非参数假设检验法及其运用

合集下载

参数检验和非参数检验

参数检验和非参数检验

参数检验和非参数检验参数检验和非参数检验是统计学中两种常用的假设检验方法。

参数检验假设总体服从其中一种特定的概率分布,而非参数检验则不对总体的概率分布进行特定的假设。

本文将分析和比较这两种假设检验方法,并讨论它们的优缺点和适用范围。

参数检验的基本思想是假设总体的概率分布属于一些已知的参数化分布族,例如正态分布或泊松分布。

然后根据样本数据计算出统计量的观察值,并基于它们进行假设检验。

常见的参数检验方法有t检验、F检验和卡方检验等。

以t检验为例,它适用于研究两个样本均值之间是否存在显著差异的情况。

假设我们有两组样本数据,分别服从正态分布。

可以使用t检验来计算两组样本均值的差异是否显著。

t检验基于样本均值和标准差来估计总体均值的差异,并通过计算t值和查表或计算p值来判断差异是否显著。

参数检验的优点是它们对总体概率分布的假设比较明确,计算方法相对简单,适用于数据符合特定分布的情况。

此外,参数检验通常具有较好的效率和统计性质。

然而,参数检验也有一些限制和缺点。

首先,参数检验通常对数据的分布假设要求较高,如果数据不符合指定的分布假设,则结果可能不可靠。

另外,参数检验对样本大小的要求较高,需要较大的样本才能获得可靠的检验结果。

此外,参数检验对异常值和离群值比较敏感,这可能会导致统计结论的错误。

与参数检验相比,非参数检验更加灵活,不需要对总体的概率分布做出特定的假设。

它适用于更广泛的数据类型和样本分布。

常见的非参数检验方法有Wilcoxon符号秩检验、Mann-Whitney U检验和Kruskal-Wallis检验等。

以Wilcoxon符号秩检验为例,它适用于比较两个相关样本的差异。

这个检验不要求样本数据满足正态分布的假设,它基于样本差值的秩次来判断差异是否显著。

非参数检验的优点在于其适用范围广泛,不需要对总体分布做出特定假设,对数据平均性和对称性的要求较低,对异常值和离群值的鲁棒性较好。

此外,非参数检验对样本大小的要求较低,可以在较小的样本情况下获得可靠的结果。

非参数检验的检验方法

非参数检验的检验方法

非参数检验的检验方法非参数检验是一种假设检验的方法,它不依赖于总体分布的具体形式,而是基于样本数据进行推断。

相比于参数检验,非参数检验更加灵活和普适,可以适用于更广泛的情况。

非参数检验的主要思想是通过对样本数据的排序或者秩次变换,来推断总体的性质。

下面将介绍几种常见的非参数检验方法:1. Mann-Whitney U检验(又称Wilcoxon秩和检验):Mann-Whitney U检验用于比较两个独立样本的总体中位数是否相等。

它的基本思想是将两组样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算两组数据秩次和之差的绝对值,该值即为检验统计量U,根据U的大小可以进行推断。

2. Kruskal-Wallis H检验:Kruskal-Wallis H检验用于比较多个独立样本的总体中位数是否相等。

它的基本思想是将所有样本的数据合并,按照从小到大的顺序进行排列,并为每个值分配一个秩次。

然后计算每个样本的秩次和,以及总体的秩次和。

根据这些秩次和的差异来进行推断。

3. 秩和检验:秩和检验是一类常见的非参数检验方法,包括Wilcoxon符号秩检验和符号秩和检验。

这两种方法都是用来比较两个相关样本的总体中位数是否相等。

基本思想是将两个样本的差的符号进行标记,并用秩次表示绝对值大小的顺序。

然后根据秩次和的大小来进行推断。

4. Friedman检验:Friedman检验用于比较多个相关样本的总体中位数是否相等。

它的基本思想是将所有样本的数据进行秩次变换,并计算每个样本的秩次和。

然后根据秩次和的差异来进行推断。

在进行非参数检验时,需要注意以下几点:1. 样本独立性:非参数检验通常要求样本之间是独立的,即样本之间的观测值不受其他样本观测值的影响。

如果样本之间存在相关性,应考虑使用相关性检验或者非参数检验的相关版本。

2. 样本大小:非参数检验对样本的大小没有严格要求,但样本大小较小时可能会影响检验的统计功效。

第三节 非参数假设检验

第三节   非参数假设检验

,由于χ = 12 > 11.07
所以拒绝H0,说明下半年各月销售量与均
匀分布有差别,这些差别尚不能完全归结为随机 原。
【例6.11】在高速公路收费站100分钟内观测到通过 收费站的汽车共190辆,每分钟通过的汽车辆 数分布如下表:
用显著性水平a=0.05检验这些数据是否来自泊松分布。 解:设
H0 :汽车通过收费站的辆数服从泊松分布;
【例6.14】为了比较两个小学贯彻素质教育的情况,现从甲学 校抽15名学生,乙学校抽25名学生,按素质教育的要求进 行测试并评分,按评分高低顺序排队并编上等级,其结果 如下:
W2 W1 为 ,第二个样本的等级和为 ,则有
第三步:计算曼-惠特尼U检验统计量
W1 + W2 = n(n + 1) / 2

U和 中选择较小者并称其为 U2 1
n1 (n1 + 1) U1 = n1n2 + − W1 2 n2 (n2 + 1) U 2 = n1n2 + − W2 2

U
第四步:作出判断 对于
2
个数。
2 χ分布表求相应的 第四步:根据显著性水平a查
临界值——
2 2
χ
2 a
χ > χ a 时,拒绝原假设,说明样本观测并非来
自该理论分布。
【例6.10】某百货公司的电器部下半年各月洗衣机 的销售数量如下:
该电器部经理想了解洗衣机的销售数量是否在各 月是均匀分布的,也就是说各月中销售数量的差别 可以归结为随机原因,这样可以为以后的进货提供 依据。要求以a=0.05 的显著性水平进行检验。
U − E (U ) Z= D(U )
近似地服从标准正态分布。

非参数假设检验方法

非参数假设检验方法

非参数假设检验方法
非参数假设检验方法,那可真是个超棒的统计利器!咱先说说它的步骤吧。

嘿,你想想看,就像搭积木一样,第一步得先明确问题,确定咱要检验啥。

然后收集数据,这数据就像是建筑材料,得好好收集。

接着计算检验统计量,这就如同给积木搭出形状。

最后根据统计量判断是否拒绝原假设。

这步骤简单易懂吧?
注意事项也不少呢!数据得有代表性,不然就像盖房子用了劣质材料,那可不行。

样本量也不能太小,不然就像小娃娃搭的积木城堡,风一吹就倒啦。

说到安全性和稳定性,那可是杠杠的!它不像有些方法那么娇气,对数据的分布要求不高。

就好比一辆越野车,能在各种路况下行驶,不用担心路况不好就抛锚。

应用场景那可多了去啦!当数据不满足参数检验的条件时,非参数假设检验方法就大显身手啦。

比如研究不同年龄段的人对某种产品的喜好,数据可能乱七八糟的,这时候非参数检验就像救星一样。

它的优势也很明显啊,操作简单,容易理解,不需要太多高深的数学知识。

就像玩游戏,不需要看厚厚的说明书就能上手。

给你举个实际案例吧。

有个公司想知道新推出的广告有没有效果,就用了非参数假设检验方法。

结果发现广告确实提高了产品的知名度。

这效果,哇塞,杠杠的!
非参数假设检验方法就是这么牛!它简单易用,安全稳定,应用场景广泛,优势明显。

赶紧用起来吧!。

非参数假设检验法及其运用

非参数假设检验法及其运用

非参数假设检验法及其运用摘要:在国际金融危机下,以中国股市数据为依据,运用S-plus 统计分析软件和Excel ,对中国股市正态分布假设进行了Kolmogorv拟合优度检验,运用方差平方秩检验方法,比较分析了上证指数和深证综指的波动性。

关键字:股市;Kolmogorov拟合优度检验;秩检验。

引言:对中国股市分布的研究,国内各学者对中国股市进行了非参数检验。

王金玉、李霞、潘德惠(2005)通过引入一种新的估计方法“非参数假设检验方法”,以达到对证券投资咨询机构,对证券市场大盘走势预测准确度的估计。

周明磊(2004)运用非参数非线性协整检验,对上证指数与深成指间协整关系进行了研究,结论是:上证指数与深圳成指之间确实存在非线性的协整关系。

方国斌(2007)从分析中国股市收益率序列的特征入手,寻找描述中国股市波动性特征的合适的统计模型。

在研究相关文献的基础上,将非参检验应用于中国股市统计特征的研究。

运用Kolmogorov拟合优度检验,对中国股市进行了正态分布假设检验;运用方差平方秩检验方法,比较分析了上海指数和深圳综指的波动性。

正文:一、Kolmogorov拟合优度检验以及方差的平方秩检验方法。

(一)Kolmogorov拟合优度检验1. 原假设和备择假设原假设H:样本来自于正态分布总体。

备择假设H1:样本不是来自于正态分布总体。

2. 检验统计量令S (x) 是样本X1、X2、 (X)n、的经验分布函数,F*(x)是完全已知的假设分布函数,则检验统计量T为S (x) 与F*(x)的最大垂直距离,即:T = sup| F*(x)- S (x)|。

3. P值计算近似P值可以通过在表A13中插值得到,或者利用2倍的单边检验的P值。

单边P值=1)]1([11---=⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛--⎪⎪⎭⎫⎝⎛∑jjntnjnjtnjtjn这里t的是检验统计量的观测值,[n(1-t)]且是小于等于n(1-t)的最大整数。

非参数检验方法及其应用

非参数检验方法及其应用

本科生毕业设计(论文) 中文题目非参数统计检验及其运用外文题目Nonparametric statistical test and its application学号1207160004姓名陈丹学院数学与信息科学学院专业统计学指导教师邓文丽教授完成时间2016年5月江西师范大学教务处制独创性声明本人郑重声明:1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。

除了特别加以标注地方外,本文不包含其他人或其它机构已经发表或撰写过的研究成果。

对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。

本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。

本人授权江西师范大学可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在江西师范大学毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

学位论文作者(签名):年月日非参数统计检验及其运用陈丹【摘要】如果在一个统计问题中,其总体分布不能用有限个实参数来刻画,只能对它作一些诸如分布连续、存在密度函数、具有某阶矩等一般性的假定,则称之为非参数统计问题。

因为不需要对分布作过多的假定,非参数统计方法在一些领域比参数统计方法更实用更能解决问题。

本文主要介绍几种比较常用的检验方法,及其在燃料差异上的应用,在房地产问题上的应用,在化学领域上的应用。

【关键词】非参数统计描述性检验符号检验 Wilcoxon秩和检验Kruskal-Wallis检验Nonparametric statistical test and its applicationChen Dan【Abstract】If in a statistical problem.The overall distribution can not be with a real parameter to characterize only on it for some such as continuous distribution, density, with some moments general assumption is said for nonparametric statistical problems.Because there is no need to assume that the distribution is too much,And nonparametric statistical methods are more practical and more practical than parametric statistical methods in some fields,This paper introduces several commonly used test methods,And its application in fuel difference, the application in the field of real estate, the application in the field of chemistry.【Key Words】Nonparametric statistics Descriptive test Sign test wilcoxon rank sum test Kruskal-Wallis test目录1 非参数统计概述 (1)1.1 什么是非参数统计 (1)1.2 适用范围 (1)1.3 特点 (2)1.4 优缺点 (2)2 非参数统计检验方法 (3)2.1 描述性统计 (3)2.2 符号检验法 (3)2.3两独立样本的Wilcoxon秩和检验 (4)2.3.1基本思想 (4)2.3.2Wilcoxon秩和检验的基本步骤 (4)2.4 两独立样本的Mood中位数检验法 (5)2.5多样本的Kruskal-Wallis检验 (7)2.6相关系数检验法 (8)2.6.1皮尔森相关系数检验 (8)2.6.2 Spearman秩相关系数检验 (8)3非参数统计的实际运用 (11)3.1 非参数统计符号检验在房价分析上的应用 (11)3.2符号秩和检验在燃料差异上的应用 (12)3.3两独立样本的Wilcoxon秩和检验在白鼠饲料喂养上的应用 (16)3.4非参数统计相关系数检验在化学反应温度与效率关系中的应用 (16)1 非参数统计概述1.1 什么是非参数统计如果在一个统计问题中,其总体分布不能用有限个实参数来刻画,只能对它作一些诸如分布连续、有密度、具有某阶矩等一般性的假定,则这类问题称之为非参数统计问题。

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用

参数检验与非参数检验的区别与应用统计学中的参数检验和非参数检验是两种常用的假设检验方法。

本文将详细介绍参数检验和非参数检验的区别以及它们在实际应用中的具体场景。

一、参数检验参数检验是建立在对总体分布形态有所假定的基础上,通过对样本数据进行统计推断,来对总体参数进行假设检验。

它通常要求总体分布服从特定的概率分布,如正态分布。

参数检验的常见方法有:1. 单样本t检验:用于检验样本均值是否与已知总体均值有显著差异。

2. 独立样本t检验:用于比较两个独立样本的均值是否存在显著差异。

3. 配对样本t检验:用于比较同一组样本在不同条件下的均值是否存在显著差异。

4. 方差分析:用于比较多个样本组之间的均值是否存在显著差异。

参数检验的优势在于其具有较高的效率和灵敏度,适用于对总体分布形态有所了解的情况。

但它也有一些限制,如对分布形态的假设可能不成立,以及对样本量和数据类型的要求较高。

二、非参数检验非参数检验是对总体分布形态没有具体假设的情况下,通过对样本数据进行统计推断,来对总体参数进行假设检验。

非参数检验不少于参数检验的分析方法,常见的包括:1. Wilcoxon符号秩检验:用于比较两个相关样本的差异是否存在显著差异。

2. Mann-Whitney U检验:用于比较两个独立样本的中位数是否存在显著差异。

3. Kruskal-Wallis检验:用于比较多个样本组的中位数是否存在显著差异。

非参数检验的优势在于对总体分布形态没有具体要求,适用于对总体分布了解较少或不了解的情况。

它相对于参数检验来说更具广泛的适用性,但由于其推断效果较差,需要更大的样本量才能达到相同的检验效果。

三、参数检验与非参数检验的区别1. 假设要求:参数检验对总体分布形态有假设要求,如正态分布假设,而非参数检验对总体分布形态没有具体要求。

2. 统计量选择:参数检验基于已知概率分布,可以选择特定的统计量如t值、F值等;而非参数检验使用秩次统计量,如秩和、秩和秩二样序差等。

非参数检验的场景与方法

非参数检验的场景与方法

非参数检验的场景与方法非参数检验是一种统计方法,用于对数据进行假设检验,而不需要对数据的分布做出任何假设。

相比于参数检验,非参数检验更加灵活,适用于更广泛的场景。

本文将介绍非参数检验的场景和常用的方法。

一、非参数检验的场景非参数检验适用于以下场景:1. 数据不满足正态分布:在一些实际问题中,数据的分布可能不满足正态分布假设,例如长尾分布、偏态分布等。

此时,非参数检验可以更好地适应数据的特点。

2. 样本量较小:参数检验通常要求样本量较大,以保证统计推断的准确性。

而非参数检验对样本量的要求较低,即使样本量较小,也可以进行有效的假设检验。

3. 数据类型不确定:非参数检验可以适用于各种数据类型,包括连续型数据、离散型数据、有序数据等。

而参数检验通常对数据类型有一定的要求。

二、常用的非参数检验方法1. Wilcoxon符号秩检验:适用于两个相关样本的比较。

该方法将两个样本的差异转化为秩次,通过比较秩次的大小来进行假设检验。

2. Mann-Whitney U检验:适用于两个独立样本的比较。

该方法将两个样本的观测值合并后,通过比较秩次的大小来进行假设检验。

3. Kruskal-Wallis检验:适用于多个独立样本的比较。

该方法将多个样本的观测值合并后,通过比较秩次的大小来进行假设检验。

4. Friedman检验:适用于多个相关样本的比较。

该方法将多个样本的观测值转化为秩次,通过比较秩次的大小来进行假设检验。

5. Kolmogorov-Smirnov检验:适用于两个样本的分布比较。

该方法通过比较两个样本的累积分布函数来进行假设检验。

三、非参数检验的优缺点非参数检验相比于参数检验具有以下优点:1. 不需要对数据的分布做出任何假设,更加灵活。

2. 对样本量的要求较低,适用于小样本数据。

3. 适用于各种数据类型,更加通用。

然而,非参数检验也存在一些缺点:1. 相对于参数检验,非参数检验的统计效率较低。

2. 非参数检验通常需要更多的计算资源和时间。

统计学中的非参数检验方法

统计学中的非参数检验方法

统计学中的非参数检验方法统计学是一门应用广泛的科学领域,它的应用范围涉及到社会、经济、医学、科学等各个领域。

非参数检验方法是统计学中的一种基于数据分布情况的假设检验方法,它不仅可以应用于各个领域的研究中,也是数据分析领域中不可或缺的一部分。

什么是非参数检验非参数检验是一种基于统计数据分布情况做出判断的方法,在对特定类别的数据进行假设检验的时候,不依赖于数据分布的形状,而且它可以处理许多小样本或者没有熟知的总体参数的数据。

非参数检验方法的应用范围广泛,可以用于数据汇总、逻辑推理、实验设计以及其他数据分析中的问题。

非参数检验的优势传统的统计假设检验方法是基于大样本数据的总体参数进行推断的,其可以直接获得总体参数值,但是对于小样本数据而言,则需要使用比较多的假设、术语和统计量、偏差的值来判断出研究问题的可行性,而非参数检验则可以用较少的假设来完成数据分析,避免了数据误判,降低了数据分析的难度。

非参数检验的应用非参数检验方法在实际生活中的应用,主要表现在以下几个方面:1. 样本分布非正态:如果样本数据分布不满足正态分布,这时是可以应用非参数检验方法的。

2. 样本数据较少:如果样本数据较少,传统假设检验方法会有较高的错误率,可以使用非参数检验方法来避免这种情况。

3. 样本数据有异常值:若样本数据存在严重的异常值,应用传统的假设检验方法可能会导致数据误判,此时可以应用非参数检验方法进行数据分析。

常见的非参数检验方法常见的非参数检验方法有:1. Wilcoxon符号秩检验:适合偏差没达到正态分布的样本。

2. Mann-Whitney U检验:主要用于2组样本数据非独立的情况。

3. Kruskal-Wallis检验:用于3组及以上的样本比较,判断样本总体是否有差别。

4. Friedman秩和检验:主要用于分析多组数据的内部联系。

5. Kolmogorov-Smirnov拟合检验:用于检验给定的样本是否符合特定分布。

数理统计实验三非参数假设检验

数理统计实验三非参数假设检验

西北农林科技大学实验报告学院名称:理学院专业年级:姓名:学号:课程:数理统计学报告日期:实验三非参数假设检验一.实验目的1. 验证某产品的合格率是否是否低于0.9.2. 检验某地区儿童身高是否符合正态分布。

3. 为研究心脏病猝死人数与日期的关系,收集到168个观测数据,利用这批样本数据推断猝死人数与日期的关系是否为2.8:1:1:1:1:1:1.4. 某工厂用甲乙两种工艺生产同一种产品,利用样本数据检验两种工艺下产品使用寿命是否存在显著差异。

二.实验要求用spss实现非参数假设检验,包括二项式检验,单样本正态分布检验,两个独立样本检验,卡方检验。

三.实验内容(一)验证某产品的合格率是否是否低于0.9.打开文件“非参数检验(产品合格率)”,点击分析->非参数检验->旧对话框->二项式,把数据“是否合格”添加到检验变量列表,把检验比例默认的0.5该为题目要求的0.9(如图所示)。

点击确定得到结论(如图所示)。

结论:由上表知,SPSS的悖假设检验案例比例小于0.9的,并且在精确显著(单侧)值sig=0.193>0.05,即接受原假设检验,即二项式检验的案例比例是大于0.9的。

(二)检验某地区儿童身高是否符合正态分布。

打开文件“非参数检验(单样本KS-儿童身高)”,点击分析->非参数检验->旧对话框->1样本,把数据“周岁儿童的身高(sg)”添加到检验变量列表,检验分布默认为常规,即正态(如图所示)。

点击确定得到结论(如图所示)。

结论:由上述的结果可以看出,周岁儿童的身高是满足正态分布其中均值为71.8571,标准差为3.97851,可知某地区的儿身高满足正态分布。

除此之外,由上面的结果中的检验值sig=0.344>0.05也可以得出原假设检验是成立的,即接受身高满足正态分布的假设。

(三)为研究心脏病猝死人数与日期的关系,收集到168个观测数据,利用这批样本数据推断猝死人数与日期的关系是否为2.8:1:1:1:1:1:1.打开文件,在变量视图窗口中,点击数据->加权个案,对话框右边选项点击加权个案,把“死亡日期”添加到频率变量中,(如图所示),点击确定。

经典非参数假设检验方法全

经典非参数假设检验方法全
解 若对此三种品牌的商品喜好确实不存在着显著的差异
就意味着,对三种品牌的商品喜好比例 p1, p2 , p3相等。
即pi0 13,i1,2,3 假H 设 0:pipi01 3 H 1:pipi01 3中至少有 . 一 此是 m = 3, n1 = 61, n2= 53, n3 = 36,n=150
另外,用该统计量对总体分布律进行检验,还必须知道 其分布。 Pearson给出了其渐近分布。
定理1 若 X 的分:P 布 (X i)律 p i0,i 真 1 ,2 , ,m 为 ,
则统2 计 im 1(n i量 nn i0p i0p )2渐近服从 m 1 的 自 2分 由 .布
即 l n iP m im 1 ( n i n n i0 i0 ) p 2 p x 0 x2 ( y ,m 1 ) d ,( x y 0 )
在本节我们将介绍几种最常用的非参数检验方法: 符号检验、秩和检验和游程检验。
非参数检验
• 非参数检验的方法有很多种,如下几种检验: • 正态慨率纸检验; • 皮尔逊(Pearson)χ2拟合检验; • 柯尔莫哥洛夫与斯米尔诺夫检验; • Shapiro-Wilk W检验; • D’Agostion’s D检验; • Wilcoxon秩和检验。 • 符号检验 • 秩和检验 • 游程检验。
例3 验证一枚骰子是否均匀。 电话号码的数字出现的概率等等问题。
将两样本的数据按某一规则配对然后将各组配对值相减得到一系列差值如果两组样本来自同一总体或者不存在显著性差异则所得的为正的差值个相差不多如果二者相差较远的话则有理由拒绝原假下面通过例题来介绍配对样本符号检验法的具体步骤
非参数假设检验
在前面的课程中,我们已经了解了假设检验的基本思 想,并讨论了当总体分布为正态时,关于其中未知参数的 假设检验问题 .

非参数检验

非参数检验

非参数检验非参数检验是一种统计方法,用于比较两组或多组数据的差异或关联性,它并不依赖于数据的分布假设。

相比于参数检验,非参数检验通常更为灵活,可应用于各种数据类型和样本量,尤其在数据不满足正态分布的情况下表现优势。

本文旨在介绍非参数检验的基本原理、应用领域以及常见方法。

首先,非参数检验的基本原理是依赖于样本中的秩次,即将原始数据转化为秩次数据进行统计分析。

秩次是数据在全体中的相对位置,将数据转化为秩次可以消除异常值对统计结果的影响,并使数据的分布不再成为限制因素。

非参数检验的应用领域广泛,包括但不限于以下几个方面。

一、假设检验非参数检验可用于假设检验,比如检验两组样本的中位数是否存在差异。

常见的方法有Wilcoxon符号秩检验、Mann-Whitney U检验等。

在实际应用中,如果数据的分布无法满足正态分布假设,非参数检验则是一种理想的选择。

二、相关性分析非参数检验可用于判断两个变量之间的关联性。

常见的方法有Spearman秩相关系数检验、Kendall秩相关系数检验等。

这些方法的核心思想是将原始数据转化为秩次数据,通过秩次数据之间的比较来判断两个变量之间是否存在显著相关。

三、分组比较非参数检验可用于比较多个样本之间的差异。

常见的方法有Kruskal-Wallis检验、Friedman检验等。

这些方法可用于比较三个以上的样本组之间的差异,而不依赖于数据的分布假设。

在实际应用中,非参数检验需要注意以下几个问题。

一、样本容量非参数检验对样本容量的要求相对较低,适用于小样本和大样本。

然而,在样本容量较小的情况下,非参数检验可能会产生较大的误差,因此应根据实际情况选择合适的方法。

二、数据类型非参数检验可应用于各种数据类型,包括连续型数据和离散型数据。

但对于有序分类数据、定序数据和名义数据,非参数检验相较于参数检验有更好的适用性。

三、分布假设非参数检验不需要对数据的分布做出假设,这使得它更加灵活。

但是,如果数据满足正态分布假设,参数检验也是一种较为有效的选择。

非参数统计方法在假设检验中的应用研究论文素材

非参数统计方法在假设检验中的应用研究论文素材

非参数统计方法在假设检验中的应用研究论文素材一、引言假设检验是统计学中一种重要的分析方法,用于根据样本数据推断总体参数的性质。

传统的假设检验通常基于参数统计方法,即假设总体参数服从某种特定的概率分布。

然而,在实际应用中,往往无法确定总体分布的具体形式,这时就需要使用非参数统计方法。

本文旨在探讨非参数统计方法在假设检验中的应用,并提供相应的研究素材。

二、非参数统计方法概述非参数统计方法是指不对总体参数做任何假设的统计方法。

它的优势在于不依赖具体的分布假设,因此更加灵活,适用范围更广。

非参数统计方法主要包括秩和检验、分布自由度检验和重抽样检验等。

1. 秩和检验秩和检验是非参数统计方法中常用的一种方法,适用于两组或多组独立样本的比较。

该方法将观测值按照大小排列,通过比较秩和的大小来进行假设检验。

常见的秩和检验包括Wilcoxon秩和检验和Mann-Whitney U检验。

2. 分布自由度检验分布自由度检验是一种非参数的拟合优度检验方法,用于检验观测数据与某个理论分布是否一致。

该方法基于观测数据的经验分布函数,通过计算观测数据的累积概率与理论分布的累积概率之间的差异来进行假设检验。

3. 重抽样检验重抽样检验是一种基于数据重抽样的非参数统计方法。

常见的重抽样检验包括Bootstrap方法和Permutation方法。

Bootstrap方法通过随机抽样产生重复样本,从而估计总体参数的分布。

Permutation方法则通过对样本数据的重新排列来进行假设检验。

三、非参数统计方法的应用研究素材1. 秩和检验的应用研究文献1:Smith, J. et al. (2015). "A Comparative Study of Nonparametric Rank Tests for Gene Differential Expression Analysis." Journal of Biometrics, 30(4), 123-135.该研究通过比较不同的秩和检验方法在基因差异表达分析中的应用效果,探讨了不同方法的优缺点并给出了相应的建议。

卡方检验与非参数检验

卡方检验与非参数检验

卡方检验与非参数检验卡方检验与非参数检验是统计学中常用的两种假设检验方法。

它们在样本数据不满足正态分布或方差齐性等假设条件的情况下,仍可以进行假设检验,因此被称为非参数检验方法。

本文将详细介绍卡方检验与非参数检验的原理、应用以及比较。

一、卡方检验卡方检验是一种用于检验两个或多个分类变量之间是否存在相关性的统计方法。

它将实际观察到的频数与期望的频数进行比较,从而判断两个分类变量是否存在相关性。

卡方检验主要包括卡方拟合度检验、卡方独立性检验和卡方配对检验等。

1.卡方拟合度检验卡方拟合度检验适用于比较观察到的频数与理论上期望的频数是否有显著差异。

例如,我们可以通过卡方拟合度检验来判断一组骰子的点数是否是均匀分布的。

该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。

2.卡方独立性检验卡方独立性检验适用于比较两个分类变量之间是否存在相关性。

例如,我们可以使用卡方独立性检验来判断性别与喜好类别之间是否存在相关性。

该方法首先根据理论假设计算每个类别的期望频数,然后计算观察频数与期望频数的差异,并根据差异的大小判断是否有显著差异。

3.卡方配对检验卡方配对检验适用于比较同一组体在两个时间点或处理条件下的观测值是否有差异。

例如,我们可以使用卡方配对检验来判断一种药物在服药前后对疾病症状的治疗效果。

该方法通过比较观察值和期望值之间的差异来判断是否有显著差异。

非参数检验是一种不依赖于总体分布的统计方法,它不对总体的分布形态做出任何假设,因此适用于任何类型的数据。

常见的非参数检验方法包括Wilcoxon符号秩检验、Mann-Whitney U检验、Kruskal-Wallis H检验等。

1. Wilcoxon符号秩检验Wilcoxon符号秩检验适用于比较两组配对样本数据是否存在差异。

例如,我们可以使用Wilcoxon符号秩检验来判断一种药物在服药前后对患者血压的影响。

非参数假设检验方法课件

非参数假设检验方法课件
特点
非参数假设检验具有灵活性、稳 健性和适用范围广等优点,能够 处理更广泛的数据类型和分布情 况,不受特定参数假设的限制。
与参数检验的区别与联系
区别
参数检验基于对总体分布的参数假设 ,如正态分布等,而非参数检验则不 依赖于这些假设。
联系
非参数检验和参数检验都是为了对总 体进行推断,只是所依据的假设不同 。在实际应用中,可以根据具体情况 选择合适的检验方法。
大,可能会导致误判。
与参数检验的优缺点比较
适用范围
参数检验方法通常需要假定数据分布的形式,适用范围相对较窄 ;而非参数检验方法无需假定分布形式,适用范围更广。
解释性
参数检验方法通常可以提供具体的参数估计和效应量估计,解释性 较强;而非参数检验方法的解释性相对较差。
计算复杂性
参数检验方法的计算过程通常较为复杂,需要使用复杂的数学公式 和推导;而非参数检验方法的计算过程相对简单。
详细描述
符号检验通过计算两组数据中正例和负例的差异数,并利用二项分布的概率公 式来计算差异显著的p值。该方法适用于小样本数据,并且对数据的分布没有严 格要求。
威尔科克森符号秩检验
总结词
威尔科克森符号秩检验是用于比较两个独立样本的差异是否显著的统计方法。
详细描述
该方法通过比较两个样本的秩和,利用威尔科克森符号秩公式计算差异显著的p 值。该方法适用于处理数据量较小的情况,并且对数据的分布没有严格要求。
05
非参数假设检验的未来 发展与展望
现有研究的不足与局限性
方法适用范围有限
01
目前非参数假设检验方法主要适用于特定类型的数据和问题,
对于复杂数据或特定领域的适用性有待提高。
理论基础尚不完备
02

非参数统计检验及其运用毕业论文

非参数统计检验及其运用毕业论文

非参数统计检验及其运用毕业论文非参数统计检验是统计学中的一种方法,它与参数检验有所不同。

参数检验通常假设数据符合某种特定的分布,如正态分布或泊松分布,然后使用参数估计和假设检验来分析数据。

而非参数检验不依赖于数据符合特定的分布,而是通过描述数据的分布情况来进行统计推断。

这种方法对于数据不符合特定分布,或者分布不确定的情况特别有用。

在毕业论文中,非参数统计检验可以应用于以下方面:1.独立样本检验:独立样本检验用于比较两组独立的样本数据,判断它们是否来自同一分布。

这种方法不需要假设数据符合特定的分布,而是通过计算两组数据的秩(即数据在排序中的位置)来进行比较。

独立样本检验可以用于解决诸如“这两组数据的平均值是否有显著差异”之类的问题。

2.配对样本检验:配对样本检验用于比较同一组数据中的两个相关变量。

这种方法也不需要假设数据符合特定的分布,而是通过计算两个变量之间的Spearman或Kendall等级相关系数来进行相关性检验。

配对样本检验可以用于解决诸如“这两个变量是否有显著相关性”之类的问题。

3.游程检验:游程检验用于检验一个随机过程是否符合平稳性。

这种方法通过计算一系列观察值的差异(即游程),然后根据这些差异的分布来判断过程是否平稳。

游程检验可以用于解决诸如“这个随机过程是否稳定”之类的问题。

4.核密度估计:核密度估计用于估计一个随机变量的概率密度函数。

这种方法通过使用核函数来平滑数据,并根据核函数的形状来估计概率密度函数的形状。

核密度估计可以用于解决诸如“这个随机变量的概率密度函数是什么形状”之类的问题。

在应用非参数统计检验时,需要注意以下几点:1.非参数统计检验通常比参数检验更加灵活和强大,但它们也需要更多的数据来进行推断。

因此,在数据量较小的情况下,参数检验可能是更好的选择。

2.非参数统计检验通常对数据的异常值更加敏感。

因此,在应用非参数统计检验之前,应该对数据进行清理和预处理,以减少异常值对结果的影响。

非参数假设检验

非参数假设检验

§ 7.4 非参数假设检验在§7.2中讨论了母体分布类型为已知时的参数假设检验问题.一般在进行参数假设检验之前,需要对母体的分布进行推断.本节将讨论母体分布的假设检验问题.因为所用的方法适用于任何分布或者仅有微弱假定分布,实质上是不依赖于分布的.在数理统计学中不依赖于分布的统计方法统称为非参数统计方法.这里所讨论的问题就是非参数假设检验问题.这里所研究的检验是如何用子样去似全母体分布,所以又称为分布拟合扰度检验,一般有两种:一是拟合母体的分布函数;另一是拟合母体分布的概率函数.这里我们只介绍三种检验方法:概率图纸法. 2χ-拟合优度检验和柯尔莫哥洛夫斯米尔诺夫检验.一, 概率图纸法这是一种比较直观和简便的检验方法.它适合于在现场使用.目前常见的概率图纸有正态,对数正态,二项分布,指数分布和威布尔分布概率图纸等.这里我们只介绍正态概率图纸,关于其它分布的概率图纸的构造原理和使用方法都是类似的1. 正态概率图纸的构造原理设母体ξ有分布函数F(x),{N(μ,2σ)}表示正态分布族.需要检验假设)},({)(:20σμN x F H ∈这里μ和2σ均为未知常数.在原假设0H 为真时,通过中心化变换)(2121)(22)(222σμπσπσμμσμ-Φ===⎰⎰-∞--∞---x du edt ex F x xt即σμξξμ-=)(服从正态N(0,1).函数u(x)是x 的线性函数. σμξξμ-=)( (7.13) 在(x,u(x))直角坐标平面上是一条直线.这条直线过(μ,0),且斜率为σ1. 2. 检验步骤.事实上,我们知道的不是母体ξ取出的一组子样观察值n x x ,,1 由格里汶科定理知道子样的经验分布函数)(x F n 依概率收剑于母体分布函数F(x).所以在检验母分体布函数F(x)是否属于正态分布族时,我们以大子样的经验分布函数)(x F n 作为母体分布的近似.若0H :F(x) ∈{N(μ,2σ)}为真,那末点,,,1)),(,(n i x F x i i =在正态概率图纸上应该在一条直线上.所以根据上述经验分布函数)(x F n 是母体分布函数F(x)很好的近似,点,,,1)),(,(n i x F x i i =在正态概率图纸上也应该近似地在一条直线附近.倘若点列)),(,(i i x F x 不是近似地在一条直线附近,那末只能说明F(x)不属于正态分布族.根据上述想法,用正态概率图纸去检验假设0H 的具体步骤如下.(1) 整理数据 (2) 描点(3) 目测这些点的位置, 3. 未知参数μ与2σ的估计.若通过概率图纸检验已经知道母体服从正态分布,我们就凭目测在概率图纸上画出最靠近各点,,,1)),(,()()(n i x F x i n i =的一条直线l,因为σμξξμ-=)(服从正态N(0,1),所以当0)(=-=σμξμx ,即x=μ时对应的概率F=0.5.因此,只要在概率图纸上面一条F=0.5的水平直线.这条直线与直线l 的交点的横坐标5.0x 就可以作为参数为μ的估计.又由μ(x)=1时所对应的概率F=0.8413的水平直线,这条直线与直线l 的交点的横坐标为8413.0x .这个8413.0x 显然满足18413.08413.0=-=σμμx 即μσ-=8413.0x 因此可以用差5.08413.0x x -估计σ.例 7.8 (略)见P 338 二, 2χ的似体检验法前面介绍了直观而简便的概率图纸法,它不需要很多计算就能对母体分布族作出一个统计推断,并且还能对分布所含的参数作出估计.但是这种方法因人而异,且精度不高,又不能控制犯错误的概率.这里介绍2χ-拟合检验法,它能够像各种显著性检验一样控制犯第一类错误的概率.设母体ξ的分布函数为具有明确表达式的F(x),.我们把随机变量ξ的值域R 分成k 个互不相容的区间[][][]k k k a a A a a A a a A ,,,,,,1212101-=== 这些区间不一定有相同的长度.设n x x ,,1 是容量为n 的子样的一组观测值.i n 为子样观测值n x x ,,1 中落入i A 的频数.n n ni i =∑=1在这n 次事件i A 出现的频率为nn i. 我们现在检验原假设)()(:00x F x F H =.设在原假设0H 成立下,母体ξ落入区间i A 的概率为i P ,即k i a F a F A P P i i i i ,1),()()(100=-==- (7.14)此时n 个观察值中,恰有1n 个值落入1A 内,2n 的观察值落入2A 内,k n 个观察值落入k A 内的概率为k n n n n k P P P n n n n 212121!!!!这是一个多项分布.按大数定理,在0H 为真时,频率nn i与概率i P 的差异不应太大.根据这个思想构造一个统计量2χ=∑=-ki i i i nP nP n 12)( (7.15)称做2χ-统计量.往后可以看到,用2χ表示这一统计量不是没有原因的.因为它的极限分布就是自由度为k-1的2χ-分布.为了能够把2χ-统计量用来作检验的统计量,我们必须知道它的抽样分布.我们先k=2的简单情形.在0H 成立下,221)(,)(P A P P A P i ==其中121=+P P这时,频数n n n =+21我们考察222212112)()(nP nP n nP nP n -+-=χ (7.16) 令222111,nP n Y nP n Y -=-= (7.17)显然0)(212121=+-+=+P P n n n Y Y (7.18)由此可见1Y 与2Y 不是线性独立,且21Y Y -=.于是21212221212P nP Y nP Y nP Y =+=χ 21111)1(⎥⎥⎦⎤⎢⎢⎣⎡--P nP nP n (7.19) 根据德莫弗-拉普拉斯极限定理,当n 充分大时,随机变量)1(1111P nP nP n --的分布是接近于正态的,从而推得k=2情形的分布,当n 充分大时,是接近于自由度为1的2χ-分布.对于一般情形有如下的定理.定理 7.1 当0H 为真时,即k P P ,,1 为母体的真实概率时,由(7.15)式所定义的统计量2χ的渐近分布是自由度为k-1的2χ-分布,即密度函数为⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛-Γ=---,0,2121)(22321xk k e x k x f (7.20) 证 因为在n 个观测值中恰有1n 个观测值落入1A 内, 2n 的观察值落入2A 内,k n 个观察值落入k A 内的概率为k n n n n k P P P n n n n 212121!!!!这里n n n n k =+++ 21.其特征函数nk j it jk je P t t ⎪⎪⎭⎫⎝⎛=∑=112),,( ϕ (7.21) 令k j nP nP n Y jjj j ,2,1, =-=(7.22)于是有∑∑===-=kj j kj jj j Y nP nP n 12122)(χ (7.23)和∑=kj j jP Y1=0 (7.24)由此式看出,诸随机变量j Y 不是线性独立的.(k Y Y ,,1 )的联合分布的特征函数具有形状2111exp exp ),,(⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛•⎪⎪⎭⎫ ⎝⎛-=∑∑==kj j j j kj j jk nPit P nP it t t ϕ (7.25) 两边取对数得⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+-=∑∑==k j j jj kj j jn nP it P n P t n i t t 111exp ln ),,(ln ϕ (7.26) 利用指数数函和对数函在0=j t 处的泰勒展开:⎪⎭⎫ ⎝⎛+-=-⎥⎥⎦⎤⎢⎢⎣⎡n nP t nP it np it j jj j jj 121exp 2ο和)(2)1ln(22x x x x ο+-=+于是)1(21211211ln ),,(ln 11212111211οοϕ+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-++-=∑∑∑∑∑∑∑=======k j k j k j j j j j j k j j j k j k j j j j kj j jk P t n i t n P t n i n P t n i n t n P t n i n P t n i t t当∞→n 时⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--→∑∑==k j kj j j j k P t t t t 1212121),,(ln ϕ 即⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=∑∑==∞→k j k j j j j k n P t t t t 1212121exp ),,(lim ϕ (7.26) 作一正交变换:⎪⎪⎩⎪⎪⎨⎧=-==∑∑==kj j k j kj lj l Y P Z k l Y a Z 111,,1, (7.27) 其中lj a 应该满足1,,1,,0,11-=⎩⎨⎧≠==⋅∑=k r l r l r l a a kj rjlj 和1,,1,01-==∑=k l P akj j lj由⎪⎪⎩⎪⎪⎨⎧=-==∑∑==kj j j k kj y ij l t P u k l t a u 111,1, (7.28) 得到∑∑∑-====⎪⎪⎭⎫ ⎝⎛-1122112k j j kj i k j j j u P t t (7.29) 由(7.26)知,当∞→n 时,(k Z Z ,,1 )的特征函数⎭⎬⎫⎩⎨⎧-=∑-=∞→112121exp ),,(lim k j j k n u u u ϕ.这意味着11,,-k Z Z 的分布弱收剑于相互独立的正态N(0,1)分布,而k Z 依概率收剑于0.因此∑∑====kj j k j j Z Y 12122χ的渐近分布是自由度为k-1的2χ-分布.如果原假设0H 只确定母体分布类型,而分布中还含有未知参数m θθ,,1 则我们还不能用定理7.1来作为检验的理论依据.费歇证明了如下定理.从而解决了含未知参数情形的分布检验问题.定理 7.2 设F(x; m θθ,,1 )为母体的真实分布,其中m θθ,,1 为m 个未知参数.在F(x;m θθ,,1 )中用m θθ,,1 的极大似然估计mθθ∧∧,代替m θθ,,1 并且以F(x; mθθ∧∧,)取代(7.4)中的F(x)得到),,1;(),,1;(1m a F m a F i i iP θθθθ∧∧-∧∧∧-= (7.30)则将(7.30)代入(7.15)所得的统计量∑=∧∧-=kj i ini nn p p 122()χ (7.31)当∞→n 时有自由度为k-m-1的2χ-分布.例 7.9 (略)见P 345由例子来总结一下利用2χ-检验分布假设的步骤:(1)把母体ξ的值域划分为k 个互不相交的区间[,,,1),,1k i a a i i =+其中k a a ,1可以分别取∞∞-,;(2) 在0H 成立下,用极大似然估计法估计分布所含的未知参数; (3)在0H 成立下,计算理论概率)()(010i i i a F a F p -=+并且算出理论频数i nP ; (4)按照子样观察值n x x x ,,,21 落在区间),[1+i i a a 中的个数,即实际频数,,,1,k i n i =和(3)中算出的理论频数i nP ,计算ii i nP nP n )(2-=χ的值;(5)按照所给出的显著性水平α,查自由度k-m-1的2χ-分布表得)1(21---m k αχ,其中m 是未知参数的个数; (6)若2χ21αχ-≥,则拒绝原假设0H ,若212αχχ-<,则认为原假设0H 成立.三 柯尔莫哥洛夫似合检验------n D 检验2χ-似合检验是比较子样频率与母体的概率的.尽管它对于离散型和连续型母体分布都适用.但它是依赖于区间的划分的.因为即使原假设)()(:00x F x F H =不成立,在某种划分下还是可能有k i P a F a F a F a F i i i i i ,,1,)()()()(1001 ==-=---从而不影响(7.5)中2χ的值,也就是有可能把不真的原假设0H 接受过来.由此看到,用2χ-检验实际上只是检验了,,,1,)()(100k i P a F a F i i i ==--是否为真,而并未真正地检验母体分布F(x)是否为)(0x F .柯尔莫哥洛夫对连续母体的分布提出了一种方法.一般称做柯尔莫哥洛夫检验或n D -检验.这个检验比较子样经验分布函数)(x F n 和母体分布函数F(x)的.它不是在划分的区间上考虑)(x F n 与原假设的分布函数之间的偏差.而是在每一点上考虑它们之间的偏差.这就克服了2χ-检验的依赖于区间划分的缺点.但母体分布必须假定为连续.根据格里汶科定理,我们可以把子样经验分布函数看作实际母体分布函的缩影.如果原假设成立,它与F(x)的差距一般不应太大.由此柯尔莫哥洛夫提出一个统计量|)()(|sup x F x F D n xn -= (7.32)并且得到这统计量n D 的精确分布和极限分布K(λ).它们都不依赖于母体的分布.这里我们不加证明地引入柯尔莫哥洛夫定理.定理 7.3 设母体ξ有连续分布函数F(x),从中抽取容量为n 的字样,并设经验分布函数为)(x F n ,则|)()(|sup x F x F D n xn -=的分布函数⎪⎭⎫ ⎝⎛+<n D P n 21λ=n n n n dy y y f n n n nn n n n n 2120212,1,),,(0,021********22121-<≤⎪⎪⎪⎩⎪⎪⎪⎨⎧-≥<⎰⎰⎰+-+-+---λλλλλλλλλ 当(7.33)其中⎩⎨⎧<<<=其它当,010!),(11n n y y n y y f在∞→时有极限分布函⎪⎩⎪⎨⎧≤>--=→<∑-∞=0,00),2exp()1()()(22λλλλλ当当n j j n j K D n P (7.34) 在应用柯尔莫哥洛夫检验时,应该注意的是,原假设的分布的参数值原则上应是已知的.但在参数为未知时,近年来有人对某些母体分布如正态分布和指数分布用下列两种方法估计.()可用另一个大容量子样来估计未知参数,(2)如果原来子样容量很大,也可用来估计未知参数.不过此n D -检验是近似的.在检验时以取.较大的显著性水平为宜,一般取α=0.10-0.12.n D -检验检验母体有连续分布函数F(x)这个假设的步骤如下:(1) 从母体抽取容量为n 的子样,并把子样观察值按由小到大的次序排列;(2) 算出经验分布函⎪⎪⎩⎪⎪⎨⎧≤=<≤<=+x n j x x x nx n x x x F k j j jn 当当当,1,,1,,)(,0)()1()()1((3) 在原假设0H 下,计算观测值处的理论分布函数F(x)的值; (4) 对每一个i x 算出经验分布函数与理论分布函数的差的绝对值||)()(||)()()()1()()(i i n i i n x F x F x F x F --+与(5) 由(4)算出统计量的值(6) 给出显著性水平α,由柯尔莫哥洛夫检验的临界值表查出αα=≥)(,n n D D P的临界值α,n D ;当n>100时,可通过n D n /1,ααλ-≈查n D 的极限分布函数数值表得αλ-1从而求出α,n D 的近似值.(7) 若由(5)算出的α,n n D D ≥则拒绝原假设0H ;若α,n n D D <则接受假设,并认为原假设的理论分布函数与子样数据是似合得好的. 例 7.10 略) 见P 351定理 7.4 当样本容量21n n 和分别趋身于∞时,统计量|)()(|212121,sup x F x F D n n xn n -=有极限分布函数)(212121λλK D n n n n P n n →⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<+ ⎪⎩⎪⎨⎧≤>--=∑∞-∞=0,00),2exp()1(22λλλ当当j j j (7.35) 例 7.11 (略)见P 353。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非参数假设检验法及其运用
摘要:在国际金融危机下,以中国股市数据为依据,运用S-plus 统计分析软件和Excel ,对中国股市正态分布假设进行了Kolmogorv拟合优度检验,运用方差平方秩检验方法,比较分析了上证指数和深证综指的波动性。

关键字:股市;Kolmogorov拟合优度检验;秩检验。

引言:对中国股市分布的研究,国内各学者对中国股市进行了非参数检验。

王金玉、李霞、潘德惠(2005)通过引入一种新的估计方法“非参数假设检验方法”,以达到对证券投资咨询机构,对证券市场大盘走势预测准确度的估计。

周明磊(2004)运用非参数非线性协整检验,对上证指数与深成指间协整关系进行了研究,结论是:上证指数与深圳成指之间确实存在非线性的协整关系。

方国斌(2007)从分析中国股市收益率序列的特征入手,寻找描述中国股市波动性特征的合适的统计模型。

在研究相关文献的基础上,将非参检验应用于中国股市统计特征的研究。

运用Kolmogorov拟合优度检验,对中国股市进行了正态分布假设检验;运用方差平方秩检验方法,比较分析了上海指数和深圳综指的波动性。

正文:
一、Kolmogorov拟合优度检验以及方差的平方秩检验方法。

(一)Kolmogorov拟合优度检验
1. 原假设和备择假设
原假设H
:样本来自于正态分布总体。

备择假设H
1
:样本不是来自于正态分布总体。

2. 检验统计量
令S (x) 是样本X
1、X
2
、 (X)
n
、的经验分布函数,F*(x)是完全已知的假设分布函数,
则检验统计量T为S (x) 与F*(x)的最大垂直距离,即:T = sup| F*(x)- S (x)|。

3. P值计算
近似P值可以通过在表A13中插值得到,或者利用2倍的单边检验的P值。

单边P值=
1
)]
1(
[
1
1
-
-
-
=





+





-
-
⎪⎪




∑j
j
n
t
n
j
n
j
t
n
j
t
j
n
这里t的是检验统计量的观测值,[n(1-t)]
且是小于等于n(1-t)的最大整数。

当给定的显著性水平α大于或等于P值时,拒绝原假设。

在本文中,该检验是运用S-plus 统计分析软件实现的。

(二) 方差的平方秩检验
1. 原假设和备择假设
( 1 ) 双边检验
1
原假设H
:除了它们的均值可能不同外,X和Y同分布。

备择假设H 1: V a r (X) ≠V a r (Y)。

( 2 ) 左边检验
原假设H 0: 除了它们的均值可能不同外,x 和 y 同分布。

备择假设H 1:v a r ( x) < v a r ( Y)。

2. 检验统计量
记X 1、X 2、…X n 、为来自总体l 、样本容量为n 的随机样本,
Y 1、Y 2、…Y m 、 为来自总体2 、 容量为 m 的随机样本,
将X i 和Y j 转换为它到均值的绝对离差 U i 和 V j 。

U i =|X i -u 1|,V j =|Y j -u 2|,u 1和u 2是总体 1和2的均值,若未知, 可用样本均值来代替。

以通常方式将秩 1 到 n + m 赋给U 和V 的合并样本。

如果 U 的值与v 的值没有结, 则赋给总体1的秩的平方和 可以用作检验统计量。

其中,T=
()[]∑=n i i U R 12。

当样本容量大于10
时,T 的近似分位数W P =()()()()()180
1181216121++++++N N N nm Z N N n P (1 ),其中,N=n+m ,Z P 为标准正态分布分位数。

3. 拒绝域
对于双边检验,在显著性水平α下,求出拒绝域:T ( T 1) < T 2α或 T ( T 1) > T 21α- 。

对于左边检验, 拒绝域:T ( T 1) < T α。

4.作出判断
对于双边检验,根据样本观测值计算T ,若T ( T 1) < T 2α 或 T ( T 1) > T 21α-。

,则拒绝原假设。

对于单边检验,根据样本观测值计算 T ( T 1) ,若 T ( T 1) < T α,则拒绝原假设。

在本文中,该检验是借助于E x c e l 完成的。

二、实证研究
(一) 数据的选取及预处理
由于2008年的国际金融危机,改变了世界经济的运行状态,所以选取2009年1月5日
2
到2011年6月30日上海指数和深圳指数收盘价为样本,分析同际金融危机,后中国股市的统计特征。

将收盘价化为以2009年1月5日为基期的收益率序列 ,其中,计算收益率采用的是对
数收益率γ,γ= ()()
1log log -t t P P ( P t 为第 t 期的收盘价) 。

采用对数收益率的主要原因, 是对数收益率具有可加性和连续复利收益率的优点。

( 二 ) Kolmogorov 拟合优度检验
通过S —plus 软件,对上海指数和深圳指数进行 Kolmogorov 拟合优度检验,检验结果如表1 所示。

表1
假设,即上海指数和深圳指数都不服从正态分布。

( 三) 方差的平方秩检验
方差的平方秩检验是基于E x c e l ,根据方差的平方秩检验步骤,计算上海指数和指深圳数日收益率序列的均值,将上海指数日收益率序列X 和深圳日收益率序列 Y 转化为序列U 和 V ,然后将U 和V 合并,从小到大排序并赋秩,正好 U 和V 都没有结,将总体 l 的秩的平方和作为检验统计量,运用E x c e l ,计算出检验统计量T = 272423095。

由于 X 和 Y 的样本容量为604, 远大于10,所以检验计量的分位数计算通过公式( 1 ) 得到。

对于双边检验,在 5 %的显著性水平下,T 的 1 2
a - 分位数为308999979 ,T 的2a 分位数为279326825 拒绝域为 (T< 279326825 ) ( T> 308999979 ) , 由于 T = 272423095<279326825, 所以,在 5 %的显著性水平下,拒绝原假设, 即上海指数和深圳指数收益率序列的方差不相等。

对于左边检验,在 5 %的显著性水平下,T 的a 分位数281712032,拒绝域为T< 281712032 ,由于 T= 272423095 < 28l7l2032 , 所以拒绝原假设, 接受备择假设, 即: Va r ( X) < V a r ( Y ) , 也就是说,上海指数日收益率序列的波动性小于深圳指数日收益率序列的波动性。

三、 结论
3
( 一) 国际金融危机后, 中国股市收益率序列不服从正态分布。

( 二) 国际金融危机后, 上海指数收益率的波动性和深圳指数收益率的波动性不同, 上海
指数日收益率的波动性小于深圳指数日收益率序列的波动性。

即:在上海证券交易所上市的股票整体波动性,小于在深圳证券交易所上市的股票的波动性。

小节:
1.注意kolmogorov拟合优度检验的具体做法:比较实际频数与理论频数的积累率间的差
距,找出最大距离,根据这个值来判断实际频数分布是否服从理论频数分布。

在小样本中,根据渐进分布计算P值的误差会增大,应该通过相应的设定要求软件输出精确检验的P值,像例子中那样带入软件中。

2.方差的平方秩检验可以按照同样的思想对正太分布或者任何想象的其他分布进行检验,
但主要用于对定性变量的检验,且可以用于对两个总体分布的比较。

3.运用Kolmogorov拟合优度检验,进行了正态分布假设检验;运用方差平方秩检验方法,
比较分析。

在其他问题上都是非常好的检验方法。

参考文献:
(1)艾克凤.股票收益率的非正态性检验与分布拟合.
商业时代,2006 ,( 31 ) :57 —58 .
(2)王建华、王玉玲、柯开明.中国股票收益率的稳定分布拟合与检验.
武汉理工大学学报,2003,( 10 ) :99 —102 .
(3)王宁、劳兰珊.中国股票市场风险和收益风格效应的非参数检验.
上海管理科学,2007,( 02 ) :1 2 — 1 4 .
(4)王金玉、李霞、潘德惠.非参数假设检验在证券投资分析中的应用.
数学的实践与认识,2005 ,( 12 ) :57 —61 .
(5)周明磊.上海指数与深圳指数间协整关系的非参数检验.
统计与决策,2004,( 08 ) :24 —25 .
(6)方国斌.中国股市波动性聚类特征参数与非参数分析.
技术经济,2007 ,( 10 ) :84 —88 .
4。

相关文档
最新文档