双曲线122=-by a x (0>a ,0>b )有相同的焦点1F ,2F , 点P 是两条曲线的一个交点,则||||21PF PF ⋅的值为__________; 53.若双曲线经过点)3,6(,且渐近线方程是x y 31±=,则该双曲线方程是__________________;54.一个动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必经过点__________; 55.过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为1A 、1B ,则=∠11FB A ___________;D CB A 56.长度为a 的线段AB 的两个端点A 、B 都在抛物线px y 22=(0>p ,p a 2>)上滑动,则线段AB 的中点M 到y 轴的最短距离为___________; 57.已知直线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥β,则m ∥n ;②若m ∥α,n ⊥α,则m ⊥n ;③若m ⊥a ,m ∥β,则α⊥β. 以上命题中正确的是_____________;(写出所有正确命题序号)58.已知一个平面与正方体的12条棱所成的角均为θ,则=θsin _________;59.已知正四棱锥的体积为12,底面对角线的长为62,则侧面与底面所成二面角等于__________; 60.正三棱柱111C B A ABC -的各棱长都为2,E 、F 分别是AB 、11C A 的中点,则EF 的长为________; 61.从0,1,2,3,4中每次取出不同的三个数字组成三位数,这些三位数的个位数之和为_________; 62.某小组有4个男同学和3个女同学,从这小组中选取4人去完成三项不同的工作,其中女同学至少2人,每项工作至少1人,则不同的选派方法的种数为__________;63.有n 个球队参加单循环足球比赛,其中2个队各比赛了三场就退出了比赛,这两队之间未进行比赛,这样到比赛结束共赛了34场,那么=n ________;64.一排共8个座位,安排甲,乙,丙三人按如下方式就座,每人左、右两边都有空位,且甲必须在乙、丙之间,则不同的坐法共有__________种;65.现有6个参加兴趣小组的名额,分给4个班级,每班至少1个,则不同的分配方案共___________种; 66.有3种不同的树苗需要种植在一条直道的一侧,相邻的两棵树不能是同一种树苗,若第一棵种下的是甲种树苗,那么第5棵树又恰好是甲种树苗的种法共有__________种; 67.从集合}20,,3,2,1{Λ中选3个不同的数,使这3个数成递增的等差数列,则这样的数列共有_______组; 68.用5种不同的颜色给图中A 、B 、C 、D 四个区域涂色,规定每个区域只能涂一种颜色,相邻区域颜色不同,则有_________种不同的涂色方法;69.圆周上有8个等分圆周的点,以这些点为顶点的钝角三角形或锐角三角形共有________个; 70.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则上楼的方法有___________种;71.46)1()1(x x -+展开式中3x 的系数是____________;72.若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为____________;73.55443322105)12(x a x a x a x a x a a x +++++=-,则=++++||||||||||54321a a a a a ________;74.若1001002210100)1()1()1()12(-++-+-+=+x a x a x a a x Λ,则=++++99531a a a a Λ__________;75.盒中有4个白球,5个红球,从中任取3个球,则抽出1个白球和2个红球的概率是_________; 76.从1,2,…,9这九个数中,随机取2个不同的数,则这两个数的和为偶数的概率是________; 77.设集合}3,2,1{=I ,I A ⊆,若把满足I A M =Y 的集合M 叫做集合A 的配集,则}2,1{=A 的配集有_______个;78.设M 是一个非空集合,f 是一种运算,如果对于集合M 中的任意两个元素p ,q ,实施运算f 的结果仍是集合M 中的元素,那么说集合M 对于运算f 是“封闭”的,已知集合},,2|{Q b a b a x x M ∈+==, 若定义运算f 分别为加法、减法、乘法和除法(除数不为零)四种运算,则集合M 对于运算f 是“封闭”的有_______________________;(写出所有符合条件的运算名称)79.的定义符号运算⎪⎩⎪⎨⎧<-=>=0,10,00,1sgn x x x x ,则不等式xx x sgn )12(2->+的解集是__________________;80.我们将一系列值域相同的函数称为“同值函数”,已知22)(2+-=x x x f ,]2,1[-∈x ,试写出)(x f 的一个“同值函数”___________________;(除一次、二次函数外)81.有些计算机对表达式的运算处理过程实行“后缀表达式”,运算符号紧跟在运算对象的后面,按照从左到右的顺序运算,如表达式7)2(*3+-x ,其运算为3,x ,2,—,*,7,+,若计算机进行运算)3(x -,x ,2,—,*,lg ,那么使此表达式有意义的x 的范围为____________; 82.设][x 表示不超过x 的最大整数(例如:5]5.5[=,6]5.5[-=-,则不等式06][5][2≤+-x x 的解集为_______________________;83.对任意a ,R b ∈,记⎩⎨⎧<≥=b a b b a a b a ,,},max{ .则函数}1,1max{)(++-=x x x f (R x ∈)的最小值是__________;84.对于数列}{n a ,定义数列}{1n n a a -+为数列{}n a 的“差数列”.若21=a ,}{n a 的“差数列”的通项为n2,则数列{}n a 的前n 项和=n S _____________;85.对于正整数n ,定义一种满足下列性质的运算“*”:(1)21*1=;(2)121*1*)1(++=+n n n ,则用含n 的代数式表示=1*n _____________;86.若)(n f 为12+n (*N n ∈)的各位数字之和,如1971142=+,17791=++,则17)14(=f .)()(1n f n f =,))(()(12n f f n f =,…,))(()(1n f f n f k k =+,*N k ∈,则=)8(2008f __________;87.如果圆222k y x =+至少覆盖函数kxx f πsin3)(=的图像的一个最大值与一个最小值,则k 的取值范围是________________;88.设),(y x P 是曲线192522=+y x 上的点,)0,4(1-F ,)0,4(2F ,则||||21PF PF +最大值是________;89.已知)2,1(A ,)4,3(B ,直线0:1=x l ,0:2=y l 和013:3=-+y x l . 设i P 是i l (3,2,1=i )上与A ,B 两点距离平方和最小的点, 则△321P P P 的面积是_________;90.如右图将网格中的三条线段沿网格线上下或左右平移, 组成一个首尾相连的三角形,则三条线段一共至少需要移动__________格; 91.已知集合}0|{=-=a x x M ,}01|{=-=ax x N , 若N N M =I ,则实数a 的值是_____________;92.对于任意的函数)(x f y =,在同一坐标系里,)1(-=x f y 与)1(x f y -=的图像关于__________对称; 93.若不等式04)2(2)2(2<--+-x a x a 对R x ∈恒成立,则a 的取值范围是_____________; 94.数列1,a ,2a ,3a ,…,1-n a,…的前n 项和为___________________;95.在△ABC 中,5=a ,8=b ,060=C ,则CA BC ⋅的值等于_________;96.设平面向量)1,2(-=a ρ,)1,(-=λb ρ,若a ρ与b ρ的夹角为钝角,则λ的取值范围是_______________;97.与圆3)5(:22=++y x C 相切且在坐标轴上截距相等的直线有________条;98.某企业在今年年初贷款a ,年利率为r ,从今年末开始,每年末偿还一定金额,预计5年还清,则每年应偿还的金额为________________; 99.过抛物线px y 22=(p 为常数且0≠p )的焦点F 作抛物线的弦AB ,则⋅等于_________; 100.(有关数列极限的题目)(1)计算:=+∞→1lim 33n C n n __________; (2)计算:=+-++∞→112323lim n n nn n ___________; (3)计算:=++++∞→n n n Λ212lim 2___________;(4)若1)(1lim=-+∞→n a n n n ,则常数=a _________; (5)=++-∞→222)1(2lim n C C n n n n _________; (6)数列⎭⎬⎫⎩⎨⎧-1412n 的前n 项和为n S ,则=∞→n n S lim _________; (7)若常数b 满足1||>b ,则=++++-∞→n n n bb b b 121lim Λ___________; (8)设函数xx f +=11)(,点0A 表示坐标原点,点))(,(n f n A n (n 为正整数). 若向量n n n A A A A A A a 12110-+++=Λ,n θ是n a 与i ρ的夹角(其中)0,1(=i ρ),设n n S θθθtan tan tan 21+++=Λ,则=∞→n n S lim _________;江苏省高考数学填空题训练100题参考答案1.]3,1[; 2.),1(+∞; 3.6; 4.3; 5.3-; 6.}1,0,1{-; 7.]3,1[; 8.)2,1(; 9.)1,3(-; 10.x 2(不唯一,一般的xa ,1>a 均可); 11.)1lg(31)1lg(32x x -++; 12.)2,0(; 13.433; 14.]3,3[-; 15.3|{≥x x 或1-=x }; 16.)3,3(-; 17.]1,(-∞; 18.⎥⎦⎤⎢⎣⎡1,132; 19.⎪⎭⎫⎝⎛1,21; 20.)9,2(; 21.3-或1; 22.⎥⎦⎤⎢⎣⎡++87,83ππππk k (Z k ∈); 23.223; 24.71; 25.7; 26.21; 27.21; 28.221-; 29.222-; 30.6;31.90°; 32.2; 33.25; 34.i +2; 35.6-; 36.3; 37.95; 38.765;39.⎥⎦⎤ ⎝⎛3,38; 40.()13235-+nn ; 41.64; 42.n 2; 43.01=+-y x ; 44.⎪⎭⎫⎢⎣⎡+∞--∞,41]1,(Y ;45.34; 46.1或7; 47.329π; 48.8; 49.5; 50.⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--10,275275,10Y ; 51.5<m 或96<<m ; 52.a m -; 53.1922=-y x ; 54.)0,2(F ; 55.90°; 56.2pa -; 57.②③; 58.33; 59.3π; 60.5; 61.m<5或5<m<6或6<m<9; 62.792; 63.10; 64.8; 65.10; 66.6; 67.90; 68.260; 69.32; 70.28; 71.8-; 72.540-; 73.242;74.215100-; 75.2110; 76.94;77.4; 78.加法、减法、乘法、除法; 79.⎭⎬⎫⎩⎨⎧<<--34333x x ;80.x y 2log =,]32,2[∈x ; 81.)3,2(; 82.)4,2[; 83.1; 84.n 2; 85.122n +-;86.11; 87.),2()2,(+∞--∞Y ; 88.10; 89.23;90.8; 91.0或1或-1;92.1=x ;93.(-2,2]; 94.⎪⎪⎪⎩⎪⎪⎪⎨⎧≠≠--==.10 ,11,1 ,1,0 ,1a a a a a a n且;95.-20;96.) , 2()2 , 21(∞+⋃-;97.4; 98.1)1()1(55-++r r ar ;99.243p -100.(1)61;(2)3;(3)2;(4)2;(5)23;(6)21;(7)11--b ;(8)1。

高考数学填空题真题训练(带答案)

高考数学填空题真题训练(带答案)

2019 高考数学填空题真题训练(带答案)2019 年高考怎样复习向来都是考生们关注的话题,下边是查字典数学网的编写为大家准备的填空题真题训练二、填空题 :本大题共 7 小题,每题 4 分,共 28 分.11.已知函数 f(x)= 若 f(a)=3,则实数 a= ____________.12.从三男三女 6 名学生中任选 2 名(每名同学被选中的概率均相等),则2 名都是女同学的概率等于_________.13.直线 y=2x+3 被圆 x2+y2-6x-8y=0 所截得的弦长等于 __________.14.某程序框图如下图,则该程序运转后输出的值等于_________.15.设 z=kx+y ,此中实数 x、y 知足若 z 的最大值为 12,则实数 k=________ .“教书先生”唯恐是街市百姓最为熟习的一种称号,从最先的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人仰慕甚或敬畏的一种社会职业。

不过更早的“先生”观点并不是源于教书,最先出现的“先生”一词也并不是有教授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学识、有品德的尊长。

其实《国策》中自己就有“先生长辈,有德之称”的说法。

可见“先生” 之原意非真实的“教师”之意,倒是与此刻“先生”的称号更靠近。

看来,“先生”之根源含义在于礼貌和尊称,并不是具学识者的专称。

称“老师” 为“先生”的记录,首见于《礼记 ?曲礼》,有“从于先生,不越礼而与人言”,此中之“先生”意为“年长、资深之教授知识者”,与教师、老师之意基本一致。

16.设a,bR,若x0 时恒有0x4-x3+ax+b(x2-1)2,则 ab 等于 ______________.17. 设 e1、e2 为单位向量,非零向量b=xe1+ye2,x、 yR.要练说,得练看。

高考数学三角函数选择填空专题练习(含答案)

高考数学三角函数选择填空专题练习(含答案)

高考数学三角函数选择填空专题练习一、选择题1.为了得到函数sin 2y x =的图象,只需把函数πsin 26y x ⎛⎫=+ ⎪⎝⎭的图象( )A .向左平移π12个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向右平移π6个单位长度 2.若3tan 4x =,则ππtan tan 2424x x ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭( ) A .2- B .2 C .32 D .32-3.已知函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,则下列结论错误的是( )A .()f x 的最小正周期为πB .()f x 的图象关于直线8π3x =对称 C .()f x 的一个零点为π6 D .()f x 在区间π03⎛⎫⎪⎝⎭,上单调递减4.函数()()π2sin 03f x x ωω⎛⎫=+> ⎪⎝⎭的图象在[]0,1上恰有两个最大值点,则ω的取值范围为( )A .[]2π,4πB .9π2π,2⎡⎫⎪⎢⎣⎭C .13π25π,66⎡⎫⎪⎢⎣⎭ D .25π2π,6⎡⎫⎪⎢⎣⎭5.已知函数()()πsin 0,0,2f x A x A ωϕϕω⎛⎫=+>>< ⎪⎝⎭为π2,且()f x 的图象关于点π,012⎛⎫- ⎪⎝⎭对称,则下列判断正确的是( )A .要得到函数()f x 的图象,只需将2y x =的图象向右平移π6个单位 B .函数()f x 的图象关于直线5π12x =对称C .当ππ,66x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为D .函数()f x 在ππ,63⎡⎤⎢⎥⎣⎦上单调递增6.函数()πsin sin 3f x x x ⎛⎫=++ ⎪⎝⎭的最大值为( )A B .2C .D .47.已知函数()cos sin f x x x =-在[],a a -上是减函数,则a 的最大值是( ) A .π4B .π2C .3π4D .π8.已知A 是函数()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭的最大值,若存在实数1x ,2x 使得对任意实数x总有()()()12f x f x f x ≤≤成立,则12A x x ⋅-的最小值为( ) A .π2018B .π1009C .2π1009D .π40369.如图,己知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象关于点()2,0M 对称,且()f x 的图象上相邻的最高点与最低点之间的距离为4,将()f x 的图象向右平移13个单位长度,得到函数()g x 的图象;则下列是()g x 的单调递增区间的为( )A .713,33⎡⎤⎢⎥⎣⎦B .410,33⎡⎤⎢⎥⎣⎦C .17,33⎡⎤⎢⎥⎣⎦D .1016,33⎡⎤⎢⎥⎣⎦10.已知函数()2sin 22sin f x x x =-,给出下列四个结论( )①函数()f x 的最小正周期是π;②函数()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数;③函数()f x 图像关于π,08⎛⎫- ⎪⎝⎭对称;④函数()f x 的图像可由函数2y x =的图像向右平移π8个单位,再向下平移1个单位得到. 其中正确结论的个数是( ) A .1B .2C .3D .411.已知()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)()()12''0f x f x ==,12x x -的最小值为π2,()π3f x f x ⎛⎫=- ⎪⎝⎭,将()f x 的图像向左平移π6个单位得()g x ,则()g x 的单调递减区间是( )A .ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈ZB .π2πππ63k k ⎡⎤++⎢⎥⎣⎦,,()k ∈ZC .π5ππ,π36k k ⎡⎤++⎢⎥⎣⎦,()k ∈ZD .π7ππ,π1212k k ⎡⎤++⎢⎥⎣⎦,()k ∈Z12.已知函数()sin sin3f x x x =-,[]0,2πx ∈,则()f x 的所有零点之和等于( ) A .8π B .7π C .6π D .5π二、填空题13.已知α为第一象限角,sin cos αα-=,则()cos 2019π2α-=__________. 14.已知tan 2α=,则2cos sin2αα+=__________.15.已知πtan 26α⎛⎫-= ⎪⎝⎭,π7π,66α⎡⎤∈⎢⎥⎣⎦,则2sin cos 222ααα=_____.16.已知函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =,且当π6x =-时,()f x 取得最大值,则当ω取最小值时,下列说法正确的是___________.(填写所有正确说法的序号) ①23ω=;②()01f =-; ③当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 单调递减;④函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称.参考答案 1.【答案】B【解析】ππsin 2sin 2126y x x ⎡⎤⎛⎫==-+⎪⎢⎥⎝⎭⎣⎦,故应向右平移π12个单位长度.故选B . 2.【答案】C【解析】因为2tan1tan 14tanππ3222tan tan 2tan 242421tan 1tan 1tan 222x x xx x x x x x+-⎛⎫⎛⎫++-=+=== ⎪ ⎪⎝⎭⎝⎭-+-, 故选C . 3.【答案】B【解析】函数()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭,周期为2ππ2T ==,故A 正确;函数图像的对称轴为2ππ2π32x k +=+,ππ122k k x ∈⇒=-+Z ,k ∈Z ,8π3x =不是对称轴,故B 不正确; 函数的零点为2π2π3x k +=,ππ32k k x ∈⇒=-+Z ,k ∈Z ,当1k =时,得到一个零点为π6,故C 正确; 函数的单调递减区间为2ππ3π2π,π322x k k ⎛⎫+∈++ ⎪⎝⎭,k ∈Z ,解得x 的范围为ππ5π,π122122k k ⎛⎫-++ ⎪⎝⎭,k ∈Z ,区间π0,3⎛⎫⎪⎝⎭是其中的一个子区间,故D 正确.故答案为B .4.【答案】C 【解析】由题意得π5π32ω+≥,π9π32ω+<,13π25π66ω∴≤<,故选C . 5.【答案】A【解析】因为()f xA =,又图象相邻两条对称轴之间的距离为π2,故π22T =, 即2ω=,所以()()2f x x ϕ=+, 令π12x =-,则ππ6k ϕ-+=即ππ6k ϕ=+,k ∈Z , 因π2ϕ<,故π6ϕ=,()π26f x x ⎛⎫=+ ⎪⎝⎭.πππ22266y x x x ⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故向右平移π6个单位后可以得到()π26f x x ⎛⎫+ ⎪⎝⎭,故A 正确;5π5ππ01266f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,故函数图像的对称中心为5π,012⎛⎫⎪⎝⎭,故B 错; 当ππ66x -≤≤时,πππ2662x -≤+≤,故()min f x =,故C 错; 当ππ63x ≤≤时,ππ5π2266x ≤+≤,()π26f x x ⎛⎫=+ ⎪⎝⎭在ππ,63⎡⎤⎢⎥⎣⎦为减函数,故D 错. 综上,故选A . 6.【答案】A【解析】函数()π1sin sin sin sin 32f x x x x x x ⎛⎫=++=++ ⎪⎝⎭31πsin cos 226x x x x x ⎫⎛⎫=+=+=+≤⎪ ⎪⎪⎝⎭⎭A . 7.【答案】A【解析】()'sin cos f x x x =--,由题设,有()'0f x ≤在[],a a -上恒成立,π04x ⎛⎫+≥ ⎪⎝⎭,故3ππ2π2π44k x k -≤≤+,k ∈Z .所以3π2π4π2π4k a a k -≤-⎧⎪≤⎨+⎪⎪⎪⎩,因0a >,故0k =即π04a <≤,a 的最大值为π4,故选A .8.【答案】B 【解析】()ππsin 2018cos 201863f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭112018cos2018cos2018201822x x x x =++π2018cos 20182sin 20186x x x ⎛⎫=+=+ ⎪⎝⎭,()max 2A f x ∴==,周期2ππ20181009T ==, 又存在实数1x ,2x ,对任意实数x 总有()()()12f x f x f x ≤≤成立,()()2max 2f x f x ∴==,()()1min 2f x f x ==-,12A x x ⋅-的最小值为1π21009A T ⨯=,故选B .9.【答案】D【解析】由图象可知A =()f x 的图象上相邻的最高点与最低点之间的距离为4, 所以(22242T ⎛⎫+= ⎪⎝⎭,解得4T =,即2π4w =,即π2w =,则()π2f x x ϕ⎛⎫=+ ⎪⎝⎭,因为函数()f x 关于点()2,0M 对称,即()20f =π202ϕϕ⎛⎫⨯+= ⎪⎝⎭,解得0ϕ=,所以()π2f x x ⎛⎫= ⎪⎝⎭,将()f x 的图象向右平移13个单位长度,得到()g x 的图象,即()π1ππ2326g x x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由ππππ2π2π2262k x k -+≤-≤+,k ∈Z ,得244433k x k -+≤≤+,k ∈Z ,当1k =时,101633x ≤≤,即函数的单调增区间为1016,33⎡⎤⎢⎥⎣⎦,故选D . 10.【答案】B【解析】()2πsin 22sin sin 2cos21214f x x x x x x ⎛⎫=-=+-+- ⎪⎝⎭∴函数()f x 的最小正周期2ππ2T ==,故①正确 令ππ3π2π22π242k x k +≤+≤+,解得π5πππ88k x k +≤≤+, 当0k =时,()f x 在区间π5π,88⎡⎤⎢⎥⎣⎦上是减函数,故②正确令π204x +=,解得π8x =-,则()f x 图像关于π,18⎛⎫-- ⎪⎝⎭对称,故③错误 ()π214f x x ⎛⎫+- ⎪⎝⎭,可以由()2f x x =的图象向左平移π8个单位,再向下平移一个单位得到,故④错误,综上,正确的结论有2个,故选B . 11.【答案】A【解析】∵()()sin f x x ωθ=+(其中0ω>,π0,2θ⎛⎫∈ ⎪⎝⎭)由()()12''0f x f x ==可得,1x ,2x 是函数的极值点, ∵12x x -的最小值为π2,∴1ππ22T ω⋅==,2ω∴=,()()sin 2f x x θ∴=+, 又()π3f x f x ⎛⎫=- ⎪⎝⎭,∴()f x 的图象的对称轴为π6x =,ππ2π62k θ∴⨯+=+,k ∈Z ,令0k =可得π6θ=,()πsin 26f x x ⎛⎫∴=+ ⎪⎝⎭,将()f x 的图象向左平移π6个单位得()ππsin 2cos 266g x x x ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭的图象,令2π22ππk x k ≤≤+,πππ2k x k ∴≤≤+, 则()cos 2g x x =的单调递减区间是ππ,π2k k ⎡⎤+⎢⎥⎣⎦,()k ∈Z ,故选A . 12.【答案】B【解析】由已知函数()sin sin3f x x x =-,[]0,2πx ∈,令()0f x =,即sin sin30x x -=,即2sin sin3sin cos2cos sin 2sin cos22sin cos x x x x x x x x x x ==+=+, 即()2sin cos22cos 10x x x +-=,解得sin 0x =或2cos22cos 10x x +-=, 当sin 0x =,[]0,2πx ∈时,0x =或πx =或2πx =;当2cos22cos 10x x +-=时,即222cos 2cos 20x x +-=,解得cos x =, 又由[]0,2πx ∈,解得π4x =或3π4或5π4或7π4, 所以函数()f x 的所有零点之和为π3π5π7π0π2π7π4444++++++=,故选B .13. 【解析】()cos 2019π2cos2αα-=-,因为sin cos αα-=,所以11sin23α-=,2sin23α∴=,因为sin cos 0αα->,α为第一象限角, 所以ππ2π2π42k k α+<<+,k ∈Z ,π4π24ππ2k k α∴+<<+,k ∈Z ,所以cos2α=. 14.【答案】1【解析】tan 2α=,∴原式22222cos 2sin cos 12tan 1221sin cos tan 121ααααααα+++⨯====+++. 故答案为1.15.【解析】原式1ππsin sin cos 236αααα⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,因为π7π,66α⎡⎤∈⎢⎥⎣⎦,所以[]π0,π6α-∈,因πtan 26α⎛⎫-= ⎪⎝⎭,所以πcos 6α⎛⎫-= ⎪⎝⎭.16.【答案】①④【解析】函数()()2sin 1f x x ωϕ=+-(0ω>,πϕ<)的一个零点是π3x =, 则ππ2sin 1033f ωϕ⎛⎫⎛⎫=+-= ⎪ ⎪⎝⎭⎝⎭,π1sin 32ωϕ⎛⎫+= ⎪⎝⎭,ππ2π36k ωϕ+=+或()5π2π6k k +∈Z ,()ππ2π62n n ωϕ-+=+∈Z , 两式相减得()243k n ω=-±,又0ω>,则min 23ω=, 此时2π5π2π96k ϕ+=+,k n =,11π2π18k ϕ∴=+, 又πϕ<,则11π18ϕ=,()211π2sin 1318f x x ⎛⎫∴=+- ⎪⎝⎭,当π5π,63x ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 先减后增,函数()f x 的图象关于点7π,112⎛⎫- ⎪⎝⎭对称,()11π02sin1118f =-≠-, 故填①④.。

高考数学选择、填空题专项汇编题(共40套)[附答案]

高考数学选择、填空题专项汇编题(共40套)[附答案]

三基小题训练三一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P={3,4,5},Q={4,5,6,7},定义P ★Q={(},|),Q b P a b a ∈∈则P ★Q 中元素的个数为 ( )A .3B .7C .10D .12 2.函数3221x e y -⋅=π的部分图象大致是( )A B C D3.在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2,公差为3的等 差数列的( )A .第13项B .第18项C .第11项D .第20项4.有一块直角三角板ABC ,∠A=30°,∠B=90°,BC 边在桌面上,当三角板所在平面与 桌面成45°角时,AB 边与桌面所成的角等于( )A .46arcsinB .6π C .4π D .410arccos5.若将函数)(x f y =的图象按向量a 平移,使图象上点P 的坐标由(1,0)变为(2,2), 则平移后图象的解析式为( )A .2)1(-+=x f yB .2)1(--=x f yC .2)1(+-=x f yD .2)1(++=x f y6.直线0140sin 140cos =+︒+︒y x 的倾斜角为( )A .40°B .50°C .130°D .140°7.一个容量为20的样本,数据的分组及各组的频数如下:(10,20],2;(20,30],3; (30,40],4;(40,50],5;(50,60],4;(60,70],2. 则样本在区间(10,50]上的频率为( )A .0.5B .0.7C .0.25D .0.058.在抛物线x y 42=上有点M ,它到直线x y =的距离为42,如果点M 的坐标为(n m ,), 且n mR n m 则,,+∈的值为 ( )A .21 B .1C .2D .29.已知双曲线]2,2[),(12222∈∈=-+e R b a by a x 的离心率,在两条渐近线所构成的角中,设以实轴为角平分线的角为θ,则θ的取值范围是 ( )A .]2,6[ππ B .]2,3[ππC .]32,2[ππD .),32[ππ 10.按ABO 血型系统学说,每个人的血型为A ,B ,O ,AB 型四种之一,依血型遗传学, 当且仅当父母中至少有一人的血型是AB 型时,子女的血型一定不是O 型,若某人的血 型的O 型,则父母血型的所有可能情况有 ( )A .12种B .6种C .10种D .9种11.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为 ( ) A .16(12-6π)3 B .18πC .36πD .64(6-4π)212.一机器狗每秒钟前进或后退一步,程序设计师让机器狗以前进3步,然后再后退2步的规律移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在位置的坐标,且P (0)=0,则下列结论中错误..的是( )A .P (3)=3B .P (5)=5C .P (101)=21D .P (101)<P(104)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.在等比数列{512,124,}7483-==+a a a a a n 中,且公比q 是整数,则10a 等于 .14.若⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则目标函数y x z 3+=的取值范围是 .15.已知,1sin 1cot 22=++θθ那么=++)cos 2)(sin 1(θθ . 16.取棱长为a 的正方体的一个顶点,过从此顶点出发的三条棱的中点作截面,依次进行下去,对正方体的所有顶点都如此操作,所得的各截面与正方体各面共同围成一个多面体.则此多面体:①有12个顶点;②有24条棱;③有12个面;④表面积为23a ;⑤体积为365a . 以上结论正确的是 .(要求填上的有正确结论的序号) 答案:一、选择题:1.D 2.C 3.D 4.A 5.C 6.B 7.B 8.D 9.C 10.D 11.C 12.C二、填空题:13.-1或512;14.[8,14];15.4;16.①②⑤三基小题训练四一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.满足|x -1|+|y -1|≤1的图形面积为A.1B.2C.2D.4 2.不等式|x +log 3x |<|x |+|log 3x |的解集为A.(0,1)B.(1,+∞)C.(0,+∞)D.(-∞,+∞)3.已知双曲线的焦点到渐近线的距离等于右焦点到右顶点的距离的2倍,则双曲线的离心率e 的值为A.2B.35C.3D.24.一个等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取一项,余下项的平均值是4,则抽取的是A.a 11B.a 10C.a 9D.a 8 5.设函数f (x )=log a x (a >0,且a ≠1)满足f (9)=2,则f -1(log 92)等于A.2B.2C.21 D.±26.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为A.63a B.123a C.3123a D.3122a 7.设O 、A 、B 、C 为平面上四个点,OA =a ,OB =b ,OC =c ,且a +b +c =0, a ·b =b ·c =c ·a =-1,则|a |+|b |+|c |等于A.22B.23C.32D.338.将函数y =f (x )sin x 的图象向右平移4π个单位,再作关于x 轴的对称曲线,得到函数y =1-2sin 2x 的图象,则f (x )是A.cos xB.2cos xC.sin xD.2sin x9.椭圆92522y x +=1上一点P 到两焦点的距离之积为m ,当m 取最大值时,P 点坐标为 A.(5,0),(-5,0) B.(223,52)(223,25-)C.(23,225)(-23,225) D.(0,-3)(0,3)10.已知P 箱中有红球1个,白球9个,Q 箱中有白球7个,(P 、Q 箱中所有的球除颜色外完全相同).现随意从P 箱中取出3个球放入Q 箱,将Q 箱中的球充分搅匀后,再从Q 箱中随意取出3个球放入P 箱,则红球从P 箱移到Q 箱,再从Q 箱返回P 箱中的概率等于A.51B.1009 C.1001 D.5311.一个容量为20的样本数据,分组后,组距与频数如下:(10,20],2;(20,30],3;(30,40],4;(40,50],5;(50,60],4;(60,70),2,则样本在(-∞,50)上的频率为A.201 B.41 C.21 D.10712.如图,正方体ABCD —A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总是保持AP ⊥BD 1,则动点P 的轨迹是A .线段B 1CB. 线段BC 1C .BB 1中点与CC 1中点连成的线段D. BC 中点与B 1C 1中点连成的线段二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.已知(p x x -22)6的展开式中,不含x 的项是2720,则p 的值是______.14.点P 在曲线y =x 3-x +32上移动,设过点P 的切线的倾斜角为α,则α的取值范围是______.15.在如图的1×6矩形长条中涂上红、黄、蓝三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方案有______种.16.同一个与正方体各面都不平行的平面去截正方体,截得的截面是四边形的图形可能是①矩形;②直角梯形;③菱形;④正方形中的______(写出所有可能图形的序号).答案:一、1.C 2.A 3.B 4.A 5.B 6.D 7.C 8.B 9.D 10.B 11.D 12.A 二、13.3 14.[0,2π)∪[43π,π) 15.30 16.①③④三基小题训练五一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.在数列1,1,}{211-==+n n n a a a a 中则此数列的前4项之和为 ( )A .0B .1C .2D .-22.函数)2(log log 2x x y x +=的值域是 ( )A .]1,(--∞B .),3[+∞C .]3,1[-D .),3[]1,(+∞⋃--∞3.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为41,则N 的值( ) A .120B .200C .150D .1004.若函数)(,)0,4()4sin()(x f P x y x f y 则对称的图象关于点的图象和ππ+==的表达式是( )A .)4cos(π+xB .)4cos(π--xC .)4cos(π+-xD .)4cos(π-x5.设n b a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( ) A .第5项B .第4、5两项C .第5、6两项D .第4、6两项6.已知i , j 为互相垂直的单位向量,b a j i b j i a 与且,,2+=-=的夹角为锐角,则实数λ的取值范围是( )A .),21(+∞B .)21,2()2,(-⋃--∞C .),32()32,2(+∞⋃-D .)21,(-∞7.已知}|{},2|{,,0a x ab x N ba xb x M R U b a <<=+<<==>>集合全集, N M P ab x b x P ,,},|{则≤<=满足的关系是( )A .N M P ⋃=B .N M P ⋂=C .)(N C M P U ⋂=D .N M C P U ⋂=)(8. 从湖中打一网鱼,共M 条,做上记号再放回湖中,数天后再打一网鱼共有n 条,其中有k 条有记号,则能估计湖中有鱼( )A .条k nM ⋅B .条n kM ⋅C .条kM n ⋅D .条Mk n ⋅9.函数a x f x x f ==)(|,|)(如果方程有且只有一个实根,那么实数a 应满足( ) A .a <0B .0<a <1C .a =0D .a >110.设))(5sin3sin,5cos3(cosR x xxxxM ∈++ππππ为坐标平面内一点,O 为坐标原点,记f (x )=|OM|,当x 变化时,函数 f (x )的最小正周期是 ( )A .30πB .15πC .30D .1511.若函数7)(23-++=bx ax x x f 在R 上单调递增,则实数a , b 一定满足的条件是( ) A .032<-b aB .032>-b aC .032=-b aD .132<-b a12.已知函数图象C x y a ax a x y C C '=++=++'且图象对称关于直线与,1)1(:2关于点(2,-3)对称,则a的值为 ( ) A .3B .-2C .2D .-3二、填空题:本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上. 13.“面积相等的三角形全等”的否命题是 命题(填“真”或者“假”)14.已知βαβαββα+=++⋅+=则为锐角且,,,0tan )tan (tan 3)1(3tan m m 的值为15.某乡镇现有人口1万,经长期贯彻国家计划生育政策,目前每年出生人数与死亡人数分别为年初人口的0.8%和1.2%,则经过2年后,该镇人口数应为 万.(结果精确到0.01)16.“渐升数”是指每个数字比其左边的数字大的正整数(如34689).则五位“渐升数”共有 个,若把这些数按从小到大的顺序排列,则第100个数为 .一、选择题:本大题共12小题,每小题5分,共60分. 题号 123456789101113答案A D AB D BC A CD A C二、填空题:本大题共4小题,每小题4分,共16分. 13.真 14.3π15.0.99 16.126, 24789三基小题训练六一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 给出两个命题:p :|x|=x 的充要条件是x 为正实数;q :存在反函数的函数一定是单调函 数,则下列哪个复合命题是真命题( )A .p 且qB .p 或qC .┐p 且qD .┐p 或q2.给出下列命题:其中正确的判断是( )A.①④B.①②C.②③D.①②④3.抛物线y =ax 2(a <0)的焦点坐标是( )A.(0,4a ) B.(0,a 41) C.(0,-a41) D.(-a41,0) 4.计算机是将信息转换成二进制进行处理的,二进制即“逢2进1”如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数 转换成十进制形式是( )A.217-2B.216-2C.216-1D.215-15.已知f (cos x )=cos3x ,则f (sin30°)的值是( )A.1B.23C.0D.-16.已知y =f (x )是偶函数,当x >0时,f (x )=x +x4,当x ∈[-3,-1]时,记f (x )的最大值为m ,最小值为n ,则m -n 等于( )A.2B.1C.3D.237.某村有旱地与水田若干,现在需要估计平均亩产量,用按5%比例分层抽样的方法抽取了15亩旱地45亩水田进行调查,则这个村的旱地与水田的亩数分别为( )A.150,450B.300,900C.600,600D.75,2258.已知两点A (-1,0),B (0,2),点P 是椭圆24)3(22y x +-=1上的动点,则△P AB 面积的最大值为( ) A.4+332B.4+223 C.2+332 D.2+2239.设向量a =(x 1,y 1),b =(x 2,y 2),则下列为a 与b 共线的充要条件的有( )①存在一个实数λ,使得a =λb 或b =λa ;②|a ·b |=|a |·|b |;③2121y yx x =;④(a +b )∥(a -b ). A.1个B.2个C.3个D.4个10.点P 是球O 的直径AB 上的动点,P A =x ,过点P 且与AB 垂直的截面面积记为y ,则y =21f (x )的大致图象是11.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中, 则不同的传球方式共有A.6种B.10种C.8种D.16种12.已知点F 1、F 2分别是双曲线2222by a x -=1的左、右焦点,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是A.(1,+∞)B.(1,3)C.(2-1,1+2)D.(1,1+2)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.方程log 2|x |=x 2-2的实根的个数为______.14.1996年的诺贝尔化学奖授予对发现C 60有重大贡献的三位科学家.C 60是由60个C 原子组成的分子,它结构为简单多面体形状.这个多面体有60个顶点,从每个顶点都引出3条棱,各面的形状分为五边形或六边形两种,则C 60分子中形状为五边形的面有______个,形状为六边形的面有______个.15.在底面半径为6的圆柱内,有两个半径也为6的球面,两球的球心距为13,若作一个平面与两个球都相切,且与圆柱面相交成一椭圆,则椭圆的长轴长为______.16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数;②f (x )关于直线x =1对称;③f (x )在[0,1]上是增函数;④f (x )在 [1,2]上是减函数;⑤f (2)=f (0),其中正确判断的序号为______(写出所有正确判断的序号).答案:一、1.D 2.B 3.B 4.C 5.D 6.B 7.A 8.B 9.C 10.A 11.C 12.D二、13.4 14.12 20 15.13 16.①②⑤三基小题训练七一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.准线方程为3=x 的抛物线的标准方程为( )A .x y 62-=B .x y 122-=C .x y 62=D .x y 122=2.函数x y 2sin =是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为2π的奇函数D .最小正周期为2π的偶函数3.函数)0(12≤+=x x y 的反函数是( )A .)1(1≥+-=x x yB .)1(1-≥+-=x x yC .)1(1≥-=x x yD .)1(1≥--=x x y4.已知向量x -+-==2)2,(),1,2(与且平行,则x 等于 ( )A .-6B .6C .-4D .45.1-=a 是直线03301)12(=++=+-+ay x y a ax 和直线垂直的 ( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分又不必要的条件6.已知直线a 、b 与平面α,给出下列四个命题①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥α,b ⊂α,则a ∥b ; ③若a ∥α,b ∥α,则a ∥b; ④a ⊥α,b ∥α,则a ⊥b. 其中正确的命题是( )A .1个B .2个C .3个D .4个7.函数R x x x y ∈+=,cos sin 的单调递增区间是( )A .)](432,42[Z k k k ∈+-ππππB .)](42,432[Z k k k ∈+-ππππC .)](22,22[Z k k k ∈+-ππππ D .)](8,83[Z k k k ∈+-ππππ 8.设集合M=N M R x x y y N R x y y x I 则},,1|{},,2|{2∈+==∈=是 ( )A .φB .有限集C .MD .N9.已知函数)(,||1)1()(2)(x f x x f x f x f 则满足=-的最小值是 ( )A .32B .2C .322 D . 2210.若双曲线122=-y x 的左支上一点P (a ,b )到直线x y =的距离为a 则,2+b 的值为( )A .21-B .21 C .-2 D .211.若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是 ( )A .2B .4C .6D .812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1020元. 设这三种债券的年收益率分别为a , b, c ,则a , b, c 的大小关系是( )A .b a c a <=且B .c b a <<C .b c a <<D .b a c <<二、填空题:(本大题共4小题,每小题4分,共16分,把答案直接填在题中横线上.)13.某校有初中学生1200人,高中学生900人,老师120人,现用分层抽样方法从所有师生中抽取一个容量为N 的样本进行调查,如果应从高中学生中抽取60人,那么N .14.在经济学中,定义)()(),()1()(x f x Mf x f x f x Mf 为函数称-+=的边际函数,某企业的一种产品的利润函数Nx x x x x P ∈∈++-=且]25,10[(100030)(23*),则它的边际函数MP (x )= .(注:用多项式表示) 15.已知c b a ,,分别为△ABC 的三边,且==+-+C ab c b a tan ,02333222则 .16.已知下列四个函数:①);2(log 21+=x y ②;231+-=x y ③;12x y -=④2)2(3+-=x y .其中图象不经过第一象限的函数有 .(注:把你认为符合条件的函数的序号都填上) 答案: 一、选择题:(每小题5分,共60分)BADCA ABDCA BC 二、填空题:(每小题4分,共16分)13.148; 14.]25,10[(295732∈++-x x x 且)*N x ∈(未标定义域扣1分); 15.22-; 16.①,④(多填少填均不给分)三基小题训练八一、选择题(本大题共12小题,每小题5分,共60分,在每小题所给出的四个选项中,只 有一项是符合题目要求的)1.直线01cos =+-y x α的倾斜角的取值范围是 ( )A. ⎥⎦⎤⎢⎣⎡2,0πB.[)π,0C.⎥⎦⎤⎢⎣⎡43,4ππD.⎪⎭⎫⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ,434,02.设方程3lg =+x x 的根为α,[α]表示不超过α的最大整数,则[α]是 ( )A .1B .2C .3D .43.若“p 且q ”与“p 或q ”均为假命题,则 ( )A.命题“非p ”与“非q ”的真值不同B.命题“非p ”与“非q ”至少有一个是假命题C.命题“非p ”与“q ”的真值相同D.命题“非p ”与“非q ”都是真命题 4.设1!,2!,3!,……,n !的和为S n ,则S n 的个位数是 ( )A .1B .3C .5D .75.有下列命题①++=;②(++)=⋅+⋅;③若=(m ,4),则||=23的充要条件是m =7;④若AB 的起点为)1,2(A ,终点为)4,2(-B ,则BA 与x 轴正向所夹角的余弦值是54,其中正确命题的序号是 ( )A.①②B.②③C.②④D.③④· · ·· ·A 1D 1C 1C N M DPR BAQ6.右图中,阴影部分的面积是 ( )A.16B.18C.20D.227.如图,正四棱柱ABCD –A 1B 1C 1D 1中,AB=3,BB 1=4.长为1的线段PQ 在棱AA 1上移动,长为3的线段MN 在棱CC 1上移动,点R 在棱BB 1上移动,则四棱锥R –PQMN 的体积是( )A.6B.10C.12D.不确定 8.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( ) A.265个B.232个C.128个D.24个9.已知定点)1,1(A ,)3,3(B ,动点P 在x 轴正半轴上,若APB ∠取得最大值,则P 点的坐标( )A .)0,2( B.)0,3( C.)0,6( D.这样的点P 不存在10.设a 、b 、x 、y 均为正数,且a 、b 为常数,x 、y 为变量.若1=+y x ,则by ax +的最大值为 ( ) A.2b a + B. 21++b a C. b a + D.2)(2b a + 11.如图所示,在一个盛 水的圆柱形容器内的水面以下,有一个用细线吊着的下端开了一个很小的孔的充满水的薄壁小球,当慢慢地匀速地将小球从水下向水 面以上拉动时,圆柱形容器内水面的高度h 与时间t 的函数图像大致是( )12.4个茶杯荷5包茶叶的价格之和小于22元,而6个茶杯和3包茶叶的价格之和大于24,则2个茶杯和3包茶叶的价格比较 ( )A.2个茶杯贵B.2包茶叶贵C.二者相同D.无法确定二、填空题(本大题共4小题,每小题4分,共16分。

高三数学:填空题汇总(含答案解析)

高三数学:填空题汇总(含答案解析)

1.已知O : x2y21y kx2上总存在点 P ,使得过点P 的O.若直线的两条切线互相垂直,则实数 k 的最小值为.【解】因为过点P的O 的两条切线互相垂直,所以点P 到圆心O的距离为2r 2 ,又因为直线y kx 2 上总存在这样的点P,所以圆心O到直线 y k x 2 的距离为2,则22 ,k ;k112 .(23x)50a0a1 x a2 x2a50x50,a0 ,a1, a2, a其中是常数,计算( a0a2a4a50 )2(a1a3a5a49 ) 2=.x 150【解】令得a1a1a2a50 2 3,令x 1 得a1a1a2a502350a50 )2a49 ) 25050( a0a2a4(a1a3a5232313.一个车间为了规定工作定额,需要确定加工零件所花费的时间,为此进行了 5 次试验,收集数据如下:由表中数据,求得线性回归方程y? 0.65 x a?,根据回归方程,预测加工70 个零件所花费的时间为分钟.【答案】1025.在等差数列a n中,若 a100 ,则有 a1 a2a n a1 a2a19 n( n19,且 n N ) 成立.类比上述性质,在等比数列b n中,若 b91,则存在的类似等式为_________________.【答案】b1b2b n b1b2b17 n (n17,且 n N )【解析】等差是加,等比就是乘,由已知,当 19 - n n 时, n10右边-左边等于an 1an 2....a19 n= 19 - 2n a100 ,所以原式成立,当n10时,左边- 右边等于a20 na21 n... a n 2n 19 a 10 0,所以原式成立当为等比数列时,猜想b 1b 2 b nb 1b 2b 17 n ( n 17,且 nN ),当17n n 时 , n 9时,右边/左边=......17 2 n1等式成立,当 17 nn 时 , 即 n9时,右边/左边b n 1b n 2b 17 n b 9=......2 n 171,等式成立。

2023年新高考数学选择填空专项练习题六(附答案解析)

2023年新高考数学选择填空专项练习题六(附答案解析)

∴1= an
1- 1 an an-1

1-1 an-1 an-2
+…+
1-1 a2 a1
+1 a1
第2页共7页
=2n-1+2n-2+…+2+1=2n-1=2n-1. 2-1
∴an=2n-1 1.故选 B.] 8.甲、乙、丙三人中,一人是教师,一人是记者,一人是医生.已知:丙 的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下 列判断正确的是( ) A.甲是教师,乙是医生,丙是记者 B.甲是医生,乙是记者,丙是教师 C.甲是医生,乙是教师,丙是记者 D.甲是记者,乙是医生,丙是教师 C [由甲的年龄和记者不同与记者的年龄比乙小可以推得丙是记者,再由丙 的年龄比医生大,可知甲是医生,故乙是教师,故选 C.] 9.已知抛物线 C:y2=8x 与直线 y=k(x+2)(k>0)相交于 A,B 两点,F 为 抛物线 C 的焦点,若|FA|=2|FB|,则 AB 的中点的横坐标为( ) A.5 B.3 C.5 D.6
i
i
虚数,则 a-2=0,a+2≠0.
∴“a=2”是“复数 z=a+2i-1+i(a∈R)为纯虚数”的充要条件.故选 i
C.] 3.已知平面向量 a,b 满足|a|=3,|b|=2,且(a+b)(a-2b)=4,则向量 a,
b 的夹角为( )
A.π B.π C.π D.2π 643 3
D [∵(a+b)(a-2b)=4,∴a2-a·b-2b2=4,
2 A [根据题意,设 AB 的中点为 G, 抛物线 C:y2=8x 的准线为 l:x=-2,焦点为 F(2,0), 直线 y=k(x+2)恒过定点 P(-2,0). 如图过 A、B 分别作 AM⊥l 于 M,BN⊥l 于 N, 由|FA|=2|FB|,则|AM|=2|BN|, 即点 B 为 AP 的中点.连接 OB,则|OB|=1|AF|,

2025届高考数学二轮复习-数列题型填空题专项训练【含解析】

2025届高考数学二轮复习-数列题型填空题专项训练【含解析】

2025届高考数学二轮复习-数列题型填空题专项训练一、填空题1.已知等差数列{}n a 的前n 项和为n S ,若2610a a +=,则7S =___________.答案:35解析:等差数列{}n a 的前n 项和为n S ,2610a a +=,()()172677771035222a a a a S ++⨯∴====,故答案为:35.2.记n S 为等差数列{}n a 的前n 项和,且满足:①12n n n S a S +->+;②*n ∀∈N ,8n S S >.写出一个同时满足上述两个条件的数列{}n a 的通项公式n a =________.答案:325n -(答案不唯一)解析:由12n n n S a S +->+,得12n n a a +->,即公差2d >,所以数列{}n a 是递增数列,又*n ∀∈N ,8n S S >,即当8n =时,n S 取得最小值,故只需数列{}n a 的前8项均为负数,第9项及之后均为正数即可,结合2d >可知,满足条件的一个数列{}n a 的通项公式可以为325n a n =-(答案不唯一,满足80a <,90a >且公差2d >即可).3.已知ABC △中三边a ,b ,cABC △的形状为____________.答案:等边三角形解析:因为a ,b ,c2,b ac =+⎧⎪⎨=⎪⎩则24b a c ==++,即a c +=2=0,故a c b ==,所以ABC △为等边三角形.故答案为:2.5.已知数列{}n a 的前n 项和1*3()n n S k n +=+∈N ,且{}n a 不是等比数列,则常数k 的取值范围是____________.答案:(,3)(3,)-∞--+∞解析:因为2139a k k =+=+,当2n ≥时,113323n n n n n n a S S +-=-=-=⋅,当{}n a 是等比数列时,有16a =,即96k +=,解得3k =-,当{}n a 不是等比数列时,有3k ≠-,所以所求的常数k 的取值范围是(,3)(3,)-∞--+∞,故答案为:(,3)(3,)-∞--+∞.6.设等比数列{}n a 的前n 项和为n S ,若633S S =,则96SS =______.答案:73解析:1q ≠,否则61316233S a S a ==≠.()()6136331111311a q S q q S a q q--∴==+=--,32q ∴=.()()9193962661111271112311a q S q qS q a q q----∴====----.故答案为:73.列:1,1,2,3,5,8,13,21,34,…….已知在斐波那契数列{}n a中,11a =,21a =,()21n n n a a a n +++=+∈N ,若2022a m =,则数列{}n a 的前2020项和为___________(用含m 的代数式表示).答案:1m -.解析:由21n n n a a a ++=+,可知11n n n a a a +-=+,……,432a a a =+,321a a a =+,将以上各式相加得1312121222n n n n n a a a a a a a a ++-+=++++++++,整理得22n n a a S +=+,则2020202221S a a m =-=-.故答案为:1m -.式,所讨论的高阶等差数列与一般等差数列不同,高阶等差数列中前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.现有高阶等差数列,其前7项分别为1,2,4,7,11,16,22,则该数列的第20项为______.答案:191解析:高阶等差数列{}n a :1,2,4,7,11,16,22,,令1n n n b a a +=-,则数列{}n b :1,2,3,4,5,6,,则数列{}n b 为等差数列,首项11b =,公差1d =,n b n =,则1n n n a a +-=则()()()()20201919181817211a a a a a a a a a a =-+-+-++-+()19(191)1918171111912+=+++++=+=,故答案为:19111.记n S 为数列{}n a 的前n 项和,已知()**11,21,,22,2,,n n n k k n n a a n k k -⎧=-∈⎪+=⎨⎪=∈⎩N N 则12S =_____________.答案:1813解析:当21n k =-,*k ∈N ,()1111222n a n n n n ⎛⎫==- ⎪++⎝⎭,所以121235678910111211374355222S a a a a a a a a a a a a a a a a a a a =+++++++++++=+++++++()799111113579112223a a a a a a a a a a a ++++=+++++=111111111111183123355779911111313⎛⎫⨯-+-+-+-+-+-= ⎪⎝⎭.12.若数列2(4)3nn n ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭中的最大项是第k 项,则k =________.答案:4解析:设2(4)3nn a n n ⎛⎫=+ ⎪⎝⎭,易知0n a >,则1122(1)(5)(1)(5)33(4)2(4)3n n n n n n n n a a n n n n ++⎛⎫++++ ⎪⎝⎭==+⎛⎫+ ⎪⎝⎭.令11n na a +≥,得2(1)(5)(4)3n n n n ++≥+,即2221210312n n n n ++≥+,210n ∴≤,∴当3n ≤且n +∈N 时,1n n a a +>,当4n ≥且n +∈N 时,1n n a a +<,即1234a a a a <<<,4567a a a a >>>>,4k ∴=.13.对任意的正整数k ,直线:210l kx y k -++=恒过定点,则这个定点的坐标为________,若点(1,)k M a -在直线l 上,则数列1k k a ⎧⎫⎨⎬⋅⎩⎭的前10项和为________.答案:(2,1)-;1011解析:直线:210l kx y k -++=即(2)10x k y ++-=,令2010x y +=⎧⎨-=⎩,解得21x y =-⎧⎨=⎩,所以直线l 恒过点(2,1)-,因为点()1,k M a -在直线l 上,所以210k k a k --++=,解得1k a k =+所以1111(1)1k k a k k k k ==-⋅⋅++,则数列1k k a ⎧⎫⎨⎬⋅⎩⎭的前10项和111111101122310111111⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪⎝⎭⎝⎭,故答案为:(2,1)-;1011.14.已知等差数列{}n a 的前n 项和为n S ,若数列3S ,63S S -,96S S -,…的前n 项和为263n n +,则101a =_________.答案:135解析:设等差数列{}n a 的公差为d .由题意知数列3S ,63S S -,96S S -,…成等差数列,且公差6334561239d S S S a a a a a a d '=-=++--=--.记数列3S ,63S S -,96S S -,…为{}n c ,其前n 项和为n T ,则211(1)222n n n n d T nc d d c n '-⎛⎫''=+=+- ⎪⎝⎭,又因为数列3S ,63S S -,96S S -,…的前n 项和为263n n +,所以16,23,2d d c '⎧=⎪⎪⎨'⎪-=⎪⎩解得112,9.d c '=⎧⎨=⎩所以1493d d '==,131339c S a d ==+=,解得153a =,所以1011540010013533a a d =+=+=.15.已知数列{}n a 的通项公式是3n n a =.在1a 和2a 之间插入1个数11x ,使1a ,11x ,2a 成等差数列;在2a 和3a 之间插入2个数21x ,22x ,使2a ,21x ,22x ,3a 成等差数列.那么22x =______.按此进行下去,在n a 和1n a +之间插入n 个数1n x ,2n x ,…,nn x ,使n a ,1n x ,2n x ,…,nn x ,1n a +成等差数列,则11122122312n n n nn a x a x x a a x x x ++++++⋅⋅⋅++++⋅⋅⋅+=______.答案:21,13n n +⋅解析:由3n n a =,29a =,327a =,2a ,21x ,22x ,3a 成等差数列,21222336x x a a ∴+=+=,且公差为27963-=,2115x ∴=,2221x =,在n a 和1n a +之间插入n 个数1n x ,2n x ,…,nn x ,使n a ,1n x ,2n x ,…,nn x ,1n a +成等差数列,设其公差为d ,此数列首项为3n n a =,末项为113n n a ++=,则1n n x a d =+,1nn n x a d +=-,则()()1121332322n n n n n nnn n n n a a x x x n d d +++++⋅⋅⋅++==+=⋅-,设()()11212212n n n nn T x x x x x x =+++⋅⋅⋅+++⋅⋅⋅+,则12234323n n T n =⨯+⨯+⋅⋅⋅+⨯,则3213234323n n T n +=⨯+⨯+⋅⋅⋅+⨯,则()1231223233323n n n T n +-=⨯++++-⨯,()1121131232323123331n n n n n -++-=⨯+⨯⨯-⨯=---,则113332n n n T n ++-=+⋅,11122122312n n n nn a x a x x a a x x x ∴++++++⋅⋅⋅++++⋅⋅⋅+1211212212n n n nna a a x x x x x x =+++++++⋅⋅⋅+++⋅⋅⋅+11213333332n nn n ++-=++⋅⋅⋅+++⋅,111133333223n n n n n n ++++-==-⋅++⋅,故答案为:21;13n n +⋅.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考填空题提升训练1.已知函数()()sin f x a x b ωθ=+-的部分图象如下图,ABCV 的角,A B 所对的边, 则ABC ∆的面积S = .2.在平面直角坐标系上,设不等式组00(4)x y y n x >⎧⎪>⎨⎪≤--⎩所表示的平面区域为n D ,记n D 内的整点(即横坐标和纵坐标均为整数的点)的个数为()n a n N *∈.则1a = ,经猜想可得到n a = .3.若两个球的表面积之比为1:4,则这两个球的体积之比为 .4.若不等式组20510080x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩所表示的平面区域被直线2y kx =+分为面积相等的两部分,则k 的值为 ;若该平面区域存在点00(,)x y 使0020x ay ++≤成立,则实数a 的取值范围是 . 5.已知数列{}n a 满足11(2)n n n a a a n +-=-≥,121,3a a ==,记12n n S a a a =+++K .则3a = ,2015S = .6.已知,,a b c 为非零实数,且(2)2,(3)3f f ==.时,对于任意实数x ,均有(())f f x x =,则()f x 值域中取不到的唯一的实数是 .7.若ABC ∆的重心为G ,5,4,3===BC AC AB ,动点P 满足GC z GB y GA x GP ++=(1,,0≤≤z y x ),则点P 的轨迹所覆盖的平面区域的面积等于 . 8,6OF FB ⋅=-u u u r u u u r,则以OA 为长半轴,OB 为短半轴,F 为左焦点的椭圆的标准方程为 .9.如图所示,在确定的四面体ABCD 中,截面EFGH 平行于对棱AB 和CD .(1)若AB ⊥CD ,则截面EFGH 与侧面ABC 垂直; (2)当截面四边形EFGH 面积取得最大值时,E 为AD 中点; (3)截面四边形EFGH 的周长有最小值;(4)若AB ⊥CD ,AC BD ⊥,则在四面体内存在一点P 到四面体ABCD 六条棱的中点的距离相等.上述说法正确的是 .10.阅读右边的程序框图,运行相应的程序,则输出i 的值为11.如图是导函数)(x f y '=的图象:①2x 处导函数)(x f y '=有极大值; ②在41,x x 处导函数)(x f y '=有极小值; ③在3x 处函数)(x f y =有极大值;④在5x 处函数)(x f y =有极小值;以上叙述正确的是____________。

12.在△ABC 中, 2AB =u u u r ,3AC =u u u r ,0AB AC ⋅<u u u r u u u r ,且△ABC 的面积为32,则BAC ∠=_______13.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学,每人随机写下一个都小于1 的正实数对(x ,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数m ;最后再根据统计数m 来估计π的值.假如统计结果是m=34,那么可以估计π≈ .(用分数表示)14.如图,半径为2的扇形的圆心角为120,,M N ︒分别为半径,OP OQ 的中点,A 为弧PQ 上任意一点,则AM AN ⋅u u u u r u u u r的取值范围是 .15.等差数列{a n }前n 项和为S n ,公差d<0,若S 20>0,S 21<0,,当S n 取得最大值时,n 的值为 .16.已知等差数列}{n a 中,45831π=++a a a ,那么=+)cos(53a a .17.已知函数,若= . 18,则函数1)]([-=x f f y 的零点个数是 .19.在[0,π]x ∈上有两个不相等的实数解,则实数m 的取值范围是____________. 20.数列{}n a 的通项其前n 项和为n S ,则30S 为_______.参考答案1【解析】.即结考点:正弦函数的图像和性质,三角形面积公式2.6, 6n【解析】试题分析:1n=时整数点有()()()()()()1,1,1,2,1,3,2,1,2,2,3,1共6个点,所以16a=,直线为()4y n x=--时横坐标为1的点有3n个,横坐标为2的点有2n个,横坐标为,3的点有n个,所以6na n=考点:1.归纳推理;2.不等式表示平面区域3.1:8本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

【解析】试题分析:由球的表面积公式24S R π=可知面积比为1:4,则半径比为1:2,所以体积比为1:8考点:球的表面积体积公式 4;1a ≤-. 【解析】试题分析:如下图所示阴影部分为不等式组所表示的平面区域,依题要使其平面区域被直线l :2y kx =+分为面积相等的两部分,则直线l 必过()5,3C 、()3,5D 的中点()4,4E ,由442k =+得;当0a >时,不等式0020x ay ++≤所表示的平面如图所示直线1l 下方部分,显然不符合题意,当0a <时,不等式0020x ay ++≤所表示的平面如图所示直线2l 上方部分,要使不等式组所表示的平面区域存在点00(,)x y 使0020x ay ++≤成立,则不等式所表示直即1a ≤-,故应填入;1a ≤-.考点:1.二元一次不等式表示的平面区域;2.直线恒过定点问题;3.直线的斜率. 5.2,2. 【解析】l 1A y 22 6 6OxlBCDE l 2试题分析:因为121,3a a ==,所以3214325436547652,1,3,2,1a a a a a a a a a a a a a a a =-==-=-=-=-=-=-=-=,所以数列{}n a 是以6为周期的周期数列,且1234560a a a a a a +++++=,所以2015122015123452S a a a a a a a a =+++=++++=L .考点:1.数列递推公式;2.周期数列求和. 6【解析】试题分析:因为当时,对于任意实数x ,均有()f f x x =⎡⎤⎣⎦,所以,即()()()2220a d cx d a xb a d ++--+=,因为()()()2220a d cx d a x b a d ++--+=对所以0a d +=且220d a -=,所以d a =-,因为()22f =,()33f =,所以2和3是方程的两个根,即2和3是方程()20cx d a x b +--=的两个根,所以,即()f x 所以()fx 值域中取不到的唯一的实数是考点:1、函数值;2、函数的解析式;3、函数的值域. 7.12本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

【解析】试题解析:点P 的轨迹所覆盖的区域如图所示,恰好为ABC ∆面积的2倍, 因此面积为12.考点:平面向量的基本定理.8【解析】且b a 2=又因为222c b a +=,所以2,822==b a ,所以椭圆的方程为 考点:椭圆的性质. 9.②④ 【解析】试题分析:由直线与平面平行的性质定理可知,EFGH 是平行四边形.⑴中若AB ⊥CD ,截面EFGH 是矩形,即FG GH ⊥,如果截面EFGH 与侧面ABC 垂直,那么GH ⊥平面ABC ,须CD ⊥平面ABC ,CD AC ⊥,(1)不正确;(2)不妨假设AB ,CD 所成角为θ,则平行四边形EFGH 中EFG θ∠=或0180θ-,,所以(1),EF CD FG AB λλ=-⋅=⋅,sin (1)sin EFGH S EF FG AB CD θλλθ=⋅=-⋅,而AB ,CD 是确定的,所以当即F 是AC 的中点时,亦即E 为AD 中点时,截面四边形EFGH 面积取得最大值,(2)正ABC G EF确; (3)由,EF AF FG CF CD AC AB AC ==两式两边分别相加得,1EF FG AF CFCD AB AC AC+=+=,所以AB FG AB EF CD =-⋅,EFGH 的周长为2())2()CD ABEF FG AB EF CD-+=+⋅,而0EF CD <<,故EFGH 的周长不存在最小值,(3)不正确; (4)若AB ⊥CD ,AC BD ⊥设,,,E F G H 分别为所在棱的中点,则EFGH 是矩形,连接,EG FH 记它们的交点为P ,则P 到,,,E F G H 距离相等,均为12EG ;分别取,AB CD 的中点,M N ,连,,,MG GN NE EM ,由已知MGNE 是矩形,其对角线的交点即EG 的中点P ,且P 到,,,M G N E 的距离均为12EG ,故在四面体内存在一点P 到四面体ABCD 六条棱的中点的距离相等, (4)正确.答案为②④.考点:1.四面体的几何特征;2.平行关系;3.垂直关系. 10.4 【解析】试题分析:经过第一次循环得到i=1,a=2,不满足a >50, 执行第二次循环得到i=2,a=5,不满足a >50, 执行第三次循环得到i=3,a=16,不满足a >50,经过第四次循环得到i=4,a=65,满足判断框的条件,执行“是”输出i=4. 考点:程序框图。

11.①②③④本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

【解析】试题分析:根据导函数的图像可知①②对,根据)(x f y '=的图像画出)(x f y =的大致图像,可知)(x f y '=在),(3x -∞上单调递增,在),(53x x 上递减,在),(5+∞x 上递增,故在3x 处函数)(x f y =有极大值,③对,在5x 处函数)(x f y =有极小值,④对。

考点:数形结合思想的应用及极值的判断。

12.150o 【解析】0AB AC ⋅<u u u r u u u r,∴90BAC ∠>︒,∴150BAC ∠=︒.考点:三角形的面积,向量的夹角. 13【解析】试题分析:由题意,120对都小于l 的正实数对(x ,y ),满足0101x y ≤≤⎧⎨⎩<<,面积为1,两个数能与1构成钝角三角形三边的数对(x ,y ),满足221x y +<且01011x y x y ≤⎧⎪≤⎪⎩+⎨<<>面积为因为统计两数能与l 构成钝角三角形三边的数对(x ,y ) 的个数m=34,所以考点:概率统计 14【解析】试题分析:建立如图所示直角坐标系,则(2cos ,2sin )(0120)A θθθ︒≤≤︒,,(12cos ,2sin )AN θθ=--u u u r ,所以因为0120θ︒≤≤︒,考点:1.向量的坐标表示;2.向量的坐标运算; 3.三角函数性质.15.10【解析】试题分析:根据所给的等差数列的20210,0S S ><,,根据等差数列的前n 项和公式,看出第11项小于0,第10项和第11项的和大于0,得到第10项大于0,这样前10项的和最大.∵等差数列{}n a 中,202100S S >,<,即201011211160130S a a S a =+=()>,<, 101111101100000a a a a a d ∴+∴Q >,<,>,<,<,∴n S 达到最大值时对应的项数n 的值为10考点:等差数列性质本卷由系统自动生成,请仔细校对后使用,答案仅供参考。

相关文档
最新文档