假设检验 - 非参数假设检验

合集下载

假设检验一般概念

假设检验一般概念

x 400 k 时接受原假设H0;
(1)
x 400 k 时拒绝原假设H0接受备择假设H1
(2)
进一步,由于当H0为真时,有
u x400 ~N(0,1) 25/ n
1 |u|要构x造一40个0具有明确k分布的统计量,可将(1)、(2)式转化为
25/ n 25/ n
2 |u|时接x受原40假0设H0 k
2. 拒绝域与接受域 称是检验水平或显著性水平,它是我们
制定检验标准的重要依据。常数u/2把标准正态分布密度曲线下
的区域分成了两大部分,其中一部分
(x1,x2, ,xn)uu/2
称为H0的拒绝域或否定域, 当样本点落入拒绝域时,我们便拒 绝原假设H0(同前述(6)式),另一部分
(x1,x2, ,xn)uu/2
(1)根据问题的要求提出假设,写明原假设H0和备择假设H1的
具体内容。
(2)根据H0的内容,建立(或选取)检验统计量并确定其分布。 (3)对给定(或选定)的显著性水平 ,由统计量的分布查表 或计算确定出临界值,进而得到H0的拒绝域和接受域。
(4)由样本观察值计算出统计量的值。
(5)做出推断:当统计量的值满足“接受H0的条件”时就接受 H0,否则就拒绝H0接受H1 。
u
2
时接受原假设H0 (5)
时拒绝原假设H0,接受备择假设 H1 (6)
分析(5)、(6)两式,可以这 样认为:
拒绝H0,是因为以H0成立 为出发点进行推理时,得到 了不合情理的结论,使小概 率事件在一次试验中发生了。
接受H0,是因为以H0成立 为出发点进行推理时,未发 现异常。
这就是带有概率特征的反证 法,认为小概率事件在一次 试验中不可能发生。
H0:X服从泊松分布;H1:X不服从泊松分布.

参数检验和非参数检验

参数检验和非参数检验

参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。

参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。

本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。

参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。

然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。

常见的参数检验方法有t检验、F检验和卡方检验等。

以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。

假设我们有两组样本数据,分别服从正态分布。

可以使用t检验来计算两组样本均值的差异是否显著。

t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。

参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。

此外,参数检验通常具有较好的效率和统计性质。

然而,参数检验也有一些限制和缺点。

首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。

另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。

此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。

与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。

它适用于更广泛的数据类型和样本分布。

常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。

以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。

这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。

非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。

此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

假设检验的基本方法

假设检验的基本方法

假设检验的基本方法假设检验是统计学中常用的一种方法,用于检验某个假设是否成立。

它可以帮助我们判断样本数据与总体数据之间的关系,从而做出合理的推断和决策。

在进行假设检验时,我们需要遵循一定的步骤和方法,以确保结果的可靠性和准确性。

首先,假设检验的基本步骤包括,建立假设、选择显著性水平、计算统计量、做出决策。

建立假设是假设检验的第一步,通常分为原假设和备择假设。

原假设是对总体参数的某种断言,而备择假设则是对原假设的补充或对立假设。

选择显著性水平是指在假设检验中规定的判断标准,通常取0.05或0.01。

计算统计量是根据样本数据计算出的用于检验假设的统计量,它可以帮助我们判断样本数据与假设之间的差异程度。

最后,根据计算出的统计量和显著性水平,我们可以做出接受原假设或拒绝原假设的决策。

其次,假设检验的方法主要包括,参数检验和非参数检验。

参数检验是指对总体参数进行假设检验,常用的方法有Z检验、t检验、F检验等。

Z检验适用于大样本的均值差异检验,t检验适用于小样本的均值差异检验,F检验适用于方差的检验。

非参数检验是指对总体分布形式进行假设检验,常用的方法有秩和检验、符号检验、卡方检验等。

非参数检验不对总体参数作出假设,适用于总体分布未知或不满足正态分布的情况。

最后,假设检验的应用范围非常广泛,可以用于医学、经济、社会科学等领域。

在医学领域,假设检验可以用于药物疗效的评价和临床试验结果的分析;在经济领域,假设检验可以用于市场调查和投资决策的制定;在社会科学领域,假设检验可以用于调查问卷的分析和社会现象的研究。

总之,假设检验是统计学中非常重要的方法,它可以帮助我们进行科学的推断和决策。

在实际应用中,我们需要根据具体情况选择合适的假设检验方法,并严格遵循假设检验的基本步骤,以确保结果的可靠性和准确性。

希望本文对假设检验方法有所帮助,谢谢阅读!。

非参数假设检验.pptx

非参数假设检验.pptx
取 1。.据9 此,我们可以用参数 的泊1松.9分布来
计算每分钟内通过收费站的汽车为0辆、1辆、2辆、3 辆、4辆或更多的概率。
第12页/共43页
e 各概率乘以观测总数n=100,便得到理论频数 ,具体结果见下表: i ei
计算 2统计量的值:
2 (14.96 10)2 (28.42 26)2 (27.0 35)2
H0 :汽车通过收费站的辆数服从泊松分布; H1 :不服从泊松分布。
观测值分为5组,且有 u0 10,u1 26,u2 35,u4 5
第11页/共43页
回忆泊松分布
P{X x} e x , x 0,1, 2,
x!
其中 为泊松分布的期望值,是未知的,需要用样
本观测值来估计。由于100分钟内观测到190辆汽车, 所以平均每分钟观测到190/100=1.9辆汽车,故
第9页/共43页
计算 2统计量的值:
2 6 (ui ei )2
i1
ei
(27 25)2 (18 25)2 (15 25)2 (24 25)2
25
25
25
25
(36 25)2 (30 25)2 12
25
25
在本例的情况下, 统2 计量的自由度为m-1=6-1=5。
第8页/共43页
解:本例中的观测值以月为组,共分为m=6组,
每 月的销售台数即为观测的频v数i ,观测的总次
数为n=150。现欲检验是否服从(离散的)均匀 分布,即每月的销售量是否为
ei
nPi
150 6
25(台),
Pi
1 6
,i
1,
,6
为此,设
H0 :洗衣机销售量服从均匀分布;
H1 :并不服从均匀分布;

非参数假设检验方法

非参数假设检验方法

非参数假设检验方法
非参数假设检验方法,那可真是个超棒的统计利器!咱先说说它的步骤吧。

嘿,你想想看,就像搭积木一样,第一步得先明确问题,确定咱要检验啥。

然后收集数据,这数据就像是建筑材料,得好好收集。

接着计算检验统计量,这就如同给积木搭出形状。

最后根据统计量判断是否拒绝原假设。

这步骤简单易懂吧?
注意事项也不少呢!数据得有代表性,不然就像盖房子用了劣质材料,那可不行。

样本量也不能太小,不然就像小娃娃搭的积木城堡,风一吹就倒啦。

说到安全性和稳定性,那可是杠杠的!它不像有些方法那么娇气,对数据的分布要求不高。

就好比一辆越野车,能在各种路况下行驶,不用担心路况不好就抛锚。

应用场景那可多了去啦!当数据不满足参数检验的条件时,非参数假设检验方法就大显身手啦。

比如研究不同年龄段的人对某种产品的喜好,数据可能乱七八糟的,这时候非参数检验就像救星一样。

它的优势也很明显啊,操作简单,容易理解,不需要太多高深的数学知识。

就像玩游戏,不需要看厚厚的说明书就能上手。

给你举个实际案例吧。

有个公司想知道新推出的广告有没有效果,就用了非参数假设检验方法。

结果发现广告确实提高了产品的知名度。

这效果,哇塞,杠杠的!
非参数假设检验方法就是这么牛!它简单易用,安全稳定,应用场景广泛,优势明显。

赶紧用起来吧!。

假设检验——非参数检验

假设检验——非参数检验

假设检验(二)——非参数检验假设检验的统计方法,从其统计假设的角度可分为两类:参数检验与非参数检验。

上一节我们所介绍的Z 检验、t 检验,都是参数检验。

它们的共同特点是总体分布正态,并满足某些总体参数的假定条件。

参数检验就是要通过样本统计量去推断或估计总体参数。

然而,在实践中我们常常会遇到一些问题的总体分布并不明确,或者总体参数的假设条件不成立,不能使用参数检验。

这一类问题的检验应该采用统计学中的另一类方法,即非参数检验。

非参数检验是通过检验总体分布情况来实现对总体参数的推断。

非参数检验法与参数检验法相比,特点可以归纳如下:(1)非参数检验一般不需要严格的前提假设;(2)非参数检验特别适用于顺序资料;(3)非参数检验很适用于小样本,并且计算简单;(4)非参数检验法最大的不足是没能充分利用数据资料的全部信息;(5 )非参数检验法目前还不能用于处理因素间的交互作用。

非参数检验的方法很多,分别适用于各种特点的资料。

本节将介绍几种常用的非参数检验方法。

一.2检验2检验主要用于对按属性分类的计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,它是一种检验计数数据分布状态的最常用的非参数检验方法。

22检验的方法主要包括适合性检验和独立性检验。

(一)2检验概述2是实得数据与理论数据偏离程度的指标。

其基本公式为:2 ( f0 f e)(公式11—9)fe式中,f0 为实际观察次数,f e 为理论次数。

分析公式可知,把实际观测次数和依据某种假设所期望的次数(或理论次数)的差数平方,除以理论次数,求出比值,再将n 个比值相加,其和就是2。

观察公式可发现,如果实际观察次数与理论次数的差异越小, 2值也就越小。

当 f 0 与 f e 完全相同时,2值为零。

际次数与理论次数之差的大小而变化利用2值去检验实际观察次数与理论次数的差异是否显著的方法称为2检验有两个主要的作第一,可以用来检验各种实际次数与理论次数是否吻合的这类问题统称为适合性检验; 第二, 判断计数的两组或多组资料是否相互关联还是相互独立的问 题,这类问题统称为独立性检验。

管理定量分析课程第8章:假设检验

管理定量分析课程第8章:假设检验

判决
无罪 有罪
陪审团审判
真实的情况
无罪
有罪
判决正确
判决错误
判决错误
判决正确
结论
未拒绝原假设 拒绝原假设
假设检验 总体参数的实际情况
原假设为真 备择假设为真 结论正确 第二类错误 第一类错误 结论正确
11
假设检验中犯Ⅰ型错误的概率,称为显著性水平(level of significance),即指当零假设实际上是正确时,检验统计量落
7
又如:教育部要检验2012年录取的大学新生平均身高是否 达到了170cm标准,这样需要提出原假设(H0):2012
年大学新生(总体)的平均身高(µ )是170cm。为了检
验这个假设是否正确,需要根据随机取样的原则,从2012 年的大学新生总体中选取样本并计算样本的平均高度,以 此来检验原假设的正确性。
8
假设检验一般分为参数假设检验和非参数假设检验两种类型。参 数假设检验对变量的要求较为严格,适合于等距变量和比率变量 ,非参数假设检验对变量的要求较为自由,既适合于等距变量和 比率变量,也适用于类别变量和顺序变量。
变量测量层次
分类(nominal)变 量
数学性(interval)变量
4
一、假设与假设检验
假设是科学研究中广泛应用的方法,它是根据已知理 论与事实对研究对象所作的假定性说明。统计学中的 假设一般专指用统计学术语对总体参数所做的假定性 说明。在进行任何一项研究时,都需要根据已有的理 论和经验事先对研究结果作出一种预想的假设。这种 假设叫科学假设,在统计学上称为研究假设。对这种 研究假设进行证实或证伪的过程叫假设检验。
非参数检验是一种与总体分布状况无关的检验方法,它不 依赖于总体分布的形式。

非正态总体参数的假设检验和非参数检验

非正态总体参数的假设检验和非参数检验

分布类型,此时F0可能含有未知参数,
上述方法不再适用。此时若要检验假

H0 : F (x) F0 (x;1,L ,,m由) 于
未于知 是pi0,可故以上用述估检计验量法(不极能大直似接然使估用计,)
来代替未知参数。
此时的统计量为
2 r (ni npˆi0 )2 .
i 1
npˆ i0
当n充分大时,上述统计量近似服
服从多项分布。
由大数定律知,当n充分大时,频 数ni与理论频数npi越来越小。故ni 与npi之间的差异可以反映出概率分 布 ( p1, p2,L , pr )是否为总体的真实分 布。令
2 r (ni npi )2
i1
npi
称上述统计量为皮尔逊统计量。
定理(皮尔逊定理)设总体的真实 分布为( p1, p2,L , pr ) ,则有
实际上,还可以用皮尔逊统计量检 验任意的一个总体是否具有某个指 定的分布函数 F0 (x)。
若我们要检验假设 H0 : F (x) F0 (x). 可选取r-1个不相等的实数 y1 L yr1 把实数轴分成r个区间,令
p1 F ( y1), pi F ( yi ) F ( yi1),i 2,L , r 1, pr 1 F ( yr1).
缺点:由于采用分组处理样本,实 际上检验的只是若干特殊点的值, 这就导致很可能犯第二类错误(取 伪错误)。
2. Kolmogorov检验法
出发点:考虑经验分布函数 Fn*(x) 和原假设H0 : F (x) F0 (x)成立时总 体分布函数之间偏差的最大值。
2 ~& 2 (r 1)
由上述定理,当样本容量较大时,
统计量 2近似服从自由度为r-1的卡
方分布。

统计学中各种检验的核心内容

统计学中各种检验的核心内容

统计学中各种检验的核心内容参数检验与非参数检验统计检验可分为两大类:参数检验和非参数检验。

参数检验假设数据来自具有特定分布的总体,例如正态分布。

非参数检验则无需此假设。

假设检验大多数统计检验涉及假设检验。

假设检验遵循以下步骤:设定零假设和备择假设计算检验统计量确定临界值根据检验统计量和临界值做出决策统计检验的类型t检验用于比较两个独立样本的均值参数检验,假设数据来自正态分布 ANOVA(方差分析)用于比较多个样本的均值参数检验,假设数据来自正态分布卡方检验用于检验分类变量之间的关联非参数检验Wilcoxon秩和检验用于比较两个独立样本的中位数非参数检验Mann-Whitney U检验用于比较两个独立样本的均值非参数检验Kruskal-Wallis检验用于比较多个样本的中位数非参数检验相关性分析用于度量两个变量之间的线性关系皮尔逊相关系数:用于度量连续变量之间的相关性(-1到1)斯皮尔曼等级相关系数:用于度量序数变量之间的相关性(-1到1)回归分析用于预测一个变量(因变量)基于另一个变量(自变量)线性回归:因变量是自变量的线性函数Logistic回归:因变量是自变量的逻辑函数,用于二分类问题显著性水平显著性水平(α)是犯第一类错误(拒绝真实零假设)的概率通常设定为0.05或0.01显著性水平越小,犯第一类错误的可能性越小,但犯第二类错误(接受虚假零假设)的可能性越大检验统计量检验统计量是用于计算检验结果的度量不同检验使用不同的检验统计量,例如t值、卡方值或U值临界值临界值是检验统计量的阈值,用于做出决策如果检验统计量大于或等于临界值,则拒绝零假设临界值通过查表或使用统计软件确定决策基于检验统计量和临界值,做出以下决策之一:拒绝零假设接受零假设拒绝零假设表明备择假设更有可能是真的,而接受零假设表明没有足够的证据拒绝它注意事项统计检验只是做出明智决策的工具,不能替代对数据的批判性思考了解检验的假设和限制对于正确解释结果至关重要有时可能需要执行多个检验来全面了解数据。

非参数检验

非参数检验

非参数检验非参数检验是一种统计方法,用于比较两组或多组数据的差异或关联性,它并不依赖于数据的分布假设。

相比于参数检验,非参数检验通常更为灵活,可应用于各种数据类型和样本量,尤其在数据不满足正态分布的情况下表现优势。

本文旨在介绍非参数检验的基本原理、应用领域以及常见方法。

首先,非参数检验的基本原理是依赖于样本中的秩次,即将原始数据转化为秩次数据进行统计分析。

秩次是数据在全体中的相对位置,将数据转化为秩次可以消除异常值对统计结果的影响,并使数据的分布不再成为限制因素。

非参数检验的应用领域广泛,包括但不限于以下几个方面。

一、假设检验非参数检验可用于假设检验,比如检验两组样本的中位数是否存在差异。

常见的方法有Wilcoxon符号秩检验、Mann-Whitney U检验等。

在实际应用中,如果数据的分布无法满足正态分布假设,非参数检验则是一种理想的选择。

二、相关性分析非参数检验可用于判断两个变量之间的关联性。

常见的方法有Spearman秩相关系数检验、Kendall秩相关系数检验等。

这些方法的核心思想是将原始数据转化为秩次数据,通过秩次数据之间的比较来判断两个变量之间是否存在显著相关。

三、分组比较非参数检验可用于比较多个样本之间的差异。

常见的方法有Kruskal-Wallis检验、Friedman检验等。

这些方法可用于比较三个以上的样本组之间的差异,而不依赖于数据的分布假设。

在实际应用中,非参数检验需要注意以下几个问题。

一、样本容量非参数检验对样本容量的要求相对较低,适用于小样本和大样本。

然而,在样本容量较小的情况下,非参数检验可能会产生较大的误差,因此应根据实际情况选择合适的方法。

二、数据类型非参数检验可应用于各种数据类型,包括连续型数据和离散型数据。

但对于有序分类数据、定序数据和名义数据,非参数检验相较于参数检验有更好的适用性。

三、分布假设非参数检验不需要对数据的分布做出假设,这使得它更加灵活。

但是,如果数据满足正态分布假设,参数检验也是一种较为有效的选择。

《概率论》第六章假设检验

《概率论》第六章假设检验

例1 某服务系统的相应时间服从正态分布,需求 其平均相应时间在0.5秒之内。若16次抽样测试得 到样本平均值为x=0.56秒,样本标准差为s=0.12秒, 该服务系统工作是否正常?(=0.05)
解:H0 : 0.5 n=16 =0.05 t1 1.753 t x 0 0.56 0.5 =2 >1.753 s n 0.12 16
因此否定H0 即该服务系统工作不正常
(二)未知方差2,关于期望的检验
1.检验假设(单边)H0 : 0 H1 : 0
2.选取检验统计量 T X 0 [ t(n 1)] Sn
3.由备选假设确定拒绝域形式,W=(t c)
4.由显著性水平决定临界值c=t (n 1),
2.选取检验统计量 T X 0 [ t(n 1)] Sn
3.由备选假设确定拒绝域形式,W=(t c)
4.由显著性水平决定临界值c=t1 (n 1),
P T t1 (n 1)
5.求出检验统计量的观测值,判断是否在拒绝域中
即:若t t1 (n 1),则否定H0; 若t t1 (n 1),则接受H0.
因此这实际上需要比较第二个正态总体 的期望值是与第一个正态总体期望值相 等还是比它高?
这种作为检验对象的假设称为原假设, 通常用 H0表示。比如, 例2中的待检假设为:H0:Eξ=3140
如何根据样本的信息来判断关于总体分布的 某个设想是否成立,也就是检验假设H0成立 与否的方法是本章要介绍的主要内容。
P T t (n 1)
5.求出检验统计量的观测值,判断是否在拒绝域中
即:若t<t (n 1),则否定H0; 若t>t (n 1),则接受H0.
(二)未知方差2,关于期望的检验

第-五-章--假设检验.

第-五-章--假设检验.
H0
H1 0
双侧检验与单侧检验
(假设的形式)
假设 原假设
单侧检验 双侧检验
左侧检验 右侧检验
H0 : = 0 H0 : 0 H0 : 0
备择假设 H1 : ≠0 H1 : < 0 H1 : > 0
2、选择适当的统计量,并确定 其分布形式
1.Z
x 0
n
3.t
x 0
s
n
2.Z
x s
地加以拒绝的风险为0.05。
已知:0 125,0 150, n10030,x 120,0 0.05
?
证明: 45
H0 1200(0)
解 :H 0: 12 ,H 5 1:0 125
由 0 .0知 5 Z 1 1 .645
而 Zx 0 1125 00 1025 03.33 1.645
1、二者互为消长。
PZZ H0为真 PZZ H1为真
2、在检验中,对和 的选 择取决于犯两类错误所要付出的
代价。通常的做法是先确定。
3、若要同时减少和,或
给定α而使β减少,就必须增大样 本容量n。
4、 β的大小不仅与临界值有关, 而且还与原假设的参数值 0 与总体参
数的真实值 之间的差异大小有关。
已知: 0 500,n 50 30 x 510,s 8, 5%
?
求: 500
解 :H 0:5,0 H 10 :500
由 0.0知 5Z1.645
而Z x 0 510500
s
8
n
50
8.751.645 接受 H1,拒绝 H0
即在现有的显著性水平下,
可以认为装得太满.
三、正态总体、方差未知、 小样本
已知 :X~N100,?0,0 1000

非参数假设检验

非参数假设检验

结果分析:
P值>0.05,接受Ho,两套问卷测试的数据服从同样的分布。
实例演示:检验一组样本的总体分布是否与猜想的分布(任 意分布)相同:拟合优度 2 检验法 Eg3.六个企业生产汽车,每小时的产量如图:
问:这些企业的生产水平,有无显著差异? 零假设Ho:六个企业的生产能力是相同的(即产量服从均匀 分布)。 备泽假设H1:六个企业的生产能力是不全相同的(产量不服 从均匀分布)
非参数假设检验
郑丽娜
非参数假设检验(Nonparametric tests) 非参数检验与参数检验共同构成统计推断的基本内容。 参数检验是在总体分布形式已知的情况下,对总体分布的参 数如均值、方差等进行推断的方法。 但在数据分析过程中,人们往往无法对总体分布形态作简单 假定,此时参数检验的方法就不再适用了。 非参数检验是在总体方差未知或知道甚少的情况下,利用样 本数据对总体分布形态等进行推断的方法。 由于非参数检验方法在推断过程中不涉及有关总体分布的参 数,因而得名为“非参数”检验。
数据输入: 数据输入见右图:
存放数据是一列 一分钟内观察到得个数 为变量值
数据分析: 步骤1 分析 非参数检验 (Nonparametric) 1样本 K-S( 1 sample k - s )
数据分析: 步骤2 放入右边的检验变量 列表(test variable list)
数据分析: 步骤3 下面的检验分布( test distribution) 都选,因为不知道 服从什么分布。 选择选项里选择所需 的。 点确定
数据分析: 步骤4 检验类型(test type) 有四种 系统默认的是MannWhitney U检验 (序号和<铁和>检 验法) 点确定,看结果
结果分析:

计量经济学假设检验

计量经济学假设检验
第Ⅱ类错误 犯第Ⅱ类错误 概率=β
否定 H 0
第Ⅰ类错误 犯第Ⅰ类错误 概率=α 正确决策 把握度=1 –β
第二节 平均数的假设检验
一、样本平均数与总体平均数的比较 ( 0 的假设检验) (一)总体服从正态分布,σ已知 适用条件:某总体服从正态分布,其总体平均 数 0 、标准差 0 已知,现抽取一个含量为n的
( x1, x2,, xn ),经计算得到样本平均数 x 、s。
检验目的:样本所属的总体平均数与已知的 总体平均数是否相同。 统计假设 H 0 : 0
统计量
t x 0
s n
统计表 附表2 t值表
n n 1
确定概率判定
t t0.05(n) P>0.05 接受 差异无显著性意义. H 0
t t0.05(n) P≤0.05 否定 t t0.01(n) P≤0.01 否定
H1 或 H A
㈡选择假设检验用的统计量并计算统计量的值
根据假设检验的目的及已知条件选用适当
的统计量,然后将观测数据代入求出统计量的
值。
㈢确定显著性水平,查表求出临界值
显著性水平α 一般取0.05 或0.01,α确
定后,根据统计量的分布,按自由度 查不同的
分布表求临界值。
(四)确定概率,作出统计结论 H0 P>0.05 接受 差异无显著性意义 H0 P≤0.05 否定 差异有显著性意义 H0 P≤0.01 否定 差异有高度显著性意义
㈠ 产生差异的两种可能原因 1、可能主要是由抽样误差造成的
由抽样而引起的样本与总体、样本与样本 之间的差异叫抽样误差。 2 、差异可能主要是由条件误差造成的
由实验条件的不同或施加的处理的不同而 引起的差异叫条件误差。
㈡ 小概率原理及实际推理方法 1、小概率事件

非参数检验的名词解释

非参数检验的名词解释

非参数检验的名词解释
非参数检验是一种统计方法,用于在数据不满足正态分布或其他假设条件的情况下进行统计推断。

与参数检验相比,非参数检验不需要对总体参数做出假设,而是直接利用样本数据进行推断。

以下是相关名词解释:
1. 非参数:指在进行统计推断时,不对总体的分布形式或参数做出特定的假设。

非参数方法依赖于具体的样本数据,不依赖于总体的分布特征。

2. 假设检验:统计推断的一种方法,用于通过对样本数据进行分析来得出关于总体参数或总体分布的结论。

假设检验通常涉及对某个假设的拒绝或接受。

3. 正态分布:也称为高斯分布,是一种连续概率分布,常用于描述许多自然现象和随机变量的分布。

参数检验通常基于对总体数据服从正态分布的假设。

4. 参数检验:通过对总体参数的估计和假设进行统计推断的
方法。

参数检验通常要求数据满足特定的假设条件,如正态分布、独立性和方差齐性等。

5. 统计显著性:在假设检验中,用于评估观察到的差异或效应是否显著。

统计显著性通常以p值表示,若p值小于预设的显著性水平(如0.05),则可以拒绝零假设。

非参数检验在实际应用中具有灵活性和广泛适用性,特别适合处理样本数据不满足假设条件的情况。

它们不依赖于总体分布的形式,因此更加鲁棒,并可以应用于各种类型的数据集。

统计学第七章假设检验和非参数统计

统计学第七章假设检验和非参数统计

4、计算T值:根据裁判的观察确定球的 反弹角度为X
5、统计判断:当一名球员使用上肢之外 的身体部分触球时,球的反弹角度为X的概率 为0.03。由于0.03<0.05,拒绝原假设,即认 为球员A存在上肢触球。
在本例中,有3%的可能性发生弃真错误, 即球员A没有上肢触球,但裁判作出了错误判 断。
显著性水平α在这里决定了某一个结论能 否被接受。
例题:
对24名儿童依次进行一项测试活动,获得 下列分数序列:
31,23,36,43,41,44,12,26,43, 75,2,3,15,13,78,24,13,27,86,61, 13,7,6,8
转化成上下游程,为:-,+,+,-, +,-,+,+,+,-,+,+,-,+, -,-,+,+,-,-,-,-,+
二、确定适当的检验统计量T
检验统计量T是用于检验原假设是否成立 的标准,在原假设成立的前提下,统计量T满 足某种特征。
四、计算检验统计量T的值
根据检验中获得的数据,计算统计量T的 值。
五、作出统计决策
根据T的取值特征,计算取该值的概率, 如果此概率小于a,则拒绝原假设。
第一节 检验原理
一、提出原假设(Null Hypothesis)和 备择假设(Alternative Hypothesis)
建立原假设H0:P+=P-
计算两种符号的数量S+和S-,利用二 项分布计算S+或S-出现的概率是否处于接受 域。
在n>20的情况下,二项分布可以用正态 分布进行近似:
符号检验中仍然没有利用总体的分布特 征。
四、游程检验
游程检验又称连贯检验或串检验,用于考 察一个序列中两种符号的出现次序是否随机。
本例,如果α变为0.15,这时当一名球员 使用上肢之外的身体部分触球时,球的反弹 角度为X的概率为0.10,就可以拒绝原假设, 即认为球员A存在上肢触球。但如果α为0.05, 在反弹角度为X的概率为0.10时,就要接受原 假设。

假设检验习题答案

假设检验习题答案
假设检验习题答案
单击此处添加副标题
汇报人姓名 汇报日期
目 录CATALOGUE
1 假设检验的基本概念 2 参数假设检验 3 非参数假设检验 4 习题答案与解析
ONE
1
假设检验的基本概念
定义与目的
判断该假设是否成 立,从而做出接受 或拒绝该假设的决 策。
假设检验是一种统计方法,用于根据样本数据对 某一假设进行评估。
假设检验的类型
单侧检验 只关注某一方向的假设是否成立。
参数检验 对总体参数进行假设检验。
双侧检验 同时关注两个方向的假设是否成立。
非参数检验 不涉及总体参数的假设检验。
ONE
2
参数假ቤተ መጻሕፍቲ ባይዱ检验
单参数假设检验
在单参数假设检验 中,我们通常会对 一个总体参数提出 假设,然后使用样 本数据来检验这个 假设。例如,我们 可能会假设一组数 据的平均值等于某 个值,然后使用样 本数据来检验这个 假设是否成立。
据是否符合正态分布、泊松分布等。
ONE
4
习题答案与解析
习题一答案与解析
答案:D
logo
解析:根据题目给出的数据,我们首先计 算出平均值和标准差。然后,利用假设检 验的方法,我们计算出Z统计量并确定其所 属的临界区间。根据临界区间的结果,我 们判断原假设是否被拒绝,并选择相应的 答案。
习题一答案与解析
秩次检验
详细描述
秩次检验将数据按照大小排序,并赋予每个数据 一个秩次值。然后比较两组数据的秩次分布是否 相同,以判断它们的相对大小关系。如果两组数 据的秩次分布相似,则可以认为它们的相对大小 关系相同;如果秩次分布不同,则可以认为它们 的相对大小关系不同。
秩次检验是一种非参数统计方法,用于比较两组 数据的相对大小关系。

非参数假设检验

非参数假设检验

§ 7.4 非参数假设检验在§7.2中讨论了母体分布类型为已知时的参数假设检验问题.一般在进行参数假设检验之前,需要对母体的分布进行推断.本节将讨论母体分布的假设检验问题.因为所用的方法适用于任何分布或者仅有微弱假定分布,实质上是不依赖于分布的.在数理统计学中不依赖于分布的统计方法统称为非参数统计方法.这里所讨论的问题就是非参数假设检验问题.这里所研究的检验是如何用子样去似全母体分布,所以又称为分布拟合扰度检验,一般有两种:一是拟合母体的分布函数;另一是拟合母体分布的概率函数.这里我们只介绍三种检验方法:概率图纸法. 2χ-拟合优度检验和柯尔莫哥洛夫斯米尔诺夫检验.一, 概率图纸法这是一种比较直观和简便的检验方法.它适合于在现场使用.目前常见的概率图纸有正态,对数正态,二项分布,指数分布和威布尔分布概率图纸等.这里我们只介绍正态概率图纸,关于其它分布的概率图纸的构造原理和使用方法都是类似的1. 正态概率图纸的构造原理设母体ξ有分布函数F(x),{N(μ,2σ)}表示正态分布族.需要检验假设)},({)(:20σμN x F H ∈这里μ和2σ均为未知常数.在原假设0H 为真时,通过中心化变换)(2121)(22)(222σμπσπσμμσμ-Φ===⎰⎰-∞--∞---x du edt ex F x xt即σμξξμ-=)(服从正态N(0,1).函数u(x)是x 的线性函数. σμξξμ-=)( (7.13) 在(x,u(x))直角坐标平面上是一条直线.这条直线过(μ,0),且斜率为σ1. 2. 检验步骤.事实上,我们知道的不是母体ξ取出的一组子样观察值n x x ,,1 由格里汶科定理知道子样的经验分布函数)(x F n 依概率收剑于母体分布函数F(x).所以在检验母分体布函数F(x)是否属于正态分布族时,我们以大子样的经验分布函数)(x F n 作为母体分布的近似.若0H :F(x) ∈{N(μ,2σ)}为真,那末点,,,1)),(,(n i x F x i i =在正态概率图纸上应该在一条直线上.所以根据上述经验分布函数)(x F n 是母体分布函数F(x)很好的近似,点,,,1)),(,(n i x F x i i =在正态概率图纸上也应该近似地在一条直线附近.倘若点列)),(,(i i x F x 不是近似地在一条直线附近,那末只能说明F(x)不属于正态分布族.根据上述想法,用正态概率图纸去检验假设0H 的具体步骤如下.(1) 整理数据 (2) 描点(3) 目测这些点的位置, 3. 未知参数μ与2σ的估计.若通过概率图纸检验已经知道母体服从正态分布,我们就凭目测在概率图纸上画出最靠近各点,,,1)),(,()()(n i x F x i n i =的一条直线l,因为σμξξμ-=)(服从正态N(0,1),所以当0)(=-=σμξμx ,即x=μ时对应的概率F=0.5.因此,只要在概率图纸上面一条F=0.5的水平直线.这条直线与直线l 的交点的横坐标5.0x 就可以作为参数为μ的估计.又由μ(x)=1时所对应的概率F=0.8413的水平直线,这条直线与直线l 的交点的横坐标为8413.0x .这个8413.0x 显然满足18413.08413.0=-=σμμx 即μσ-=8413.0x 因此可以用差5.08413.0x x -估计σ.例 7.8 (略)见P 338 二, 2χ的似体检验法前面介绍了直观而简便的概率图纸法,它不需要很多计算就能对母体分布族作出一个统计推断,并且还能对分布所含的参数作出估计.但是这种方法因人而异,且精度不高,又不能控制犯错误的概率.这里介绍2χ-拟合检验法,它能够像各种显著性检验一样控制犯第一类错误的概率.设母体ξ的分布函数为具有明确表达式的F(x),.我们把随机变量ξ的值域R 分成k 个互不相容的区间[][][]k k k a a A a a A a a A ,,,,,,1212101-=== 这些区间不一定有相同的长度.设n x x ,,1 是容量为n 的子样的一组观测值.i n 为子样观测值n x x ,,1 中落入i A 的频数.n n ni i =∑=1在这n 次事件i A 出现的频率为nn i. 我们现在检验原假设)()(:00x F x F H =.设在原假设0H 成立下,母体ξ落入区间i A 的概率为i P ,即k i a F a F A P P i i i i ,1),()()(100=-==- (7.14)此时n 个观察值中,恰有1n 个值落入1A 内,2n 的观察值落入2A 内,k n 个观察值落入k A 内的概率为k n n n n k P P P n n n n 212121!!!!这是一个多项分布.按大数定理,在0H 为真时,频率nn i与概率i P 的差异不应太大.根据这个思想构造一个统计量2χ=∑=-ki i i i nP nP n 12)( (7.15)称做2χ-统计量.往后可以看到,用2χ表示这一统计量不是没有原因的.因为它的极限分布就是自由度为k-1的2χ-分布.为了能够把2χ-统计量用来作检验的统计量,我们必须知道它的抽样分布.我们先k=2的简单情形.在0H 成立下,221)(,)(P A P P A P i ==其中121=+P P这时,频数n n n =+21我们考察222212112)()(nP nP n nP nP n -+-=χ (7.16) 令222111,nP n Y nP n Y -=-= (7.17)显然0)(212121=+-+=+P P n n n Y Y (7.18)由此可见1Y 与2Y 不是线性独立,且21Y Y -=.于是21212221212P nP Y nP Y nP Y =+=χ 21111)1(⎥⎥⎦⎤⎢⎢⎣⎡--P nP nP n (7.19) 根据德莫弗-拉普拉斯极限定理,当n 充分大时,随机变量)1(1111P nP nP n --的分布是接近于正态的,从而推得k=2情形的分布,当n 充分大时,是接近于自由度为1的2χ-分布.对于一般情形有如下的定理.定理 7.1 当0H 为真时,即k P P ,,1 为母体的真实概率时,由(7.15)式所定义的统计量2χ的渐近分布是自由度为k-1的2χ-分布,即密度函数为⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-Γ=---,0,2121)(22321xk k e x k x f (7.20) 证 因为在n 个观测值中恰有1n 个观测值落入1A 内, 2n 的观察值落入2A 内,k n 个观察值落入k A 内的概率为k n n n n k P P P n n n n 212121!!!!这里n n n n k =+++ 21.其特征函数nk j it jk je P t t ⎪⎪⎭⎫⎝⎛=∑=112),,( ϕ (7.21) 令k j nP nP n Y jjj j ,2,1, =-=(7.22)于是有∑∑===-=kj j kj jj j Y nP nP n 12122)(χ (7.23)和∑=kj j jP Y1=0 (7.24)由此式看出,诸随机变量j Y 不是线性独立的.(k Y Y ,,1 )的联合分布的特征函数具有形状2111exp exp ),,(⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛•⎪⎪⎭⎫ ⎝⎛-=∑∑==kj j j j kj j jk nPit P nP it t t ϕ (7.25) 两边取对数得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+-=∑∑==k j j jj kj j jn nP it P n P t n i t t 111exp ln ),,(ln ϕ (7.26) 利用指数数函和对数函在0=j t 处的泰勒展开:⎪⎭⎫ ⎝⎛+-=-⎥⎥⎦⎤⎢⎢⎣⎡n nP t nP it np it j jj j jj 121exp 2ο和)(2)1ln(22x x x x ο+-=+于是)1(21211211ln ),,(ln 11212111211οοϕ+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-++-=∑∑∑∑∑∑∑=======k j k j k j j j j j j k j j j k j k j j j j kj j jk P t n i t n P t n i n P t n i n t n P t n i n P t n i t t当∞→n 时⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--→∑∑==k j kj j j j k P t t t t 1212121),,(ln ϕ 即⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=∑∑==∞→k j k j j j j k n P t t t t 1212121exp ),,(lim ϕ (7.26) 作一正交变换:⎪⎪⎩⎪⎪⎨⎧=-==∑∑==kj j k j kj lj l Y P Z k l Y a Z 111,,1, (7.27) 其中lj a 应该满足1,,1,,0,11-=⎩⎨⎧≠==⋅∑=k r l r l r l a a kj rjlj 和1,,1,01-==∑=k l P akj j lj由⎪⎪⎩⎪⎪⎨⎧=-==∑∑==kj j j k kj y ij l t P u k l t a u 111,1, (7.28) 得到∑∑∑-====⎪⎪⎭⎫ ⎝⎛-1122112k j j kj i k j j j u P t t (7.29) 由(7.26)知,当∞→n 时,(k Z Z ,,1 )的特征函数⎭⎬⎫⎩⎨⎧-=∑-=∞→112121exp ),,(lim k j j k n u u u ϕ.这意味着11,,-k Z Z 的分布弱收剑于相互独立的正态N(0,1)分布,而k Z 依概率收剑于0.因此∑∑====kj j k j j Z Y 12122χ的渐近分布是自由度为k-1的2χ-分布.如果原假设0H 只确定母体分布类型,而分布中还含有未知参数m θθ,,1 则我们还不能用定理7.1来作为检验的理论依据.费歇证明了如下定理.从而解决了含未知参数情形的分布检验问题.定理 7.2 设F(x; m θθ,,1 )为母体的真实分布,其中m θθ,,1 为m 个未知参数.在F(x;m θθ,,1 )中用m θθ,,1 的极大似然估计mθθ∧∧,代替m θθ,,1 并且以F(x; mθθ∧∧,)取代(7.4)中的F(x)得到),,1;(),,1;(1m a F m a F i i iP θθθθ∧∧-∧∧∧-= (7.30)则将(7.30)代入(7.15)所得的统计量∑=∧∧-=kj i ini nn p p 122()χ (7.31)当∞→n 时有自由度为k-m-1的2χ-分布.例 7.9 (略)见P 345由例子来总结一下利用2χ-检验分布假设的步骤:(1)把母体ξ的值域划分为k 个互不相交的区间[,,,1),,1k i a a i i =+其中k a a ,1可以分别取∞∞-,;(2) 在0H 成立下,用极大似然估计法估计分布所含的未知参数; (3)在0H 成立下,计算理论概率)()(010i i i a F a F p -=+并且算出理论频数i nP ; (4)按照子样观察值n x x x ,,,21 落在区间),[1+i i a a 中的个数,即实际频数,,,1,k i n i =和(3)中算出的理论频数i nP ,计算ii i nP nP n )(2-=χ的值;(5)按照所给出的显著性水平α,查自由度k-m-1的2χ-分布表得)1(21---m k αχ,其中m 是未知参数的个数; (6)若2χ21αχ-≥,则拒绝原假设0H ,若212αχχ-<,则认为原假设0H 成立.三 柯尔莫哥洛夫似合检验------n D 检验2χ-似合检验是比较子样频率与母体的概率的.尽管它对于离散型和连续型母体分布都适用.但它是依赖于区间的划分的.因为即使原假设)()(:00x F x F H =不成立,在某种划分下还是可能有k i P a F a F a F a F i i i i i ,,1,)()()()(1001 ==-=---从而不影响(7.5)中2χ的值,也就是有可能把不真的原假设0H 接受过来.由此看到,用2χ-检验实际上只是检验了,,,1,)()(100k i P a F a F i i i ==--是否为真,而并未真正地检验母体分布F(x)是否为)(0x F .柯尔莫哥洛夫对连续母体的分布提出了一种方法.一般称做柯尔莫哥洛夫检验或n D -检验.这个检验比较子样经验分布函数)(x F n 和母体分布函数F(x)的.它不是在划分的区间上考虑)(x F n 与原假设的分布函数之间的偏差.而是在每一点上考虑它们之间的偏差.这就克服了2χ-检验的依赖于区间划分的缺点.但母体分布必须假定为连续.根据格里汶科定理,我们可以把子样经验分布函数看作实际母体分布函的缩影.如果原假设成立,它与F(x)的差距一般不应太大.由此柯尔莫哥洛夫提出一个统计量|)()(|sup x F x F D n xn -= (7.32)并且得到这统计量n D 的精确分布和极限分布K(λ).它们都不依赖于母体的分布.这里我们不加证明地引入柯尔莫哥洛夫定理.定理 7.3 设母体ξ有连续分布函数F(x),从中抽取容量为n 的字样,并设经验分布函数为)(x F n ,则|)()(|sup x F x F D n xn -=的分布函数⎪⎭⎫ ⎝⎛+<n D P n 21λ=n n n n dy y y f n n n nn n n n n 2120212,1,),,(0,021********22121-<≤⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥<⎰⎰⎰+-+-+---λλλλλλλλλ 当(7.33)其中⎩⎨⎧<<<=其它当,010!),(11n n y y n y y f在∞→时有极限分布函⎪⎩⎪⎨⎧≤>--=→<∑-∞=0,00),2exp()1()()(22λλλλλ当当n j j n j K D n P (7.34) 在应用柯尔莫哥洛夫检验时,应该注意的是,原假设的分布的参数值原则上应是已知的.但在参数为未知时,近年来有人对某些母体分布如正态分布和指数分布用下列两种方法估计.()可用另一个大容量子样来估计未知参数,(2)如果原来子样容量很大,也可用来估计未知参数.不过此n D -检验是近似的.在检验时以取.较大的显著性水平为宜,一般取α=0.10-0.12.n D -检验检验母体有连续分布函数F(x)这个假设的步骤如下:(1) 从母体抽取容量为n 的子样,并把子样观察值按由小到大的次序排列;(2) 算出经验分布函⎪⎪⎩⎪⎪⎨⎧≤=<≤<=+x n j x x x nx n x x x F k j j jn 当当当,1,,1,,)(,0)()1()()1((3) 在原假设0H 下,计算观测值处的理论分布函数F(x)的值; (4) 对每一个i x 算出经验分布函数与理论分布函数的差的绝对值||)()(||)()()()1()()(i i n i i n x F x F x F x F --+与(5) 由(4)算出统计量的值(6) 给出显著性水平α,由柯尔莫哥洛夫检验的临界值表查出αα=≥)(,n n D D P的临界值α,n D ;当n>100时,可通过n D n /1,ααλ-≈查n D 的极限分布函数数值表得αλ-1从而求出α,n D 的近似值.(7) 若由(5)算出的α,n n D D ≥则拒绝原假设0H ;若α,n n D D <则接受假设,并认为原假设的理论分布函数与子样数据是似合得好的. 例 7.10 略) 见P 351定理 7.4 当样本容量21n n 和分别趋身于∞时,统计量|)()(|212121,sup x F x F D n n xn n -=有极限分布函数)(212121λλK D n n n n P n n →⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<+ ⎪⎩⎪⎨⎧≤>--=∑∞-∞=0,00),2exp()1(22λλλ当当j j j (7.35) 例 7.11 (略)见P 353。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 计算差值,确定符号及其个数
– 样本各观测值中大于已知总体中位数的,记为“+”, “+”个数 记为n+
– 样本各观测值中小于已知总体中位数的,记为“-”, “-”个数 记为n-
– 样本各观测值中等于已知总体中位数的,记为“0”, “0”个数记为 n0
– 统计量K = min{ n+ ,n- }
• 统计推断
2 拟合检验计算表
Ai
fi
A1 : 0 x 4.5 50
A2 : 4.5 x 9.5 31
A3 : 9.5 x 14.5 26
A4 :14.5 x 19.5 17
A5 :19.5 x 24.5 10
A6
: 24.5
x 29.5
8 6
A7 : 29.5 x 34.5 6
( 0.05)
(X 表示相继两次地震间隔天数, Y 表示出现的频数)
X 0 4 5 9 10 14 15 19 20 24 25 29 30 34 35 39 40
Y 50 31 26
17
10
8
6
6
8
试检验相继两次地震间隔天数 X 服从指数分布.
解 所求问题为: 在水平 0.05下检验假设
s12 s22 n1 n2
2
,自由度:f
=
s12 n1
s12 n1
2
s22 n2
2
1、已知
s22 n2
2
未知s, 小样本
n1
n2
2、未知
,大样本
_
5、t d d sd / n
3、
4、、、
假设检验的内容
假设检验
总体均值的
假设检验
总体方差的
假设检验
两个总体均值差 的假设检验
差值 0.01 0
0.01 0
0.01 0
0.01 0
0.01 -0.01 0.01 0
0.01 -0.01 -0.01
符号 +
0
+
0
+
0
+
0
+
-
+
0
+
-
-
样本与总体中位数比较的符号检验
• 提出原假设与备择假设
– H0:样本所在的中位数= 已知总体的中位数 – H1:样本所在的中位数≠已知总体的中位数 – 进行单尾检验,把“≠”换成“<”或者“>”
K0.05(10)=1?
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
加薪 0.05 0.06 0.07 0.05 0.04 0.02 0.08 0.01 0.05 0.02 0.03 0.02 0.06 0.07 0.05 前
加薪 0.04 0.06 0.06 0.05 0.03 0.02 0.07 0.01 0.04 0.03 0.02 0.02 0.05 0.08 0.06 后
2 2
n1 n2
假设检验
__
2、Z (x1 x2 ) 1 2
s12 s22 n1 n2
两个正态总体均值差 的假设检验
__
3、t
(x1 x2 ) 1
sp
11 n1 n2
2
,s 2p
(n1
1)s12 (n2 1)s22 n1 n2 2
5、配对样本
独立样本
4、t
_
( x1
_
x2 ) 1
• 统计推断
– 令n = n++n- – K>K0.05(n),P>0.05,不能否定H0,两个处理差异不显著 – K0.01(n)<K≤K0.05(n),0.01<P≤0.05,否定H0,接受H1,两个处理差
异显著 – K≤K0.01(n),P≤0.01,否定H0,接受H1,两个处理差异极显著
• 某数据分析公司研究加薪对数据分析员工 作准确度的影响。结果如下表所示,问加 薪对工作精确度有没有影响K0.05(15)=3,
– T在T0.01(n1) - T0.01(n2–n1) 之外,P≤0.01,否定H0,接受H1,两个处理 差异差异极显著
卡方分布拟合检验
χ2检验的原理与方法 χ2检验的基本原理 χ2检验统计量的基本形式 χ2检验的基本步骤 χ2检验的注意事项
χ2检验就是统计样本的实际观测值与理论推算
值之间的偏离程度。
• 确定统计量T
– T为正秩次及负秩次和中绝对值较小者
• 统计推断
– 令正负差值的总个数为n – T>T0.05(n),P>0.05,不能否定H0,两个处理差异不显著 – T0.01(n)<T≤T0.05(n),0.01<P≤0.05,否定H0,接受H1,两个处理
差异显著 – T≤T0.01(n),P≤0.01,否定H0,接受H1,两个处理差异极显著
A8 : 34.5 x 39.5 8 A9 : 39.5 x
pˆ i
0.2788 0.2196 0.1527 0.1062 0.0739 0.0514 0.0358 0.0248 0.0568
npˆ i
45.1656 35.5752 24.7374 17.2044 11.9718
8.3268 5.7996 4.0176 9.2016
4.2 参数假设检验
假设检验
一个正态总体均值的 假设检验
1、s已知
s未知
2、大样本 3、小样本
总体方差的 假设检验
两个正态总体均值差 的假设检验
_
1、Z x s/ n
2、Z X s/ n
_
3、t x 0 : t n 1
s/ n
__
1、Z (x1 x2 ) 1 2
s12
s
2 2.6523, k 9,r 1,
2
(k
r
1)
2
0.05
(7)
14.067
2.6523,
故在水平0.05下接受H0,
认为样本服从指数分布.
例2:医学家研究心脏病人猝死人数与日期的关系时发现,一周之中星期一 心脏病人猝死者较多,其他日子基本相同。每天的比例近似为2.8:1:1:1: 1:1:1.
在 H0 为真的前提下,
X
的分布函数的估计为

(
x)
1
x
e 13.77
,
0,
x0 x 0.
概率 pi P( Ai )有估计
pˆ i Pˆ ( Ai ) Pˆ {ai X ai1} Fˆ (ai1) Fˆ (ai ),
如 pˆ2 Pˆ (A2) Pˆ{4.5 X 9.5}
Fˆ (9.5) Fˆ (4.5) 0.2196,
-10
438
+10
876
0
要回答这个问题,首先需要确定一个统计量,将 其用来表示实际观测值与理论值偏离的程度。
判断实际观测值与理论值偏离的程度,最简单 的办法是求出实际观测值与理论值的差数。
羔羊性别观察值与理论值
性别 观察值(O) 理论值(E)
O-E

428

448
合计
876
438
-10
438
+10
零假设:每天心脏病猝死人数分布同预期分布相同
备择假设:每天心脏病猝死人数分布同预期分布不同
(2)构造和计算统计量
日期
周一 周二 周三 周四 周五 周六 周日 合计
怎么计算得到的 呢?
实际频数 期 望 频 差
fi
率 npi
f i - npi
55
53.5
1.5
23
19.1
3.9
18
19.1
-1.1
11
非配对试验资料符号秩和检验
• 提出原假设与备择假设
– H0:甲样本所在的总体中位数=乙样本所在的总体中位数 – H1:甲样本所在的总体中位数≠乙样本所在的总体中位数 – 进行单尾检验,把“≠”换成“<”或者“>”
• 求两个样本合并数据的秩次
– 两个样本的含量为n1和n2,合并后为n1+ n2 – 合并后的数据按从小到大的顺序排列,序号即为数据的秩次 – 不同样本的观测值相同,取原秩次的平均秩次 – 同一样本的观测值相同,不必改动
1、 2 n 1 s2
s2
2、F
s12 s22
单一总体
两个总体 方差比
4.3 非参数假设检验
*4.3.1 符号检验法:通过两个相关样本的每对数据 之差的符号进行检验,比较两个样本的显著性
– 配对资料的符号检验 – 样本中位数与总体中位数比较的符号检验
*4.3.2 秩和检验法:一种用样本秩来代替样本值的检验法,
现在收集到168个观察数据,其中星期一至星期日的死亡人数分别为:55, 23,18,11,26,20,15。
现在利用这批数据,推断心脏病人猝死人数与日期的关系是否成立?
解:该问题可以转化为检验心脏病猝死人数在一周时间内的分布是否同预期 分布相同,可以使用卡方检验进行处理,过程如下: (1)建立零假设和备择假设
可用于检验两个总体的分布函数是否相等的问题 – 配对试验资料符号秩和检验 – 非配对试验资料符号秩和检验
4.3.3 非参数假设检验。
– 卡方检验 – 柯尔莫哥洛夫-斯米诺夫检验
配对资料的符号检验
• 提出原假设与备择假设
– H0:/
• 计算差值并赋予符号
– d>0,记为“+”, “+”个数记为n+ – d<0,记为“-”, “-”个数记为n- – d=0,记为“0”, “0”个数记为n0 – 统计量K = min{ n+ , n- }
实际观测值与理论推算值之间的偏离程度就决定 其χ2值的大小。理论值与实际值之间偏差越大, χ2 值就越大,越不符合;偏差越小,χ2值就越小,越趋 于符合;若两值完全相等时,χ2值就为0,表明理论 值完全符合。
相关文档
最新文档