全国卷高考数学模拟试题(含答案)PDF.pdf

合集下载

全国卷高考数学模拟卷(含答案)

全国卷高考数学模拟卷(含答案)

全国卷高考数学模拟卷(含答案)全国卷-数学本试题卷共6页,23题(含选考题),全卷满分150分,考试用时120分钟。

注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5.考试结束后,请将答题卡上交。

一、选择题:1.已知集合A={x|x-1>0}。

B={-2.2-1.1},则A∩B=?A。

{-2.-1} B。

{-2} C。

{-1.1} D。

{0.1}2.设复数z=-1+ i(i是虚数单位),z的共轭复数为z,则(1+z)/(1-z)=?A。

-12/55+i/55 B。

-12/55-i/55 C。

12-i/55 D。

-12+i/553.若sin(α-π/4)=4/32,α∈(0,π/2),则cosα的值为?A。

4-2√7/27 B。

4-√7/3 C。

4+√7/3 D。

4+2√7/274.已知双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0)的一个焦点为F(0,-2),一条渐近线的斜率为3,ab,则该双曲线的方程为?A。

(y-2)^2/9 - x^2/4 = 1 B。

x^2/9 - (y-2)^2/4 = 1 C。

-x^2/9 + (y-2)^2/4 = 1 D。

(y+2)^2/9 - x^2/4 = 15.某空间几何体的三视图如图所示,则该几何体的体积为?A。

56-8π/3 B。

64-8π/3 C。

64-4π/3 D。

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(四)(含答案解析)

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(四)(含答案解析)

2023年普通高等学校招生全国统一考试�新高考仿真模拟卷数学(四)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知复数1z =,则2z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.已知全集{62}U xx =-<<∣,集合{}2230A x x x =+-<∣,则U ðA=()A .()6,2-B .()3,2-C .()()6,31,2--⋃D .][()6,31,2--⋃3.陀螺是中国民间最早的娱乐工具之一,也称陀罗.图1是一种木陀螺,可近似地看作是一个圆锥和一个圆柱的组合体,其直观图如图2所示,其中,B C 分别是上、下底面圆的圆心,且36AC AB ==,底面圆的半径为2,则该陀螺的体积是()A .803πB .703p C .20πD .563π4.已知一组数据:123,,x x x 的平均数是4,方差是2,则由12331,31,31x x x ---和11这四个数据组成的新数据组的方差是()A .27B .272C .12D .115.若非零向量,a b 满足()22,2a b a b a ==-⊥ ,则向量a 与b 夹角的余弦值为()A .34B .12C .13D .146.已知圆221:(2)(3)4O x y -+-=,圆222:2270O x y x y +++-=,则同时与圆1O 和圆2O 相切的直线有()7.已知函数()()sin (0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示,则函数()f x 在区间[]0,10π上的零点个数为()A .6B .5C .4D .38.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点P 在椭圆C 上,若离心率12PF e PF =,则椭圆C 的离心率的取值范围为()A.()1-B.⎛ ⎝⎭C.2⎫⎪⎪⎣⎭D.)1,1-二、多选题9.若π1tan tan 231tan ααα-⎛⎫-= ⎪+⎝⎭,则α的值可能为()A .π36B .7π36C .19π36D .5π36-10.某校10月份举行校运动会,甲、乙、丙三位同学计划从长跑,跳绳,跳远中任选一项参加,每人选择各项目的概率均为13,且每人选择相互独立,则()A .三人都选择长跑的概率为127B .三人都不选择长跑的概率为23C .至少有两人选择跳绳的概率为427D .在至少有两人选择跳远的前提下,丙同学选择跳远的概率为5711.设函数()()()1ln 1(0)f x x x x =++>,若()()11f x k x >--恒成立,则满足条件的正整数k 可以是()A .1B .2C .3D .412.已知三棱锥-P ABC 中,PA ⊥平面2,4,,3ABC PA BAC AB AC M π∠====是边BC 上一动点,则()A .点C 到平面PAB 的距离为2B .直线AB 与PCC .若M 是BC 中点,则平面PAM ⊥平面PBCD .直线PM 与平面ABC三、填空题13.函数()()313xxk f x x k -=∈+⋅R 为奇函数,则实数k 的取值为__________.14.已知抛物线28y x =的焦点为F ,抛物线上一点P ,若5PF =,则POF ∆的面积为______________.15.由数字0,1,2,3,4,5,6,7组成没有重复数字的三位数,则能被5整除的三位数共有__________个.16.已知0a >,函数()22ag x x x+=+-在[)3,+∞上的最小值为2,则实数=a __________.四、解答题17.第24届冬奥会于2022年2月4日在北京市和张家口市联合举行,此项赛事大大激发了国人冰雪运动的热情.某滑雪场在冬奥会期间开业,下表统计了该滑雪场开业第x 天的滑雪人数y (单位:百人)的数据.天数代码x12345滑雪人数y (百人)911142620经过测算,若一天中滑雪人数超过3500人时,当天滑雪场可实现盈利,请建立y 关于x 的回归方程,并预测该滑雪场开业的第几天开始盈利.参考公式:线性回归方程ˆˆˆybx a =+的斜率和截距的最小二乘法估计分别为()()()121ˆˆ,niii ni i x x y y bay bx x x ==--==--∑∑ .18.如图,四边形ABCD 中,150,60,B D AB AD ABC ∠∠====的面积为(1)求AC ;(2)求ACD ∠.19.设数列{}n a 的前n 项和为()*,226n n n S S a n n =+-∈N .(1)求数列{}n a 的通项公式;(2)若数列112n n n a a ++⎧⎫⎨⎩⎭的前m 项和127258m T =,求m 的值.20.如图,正方体1111ABCD A B C D -的棱长为4,点E 、P 分别是1DD 、11A C 的中点.(1)求证:BP ⊥平面11A EC ;(2)求直线1B C 与平面11A EC 所成角的正弦值.21.已知双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线方程为20x y -=,一个焦点到该渐近线的距离为1.(1)求双曲线C 的方程;(2)若双曲线C 的右顶点为A ,直线:l y kx m =+与双曲线C 相交于,M N 两点(,M N 不是左右顶点),且0AM AN ⋅=.求证:直线l 过定点,并求出该定点的坐标.22.已知函数()()e 4ln 2xf x x x =++-.(1)求函数()f x 的图象在()()0,0f 处的切线方程;(2)判断函数()f x 的零点个数,并说明理由.参考答案:1.C【分析】根据复数代数形式的乘法运算化简复数2z ,再根据复数的几何意义判断即可.【详解】解:因为1z =-,所以())2221122z ==-+=--,所以2z 在复平面内对应的点的坐标为(2,--位于第三象限.故选:C 2.D【分析】计算出集合B ,由补集的定义即可得出答案.【详解】因为{}}{223031A xx x x x =+-<=-<<∣,U ðA=][()6,31,2--⋃.故选:D.3.D【分析】根据圆锥与圆柱的体积公式,可得答案.【详解】已知底面圆的半径2r =,由36AC AB ==,则2,4AB BC ==,故该陀螺的体积2215633V BC r AB r πππ=⋅+⋅⋅=.故选:D.4.B【分析】根据方差和平均数的计算及可求解.【详解】因为一组数据1x ,2x ,3x 的平均数是4,方差是2,所以22212312311()4,[(4)(4)(4)]233x x x x x x ++=-+-+-=,所以22212312312,(4)(4)(4)6x x x x x x ++=-+-+-=,所以12331,31,31x x x ---,11的平均数为12312311(31)(31)(31)][113()3]1144x x x x x x +-+-+-=+++-=,所以12331,31,31x x x ---,11的方差为2222123111)(312)(312)(312)]4x x x -+-+-+-22212311279[(4)(4)(4)]96424x x x =⨯-+-+-=⨯⨯=故选:B 5.D【分析】求出1,2a b ==,根据()2a b a -⊥ 可得()20a b a -⋅=,代入化简求解夹角余弦值即可.【详解】设a 与b的夹角为θ,因为()22,2a b a b a ==-⊥ ,所以1,2a b==,()2a b a ∴-⋅22cos 0a a b θ=-= .21cos 42a a b θ∴== .故选:D.6.B【分析】根据圆的方程,明确圆心与半径,进而确定两圆的位置关系,可得答案.【详解】由圆()()221:234O x y -+-=,则圆心()12,3O ,半径12r =;由圆222:2270O x y x y +++-=,整理可得()()22119x y +++=,则圆心()21,1O --,半径23r =;由12125O O r r ===+,则两圆外切,同时与两圆相切的直线有3条.故选:B.7.B【分析】求出周期,方法1:画图分析零点个数;方法2:求()0f x =的根解不等式即可.【详解】由题意知,37π2π(3π433T =--=,解得:4πT =,22Tπ=,方法1:∴作出函数图象如图所示,∴()f x 在区间[0,10π]上的零点个数为5.方法2:∴()0f x =,解得:2π2π,Z 3x k k =-+∈,∴2π02π10π3k ≤-+≤,Z k ∈,解得:11633k ≤≤,Z k ∈,∴1,2,3,4,5k =,∴()f x 在区间[0,10π]上的零点个数共有5个.故选:B.8.D【分析】由题意可知12PF e PF =,结合椭圆的定义解得221aPF e =+,再由2a c PF a c -≤≤+求解.【详解】因为12PF e PF =,所以12PF e PF =,由椭圆的定义得:122PF PF a +=,解得221aPF e =+,因为2a c PF a c -≤≤+,所以21aa c a c e -≤≤++,两边同除以a 得2111e e e -≤≤++,解得1e ≥,因为01e <<11e ≤<,所以该离心率e的取值范围是1,1)故选:D.9.BCD【分析】根据题意可得:π1tan πtan(2tan()31tan 4αααα--==-+,然后利用正切函数的性质即可求解.【详解】因为πtantan 1tan π4tan()π1tan 41tan tan 4ααααα--==-++⋅,则ππtan(2)tan()34αα-=-,所以ππ2π,34k k αα-=+-∈Z ,解得:π7π,336k k α=+∈Z ,当0k =时,7π36α=;当1k =时,19π36α=;当1k =-时,5π36α-=;故选:BCD .10.AD【分析】根据相互独立事件概率计算公式计算即可.【详解】由已知三人选择长跑的概率为111133327⨯⨯=,故A 正确.三人都不选择长跑的概率为222833327⨯⨯=,故B 错误.至少有两人选择跳绳的概率为231111127C 33333327⨯⨯+⨯⨯=,故C 错误.记至少有两人选择跳远为事件A ,所以()231111127C 33333327P A =⨯⨯+⨯⨯=.记丙同学选择跳远为事件B ,所以()12111215C 3333327P AB ⎛⎫=⨯+⨯⨯= ⎪⎝⎭.所以在至少有两人选择跳远的前提下,丙同学选择跳远的概率为()()()57P AB P B A P B ==,故D 正确.故选:AD 11.ABC【分析】根据题意可得()()()()1ln 1110g x x x k x =++--+>,利用导数结合分类讨论解决恒成立问题.【详解】若()()11f x k x >--恒成立,则()()()()()111ln 1110f x k x x x k x --+=++--+>恒成立,构建()()()()1ln 111g x x x k x =++--+,则()()ln 12g x x k '=++-,∵0x >,故()ln 10x +>,则有:当20k -≥,即2k ≤时,则()0g x '>当0x >时恒成立,故()g x 在()0,∞+上单调递增,则()()010g x g >=>,即2k ≤符合题意,故满足条件的正整数k 为1或2;当20k -<,即2k >时,令()0g x '>,则2e 1k x ->-,故()g x 在()20,e1k --上单调递减,在()2e 1,k --+∞上单调递增,则()()22e 1e 0k k g x g k --≥-=->,构建()2ek G k k -=-,则()21e0k G k --'=<当2k >时恒成立,故()G x 在()2,+∞上单调递减,则()()210G k G <=>,∵()()233e 0,44e 0G G =->=-<,故满足()()02G k k >>的整数3k =;综上所述:符合条件的整数k 为1或2或3,A 、B 、C 正确,D 错误.故选:ABC.12.BCD【分析】对于A ,利用线面垂直判定定理,明确点到平面的距离,利用三角形的性质,可得答案;对于B ,建立空间直角坐标系,求得直线的方向向量,利用向量夹角公式,可得答案;对于C ,利用等腰三角形的性质,结合面面垂直判定定理,可得答案;对于D ,利用线面垂直性质定理,结合直角三角形的性质以及锐角正切的定义,可得答案.【详解】对于A ,在平面ABC 内,过C 作CD AB ⊥,如下图所示:PA ⊥ 平面ABC ,且CD ⊂平面ABC ,PA CD ∴⊥,CD AB ⊥ ,PA AB A = ,,AB PA ⊂平面PAB ,CD \^平面PAB ,则C 到平面PAB 的距离为CD ,23BAC π∠= ,AB AC ==6ABC π∴∠=,在Rt BCD 中,sin sin 3CD CB CBA CBA =⋅∠=∠=,故A 错误;对于B ,在平面ABC 内,过A 作AE AB ⊥,且E BC ⊂,易知,,AB AE AP 两两垂直,如图建立空间直角坐标系:则()0,0,0A,()B,()C ,()0,0,4P ,得()AB =,()4PC =-,(6AB PC ⋅==-,AB =PC ==则cos ,14AB PC AB PC AB PC⋅==⋅ ,故B 正确;对于C,作图如下:在ABC 中,AB AC =,M 为BC 的中点,则AM BC ⊥,PA ⊥ 平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,AM PA A = ,,AM PA ⊂平面AMP ,BC ∴⊥平面AMP ,BC ⊂ 平面PBC ,∴平面PBC ⊥平面AMP ,故C 正确,对于D,作图如下:PA ⊥ 平面ABC ,AM ⊂平面ABC ,PA AM ∴⊥,则在Rt PAM 中,tan PAAMP AM∠=,当AM 取得最小值时,tan AMP ∠取得最大值,当M 为BC 的中点时,由C 可知,AM BC ⊥,AM 取得最小值为sin 6AB π⋅=则tan AMP ∠D 正确.故选:BCD.13.1【分析】由奇函数的定义求解即可.【详解】函数()()313xx k f x x k -=∈+⋅R 为奇函数,必有0k >,则()()3·31331331313x x x x x x x xk k k kf x f x k k k k -------===-=-=+⋅++⋅+⋅,于是得22223·31x x k k -=-恒成立,即21k =,解得:1k =.故答案为:1.14.【分析】先根据抛物线定义得P 点坐标,再根据三角形面积公式求解.【详解】因为5PF =,所以2253,24,||P P P P x x y y +=∴===因此POF ∆的面积为11||||=22P y OF ⨯【点睛】本题考查抛物线定义应用,考查基本分析转化与求解能力,属基础题.15.78【分析】能被5整除的三位数末位数字是5或0,分成末位数字是5和末位数字是0两种情况讨论.【详解】能被5整除的三位数说明末尾数字是5或0当末尾数字是5时,百位数字除了0有6种不同的选法,十位有6种不同的选法,根据分步乘法原理一共有6636⨯=种方法;当末尾数字是0时,百位数字有7种不同的选法,十位有6种不同的选法,根据分步乘法原理一共有7642⨯=种方法;则一共有364278+=种故答案为:7816.13≤3>讨论,得出()g x 在[)3,+∞上的最小值,由最小值为2求解a 的值即可得出答案.【详解】()22ag x x x+=+- ,()()(2222221x x x a a g x x x x-+-+=∴+'=-=,3≤时,即07a <≤时,则()0g x '>在()3,+∞上恒成立,则()g x 在[)3,+∞上单调递增,()g x ∴在[)3,+∞上的最小值为()5323ag +==,解得1a =,3>时,即7a >时,当x ∈⎡⎣时,()0g x '<,()g x 单调递减,当)x ∈+∞时,()0g x '>,()g x 单调递增,()g x ∴在[)3,+∞上的最小值为22,2ga ===,舍去,综上所述:1a =,故答案为:1.17.ˆ 3.7 4.9yx =+;9.【分析】根据表中数据及平均数公式求出ˆˆ,ab ,从而求出回归方程,然后再根据一天中滑雪人数超过3500人时,当天滑雪场可实现盈利即可求解.【详解】由题意可知,1234535x ++++==,911142620165y ++++==,所以()()()()()()()()5113916231116331416iii x x yy =--=-⨯-+-⨯-+-⨯-∑()()()()432616532016+-⨯-+-⨯-()()()()()27150211024=-⨯-+-⨯-+⨯-+⨯+⨯145010837=++++=()()()()()()5222222113233343534101410ii x x =-=-+-+-+-+-=++++=∑,所以()()()51521373.710iii ii x x y y bx x ==--===-∑∑ ,ˆˆ16 3.73 4.9ay bx =-=-⨯=,所以y 关于x 的回归方程为ˆ 3.7 4.9yx =+.因为天中滑雪人数超过3500人时,当天滑雪场可实现盈利,即3.7 4.935x +>,解得30.18.143.7x >≈,所以根据回归方程预测,该该滑雪场开业的第9天开始盈利.18.(1)(2)π4【分析】(1)在ABC 中,利用面积公式、余弦定理运算求解;(2)在ACD 中,利用正弦定理运算求解,注意大边对大角的运用.【详解】(1)在ABC 中,由ABC的面积111sin 222S AB BC B BC =⨯⨯∠=⨯⨯=可得4BC =,由余弦定理2222cos 121624522AC AB BC AB BC B ⎛⎫=+-⨯⨯∠=+-⨯⨯-= ⎪ ⎪⎝⎭,即AC =(2)在ACD 中,由正弦定理sin sin AC ADD ACD=∠∠,可得sin sin AD D ACD AC ∠∠==∵AD AC <,则60ACD D ∠<∠=︒,故π4ACD ∠=.19.(1)2n n a =(2)7【分析】(1)当2n ≥时,构造11228n n S a n --=+-,与条件中的式子,两式相减,得122n n a a -=-,转化为构造等比数列求通项公式;(2)由(1)可知()()1111222222n n n n n n n b a a ++++==++,利用分组求和法求解.【详解】(1)因为226n n S a n =+-,所以当1n =时,1124S a =-,解得14a =.当2n ≥时,11228n n S a n --=+-,则11222n n n n S S a a ---=-+,整理得122n n a a -=-,即()1222n n a a --=-.所以数列{}2n a -是首项为2,公比为2的等比数列,所以12222n n n a --=⨯=.所以22n n a =+.(2)令()()111112211222222222n n n n n n n n n b a a +++++⎛⎫===- ⎪++++⎝⎭,数列{}n b 的前m 项和1111111112+4661010142222m m m T +⎛⎫=-+-+-+- ⎪++⎝⎭ ,111112=2422222m m ++⎛⎫-=- ++⎝⎭,则112127222258m +-=+,则12222258m +=+,则122567m m +=⇒=.m 的值为7.20.(1)证明见解析【分析】(1)建立空间直角坐标系,利用空间向量法证明10EC BP ⋅= ,10EA BP ⋅=,即可得证;(2)利用空间向量法计算可得.【详解】(1)证明:如图建立空间直角坐标系,则()0,0,2E ,()4,4,0B ,()14,4,4B ,()2,2,4P ,()10,4,4C ,()14,0,4A ,()0,4,0C ,所以()10,4,2EC = ,()14,0,2EA =,()2,2,4BP =-- ,所以10EC BP ⋅= ,10EA BP ⋅=,所以1EC BP ⊥,1EA BP ⊥,又11EC EA E = ,11,EC EA ⊂平面11A EC ,所以BP ⊥平面11A EC.(2)解:由(1)可知()2,2,4BP =-- 可以为平面11A EC 的法向量,又()14,0,4B C =--,设直线1B C 与平面11A EC 所成角为θ,则11sin 6B C BP B C BPθ⋅==⋅=,故直线1B C 与平面11A EC 21.(1)2214x y -=(2)证明过程见解析,定点坐标为10,03⎛⎫⎪⎝⎭【分析】(1)由渐近线方程求出12b a =,根据焦点到渐近线距离列出方程,求出c =,从而求出2,1a b ==,得到双曲线方程;(2):l y kx m =+与2214x y -=联立,求出两根之和,两根之积,由0AM AN ⋅= 列出方程,求出103m k =-或2m k =-,舍去不合要求的情况,求出直线过定点,定点坐标为10,03⎛⎫⎪⎝⎭.【详解】(1)因为渐近线方程为20x y -=,所以12b a =,焦点坐标(),0c 到渐近线20x y -=1=,解得:c ,因为2225a b c +==,解得:2,1a b ==,所以双曲线C 的方程为2214x y -=;(2)由题意得:()2,0A ,:l y kx m =+与2214x y -=联立得:()222148440k x kmx m ----=,设()()1122,,,M x y N x y ,则2121222844,1414km m x x x x k k --+==--,()()()2212121212y y kx m kx m k x x km x x m =++=+++,()()()11221212122,2,24AM AN x y x y x x x x y y ⋅=-⋅-=-+++()()()()()122222222124048142421441kx x km x km m k x mkm m k k++-++--++=+⋅+-⋅+-=-,化简得:22201630k km m ++=,解得:103m k =-或2m k =-,当103m k =-时,10:3l y k x ⎛⎫=- ⎪⎝⎭恒过点10,03⎛⎫ ⎪⎝⎭,当2m k =-时,():2l y k x =-恒过点()2,0A ,此时,M N 中有一点与()2,0A 重合,不合题意,舍去,综上:直线l 过定点,定点为10,03⎛⎫⎪⎝⎭,【点睛】处理定点问题的思路:(1)确定题目中的核心变量(此处设为k ),(2)利用条件找到k 与过定点的曲线(),0F x y =的联系,得到有关k 与,x y 的等式,(3)所谓定点,是指存在一个特殊的点()00,x y ,使得无论k 的值如何变化,等式恒成立,此时要将关于k 与,x y 的等式进行变形,直至找到()00,x y ,①若等式的形式为整式,则考虑将含k 的式子归为一组,变形为“()k ⋅”的形式,让括号中式子等于0,求出定点;②若等式的形式是分式,一方面可考虑让分子等于0,一方面考虑分子和分母为倍数关系,可消去k 变为常数.22.(1)14ln 2=+y (2)有两个零点,理由见解析【分析】(1)根据导数的几何意义,结合导数的运算进行求解即可;(2)令()0f x =转化为()()2=e <xt x x 与()()()4ln 22=---<g x x x x 图象交点的个数,利用导数得到()g x 单调性,结合两个函数的图象判断可得答案.【详解】(1)()()4e 122xf x x x =+-<-',所以切线斜率为()00e 10204'=+-=-f ,()()00e 04ln 2014ln 2=++-=+f ,所以切点坐标为()0,14ln 2+,函数()f x 的图象在()()0,0f 处的切线方程为14ln 2=+y ;(2)有两个零点,理由如下,令()()e 4ln 20=++-=xf x x x ,可得()e 4ln 2=---x x x ,判断函数()f x 的零点个数即判断()()2=e <xt x x 与()()()4ln 22=---<g x x x x 图象交点的个数,因为()=e xt x 为单调递增函数,()0t x >,当x 无限接近于-∞时()t x 无限接近于0,且()22=e t ,由()421=022+'=-+=--x g x x x,得2x =-,当22x -<<时,()0g x '>,()g x 单调递增,当<2x -时,()0g x '<,()g x 单调递减,所以()224ln40-=-<g ,()3333e 2e 24lne e 100--=+-=->g ,()110g =-<,43314ln ln 0222⎛⎫=--= ⎪⎝⎭g ,且当x 无限接近于2时()g x 无限接近于+∞,所以()=e xt x 与()()4ln 2=---g x x x 的图象在0x <时有一个交点,在02x <<时有一个交点,综上函数()f x 有2个零点.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解。

2023年高考数学模拟试题(二)参考答案

2023年高考数学模拟试题(二)参考答案

面上,
球的半径为 R ,
则r=R ,
又球的表面积
正确;
两人 至 少 一 人 获 得 满 分 的 概 率 为 1-
以 △ABD 为 等 边 三 角 形。
BE ⊥AD ,且 AE =DE =1。
提示:
设直角圆锥 SO 的底面圆 的
P(
AB)
=P (
A)
P(
B )=
提 示:如 图 2,因
又 E 是 AD 的 中 点,所 以
的公比为q,
an }
8.
A
图3
2
2
2
=1,
PD = 2,即 PE + DE = PD ,所 以
PE ⊥DE 。又因为 PE ∩BE =E ,
PE ,
BE ⊂
平面 PBE ,所 以 DE ⊥ 平 面 PBE 。 又 DE∥
BC,则 BC ⊥ 平 面 PBE 。 又 BC ⊂ 平 面
所以平面 PBE ⊥ 平面 PBC,
2
所以椭圆 C 的方 程 为 +
a -c =4-1=3,
形,
设|NF2|=m ,则|PF2|
=3m ,|NF1 | = 2
a + m,
|PF1|= 2
a
+ 3m , 在
由勾股定理得
R
t△PNF1 中,
图4
2
2
2
(
2
a+m )+ (
4m ) = (
2
a+3m ),整 理 可 得
m =a,在 Rt△F2NF1 中,由 勾 股 定 理 得
2
2
2
2
2
(
3
a)+a = (

【高考冲刺】普通高等学校招生全国统一考试高考模拟卷(三)-理科数学(附答案及答题卡)

【高考冲刺】普通高等学校招生全国统一考试高考模拟卷(三)-理科数学(附答案及答题卡)

上有
且仅有"个零点$则符合条件的正整数 的值为!!!!!! 三解答题共7$分解答应写出文字说明证明过程或演算步骤
一必考题共6$分
!7!本小题满分!#分
如图所示$在平面四边形 "$)+ 中$+"*"$$)+)"5)
#5+)#$+"+))#'$+$5))'$+)5+)!
!!"求:4;的值-
.!"
/!#
0!"#
3!"(
!!!在长方体 "$)+*"!$!)!+! 中"$)#$))""!)槡#点 , 为"$! 的 中 点点 ( 为 对 角 线 ")! 上 的 动 点点 0 为 底 面 "$)+ 上的动点点(0 可以重合则 ,(1(0 的最小值为
.!!
/!槡#6
0!'(槡#
'&回答第卷时$将答案写在答题卡上$写在本试卷上无效# (&考试结束后$将本试卷和答题卡一并交回#
第卷
一选择题本题共小题每小题分共分在每小题给出的四个选项中只有一
项是符合题目要求的
!!已知全集为实数集 $集合")&# ##*###$'$$)&# +,-##$$'$则!%""&$)
! " 因为函数1!%"在 #&" 上有且仅有'个零点&
! " 所以%/()
/
( &"/

2023年全国新高考仿真模拟卷(二)数学试题(含答案解析)

2023年全国新高考仿真模拟卷(二)数学试题(含答案解析)

2023年全国新高考仿真模拟卷(二)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}2|log 1A x x =<,{}2|20B x x x =--<,则B A =ð()A .(﹣∞,2)B .(﹣1,0]C .(﹣1,2)D .(﹣1,0)2.已知复数11i z =+,22i z a =+,若12z z ⋅为纯虚数,则实数a 的值为()A .1-B .1C .2-D .23.函数()f x 为R 上的奇函数,当0x >时,()lg f x x x =-,则()100f -=()A .98B .98-C .90D .90-4.小陈和小李是某公司的两名员工,在每个工作日小陈和小李加班的概率分别为13和14,且两人同时加班的概率为16,则某个工作日,在小李加班的条件下,小陈也加班的概率为()A .112B .12C .23D .345.若22cos 1sin 26παα⎛⎫-=+ ⎪⎝⎭,则tan 2α的值为()A .B C .2D .2+6.如图所示,在ABC 中,2B A =,点D 在线段AB 上,且满足23AD BD =,ACD BCD ∠=∠,则cos A 等于()A .23B .34C .35D .457.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,398S =,且2n a S a ≤≤+,则实数a 的取值范围是()A .1,02⎡⎤-⎢⎥⎣⎦B .13,24⎡⎤-⎢⎥⎣⎦C .33,42⎡⎤⎢⎥⎣⎦D .30,2⎡⎤⎢⎥⎣⎦8.已知x ∈R ,符号[]x 表示不超过x 的最大整数,若函数()[]()0x f x a x x=-≠有且仅有2个零点,则实数a 的取值范围是()A .23,34⎛⎤ ⎥⎝⎦B .3,22⎡⎫⎪⎢⎣⎭C .2,23⎛⎫ ⎪⎝⎭D .233,2342⎛⎤⎡⎫ ⎪⎢⎝⎦⎣⎭二、多选题9.体育王老师记录了16名小学生某周课外体育运动的时长(单位:h ),记录如下表.运动时长456789运动人数122452则这16名小学生该周课外体育运动时长的()A .众数为8B .中位数为6.5C .平均数为7D .标准差为210.已知,αβ是空间两个不同的平面,,m n 是空间两条不同的直线,则给出的下列说法中正确的是()A .//m α,//n β,且//m n ,则//αβB .//m α,//n β,且m n ⊥,则αβ⊥C .m α⊥,n β⊥,且//m n ,则//αβD .m α⊥,n β⊥,且m n ⊥,则αβ⊥11.设1F ,2F 分别为椭圆221259x y+=的左、右焦点,P 为椭圆上第一象限内任意一点,1PF k ,2PF k 表示直线1PF ,2PF 的斜率,则下列说法正确的是()A .存在点P ,使得17PF =成立B .存在点P ,使得1290F PF ∠=︒成立C .存在点P ,使得217PF PF k k =成立D .存在点P ,使得127PF PF ⋅=成立12.设函数()sin 2sin cos xf x x x=+,则()A .()f x 的一个周期为πB .()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增C .()f x 在π3π,44⎛⎫- ⎪⎝⎭D .()f x 图象的一条对称轴为直线π4x =三、填空题13.在平行四边形OACB 中,E 是AC 的中点,F 是BC 边上的点,且3BC BF =,若OC mOE nOF =+,其中m ,n ∈R ,则m n +的值为______.14.请写出与曲线()sin f x x =在()0,0处具有相同切线的另一个函数:______.15.Rt ABC △中,其边长分别为3,4,5,分别以它的边所在直线为旋转轴,旋转一周所形成的几何体的体积之和为______.16.已知1F ,2F 分别为双曲线22221x ya b-=(0a >,0b >)的左、右焦点,P 为双曲线右支上任意一点,若212PF PF 的最小值为2c,c ,则该双曲线的离心率是______.四、解答题17.设数列{}n a 的首项为1,前n 项和为n S ,且对*n ∀∈N ,kn n a S b n c +=⋅+恒成立,其中b ,k ,c 均为常数.(1)当0b =时,求数列{}n a 的通项公式;(2)当1k =时,若数列{}n a 为等差数列,求b ,c 的值.18.已知ABC 的内角,,A B C 的对边分别为,,a b c ,B 为钝角.若ABC 的面积为S ,且()2224bS a b c a =+-.(1)证明:2B A π=+;(2)求sin sin A C +的最大值.19.某校团委针对“学生性别和喜欢课外阅读”是否有关做了一次不记名调查,其中被调查的全体学生中,女生人数占总人数的13.调查结果显示,男生中有16的人喜欢课外阅读,女生中有23的人喜欢课外阅读.(1)以频率视为概率,若从该校全体学生中随机抽取2名男生和2名女生,求其中恰有2人喜欢课外阅读的概率;(2)若有95%的把握认为喜欢课外阅读和性别有关,求被调查的男生至少有多少人?附:()20P k χ≥0.0500.0100k 3.8416.635()()()()()22n ad bc a b c d a c b d χ-=++++,n a b c d =+++.20.如图,在多面体ABCDE 中,已知ABC ,ACD ,BCE 均为等边三角形,平面ACD ⊥平面ABC ,平面BCE ⊥平面ABC ,H 为AB 的中点.(1)判断DE 与平面ABC 的位置关系,并加以证明;(2)求直线DH 与平面ACE 所成角的正弦值.21.已知点M 是抛物线()2:20C x py p =>的对称轴与准线的交点,过M 作抛物线的一条切线,切点为P ,且满足2PM =.(1)求抛物线C 的方程;(2)过()1,1A -作斜率为2的直线与抛物线C 相交于点B ,点()0,T t ()0t >,直线AT 与BT 分别交抛物线C 于点E ,F ,设直线EF 的斜率为k ,是否存在常数λ,使得t k λ=?若存在,求出λ值;若不存在,请说明理由.22.已知函数()()22ln xf x x a a x=--∈R .(1)求函数()f x 的极值;(2)当11a <时,若函数()f x 有两个零点()1212,x x x x >.①证明:12ln ln x x -<②证明:1201x x <<.参考答案:1.B【分析】解对数不等式化简集合A ,解一元二次不等式化简集合B ,根据补集运算可得结果.【详解】∵集合{}{}2|log 1|02A x x x x =<=<<,{}{}2|20|12B x x x x x =--<=-<<,∴{}|10B A x x =-<≤ð,故选:B.【点睛】本题主要考查了对数与二次不等式的求解以及集合的补集运算.属于基础题.2.D【分析】求出12z z ⋅的代数形式,然后根据其实部为零,虚部不为零列式计算即可.【详解】 复数11i z =+,22i z a =+,∴()()()121i 2i 22i z z a a a ⋅=++=-++,12z z ⋅为纯虚数,20a ∴-=且20a +≠,2a ∴=.故选:D.3.A【分析】直接利用函数奇偶性及0x >时的解析式计算即可.【详解】因为函数()f x 为R 上的奇函数,所以()()100100f f -=-,又当0x >时,()lg f x x x =-,所以()()()100100lg10010098f f -=-=--=.故选:A.4.C【分析】根据题意结合条件概率公式运算求解.【详解】记“小李加班”为事件A ,“小陈加班”为事件B ,则()()()111,,436P A P B P AB ===,故在小李加班的条件下,小陈也加班的概率为()()()2|3P AB P B A P A ==.故选:C.5.D【分析】先利用倍角公式降次,再利用两角和的公式展开后转化为用tan 2α表示的等式,然后解方程即可.【详解】22cos 1sin 26παα⎛⎫-=+ ⎪⎝⎭ 1cos 21sin 23παα⎛⎫∴+-=+ ⎪⎝⎭,1cos 22sin 222ααα∴+=,又cos 20α≠,则12tan 22αα=,解得tan 22α=.故选:D.6.B【分析】根据三角形的边角关系,结合角平分线定理、二倍角公式、正弦定理即可求得cos A 的值.【详解】在ABC 中,角,,A B C 对应的边分别为,,a b c ,又点D 在线段AB 上,且满足23AD BD =,所以332,555AD AB c BD c ===,又ACD BCD ∠=∠,由角平分线定理可得AC BC AD BD =,所以3255b ac c =,则32b a =,又2B A =,所以sin sin 22sin cos B A A A ==,则sin cos 2sin BA A=,由正弦定理得3sin 32cos 2sin 224aB b A A a a ====.故选:B.7.B【分析】设等比数列{}n a 的公比为q ,由1220a a +=,398S =,列方程求出1,a q ,进而可求出n S ,结合指数函数的性质求出n S 的最大、小值,列不等式组即可求出a 的取值范围【详解】解:设等比数列{}n a 的公比为q ,因为1220a a +=,398S =,所以121(12)09(1)8a q a q q +=⎧⎪⎨++=⎪⎩,解得131,22a q ==-,所以31111,2221112111,22nnn n nn S n ⎡⎤⎧⎛⎫⎛⎫--⎢⎥+ ⎪⎪ ⎪⎝⎭⎢⎥⎪⎝⎭⎛⎫⎣⎦==--=⎨ ⎪⎛⎫⎝⎭⎛⎫⎪-- ⎪- ⎪⎪⎝⎭⎝⎭⎩为奇数为偶数,当x 为正整数且奇数时,函数1()12xy =+单调递减,当x 为正整数且偶数时,函数1()12xy =-+单调递增,所以1n =时,n S 取得最大值32,当2n =时,n S 取得最小值34,所以34322a a ⎧≤⎪⎪⎨⎪+≥⎪⎩,解得1324a -≤≤.故选:B.8.D【分析】设()[]x g x x=,根据已知作出()g x 的草图,分析已知函数()[]()0x fx ax x=-≠有且仅有2个零点,则[]x a x=有且仅有2个解,即可得出答案.【详解】函数()[]()0x f x a x x=-≠有且仅有2个零点,则[]x a x=有且仅有2个解,设()[],1,00,01nx n x n n g x xxx ⎧≤<+≠⎪==⎨⎪≤<⎩,根据符号[]x 作出()g x的草图如下:则2334a <≤或322a ≤<,故选:D.9.AC【分析】根据表格数据计算得到众数,中位数,平均数和标准差即可判断结果【详解】由题意,这组运动时长数据中8出现了5次,其余数出现次数小于5次,故众数为8,A 正确;将16小学生的运动时长从小到大排列为:4,5,5,6,6,7,7,7,7,8,8,8,8,8,9,9,则中位数为7772+=,故B 错误;计算平均数为142526475829716⨯+⨯+⨯+⨯+⨯+⨯=,故C 正确;方差为()()()()()()2222222147257267477587297216s ⎡⎤=-+⨯-+⨯-+⨯-+⨯-+⨯-=⎣⎦,所以标准差为s ==D 错误.故选:AC 10.CD【分析】利用空间线面、面面平行、垂直的性质定理和判定定理分别分析四个命题,即可得到正确答案.【详解】A 选项,若//m α,//n β,且//m n ,则,αβ可能相交或平行,故A 错误;B 选项,若//m α,//n β,且m n ⊥,则,αβ可能相交,也可能平行,故B 错误;C 选项,若m α⊥,//m n ,则n α⊥,又n β⊥,则//αβ;即C 正确;D 选项,若m α⊥,m n ⊥,则//n α或n ⊂α;又n β⊥,根据面面垂直的判定定理可得:αβ⊥,即D 正确.故选:CD.11.ABD【分析】根据椭圆的性质逐项进行分析即可判断.【详解】由椭圆方程221259x y +=可得:5,3a b ==,4c ==,对于A ,由椭圆的性质可得:129a c PF a c =-≤≤+=,又因为点P 在第一象限内,所以159a PF a c =<<+=,所以存在点P ,使得17PF =成立,故选项A 正确;对于B ,设点00(,)P x y ,因为12(4,0),(4,0)F F -,所以100(4,)PF x y =--- ,200(4,)PF x y =--,则2222212000009161616972525PF PF x y x x x ⋅=-+=-+-=- ,因为005x <<,所以20025x ≤≤,所以2120167(7,9)25PF PF x ⋅=-∈- ,所以存在点P ,使得120PF PF ⋅=,则1290F PF ∠=︒成立,故选项B 正确;对于C ,因为1004PF y k x =+,2004PF y k x =-,若217PF PF k k =,则00(316)0x y +=,因为点00(,)P x y 在第一象限内,所以000,0y x >>,则00(316)0x y +=可化为:03160x +=,解得:01603x =-<不成立,所以不存在点P ,使得217PF PF k k =成立,故选项C 错误;对于D ,由选项B 的分析可知:2120167(7,9)25PF PF x ⋅=-∈- ,所以存在点P ,使得127PF PF ⋅=成立,故选项D 正确,故选:ABD.12.BD【分析】利用诱导公式化简可得()()πf x f x +=-,可判断选项A ;利用换元法和函数的单调性,可判断选项B 和C ;利用诱导公式化简可得()π2f x f x ⎛⎫-= ⎪⎝⎭,可判断选项D .【详解】对A :()()()()()()sin 2πsin 22πsin 2πsin πcos πsin cos sin cos x x xf x f x x x x xx x+++===-=-+++--+,故π不是()f x 的周期,A 错误;对B :令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,则2sin 22sin cos 1x x x t ==-,则211t y t t t-==-,∵ππ,44x ⎛⎫∈- ⎪⎝⎭,则()πππ0,,sin 0,1424x x ⎛⎫⎛⎫+∈+∈ ⎪ ⎪⎝⎭⎝⎭,∴π4t x ⎛⎫=+ ⎪⎝⎭在π0,2⎛⎫ ⎪⎝⎭上单调递增,且(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y t t =-在()0,∞+上单调递增,故()f x 在ππ,44⎛⎫- ⎪⎝⎭上单调递增,B 正确;对C :∵π3π,44⎛⎫- ⎪⎝⎭,则()π0,π4x +∈,∴(]πsin 0,14x ⎛⎫+∈ ⎪⎝⎭,则(π0,4t x ⎛⎫=+∈ ⎪⎝⎭,又∵1y tt =-在(上单调递增,且|2x y ,∴1y t t =-在(上最大值为2,即()f x 在π3π,44⎛⎫- ⎝⎭,C 错误;对D :()()πsin 2sin π2πsin 22ππ2cos sin sin cos sin cos 22x x x f x f x x x x xx x ⎛⎫- ⎪-⎛⎫⎝⎭-=== ⎪++⎛⎫⎛⎫⎝⎭-+- ⎪ ⎪⎝⎭⎝⎭,故()f x 图象的一条对称轴为直线π4x =,D 正确.故选:BD.【点睛】结论点睛:若()()f m x f n x +=-,则()f x 关于直线2m nx +=对称,特别地()()2f x f a x =-,则()f x 关于直线x a =对称;若()()2f m x f n x b ++-=,则()f x 关于点,2m n b +⎛⎫⎪⎝⎭对称,特别地()()20f x f a x +-=,则()f x 关于点(),0a 对称.13.75##1.4【分析】先以{},OA OB 为基底向量求,OE OF uu u r uuu r,联立求解可得6362,5555OA OE OB OF OE =-=-uu r uu u r uuu r uu u r uuu r uu u r ,再结合OC OA OB =+,代入运算即可得答案.【详解】由题意可得:11,23OE OA AE OA OB OF OB BF OB OA =+=+=+=+uu u r uu r uu u r uu r uu u r uuu r uu u r uu u r uu u r uu r,联立1213OE OA OB OF OB OA ⎧=+⎪⎪⎨⎪=+⎪⎩,解得63556255OA OE OB OF OE ⎧=-⎪⎪⎨⎪=-⎪⎩ ,∵636243555555OC OA OB OE OF OF OE OE OF ⎛⎫⎛⎫=+=-+-=+ ⎪ ⎪⎝⎭⎝⎭uuu r uu r uu u r uu u r uuu r uuu r uu u r uu u r uuu r ,则43,55m n ==,故75m n +=.故答案为:75.14.3y x x =+(答案不唯一)【分析】利用导数的几何意义可求得在()0,0处的切线斜率,由此可得切线方程;若两曲线在原点处具有相同切线,只需满足过点()0,0且在0x =处的导数值1y '=即可,由此可得曲线方程.【详解】sin y x = 的导函数为cos y x '=,又sin y x =过原点,sin y x ∴=在原点()0,0处的切线斜率cos 01k ==,sin y x ∴=在原点()0,0处的切线方程为y x =;所求曲线只需满足过点()0,0且在0x =处的导数值1y '=即可,如3y x x =+,231y x '=+ ,又3y x x =+过原点,3y x x ∴=+在原点处的切线斜率1k =,3y x x ∴=+在原点()0,0处的切线方程为y x =.故答案为:3y x x =+(答案不唯一).15.188π5【分析】分类讨论旋转轴所在的直线,结合锥体的体积公式运算求解.【详解】由题意不妨设:3,4,5AB AC BC ===,边BC 上的高为h ,则1122AB AC BC h ⨯=⨯,可得125AB AC h BC ⨯==,若以边AB 所在直线为旋转轴,则所形成的几何体为圆锥,其底面半径14r =,高为3AB =,故此时圆锥的体积为2113π416π3V =⨯⨯⨯=;若以边AC 所在直线为旋转轴,则所形成的几何体为圆锥,其底面半径23r =,高为4AC =,故此时圆锥的体积为2214π312π3V =⨯⨯⨯=;若以边BC 所在直线为旋转轴,则所形成的几何体为两个共底面的圆锥,其底面半径3125r h ==,高为12,h h ,且125h h BC +==,故所得几何体的体积为()22223132312311111248πππ5ππ333355V h r h r h h r ⎛⎫=⨯⨯+⨯⨯=+⨯⨯=⨯⨯⨯= ⎪⎝⎭;故体积之和为4818816π12πππ55++=.故答案为:188π5.16.22+【分析】设2PF m =,则m c a ≥-,根据双曲线的定义12PF m a =+,故221244PF a m a PF m=++,分2a c a ≥-与2a c a <-讨论,结合“对勾”函数的性质可求出离心率.【详解】设2PF m =,则m c a ≥-,由双曲线的定义知122PF PF a -=,∴12PF m a =+,()22212244PF m a a m a PF mm+==++,当2a c a ≥-,即13a c ≥时,221244PF a m a PF m =++84823a a c c ≥=>>,不符合题意;当2a c a <-,即3ce a=>时,244a y m a m=++在[),m c a ∈-+∞上单调递增,所以当m c a =-时212PF PF 取得最小值,故2442a c a a c c a-++=-,化简得2240c ac a --=,即2410e e --=,解得2e =(舍)或2e =3e >.综上所述,该双曲线的离心率是2故答案为:2.17.(1)1*1,2n n a n -⎛⎫=∈ ⎪⎝⎭N (2)1b =,1c =【分析】(1)根据1n n n a S S -=-,结合已知等式得出112n n a a -=,即可得出数列{}n a 是以首项为1,公比为12的等比数列,即可得出数列{}n a 的通项公式;(2)利用关系式得出1a 、2a 、3a ,再根据等差中项列式,即可得出答案.【详解】(1)令1n =,则11a S b c +=+,即12a b c =+,11a = ,0b =,2c ∴=,则2nn a S +=,即2n n S a =-,当2n ≥时,()1122n n n n n a S S a a --=-=---,化简得112n n a a -=,而11a =,则数列{}n a 是以首项为1,公比为12的等比数列,则数列{}n a 的通项公式1*1,2n n a n -⎛⎫=∈ ⎪⎝⎭N ,(2)当1k =时,n n a S nb c +=+,令1n =,则11a S b c +=+,则12a b c =+,11a = ,2b c ∴+=,令2n =,则222a S b c +=+,则2122a b c a =+-,2b c += ,11a =,221a b ∴=+,令3n =,则333a S b c +=+,则31223a b c a a =+--,2b c += ,11a =,212b a +=,33144b a ∴=+, 数列{}n a 为等差数列,2132a a a ∴=+,即311144b b +=++,解得1b =,则21c b =-=.18.(1)证明见解析(2)98【分析】(1)利用余弦定理及面积公式将条件变形得cos sin A B =,再利用诱导公式及三角函数的性质可证明结论;(2)利用(1)的结论及三角公式,将sin sin A C +转化为关于cos B 的二次函数,然后配方可以求最值.【详解】(1)由余弦定理222cos 2b c a A bc+-=得2222cos bc A b c a =+-,4412cos sin 2bS b bc A ac B a a ∴==⨯,cos sin A B ∴=,cos cos 2πA B ⎛⎫∴=- ⎪⎝⎭,B 为钝角,则,2πA B -均为锐角,2B A π∴-=,即2B A π=+;(2)2ππsin sin sin sin cos cos 22cos cos 122A C B B B B B B B ⎛⎫⎛⎫+=-++-=--=--+ ⎪ ⎪⎝⎭⎝⎭,令cos B t =,B 为钝角,则()1,0t ∈-,2219sin sin 21248A C t t t ⎛⎫∴+=--+=-++ ⎪⎝⎭,当14t =-,即1cos 4B =-时,sin sin A C +取最大值,且为98.19.(1)47108;(2)12.【分析】(1)由相互独立事件同时发生的概率,可得结论;(2)设出男生人数,列出22⨯列联表,根据2 3.841χ≥及,,236x x x均为整数即可求解.【详解】(1)从该校全体学生中随机抽取2名男生和2名女生,记其中恰有2人喜欢课外阅读为事件A ,则()222211221152151247C C 63636633108P A ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(2)设被调查的男生人数为x ,则被调查的女生人数为2x,则22⨯列联表为:喜欢课外阅读不喜欢课外阅读合计男生6x56x x 女生3x 6x 2x 合计2x x32x若有95%的把握认为喜欢课外阅读和性别有关,则2 3.841χ≥,即223526663 3.84122x x x x x x xx x χ⎛⎫⋅-⋅ ⎪⎝⎭≥≥⋅⋅⋅,则 3.841810.2433x ⨯≥≈,因为,,236x x x均为整数,所以被调查的男生至少有12人.20.(1)DE ∥平面ABC ,证明见解析;5【分析】(1)分别取,AC BC 的中点,O P ,连接,,DO EP OP ,EP DO ∥且EP DO =,再利用线面平行的判定定理,即可得到答案;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB 的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系O xyz -,求出向量1,22DH ⎛= ⎝⎭uuu r 及平面ACE 的法向量()1,0,2m =-,代入夹角公式,即可得到答案;【详解】(1)DE ∥平面ABC ,理由如下:分别取,AC BC 的中点,O P ,连接,,DO EP OP ,因为AD CD =,所以DO AC ⊥,又平面ACD ⊥平面ABC ,平面ACD 平面ABC AC =,DO ⊂平面ACD ,所以DO ⊥平面ABC ,同理EP ⊥平面ABC ,所以EP DO ∥,又因为,ACD BCE 是全等的正三角形,所以EP DO =,所以四边形DOPE 是平行四边形,所以DE OP ∥,因为ED ⊄平面ABC ,OP ⊂平面ABC ,所以ED ∥平面ABC ;(2)连接BO ,则易知BO ⊥平面ACD ,以O 为坐标原点,分别以,,OD OA OB的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系O xyz -,令2AC =.则()()())110,0,0,0,1,0,0,1,0,,0,,0,22O A C D H P ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,1,2DE OP E ⎫=∴-⎪⎪⎭所以()310,2,0,,2222AC AE DH ⎫⎛⎫=-=-=⎪ ⎪⎪ ⎪⎭⎝⎭,设平面ACE 的法向量为(),,m x y z =,所以·0·0m AC m AE ⎧=⎪⎨=⎪⎩,所以203022y y -=⎧⎪-+=则0y =,取2z =,1x ∴=-,则()1,0,2m =-,所以cos ,DH m DH m DH m ===设直线DH 与平面ACE 所成的角为θ,则sin cos ,DH m θ==21.(1)2x y =(2)存在,32λ=【分析】(1)利用导数求得切线方程2002x x y x p p =-,根据切线方程过点0,2p M ⎛⎫-⎪⎝⎭求得220x p =,再结合两点间距离公式运算求解;(2)根据题意联立方程求点B 的坐标,再分别求直线,AT BT 的方程和,E F 的坐标,代入斜率公式运算求解即可.【详解】(1)∵抛物线()2:20C x py p =>,则20,,22p x M y p ⎛⎫-= ⎪⎝⎭,∴x y p'=,设20,2x P x p ⎛⎫ ⎪⎝⎭,则在点P 处的切线斜率0x k p =,故在点P 处的切线方程为()20002x x y x x p p -=-,即2002x x y x p p =-,∵切线过点0,2p M ⎛⎫- ⎪⎝⎭,则2022x p p -=-,解得220x p =,则2PM ===,解得12p =,故抛物线C 的方程为2x y =.(2)存在,32λ=,理由如下:由题意可得:直线AB 的方程为()121y x -=+,即23y x =+,联立方程223y x x y=+⎧⎨=⎩,解得11x y =-⎧⎨=⎩或39x y =⎧⎨=⎩,即直线AB 与抛物线的交点坐标为()()1,1,3,9A B -,∵直线AT 的斜率1k t =-,故其方程为()1y t x t =-+,联立方程()21y t x t x y⎧=-+⎨=⎩,解得11x y =-⎧⎨=⎩或2x ty t =⎧⎨=⎩,即点()2,E t t,又∵直线BT 的斜率93tk -=,故其方程为93t y x t -=+,联立方程293t y x t x y -⎧=+⎪⎨⎪=⎩,解得11x y =-⎧⎨=⎩或239t x t y ⎧=-⎪⎪⎨⎪=⎪⎩,即点2,39t t F ⎛⎫- ⎪⎝⎭,故直线EF 的斜率为222933t t k t t t λ-===+,则32λ=.【点睛】存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确则存在;若结论不正确则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件;③当条件和结论都不知,按常规法解题很难时,可先由特殊情况探究,再推广到一般情况.22.(1)()f x 有极小值()11f a =-,无极大值(2)①证明见详解;②证明见详解【分析】(1)求导,利用导数判断原函数的单调性,进而可求极值;(2)对①:根据分析可得12ln ln x x -<12ln 0t t t-->,构建()12ln g x x x x =--,利用导数证明;对②:令11m x =,整理可得()112ln f m m m m m m ⎛⎫⎛⎫=+-- ⎪⎪⎝⎭⎝⎭,结合()g x 的单调性证明()0f m <,再结合()f x 的单调性即可证明.【详解】(1)由题意可得:()()()3222ln 121ln 2x x x f x x x x +='--=-,∵()3ln 1F x x x =+-在()0,∞+上单调递增,且()10F =,∴当01x <<时,()0F x <,当1x >时,()0F x >,即当01x <<时,()0f x '<,当1x >时,()0f x ¢>,故()f x 在()0,1上单调递减,在()1,+∞上单调递增,可得()f x 有极小值()11f a =-,无极大值.(2)若函数()f x 有两个零点()1212,x x x x >,则()110f a =-<,解得1a >,当111a <<时,则()()2422424e e 4e 0,e e 0ef a f a --=-+>=-->,结合()f x 的单调性可知:()f x 在()0,1,()1,+∞内均只有一个零点,则2101x x <<<,构建()12ln g x x x x =--,则()()22212110x g x x x x-'=-+=≥当0x >时恒成立,故()g x 在()0,∞+上单调递增,①令1t =>,则12ln ln x x -<1121ln x x x x -,等价于221ln t t t-<,等价于12ln 0t t t-->,∵()g x 在()1,+∞上单调递增,则()()10g t g >=,即12ln 0t t t-->,故12ln ln x x -<②若函数()f x 有两个零点()1212,x x x x >,令()110,1m x =∈,即11x m=,则()21212ln1112ln 01m f x f a a m m m m m m⎛⎫⎛⎫==--=-+= ⎪ ⎪⎝⎭⎝⎭,可得212ln a m m m =+,故()2222ln 12ln 112ln 2ln m mf m m a m m m m m m m m m m m ⎛⎫⎛⎫⎛⎫=--=--+=+-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,由()0,1m ∈,则10m m+>,∵()g x 在()0,1上单调递增,则()()10g m g <=,即12ln 0m m m--<,∴()112ln 0f m m m m m m ⎛⎫⎛⎫=+--< ⎪⎪⎝⎭⎝⎭当()0,1m ∈时恒成立,又∵()f x 在()0,1上单调递减,且()()20f m f x <=,∴2m x >,即211x x >,故1201x x <<.【点睛】方法点睛:利用导数证明不等式的基本步骤(1)作差或变形.(2)构造新的函数h (x ).(3)利用导数研究h (x )的单调性或最值.(4)根据单调性及最值,得到所证不等式.特别地:当作差或变形构造的新函数不能利用导数求解时,一般转化为分别求左、右两端两个函数的最值问题.。

2024届山东省联合模拟考试数学试题(解析版)

2024届山东省联合模拟考试数学试题(解析版)

2024年全国普通高考模拟考试数学试题2024.5注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.3.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.样本数据2,3,4,5,6,8,9的第30百分位数是()A.3B.3.5C.4D.5【答案】C 【解析】【分析】利用百分位数的求法计算即可.【详解】易知730% 2.1⨯=,则该组数据的第三个数4为第30百分位数.故选:C2.已知集合{}|12024A x x =-≤≤,{}|1B x a x a =+≤≤()0a >,若A B ⋂≠∅,则a 的取值范围是()A.()0,2024 B.(]0,2024 C.()0,2023 D.(]0,2023【答案】B 【解析】【分析】由A B ⋂≠∅,则集合B 中最小元素a 应在集合A 中,即可得到a 的取值范围.【详解】由题意A B ⋂≠∅,再由0a >,所以集合B 中最小元素a 应在集合A 中,所以02024a <≤,即a 的取值范围是(]0,2024.故选:B.3.已知抛物线2:4C x y =的焦点为F ,点P 在C 上,若P 到直线=3y -的距离为5,则PF =()A.5B.4C.3D.2【答案】C【解析】【分析】利用抛物线的定义先确定准线及焦点,计算即可.【详解】由题意可知()0,1F ,抛物线的准线为1y =-,而PF 与P 到准线的距离相等,所以()()5133PF =----=.故选:C4.某所学校的3名同学和2名老师站成一排合影,若两名老师之间至少有一名同学,则不同的站法种数为()A.120B.72C.64D.48【答案】B 【解析】【分析】根据给定条件,利用不相邻的排列问题列式计算即得.【详解】依题意,两名老师不相邻,所以不同的站法种数为2334A 62A 127=⨯=.故选:B5.已知5a = ,4b = ,若a 在b 上的投影向量为58b - ,则a 与b 的夹角为()A.60° B.120°C.135°D.150°【答案】B 【解析】【分析】利用投影向量的定义计算即可.【详解】易知a 在b上的投影向量为cos ,55cos ,88a b a b a b a b b b ⋅=-⇒=- ,而51cos ,82b a b a =-⋅=-,所以a 与b 的夹角为120 .故选:B6.已知圆()22:200M x y ay a ++=>的圆心到直线322x y +=M 与圆()()22:221N x y -++=的位置关系是()A.相离B.相交C.内切D.内含【答案】D 【解析】【分析】根据点到直线的距离公式求a 的值,再利用几何法判断两圆的位置关系.【详解】圆M :2220x y ay ++=⇒()222x y a a ++=,所以圆心()0,M a -,半径为a .==,且0a >,所以112a =.又圆N 的圆心()2,2N -,半径为:1.所以2MN ==,912a -=.由922<,所以两圆内含.故选:D7.已知等差数列{}n a 满足22144a a +=,则23a a +可能取的值是()A.2-B.3- C.4D.6【答案】A 【解析】【分析】根据题意,令12cos a θ=,42sin a θ=,由等差数列的下标和性质结合三角函数的性质求解即可.【详解】设12cos a θ=,42sin a θ=,则1243π)4a a a a θ=+++=,所以23[a a ∈+-,故选:A.8.已知函数()1cos 4221f x x x ππ⎛⎫=-+ ⎪-⎝⎭,则21y x =-与()f x 图象的所有交点的横坐标之和为()A.12B.2C.32D.3【答案】D 【解析】【分析】先用诱导公式化简函数,然后变形成一致的结构,再换元,转化成新元方程根的横坐标之和,分别画图,找出交点横坐标的关系,再和即可.【详解】由题意化简()11cos 4sin(4)22121f x x x x x πππ⎛⎫=-+=+ ⎪--⎝⎭11sin(42)sin 2(21)2121x x x x πππ=-+=-+--,21y x =-与()f x 图象有交点,则1sin 2(21)2121x x x π-+=--有实根,令21t x =-,则12t x +=,则化为1sin 2t t t π+=,即1sin 2t t tπ=-的所有实根之和,即()sin 2g t t π=与1()h t t t =-所有交点横坐标之和,显然()g t 是周期为1的奇函数,()h t 为奇函数且在(0,)+∞上为增函数,图像如图所示,显然,一共有6个交点123456,,,,,t t t t t t ,它们的和为0,则12345612345616322t t t t t tx x x x x x ++++++++++=⨯+=,故选:D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1z ,2z 为复数,则()A.1212z z z z +=+ B.若12z z =,则2121z z z =C.若11z =,则12z -的最小值为2 D.若120z z ⋅=,则10z =或20z =【答案】BD 【解析】【分析】通过列举特殊复数验证A ;设()1i,,R z a b a b =+∈,则()2i,,R z a b a b =-∈,通过复数计算即可判断B ;设()1i,,R z a b a b =+∈,由复数的几何意义计算模长判断C ;由120z z ⋅=得120z z =,即可判断D.【详解】对于A ,若121i,1i =+=-z z ,则121i 1i 2z z +=++-=,121i 1i z z +=++-=1212z z z z +≠+,故A 错误;对于B ,设()1i,,R z a b a b =+∈,则()2i,,R z a b a b =-∈,所以()()2212i i z z a b a b a b =+-=+,而2221z a b =+,所以2121z z z =,故B 正确;对于C ,设()1i,,R z a b a b =+∈,因为11z =,所以221a b +=,所以()1i 22a b z =-+===-,因为11a -≤≤,所以1549a ≤-≤,所以12z -的最小值为1,故C 错误;对于D ,若120z z ⋅=,所以120z z ⋅=,所以120z z =,所以10z =或20z =,所以12,z z 至少有一个为0,故D 正确.故选:BD10.袋子中有6个相同的球,分别标有数字1,2,3,4,5,6,从中随机取出两个球,设事件A =“取出的球的数字之积为奇数”,事件B =“取出的球的数字之积为偶数”,事件C =“取出的球的数字之和为偶数”,则()A.()15P A =B.()1|3P B C =C.事件A 与B 是互斥事件D.事件B 与C 相互独立【答案】AC 【解析】【分析】分别求出事件,,A B C 的概率,再根据互斥事件和相互独立事件的概率进行判断.【详解】因为“取出的求的数字之积为奇数”,就是“取出的两个数都是奇数”,所以()2326C 31C 155P A ===;故A 正确;“取出的球的数字之积为偶数”就是“取出的两个数不能都是奇数”,所以()2326C 3411C 155P B =-=-=;“取出的两个数之和为偶数”就是“取出的两个数都是奇数或都是偶数”,所以()2326C 22C 5P C =⨯=;A B +表示“取出的两个数的积可以是奇数,也可以是偶数”,所以()1P A B +=;BC 表示“取出的两个数的积与和都是偶数”,就是“取出的两个数都是偶数”,所以()2326C 1C 5P BC ==.因为()()()|P BC P B C P C =12=,故B 错误;因为()()()P A B P A P B +=+,所以,A B 互斥,故C 正确;因为()()()P BC P B P C ≠⋅,所以,B C 不独立,故D 错误.故选:AC11.已知双曲线()222:10x C y a a-=>的渐近线方程为12y x =±,过C 的右焦点2F 的直线交双曲线右支于A ,B 两点,1F AB 的内切圆分别切直线1F A ,1F B ,AB 于点P ,Q ,M ,内切圆的圆心为I,半径为,则()A.CB.切点M 与右焦点2F 重合C.11F BI F AI ABI S S S +-=△△△D.17cos 9AF B ∠=【答案】ABD 【解析】【分析】A 选项,根据渐近线方程求出2a =,得到离心率;B 选项,由双曲线定义和切线长定理得到22AP BQ AM BM AF BF -=-=-,得到切点M 与右焦点2F 重合;C 选项,根据双曲线定义和1F AB 的内切圆的半径得到11F BI F AI ABI S S S +-=△△△;D 选项,作出辅助线,得到112tan 4PI AF I PF ∠==,利用万能公式得到答案.【详解】A 选项,由题意得112a =,解得2a =,故离心率c e a ===A 正确;B 选项,11,,AP AM F P FQ QB BM ===,由双曲线定义可得1224AF AF a -==,1224BF BF a -==,两式相减得1122AF BF AF BF -=-,即22AP BQ AM BM AF BF -=-=-,故切点M 与右焦点2F 重合,B 正确;C 选项,1F AB 的内切圆的半径为2r =故()111111111122222F BI F AI ABI S S S F A r F B r AB r F A F B AB +-=+-=+- ()11112424222F A AM F B BM a =-+-=⨯=C 错误;D 选项,连接1F I ,则1F I 平分1AF B ∠,其中111224F P AF AP AF AF a =-=-==,故112tan 4PI AF I PF ∠==,所以2221111212112c i os cos co s s c s n s s in o in AF I AF IAF I AF I AF I AF IAF B ∠-∠∠-=∠=+∠∠∠2212212141tan 71tan 9214AF I AF I ⎛⎫-⎪-∠⎝⎭===+∠⎛⎫+ ⎪⎝⎭.故选:ABD【点睛】关键点点睛:利用双曲线定义和切线长定理推出切点M 与右焦点2F 重合,从而推理得到四个选项的正误.三、填空题:本题共3小题,每小题5分,共15分.12.二项式5a x x ⎛⎫+ ⎪⎝⎭的展开式中,3x 的系数为10,则=a ___________.【答案】2【解析】【分析】利用二项式展开式的通项计算即可.【详解】易知二项式5a x x ⎛⎫+ ⎪⎝⎭的展开式通项公式为()5152155C C rr rr rr r T x a x a x ---+=⋅=⋅,显然1r =时,115C 102a a =⇒=.故答案为:213.若函数()()πcos sin 3f x x x ϕ⎛⎫=-++ ⎪⎝⎭的最大值为2,则常数ϕ的一个取值为___________.【答案】π6(答案不唯一,满足πZ π2,6k k ϕ=+∈即可)【解析】【分析】利用和(差)角公式化简,再判断1sin 02ϕ+≠,利用辅助角公式化简,再结合函数的最大值,求出ϕ.【详解】因为()()πcos sin 3f x x x ϕ⎛⎫=-++⎪⎝⎭ππcos cos sin sin sin coscos sin 33x x x x ϕϕ=+++1cos cos sin sin 22x x ϕϕ⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭,若1sin 02ϕ+=,则cos 2ϕ=±,所以()0f x =或()f x x =,显然不满足()f x 的最大值为2,所以1sin 02ϕ+≠,则()()f x x θ=+,(其中3cos 2tan 1sin 2ϕθϕ+=+),依题意可得2213sin cos 422ϕϕ⎛⎛⎫+++= ⎪ ⎝⎭⎝⎭,即sin 2ϕϕ+=,所以πsin 13ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π,Z 32k k ϕ+=+∈,解得πZ π2,6k k ϕ=+∈.故答案为:π6(答案不唯一,满足πZ π2,6k k ϕ=+∈即可)14.如图,正方形ABCD 和矩形ABEF 所在的平面互相垂直,点P 在正方形ABCD 及其内部运动,点Q 在矩形ABEF 及其内部运动.设2AB =,AF =,若PA PE ⊥,当四面体PAQE 体积最大时,则该四面体的内切球半径为___________.【答案】222-或84352362+-【解析】【分析】先确定P 点的轨迹,确定四面体P AQE -体积最大时,P ,Q 点的位置,再利用体积法求内切球半径.【详解】如图:因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,BE ⊂平面ABEF ,且BE AB ⊥,所以BE ⊥平面ABCD .AP ⊂平面ABCD ,所以BE AP ⊥,又⊥PE AP ,,PE BE ⊂平面PBE ,所以AP ⊥平面PBE ,PB ⊂平面PBE ,所以AP PB ⊥.又P 在正方形ABCD 及其内部,所以P 点轨迹是如图所示的以AB 为直径的半圆,作PH AB ⊥于H ,则PH 是三棱锥P AQE -的高.所以当AQE 的面积和PH 都取得最大值时,四面体PAQE 的体积最大.此时Q 点应该与B 或F 重合,P 为正方形ABCD 的中心.如图:当Q 点与B 重合,P 为正方形ABCD 的中心时:13P AQE AQE V S PH -=⋅ 1213=23=,2AQE S = 1PEQ S = ,1PAQ S = ,APE V 中,因为AP PE ⊥,2AP =,2PE =,所以2APE S = .设内切球半径为r ,由()13P AQE AQE APE APB PQE V S S S S r -=+++⋅ 得:2222222r ==+.如图:当Q 点与F 重合,P 为正方形ABCD 的中心时:13P AQE AQE V S PH -=⋅ 1213=23=,2AQE S = 3PEQ S = ,1PAQ S = ,2APE S = .设内切球半径为r ,由()13P AQE AQE APE APB PQE V S S S S r -=+++⋅ 得:22231r =++84352362+--=.综上可知,当四面体PAQE 的体积最大时,其内切球半径为:222-或84352362+-.故答案为:222或84352362+-【点睛】关键点点睛:根据PA PE ⊥得到P 点在以AE 为直径的球面上,又P 点在正方形ABCD 及其内部,所以P 点轨迹就是球面与平面ABCD 的交线上,即以AB 为直径的半圆上.明确P 点轨迹是解决问题的关键.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()()1ln f x x kx =-.(1)若曲线()f x 在e x =处的切线与直线y x =垂直,求k 的值;(2)讨论()f x 的单调性.【答案】(1)1k =(2)答案见解析【解析】【分析】(1)对函数求导,结合题意有,()()e ln e 1f k ='-=-,即可求解k 值;(2)对函数求导,分0k >和0k <两种情况讨论,根据导数的正负判断原函数的单调性.【小问1详解】因为()()1ln f x x kx =-,0k ≠,所以()()ln f x kx =-',曲线()f x 在e x =处的切线与y x =垂直,所以()()e ln e 1f k ='-=-,得1k =;【小问2详解】由()()1ln f x x kx =-得()()ln f x kx =-',当0k >时,()f x 的定义域为()0,∞+,令()0f x '=得1x k=,当10,x k ⎛⎫∈ ⎪⎝⎭时,()0f x '>,当1,x k ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '<所以()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ∞⎛⎫+ ⎪⎝⎭上单调递减;当0k <时,()f x 的定义域为(),0∞-,令()0f x '=得1x k=当1,x k ∞⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1,0x k ⎛⎫∈ ⎪⎝⎭时,()0f x '>所以()f x 在1,k ∞⎛⎫- ⎪⎝⎭上单调递减,在1,0k ⎛⎫ ⎪⎝⎭上单调递增.综上所述:当0k >时,()f x 在10,k ⎛⎫ ⎪⎝⎭上单调递增,在1,k ∞⎛⎫+ ⎪⎝⎭上单调递减;当0k <时,()f x 在1,k ∞⎛⎫- ⎪⎝⎭上单调递减,在1,0k ⎛⎫ ⎪⎝⎭上单调递增.16.如图,在四棱台1111ABCD A B C D -中,底面ABCD 为正方形,1ABC 为等边三角形,E 为AB 的中点.(1)证明:111C D B E ⊥;(2)若1124BC B C ==,1B E =,求直线1BC 与平面11CDD C 所成角的余弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)连接1EC ,可得1AB C E ⊥,由已知得11AB B C ⊥,所以得AB ⊥平面11B C E ,可得11C D ⊥平面11B C E ,则可得111C D B E ⊥;(2)以点E 为坐标原点,建立如图所示的空间直角坐标系,求出1BC的坐标及平面11CDD C 的一个法向量n的坐标,由1BC 和n夹角的余弦值的绝对值即为直线1BC 与平面11CDD C 所成角正弦值,由向量夹角的余弦公式算出,再算出直线1BC 与平面11CDD C 所成角的余弦值.【小问1详解】连接1EC ,因为1ABC 为等边三角形,所以1AB C E ⊥,因为ABCD 为正方形,所以AB BC⊥在四棱台1111ABCD A B C D -中,11//BC B C ,所以11AB B C ⊥,又1111111,,B C C E C B C C E ⋂=⊂平面11B C E ,所以AB ⊥平面11B C E ,因为11//AB C D ,所以11C D ⊥平面11B C E ,因为1B E ⊂平面11B C E ,所以111C D B E ⊥;.【小问2详解】因为底面ABCD 为正方形,1ABC 为等边三角形,所以4AB BC ==,所以1C E =因为1B E =,112B C =,所以2221111C B B E C E +=,所以111B E B C ⊥,又由(1)111C D B E ⊥,且11111C D B C C = ,1111,C D B C ⊂平面1111D C B A ,所以1B E ⊥平面1111D C B A ,即1B E ⊥平面ABCD ,取CD 的中点F ,连接EF ,以点E 为坐标原点,以EB ,EF,1EB 分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,()2,0,0B ,()2,4,0C,(10,2,C ,()2,4,0D -,所以(12,2,BC =-,(12,2,CC =-- ,()4,0,0CD =-,设(),,n x y z = 是平面11CDD C 的一个法向量,所以100n CC n CD ⎧⋅=⎪⎨⋅=⎪⎩,即22040x y x ⎧-+-+=⎪⎨=⎪⎩,得()n = ,直线1BC 与平面11CDD C所成角正弦值为113BC n BC n⋅==⋅,则直线1BC 与平面11CDD C3=.17.已知数列{}n a 满足12a =,1nn n a a d q +-=⋅,*n ∈N .(1)若1q =,{}n a 为递增数列,且2,5a ,73a +成等比数列,求d ;(2)若1d =,12q =,且{}21n a -是递增数列,{}2n a 是递减数列,求数列{}n a 的通项公式.【答案】(1)12d =(2)()1171332nnn a --=+⋅【解析】【分析】(1)利用数列{}n a 为单调递增数列,得到1n n a a d +-=,再根据2,5a ,73a +成等比数列,得到28230d d +-=,即可求出的值.(2)由数列{}21n a -是递增数列得出21210n n a a +-->,可得()()2122210n n n n a a a a +--+->,但2211122n n -<,可得212221n n n n a a a a +--<-.可得()221221211122nn n n n a a ----⎛⎫-==⎪⎝⎭;由数列{}2n a 是递减数列得出2120n n a a +-<,可得()1112n n n naa ++--=,再利用累加法可求出数列{}n a 的通项公式.【小问1详解】因为12a =,且{}n a 为递增数列,所以1n n a a d +-=,所以{}n a 为等差数列,因为2,5a ,73a +成等比数列,所以()()2114263a d a d +=++,整理得28230d d +-=,得12d =,34d =-,因为{}n a 为递增数列,所以12d =.【小问2详解】由于{}21n a -是递增数列,因而21210n n a a +-->,于是()()2122210n n n n a a a a +--+->①但2211122n n -<,所以212221n n n n a a a a +--<-.②又①,②知,2210n n a a -->,因此()221221211122nn n n n a a ----⎛⎫-==⎪⎝⎭③因为{}2n a 是递减数列,同理可得2120n n a a +-<,故()21221221122n nn n n a a ++-⎛⎫-=-=⎪⎝⎭,④由③,④即知,()1112n n n na a ++--=,于是()()()121321nn n a a a a a a a a -=+-+-++- ()1211111112221222212n nn --⎛⎫-- ⎪-⎝⎭=+-++=++ ()1171332nn --=+⋅,故数列{}n a 的通项公式为()1171332nnn a --=+⋅.【点睛】思路点睛:本题可从以下方面解题.(1)数列{}n a 为等差数列,利用等差数列的性质即可;(2)根据数列{}21n a -是递增数列得,21210n n a a +-->,数列{}2n a 是递减数列得,2120n n a a +-<,综合数列{}21n a -和{}2n a 即可得()1112n n n naa ++--=,最后利用累加法可求出数列{}n a 的通项公式.18.已知椭圆C :()222210x y a b a b+=>>的上顶点为A ,左焦点为F ,点4,3b B ⎛⎫- ⎪⎝⎭为C 上一点,且以AB为直径的圆经过点F .(1)求C 的方程;(2)过点()5,0G -的直线l 交C 于D ,E 两点,线段DE 上存在点M 满足DM GE DG EM ⋅=⋅,过G与l 垂直的直线交y 轴于点N ,求GMN 面积的最小值.【答案】(1)221189x y +=(2)7【解析】【分析】(1)根据已知条件和椭圆中,,a b c 的关系,求出,,a b c 的值,可得椭圆的标准方程.(2)设直线l :()5y k x =+,再设()11,D x y ,()22,E x y ,()00,M x y ,把直线方程代入椭圆方程,消去y ,得到关于x 的一元二次方程,根据一元二次方程根与系数的关系,表示出12x x +,12x x ,并用,,120x x x 表示条件DM GE DG EM ⋅=⋅,整理得0x 为定值;再结合弦长公式表示出GM ,利用两点间的距离公式求GN ,表示出GMN 的面积,利用基本(均值)不等式求最值.【小问1详解】由题意知()0,A b ,(),0F c -,因为点4,3b B ⎛⎫- ⎪⎝⎭在椭圆C 上,所以2221619b a b+=⇒218a =,由以AB 为直径的圆经过点F ,知0FA FB ⋅= ,得22403b c c -+=①,又222b c a +=②,由①②得3c =,3b =,所以C 的方程为:221189x y +=.【小问2详解】如图:由题意,直线l 斜率存在且不为0,设直线l 的方程为()5y k x =+,且()11,D x y ,()22,E x y ,()00,M x y ,将()5y k x =+代入221189x y +=,整理可得()2222122050180kxk x k +++-=,()()()2222Δ2041250180kk k =-+->,解得77k -<<,由根与系数的关系可得21222012k x x k +=-+,2122501812k x x k -=+,根据DM GE DG EM = ,得01120255x x x x x x -+=-+,解得()22221212021225018202525121218201051012k k x x x x k k x k x x k ⎛⎫-+-⎪++++⎝⎭===-++-++,设与直线l 垂直的直线方程为()15y x k=-+,令0x =,则5y k =-,即50,N k ⎛⎫- ⎪⎝⎭,故GN ==,()1855GM =--=,记GMN 面积为S ,则12S GM GN =⨯==7272==,当且仅当1k =±时取等号,所以GMN 面积的最小值为7.【点睛】方法点睛:圆锥曲线求取值范围的问题,常见的解决方法有:(1)转化为二次函数,利用二次函数在给定区间上的值域求范围;(2)转化为不等式,利用基本(均值)不等式求最值;(3)转化为三角函数,利用三角函数的有界性求取值范围;(4)转化为其它函数的值域问题,通过分析函数的单调性求值域.19.设点集(){}{}23*1,,,,|0,1,1,n n i M a a a a a i n i =∈≤≤∈N L,从集合n M 中任取两个不同的点()123,,,,n A a a a a ,()123,,,,n B b b b b ,定义A ,B 两点间的距离()1,ni i i d A B a b ==-∑.(1)求3M 中(),2d A B =的点对的个数;(2)从集合n M 中任取两个不同的点A ,B ,用随机变量X 表示他们之间的距离(),d A B ,①求X 的分布列与期望;②证明:当n 足够大时,()24D X n <.(注:当n 足够大时,20n -≈)【答案】(1)12对(2)①分布列见解析,()()212n nE X -=-;②证明见解析【解析】【分析】(1)根据题意分析可知:A ,B 有两个位置的坐标不相等,另一个相等,进而可得结果;(2)①分析可知X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,进而可求分布列,结合组合数性质可求期望;②根据方差公式()()21nk kk D X P X E X =⎡⎤=⋅-⎣⎦∑整理可得()()2121C C C 214n n n n n n D X ⎡⎤<+++⎢⎥-⎣⎦L ,结合组合数性质分析证明.【小问1详解】当3n =时,若(),2d A B =,可知A ,B 有两个位置的坐标不相等,另一个位置的坐标相等,所以共有122322C A A 12=对.【小问2详解】①由题意可知,n M 中元素的个数为2n 个,对于X k =的随机变量,在坐标()123,,,,n a a a a 与()123,,,,n b b b b 中有k 个坐标值不同,即i i a b ≠,剩下n k -个坐标值满足i i a b =,此时所对应情况数为12C 2C 22k k n k k n nn --⋅=⋅种.所以()122C 2C C 21n k n k n n n P X k -⋅===-,故X 的分布列为:X12⋅⋅⋅nP1C 21n n-2C 21n n-⋅⋅⋅C 21n nn-数学期望()1212C C C C C C 12120212121212121n nn n n n nn n n n n n n E X n n =⨯+⨯++⨯=⨯⨯+⨯+------L L ,当2k n ≤≤时,则()()()()()2!!C 2C 2!!2!2!k n k n nn n k n k k n k k n k n k k -++-+=⨯+-+⨯--+-()()()()()()()!!!111!!1!2!1!1!n n n n k k k n k n k k n k k =+=-++----+--+-()()1!C 1!1!k n n n n n k k -⋅==-+-,且1C 0C C nn n n n n n +==⋅=⋅,则()()11C C C 011212121n n n nn n n n E X n n -=+⨯+-⨯++⨯---L ,两式相加得()()01222C C C C 2121n nn n n n n n n n E X ⋅=++++=--L ,所以()()212n nE X -=-;②当n 足够大时,()2n E X ≈,由方差定义()()21nk k k D X P X E X =⎡⎤=⋅-⎣⎦∑22212C C C 12212212212n n n n n n n n n n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭L222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++⋅-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L 222121C 1C 2C 21222n n n n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫=⋅-+⋅-++-⎢⎥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦L ()()()21212221C C C C 1C 22214n n n n n n n n n n ⎧=+++-+-+⎨-⎩ ()()()()}23212C 33C 11C n n n n n n n n n n n n -⎡⎤-++---⋅+-⋅⎣⎦因为k n ≤,则()()()20n k n k n k k n ---⋅=-≤,当且仅当0k =或k n =时,等号成立,则()()()2221211C C C 212142144n n n n n n n n n n D X ⎡⎤⎡⎤<+++=-=⎢⎥⎢⎥--⎣⎦⎣⎦L ,所以()24D X n <.【点睛】关键点点睛:(2)①利用倒序相加法结合()21C 2C C kn k k n nn k n k n -+-+-+=分析求解;②根据方差公式结合()()20n k n k n ---⋅≤分析证明.。

2022年全国卷Ⅰ高考数学理科模拟试题卷含答案(2)

2022年全国卷Ⅰ高考数学理科模拟试题卷含答案(2)

2022年全国卷Ⅰ高考数学理科模拟试题卷班级:_________________ 姓名:_________________ 座号:________________评卷人得分一、选择题(共12题,每题5分,共60分)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.2.已知复数z=(a-3i)(3+2i)(a∈R)的实部与虚部的和为7,则a的值为A.1B.0C.2D.-23.函数y=log0.4(–x2+3x+4)的值域是A.(0,–2]B.[–2,+∞)C.(–∞,–2]D.[2,+∞)4.以AB为直径的半圆如图所示,其中||=8,O为其所在圆的圆心,OB的垂直平分线与圆弧交于点P,与AB交于点D,Q为PD上一点,若=0,则·=A.9B.15C.-9D.-155.已知lg a+lg b=0,函数f(x)=a x与函数g(x)=-log b x的图像可能是A BC D6.袋子中有四个小球,分别写有“和”“平”“世”“界”四个字,有放回地从中任取一个小球,直到“和”“平”两个字都取到才算完成.用随机模拟的方法估计恰好取三次便完成的概率.利用电脑随机产生0到3之间取整数值的随机数,0,1,2,3代表的字分别为“和”“平”“世”“界”,以每三个随机数为一组,表示取球三次的结果,随机模拟产生了以下24组随机数组:由此可以估计,恰好取三次便完成的概率为A. B. C. D.7.在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE 与平面BB1C1C所成的角为A.30°B.45°C.60°D.90°8.执行如图所示的程序框图,若输入的k=,则输出的S=A. B. C. D.9.已知等差数列的前项和分别为,若,则的值是A. B. C. D.10.若x1,x2∈R,则的最小值是A.1B.2C.3D.411.已知直线l过点(1,0),且倾斜角为直线l0:x-2y-2=0的倾斜角的2倍,则直线l的方程为A.4x-3y-3=0B.3x-4y-3=0C.3x-4y-4=0D.4x-3y-4=012.若a,b是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是A.若a⊥b,b⊥α,α⊥β,则a⊥βB.若α⊥β,a⊥α,b∥β,则a⊥bC.若a∥α,a∥β,α∩β=b,则a∥bD.若a∥b,a⊥α,b∥β,则α∥β第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题(共4题,每题5分,共20分)13.曲线y=在点(-1,-3)处的切线方程为.14.已知{a n}是递增的等差数列,其前n项和为S n,且S2=S7,写出一个满足条件的数列{a n}的通项公式a n= .15.已知数列{a n}的前n项和为S n,a n+2S n=3n,数列{b n}满足(3a n+2-a n+1)(n∈N*),则数列{b n}的前10项和为.16.已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线上.若△PF1F2为直角三角形,且tan∠PF1F2=,则双曲线的离心率为.评卷人得分三、解答题(共7题,共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且sin(+C)=.(1)求角A;(2)若a=4,△ABC的周长为9,求△ABC的面积.18.如图,已知四棱柱ABCD-A1B1C1D1的底面是菱形,BB1⊥底面ABCD,E是棱CC1的中点.(1)求证:AC∥平面B1DE;(2)求证:平面BDD1B1⊥平面B1D E.19.2020年12月10日,首届全国职业技能大赛在广州广交会展馆拉开帷幕,活动为期4天,2 557名参赛选手围绕86个比赛项目展开激烈角逐.大赛组委会秘书长、人社部职业能力建设司司长张立新表示,这次大赛是新中国成立以来规格最高、项目最多、规模最大、水平最高的综合性国家职业技能赛事.为了准备下一届比赛,甲、乙两支代表队各自安排了10名选手参与选拔活动,他们在活动中取得的成绩(单位:分,满分100分)如下:甲代表队:95 95 79 93 86 94 97 88 81 89乙代表队:88 83 95 84 86 97 81 82 85 99(1)分别求甲、乙两支代表队成绩的平均值,并据此判断哪支代表队的成绩更好;(2)甲、乙两支代表队的总负责人计划从这两支队伍得分超过90分的选手中随机选择4名参加强化训练,记参加强化训练的选手来自甲代表队的人数为X,求X的分布列和数学期望.20.已知椭圆的右焦点为,过且与轴垂直的弦长为3.(1)求椭圆的标准方程;(2)过作直线与椭圆交于两点,问在轴上是否存在点,使为定值,若存在,请求出点坐标,若不存在,请说明理由.21.已知函数f(x)=(x-2)e x-x2+ax,a∈R.(1)讨论函数f(x)的单调性;(2)若不等式f(x)+(x+1)e x+x2-2ax+a>0恒成立,求a的取值范围.请考生在第 22、23 三题中任选二道做答,注意:只能做所选定的题目。

2023届高考全国甲卷乙卷全真模拟(四)数学试卷及答案

2023届高考全国甲卷乙卷全真模拟(四)数学试卷及答案

2023年高考数学全真模拟卷四(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知复数z 满足2i 3i 0z z --+=,则z 的共轭复数z =()A .1i+B .1i-C .1i5+D .1i5-2.设集合(){},A x y y x ==,(){}3,B x y y x ==,则A B ⋂的元素个数是()A .1B .2C .3D .43.设命题p :若,x y R ∈,则“0x y >>”是“22x y >”的必要不充分条件;命题q :“0x ∀>,21x >”的否定是“0x ∃≤,21x ≤”,则下列命题为真命题的是()A .p q ∧B .()()p q ⌝∧⌝C .p q∨D .()p q ∧⌝4.已知()f x 是偶函数,在(-∞,0)上满足()0xf x '>恒成立,则下列不等式成立的是()A .()34()()5f f f <<--B .()()()435f f f <->-C .()()()534f f f -<-<D .()()()453f f f <-<-5.在长方体1111ABCD A B C D -中,点E 为1AC 的中点,12AB AA ==,且AD =异面直线AE 与BC 所成角的余弦值为()A .3B .3C .22D .26.美国在今年对华为实行了禁令,为了突围实现技术自主,华为某分公司抽调了含甲、乙的5个工程师到华为总部的4个不同的技术部门参与研发,要求每个工程师只能去一个部门,每个部门至少去一个工程师,且甲乙两人不能去同一个部门,则不同的安排方式一共有()种A .96B .120C .180D .2167.将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,所得图象经过点π,12⎛⎫ ⎪⎝⎭,则ϕ的最小值为()A .π12B .π4C .3π4D .11π128.在区间[]22-,上随机取一个数k ,使直线()2y k x =+与圆221x y +=相交的概率为()A .3B .12C D .49.某班同学利用课外实践课,测量北京延庆会展中心冬奥会火炬台“大雪花”的垂直高度MN .在过N 点的水平面上确定两观测点,A B ,在A 处测得M 的仰角为30°,N 在A 的北偏东60°方向上,B 在A 的正东方向30米处,在B 处测得N 在北偏西60°方向上,则MN =()A .10米B .12米C .16米D .18米10.已知函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()f x 的零点个数为()A .1B .2C .3D .411.两个长轴在x 轴上、中心在坐标原点且离心率相同的椭圆.若A ,B 分别为外层椭圆的左顶点和上顶点,分别向内层椭圆作切线AC ,BD ,切点分别为C ,D ,且两切线斜率之积等于23-,则椭圆的离心率为()A .13B C D 12.已知3e a -=,ln1.01b =,sin 0.02c =,则()A .a b c <<B .b a c <<C .c b a<<D .b<c<a第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若双曲线221x my +=的焦距等于虚轴长的3倍,则m 的值为______.14.向量()2,1a =-r ,()2,3b =-r ,(),1c m =- ,c b ⊥r r,则a c -= ___.15.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知向量cos,12A B m +⎛⎫= ⎪⎝⎭,且254m = .若2c =,且ABC 是锐角三角形,则22a b +的取值范围为______.16.如图,ED 是边长为2的正三角形ABC 的一条中位线,将ADE V 沿DE 折起,构成四棱锥F BCDE -,若EF CD ⊥,则四棱锥F BCDE -外接球的表面积为__________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.2022年卡塔尔世界杯开幕式在美丽的海湾球场举行,中国制造在这届世界杯中闪亮登场,由中国铁建承建的卢赛尔球场是全球首个在全生命周期深入应用建筑信息模型技术的世界杯主场馆项目.场馆的空调是我们国家的海信空调,海信空调为了了解市场情况,随机调查了某个销售点五天空调销售量y (单位:台)和销售价格x (单位:百元)之间的关系,得到如下的统计数据:销售价格x 2428303236销售量y340330300270260(1)通过散点图发现销售量y 与销售价格x 之间有较好的线性相关关系,求出y 关于x 的线性回归方程ˆˆˆybx a =+.(2)若公司希望每天的销售额到达最大,请你利用所学知识帮公司制定一个销售价格(注:销售额=销售价格×销售量).附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121ˆni ii n ii x x yy bx x ==--=-∑∑,ˆˆay bx =-.18.已知数列{}n a 的前n 项和为n S ,且123n n n S S a +=++,11a =.(1)证明:数列{}3n a +是等比数列,并求数列{}n a 的通项公式;(2)若()2log 3n n n b a a =⋅+,求数列{}n b 的前n 项和n T .19.如图,在四棱锥M ABCD -中,底面ABCD 是平行四边形,4AB =,AD =,MC ==45ADC ∠︒,点M 在底面ABCD 上的射影为CD 的中点O ,E 为线段AD 上的点(含端点).(1)若E 为线段AD 的中点,证明:平面MOE ⊥平面MAD ;(2)若3AE DE =,求二面角D ME O --的余弦值.20.已知函数()2()4e 6x f x x x x =--+,()()ln 1g x x a x =-+,1a >-.(1)求()f x 的极值;(2)若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,求实数a 的取值范围.(3e 20.09≈)21.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求曲线C 极坐标方程;(2)若点A ,B 为曲线C 上的两个点且OA OB ⊥,求证:2211||||OA OB +为定值.[选修4-5:不等式选讲]23.已知函数()|2||3|f x x x =++.(1)求函数()y f x =的最小值M ;(2)若0,0a b >>且a b M +=2023年高考数学全真模拟卷四(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知复数z 满足2i 3i 0z z --+=,则z 的共轭复数z =()A .1i +B .1i-C .1i5+D .1i5-【答案】B【分析】由复数的除法运算求出z ,再根据共轭复数的概念可得z .【详解】由2i 3i 0z z --+=,得3i 12i z -=-(3i)(12i)(12i)(12i)-+=-+55i 1i 5+==+,所以1i z =-.故选:B2.设集合(){},A x y y x ==,(){}3,B x y y x ==,则A B ⋂的元素个数是()A .1B .2C .3D .4【答案】C【分析】联立3,y x y x ==求出交点坐标,从而得到答案.【详解】联立3y x y x=⎧⎨=⎩,即3x x =,解得:0x =或1±,即()()(){}0,0,1,1,1,1A B =-- ,故A B ⋂的元素个数为3.故选:C3.设命题p :若,x y R ∈,则“0x y >>”是“22x y >”的必要不充分条件;命题q :“0x ∀>,21x >”的否定是“0x ∃≤,21x ≤”,则下列命题为真命题的是()A .p q ∧B .()()p q ⌝∧⌝C .p q∨D .()p q ∧⌝【答案】B【分析】先判断命题p 和命题q 的真假,再根据复合命题真假的判定方法,即可得出结果.【详解】根据不等式的性质,若0x y >>,则22x y >;反之,若22x y >,则220x y ->,即()()0x y x y +->,因为,x y 正负不确定,所以不能推出0x y >>,因此“0x y >>”是“22x y >”的充分不必要条件,即命题p 为假命题;所以p ⌝为真命题;命题q :“0x ∀>,21x >”的否定是“0x ∃>,21x ≤”,故命题q 为假命题;q ⌝为真命题;所以p q ∧为假,p q ∨为假,()p q ∧⌝为假,()()p q ⌝∧⌝为真.即ACD 错,B 正确.故选:B.4.已知()f x 是偶函数,在(-∞,0)上满足()0xf x '>恒成立,则下列不等式成立的是()A .()34()()5f f f <<--B .()()()435f f f <->-C .()()()534f f f -<-<D .()()()453f f f <-<-【答案】A【分析】由题干条件得到(),0x ∈-∞时,()0f x '<,故()f x 在(),0∞-上单调递减,结合()f x 为偶函数,得到()f x 在()0,∞+上单调递增,从而判断出大小关系.【详解】(),0x ∈-∞时,()0xf x '>即()0f x '<,∴()f x 在(),0∞-上单调递减,又()f x 为偶函数,∴()f x 在()0,∞+上单调递增.∴()()()345f f f <<,∴()()()345f f f -<<-.故选:A .5.在长方体1111ABCD A B C D -中,点E 为1AC 的中点,12AB AA ==,且AD =面直线AE 与BC 所成角的余弦值为()A .23B C D 【答案】C【分析】将异面直线AE 与BC 所成角转化为EAD ∠或其补角,再通过边的计算得到4EAD π∠=,即可求解.【详解】连接1,,DE AC A D ,由BC AD ∥可得EAD ∠或其补角即为异面直线AE 与BC 所成角,又1A A ⊥面ABCD ,AC ⊂面ABCD ,则1A A AC ⊥,则111222AE A C ==⨯,同理可得1A D DC ⊥,1122DE AC ==,则222AE DE AD +=,4EAD π∠=,则异面直线AE 与BC 所成角的余弦值为cos4π=故选:C.6.美国在今年对华为实行了禁令,为了突围实现技术自主,华为某分公司抽调了含甲、乙的5个工程师到华为总部的4个不同的技术部门参与研发,要求每个工程师只能去一个部门,每个部门至少去一个工程师,且甲乙两人不能去同一个部门,则不同的安排方式一共有()种A .96B .120C .180D .216【答案】D【解析】根据题意,先将5人分成4组,减去甲乙在一起的1组,然后4组再安排到4个不同的部门可得答案.【详解】由()24541216C A -=故选:D.7.将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,所得图象经过点π,12⎛⎫⎪⎝⎭,则ϕ的最小值为()A .π12B .π4C .3π4D .11π12【答案】C【分析】利用三角函数图象平移规律得到函数[]sin 2()y x ϕ=+的图象,由所得图象经过点π,12⎛⎫ ⎪⎝⎭和ϕ的范围可得答案.【详解】将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,得到函数[]sin 2()y x ϕ=+的图象,由所得图象经过点π,12⎛⎫⎪⎝⎭,可得()sin π21ϕ+=,则ππ22π2k ϕ+=+,k ∈Z ,则ππ4k ϕ=-+,k ∈Z ,又0ϕ>,所以ϕ的最小值为3π4.故选:C .8.在区间[]22-,上随机取一个数k ,使直线()2y k x =+与圆221x y +=相交的概率为()A B C .6D 【答案】C【分析】求出直线与圆相交时k 的取值范围,利用几何概型的概率公式可求得所求事件的概率.【详解】因为圆221x y +=的圆心为()0,0,半径1r =,直线()2y k x =+与圆221x y +=相交,所以圆心到直线()2y k x =+的距离1d =,解得33k -<<,所以,直线()2y k x =+与圆221x y +=相交的概率为346P ==,故选:C .9.某班同学利用课外实践课,测量北京延庆会展中心冬奥会火炬台“大雪花”的垂直高度MN .在过N 点的水平面上确定两观测点,A B ,在A 处测得M 的仰角为30°,N 在A 的北偏东60°方向上,B 在A 的正东方向30米处,在B 处测得N 在北偏西60°方向上,则MN =()A .10米B .12米C .16米D .18米【答案】A【分析】由已知分析数据,在NAB △中,由正弦定理可求得NA ,在直角MNA △中,可求得MN .【详解】由已知得,30MAN ∠=︒,30NAB NBA ∠=∠=︒,30AB =米在NAB △中,由正弦定理可得30sin120sin 30NA=︒︒,求得NA =米在直角MNA △中,tan 3010M NA N ⋅︒==米故选:A 10.已知函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()f x 的零点个数为()A .1B .2C .3D .4【答案】C【分析】根据题意求导后结合已知极值,得出27b c =-⎧⎨=-⎩,即可根据导数得出其单调性,再结合特值得出其零点个数.【详解】由题意得()232f x x bx c ¢=++,因为函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()2118f b c b -=-+-+=,()1320f b c '-=-+=,解得27b c =-⎧⎨=-⎩(经检验适合题意),或33b c =⎧⎨=⎩(经检验不合题意舍去)故()32274f x x x x =--+,()()()2347137f x x x x x '=--=+-,当(),1x ∈-∞-或7,3⎛⎫+∞ ⎪⎝⎭时,()0f x ¢>,即函数()f x 单调递增,当71,3x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,即函数()f x 单调递减,又因为()30f -<,()10f ->,()10f <,()40f >,则()f x 有3个零点,故选:C.11.两个长轴在x 轴上、中心在坐标原点且离心率相同的椭圆.若A ,B 分别为外层椭圆的左顶点和上顶点,分别向内层椭圆作切线AC ,BD ,切点分别为C ,D ,且两切线斜率之积等于23-,则椭圆的离心率为()A .13B C D 【答案】B【分析】法一,用判别式等于零求两条切线得斜率,因为它们相乘等于23-,可得2223b a =,所以椭圆的离心率为e 3=;法二,用极点极线得方法得到两条切线得斜率,再根据条件即得.【详解】法一:设内椭圆方程为()222210x y a b a b +=>>,外椭圆为()222220x y m m a b+=>,切线AC 的方程为()1y k x ma =+,联立()1222222,,y k x ma b x a y a b ⎧=+⎨+=⎩消去y 可得:()2222322422211120b a k x ma k x m a k a b +++-=,因为直线AC 为椭圆的切线,所以()()26422224222111Δ440m a k b a k m a k a b =-+-=,化简可得:2212211b k a m =⋅-,设直线BD 的方程为:2y k x mb =+,同理可得()222221b k m a =-,因为两切线斜率之积等于23-,所以2223b a =,所以椭圆的离心率为e =故选:B.法二;设内层椭圆:22221x y a b +=,外层椭圆:22222x y m a b+=.设切点()111,P x y ,()222,P x y ,(),0A ma ,()0,B mb ,切线1l :11221x x y ya b +=,切线2l :22221x x y y a b+=,∴21121x b k a y =-⋅①,22222x b k a y =-⋅②,又∵11AP k k =,即211211x y b a y x ma-⋅=-,即222222111b x b m ax a y -+=,即22222222111b m ax a y b x a b =+=,∴1mx a =,同理22BP k k =,∴2my b =,∴21y b x a=,将1P ,2P 代入椭圆22221x y a b +=中得:221222y b x a =,经分析得:12y b x a =-,由①②可知22212122212x x b b k k a y y a ⎛⎫=⋅=- ⎪⎝⎭,∴2223b a =,∴2221e 13b a =-=,∴e 3=.故选:B.12.已知3e a -=,ln1.01b =,sin 0.02c =,则()A .a b c <<B .b a c <<C .c b a <<D .b<c<a【答案】D【分析】先利用不等式()sin 0x x x >>比较a ,c 的大小,再构造函数,利用函数的单调性比较b ,c 的大小,即可得到结果.【详解】如图,单位圆A 中,BAC θ∠=,BD AC ⊥于D ,则BC 的长度l θ=,sin BD θ=,则由图易得,l BC BD >>,即sin θθ>,所以3321110.02sin 0.02e 350e c a -==>>=>=.设()()sin 2ln 1f x x x =-+,0,6x π⎛⎫∈ ⎪⎝⎭,则()112cos 21011f x x x x '=->->++,所以()f x 在0,6π⎛⎫⎪⎝⎭上单调递增,则()0.010f >,即sin 0.02ln1.01>,即b c <.综上,b<c<a .故选:D .第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若双曲线221x my +=的焦距等于虚轴长的3倍,则m 的值为______.【答案】8-【分析】先将双曲线化为标准形式,进而得到2211,a b m ==-,211c m=-,根据题意列出方程,求出m 的值.【详解】221x my +=化为标准方程:2211y x m-=-,则2211,a b m ==-,故211c m =-,则可得:=8m =-,故答案为:8-14.向量()2,1a =-r ,()2,3b =-r ,(),1c m =- ,c b ⊥r r,则a c -= ___.【答案】172【分析】利用平面向量垂直的坐标表示可求得实数m 的值,再利用平面向量的坐标运算以及向量模的坐标运算可求得结果.【详解】由已知可得230c b m ⋅=--= ,解得32m =-,则3,12c ⎛⎫=-- ⎪⎝⎭,所以,1,22a c ⎛⎫-=- ⎪⎝⎭ ,因此,a c -== .15.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知向量cos,12A B m +⎛⎫= ⎪⎝⎭,且254m = .若2c =,且ABC 是锐角三角形,则22a b +的取值范围为______.【答案】20,83⎛⎤⎥⎝⎦【分析】化简254m = 可得2π3A B +=,即π3C =,由正弦定理可得22168πsin 2336a b A ⎛⎫+=+- ⎪⎝⎭,再结合ABC 是锐角三角形,即可求出ππ62A <<,则可写出22a b +的取值范围.【详解】由题意得()221cos 5cos 11224A B A B m +++=+=+= ,所以()1cos 2A B +=-,因为0πA B <+<,所以2π3A B +=,所以()ππ3C A B =-+=,由正弦定理得sin sin sin a b c A B C ===,所以a A ,2πsin 3b B A ⎛⎫=⋅- ⎪⎝⎭,则2222162sin sin 33a b A A π⎡⎤⎛⎫+=+- ⎪⎢⎥⎝⎭⎣⎦1684cos 2cos 2333A A π⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦1681cos 2cos 22332A A A ⎛⎫=-- ⎪ ⎪⎝⎭168πsin 2336A ⎛⎫=+- ⎪⎝⎭.因为ABC 是锐角三角形,所以π02A <<,π02B <<,又2π3B A =-,所以ππ62A <<,即ππ5π2666A <-<,所以1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭,所以20168πsin 283336A ⎛⎫<+-≤ ⎪⎝⎭,故222083a b <+≤.故答案为:20,83⎛⎤ ⎥⎝⎦.16.如图,ED 是边长为2的正三角形ABC 的一条中位线,将ADE V 沿DE 折起,构成四棱锥F BCDE -,若EF CD ⊥,则四棱锥F BCDE -外接球的表面积为__________.【答案】112π【分析】根据给定的几何体,确定四边形BCDE 外接圆圆心,进而求出外接球半径即可计算作答.【详解】取BC 中点G ,连接AG 交DE 于H ,连接,,,FH EG DG FG ,如图,因为ED 是边长为2的正ABC 平行于BC 的中位线,则,AG ED FH ED ⊥⊥,H 是AG 中点,,,AG FH H AG FH =⊂ 平面AFG ,则有ED ⊥平面AFG ,ED ⊂平面BCDE ,有平面AFG ⊥平面BCDE ,显然有112GE GD GC GB =====,则G 是四边形BCDE 外接圆圆心,在平面AFG 内过G 作直线l AG ⊥,因为平面AFG ⋂平面BCDE AG =,因此l ⊥平面BCDE ,则四棱锥F BCDE -的外接球球心O 在直线l 上,过F 作FQ AG ⊥于Q ,FQ ⊂平面AFG ,有FQ ⊥平面BCDE ,则有//OG FQ ,连接,FO BO ,四边形FOGQ 为直角梯形,因为//,EG CD FE CD ⊥,则有FE EG ⊥,FG =,在AFG 中,FH AH HG ==,则AFG 是直角三角形,90AFG ∠= ,而AG =则1AF =,于是得3AF FG FQ AG ⋅==,过O 作OP FQ ⊥于P ,有PQ OG =,2FG OP GQ AG ===OB OF R ==,Rt OBG △与Rt OFP 中,222222OB BG OG OF OP FP ⎧=+⎨=+⎩,即222214)3R OG R OG ⎧=+⎪⎨=+-⎪⎩,解得44OG R ==,所以四棱锥F BCDE -外接球的表面积为21142S R ππ==.故答案为:112π三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分三、解答题17.2022年卡塔尔世界杯开幕式在美丽的海湾球场举行,中国制造在这届世界杯中闪亮登场,由中国铁建承建的卢赛尔球场是全球首个在全生命周期深入应用建筑信息模型技术的世界杯主场馆项目.场馆的空调是我们国家的海信空调,海信空调为了了解市场情况,随机调查了某个销售点五天空调销售量y (单位:台)和销售价格x (单位:百元)之间的关系,得到如下的统计数据:销售价格x 2428303236销售量y340330300270260(1)通过散点图发现销售量y 与销售价格x 之间有较好的线性相关关系,求出y 关于x 的线性回归方程ˆˆˆybx a =+.(2)若公司希望每天的销售额到达最大,请你利用所学知识帮公司制定一个销售价格(注:销售额=销售价格×销售量).附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121ˆni ii n ii x x yy b x x ==--=-∑∑,ˆˆay bx =-.【答案】(1)7.5525ˆyx =-+(2)35百元【分析】(1)根据已知求得回归方程的系数,即可得回归方程;(2)利用销售额的公式可得到()27.5359187.5zx =--+ ,利用二次函数的性质即可求解【详解】(1)2428303236305x ++++==,3403303002702603005y ++++==,6402302(30)6(40)7.536ˆ4436b-⨯-⨯+⨯-+⨯-==-+++,3007.530ˆ525a=+⨯=,∴y 关于x 的线性回归方程为7.5525ˆyx =-+(2)设销售额为 ()227.55257.5359187.5zx y x x x ==-+=--+ ,070x ≤≤,当35x =百元时,此时销售额到达最大,该值为max 9187.5z =百元18.已知数列{}n a 的前n 项和为n S ,且123n n n S S a +=++,11a =.(1)证明:数列{}3n a +是等比数列,并求数列{}n a 的通项公式;(2)若()2log 3n n n b a a =⋅+,求数列{}n b 的前n 项和n T .【答案】(1)证明过程见详解,123n n a +=-(2)2239222n n T n n n+=⋅--【分析】(1)先利用n a 与n S 之间的关系化简已知等式,得到1n a +,n a 间的关系,从而可求得数列{}3n a +的首项和公比,即可求得数列{}n a 的通项公式;(2)先求得数列{}n b 的通项公式,再根据分组求和和错位相减即可求得n T .【详解】(1)因为123n n n S S a +=++,所以123n n n S S a +-=+,得123n n a a +=+,即()1323n n a a ++=+,又11a =,所以数列{}3n a +是首项为4,公比为2的等比数列,所以113422n n n a -++=⋅=,得123n n a +=-.(2)由题意得()()()()()1111223log 21231231n n n n n b n n n ++++=-⋅=+⋅-=+-+,所以()()2316332232122n n n n T n +++=⨯+⨯+++⨯-.令()231223212n n P n +=⨯+⨯+++⨯ ,则()3422223212n n P n +=⨯+⨯+++⨯ ,两式相减,得()()()223412222212222212412221n n n n n n P n n n ++++--=⨯++++-+⨯=+-+⨯=-⋅- ,故22n n P n +=⋅,所以2239222n n T n n n +=⋅--.19.如图,在四棱锥M ABCD -中,底面ABCD 是平行四边形,4AB =,AD =,MC ==45ADC ∠︒,点M 在底面ABCD 上的射影为CD 的中点O ,E 为线段AD 上的点(含端点).(1)若E 为线段AD 的中点,证明:平面MOE ⊥平面MAD ;(2)若3AE DE =,求二面角D ME O --的余弦值.【答案】(1)证明见解析【分析】(1)在△ADO 中,利用勾股定理证明ED ⊥EO ,再结合ED ⊥MO 即可证明AD ⊥平面MOE ,从而可证明平面MOE ⊥平面MAD ;(2)连接OA ,证明DO OA ⊥,以O 为坐标原点,建立空间直角坐标系,利用空间向量即可求解二面角的余弦值.【详解】(1)∵AD ⊂平面ABCD ,MO ⊥平面ABCD ,∴MO AD ⊥.∵O 为线段CD 的中点,E 为线段AD 的中点,∴2DO =,DE =∵=45ADC ∠︒,由余弦定理得22222222EO =+-⨯⨯,则222EO DE DO +=,则DE EO ⊥.∵MO EO O ⋂=,,MO EO ⊂平面MOE ,∴AD ⊥平面MOE ,又∵AD ⊂平面MAD ,∴平面MOE ⊥平面MAD .(2)连接OA ,由(1)知当E 为线段AD的中点时,AE DE EO ===,则A 、O 、D 三点在以AD 为直径的圆上,故DO OA ⊥.故以O为原点,建立如图所示的空间直角坐标系,又MC =2MO =,∴(0,0,0)O ,(2,0,0)D ,(0,2,0)A ,(0,0,2)M .又3AE DE =,则13,,022E ⎛⎫⎪⎝⎭,∴(0,0,2)OM = ,(2,0,2)DM =- ,(2,2,0)DA =-,13,,022OE ⎛⎫= ⎪⎝⎭.设平面MAD 的法向量为()111,,m x y z = ,则1111220220DM m x z DA m x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,,解得1111x z x y =⎧⎨=⎩,,取11x =,则平面MAD 的一个法向量为(1,1,1)m =.设平面MEO 的法向量为()222,,x n y z = ,则2221302220OE n x y OM n z ⎧⋅=+=⎪⎨⎪⋅==⎩,,解得22230x y z =-⎧⎨=⎩,,取23x =,则平面MEO 的一个法向量为(3,1,0)n =-.则30cos 15m n m n m n⋅⋅==⋅,则二面角D ME O --的余弦值为15.20.已知函数()2()4e 6x f x x x x =--+,()()ln 1g x x a x =-+,1a >-.(1)求()f x 的极值;(2)若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,求实数a 的取值范围.(3e 20.09≈)【答案】(1)极大值()2ln 28ln 28-+-,极小值为39e -(2)361,e ⎛⎫-- ⎪⎝⎭【分析】(1)求出()f x ',令()0f x '=,得3x =或ln 2x =,再列出,(),()x f x f x '的变化关系表,根据表格和极值的概念可求出结果;(2)根据(1)求出()f x 在[]1,3上的最小值为3(3)9e f =-,则将若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,转化为3ln 9e 1x a x-++<在23e ,e ⎡⎤⎣⎦上恒成立,再构造函数3ln 9e ()x h x x-+=,23e ,e x ⎡⎤∈⎣⎦,转化为min 1()a h x +<,利用导数求出min ()h x 代入可得解【详解】(1)由()2()4e 6x f x x x x =--+,得()()()e 4e 263e 26x x xf x x x x x '=+--+=--+()()3e 2x x =--,令()0f x '=,得3x =或ln 2x =,,(),()x f x f x '的变化关系如下表:x (),ln 2-∞ln 2()ln 2,33()3,+∞()f x '+0-+()f x 单调递增极大值单调递减极小值单调递增由表可知,当ln 2x =时,()f x 取得极大值,为(ln 2)f =()()2ln 2ln 24e ln 26ln 2--+()2ln 28ln 28=-+-,当3x =时,()f x 取得极小值,为()32(3)34e 318f =--+39e =-.(2)由(1)知,()f x 在[]1,3上单调递减,所以当[]1,3x ∈时,3min ()(3)9e f x f ==-,于是若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,则()()3ln 19e 1x a x a -+>->-在23e ,e ⎡⎤⎣⎦上恒成立,即3ln 9e 1x a x-++<在23e ,e ⎡⎤⎣⎦上恒成立,令3ln 9e ()x h x x -+=,23e ,e x ⎡⎤∈⎣⎦,则min 1()a h x +<,()321ln 9e ()x x x h x x⋅--+'=3210e ln xx -+=,因为23e ,e x ⎡⎤∈⎣⎦,所以[]ln 2,3x ∈,33310e ln 12e ,13e x ⎡⎤-+∈--⎣⎦,因为3e 20.09≈,所以313e 1320.097.090-≈-=-<,所以()0h x '<,所以()h x 单调递减,故333min 33ln e e 96()(e )1e e h x h +-===-,于是3611e a +<-,得36e a <-,又1a >-,所以实数a 的取值范围是361,e ⎛⎫-- ⎪⎝⎭.21.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l yx =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.【答案】(1)24x y=(2)⎡⎣【分析】(1)计算2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,根据距离公式计算得到2p =,得到抛物线方程.(2)求导得到导函数,计算切线方程得到AB 的直线方程为()002y y xx +=,联立方程,根据韦达定理得到根与系数的关系,根据向量运算得到034y -≤≤,再计算PAB S =△.【详解】(1)直线1:2l y x =-,当2p y =-时,22p x =-,即2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,则QF ==,解得2p =或25p =-(舍去),故抛物线C 的方程为24x y =.(2)设()11,A x y ,()22,B x y ,()00,P x y ,24x y =,2x y '=,PA 的直线方程为:()1112x y x x y =-+,整理得到()112y y xx +=,同理可得:PB 方程为()222y y xx +=,故()()0102020222y y x x y y x x ⎧+=⎪⎨+=⎪⎩,故AB 的直线方程为()002y y xx +=,()00224 y y xx x y ⎧+=⎨=⎩,整理得到200240x x x y -+=,12012024 x x x x x y +=⎧⎨=⎩,()()()1122121212,1,11FA FB x y x y x x y y y y ⋅=-⋅-=+-++()02221212221212000216123164x x x x x x x x y x y y +-=+-+=-++=-,09235y -≤-≤,解得034y -≤≤,设P 到AB 的距离为d,12PABS AB d =⋅=△,034y -≤≤,故[]2044,20y+∈,4,PAB S ⎡∈⎣△(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求曲线C 极坐标方程;(2)若点A ,B 为曲线C 上的两个点且OA OB ⊥,求证:2211||||OA OB +为定值.【答案】(1)2243sin 1ρθ=+(2)证明见解析【分析】(1)先消去参数ϕ化为直角坐标方程,再根据公式cos x ρθ=,sin y ρθ=化为极坐标方程即可得解;(2)由于OA OB ⊥,故可设()1,A ρθ,2π,2B ⎛⎫+ ⎪⎝⎭ρθ,将,A B 的极坐标代入曲线C 的极坐标方程,根据极径的几何意义可求出结果.【详解】(1)由2cos sin x y ϕϕ=⎧⎨=⎩得2222cos sin 14x y ϕϕ+=+=,所以曲线C 的直角坐标方程为2214x y +=.将cos x ρθ=,sin y ρθ=代入到2214x y +=,得2222cos sin 14ρθρθ+=,得2243sin 1ρθ=+,所以曲线C 的极坐标方程为:2243sin 1ρθ=+.(2)由于OA OB ⊥,故可设()1,A ρθ,2π,2B ⎛⎫+ ⎪⎝⎭ρθ21243sin 1ρθ=+,2222443cos 1n π23si 1ρθθ⎛⎫+ ⎝=⎭=++⎪,所以2222121111||||OA OB ρρ+=+()()223sin 13cos 1544θθ+++==.即2211||||OA OB +为定值54.[选修4-5:不等式选讲]23.已知函数()|2||3|f x x x =++.(1)求函数()y f x =的最小值M ;(2)若0,0a b >>且a b M +=【答案】(1)3M =;试卷第17页,共17页.【分析】(1)利用零点分段法将()f x 写出分段函数的形式,画出图象,由图象可以看出函数()f x 的最小值;(2)由(1)知3a b +=,23≥,的最小值.【详解】(1)由于()()()()33323330330x x f x x x x x x x ⎧--<-⎪=++=--≤≤⎨⎪+>⎩,作出此函数图象如图所示:由图象可知函数()f x 的最小值为()03f =,即3M =.(2)由(1)知3a b +=,所以2924a b ab +⎛⎫≤= ⎪⎝⎭,所以149ab ≥,23≥,当且仅当32a b ==时等号成立,3+≥≥=,当且仅当32a b ==时等号成立.。

2024年高考真题汇编(数学)(新课标卷+全国卷)PDF版含答案

2024年高考真题汇编(数学)(新课标卷+全国卷)PDF版含答案

2024年高考真题汇编数学(新课标卷+全国卷)目录2024年普通高等学校招生全国统一考试(新课标I卷)数学2024年普通高等学校招生全国统一考试(新课标II卷)数学2024年普通高等学校招生全国统一考试(全国甲卷)理科数学2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A xx B =-<<=--∣,则A B = ()A.{1,0}-B.{2,3}C.{3,1,0}--D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i -- B.1i -+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m- B.3m -C.3m D.3m5.,则圆锥的体积为()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞B.[1,0]-C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f > B.(20)1000f >C.(10)1000f <D.(20)10000f <二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.2024年普通高等学校招生全国统一考试(新课标II 卷)数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =()A.0B.1C.D.22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 至300kg 之间D.100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A.221164x y +=(0y >)B.221168x y +=(0y >)C.221164y x +=(0y >)D.221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A.1- B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A.12B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A.18B.14C.12D.1二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB ⊥D.满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则()A.当1a >时,()f x 有三个零点B.当0a <时,0x =是()f x 的极大值点C.存在a ,b ,使得x b =为曲线()y f x =的对称轴D.存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共3小题,每小题5分,共15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =________.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=+,则sin()αβ+=_______.14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有________种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =,sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =,90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.2024年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设5i z =+,则()i z z +=()A.10iB.2iC.10D.2-2.集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð()A.{}1,4,9 B.{}3,4,9C.{}1,2,3 D.{}2,3,53.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =()A.2- B.73C.1D.25.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.6.设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.237.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C. D.8.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+ B.1- C.32D.19.已知向量()()1,,,2a x x b x =+=,则()A.“3x =-”是“a b ⊥”的必要条件B.“3x =-”是“//a b”的必要条件C.“0x =”是“a b ⊥”的充分条件 D.“1x =-+”是“//a b”的充分条件10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.212.已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.2B.3C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r -和()213r r -,则两个圆台的体积之比=V V 甲乙______.15.已知1a >,8115log log 42a a -=-,则=a ______.16.有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:优级品合格品不合格品总计甲车间262450乙车间70282100总计96522150(1)填写如下列联表:优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k≥0.0500.0100.001 k 3.841 6.63510.82818.记n S为数列{}n a的前n项和,且434n nS a=+.(1)求{}n a的通项公式;(2)设1(1)nn nb na-=-,求数列{}n b的前n项和为n T.19.如图,在以A,B,C,D,E,F为顶点的五面体中,四边形ABCD与四边形ADEF均为等腰梯形,//,//BC AD EF AD,4,2AD AB BC EF====,ED FB==M为AD的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.20.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.已知函数()()()1ln 1f x ax x x =-+-.(1)当2a =-时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.[选修4-5:不等式选讲]23.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.2024年普通高等学校招生全国统一考试(全国甲卷)文科数学(部分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B = ()A.{}1,2,3,4 B.{}1,2,3C.{}3,4 D.{}1,2,92.设z =,则z z ⋅=()A.-iB.1C.-1D.23.若实数,x y 满足约束条件43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,则5z x y =-的最小值为()A.5B.12C.2- D.72-4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=()A.2- B.73C.1D.295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.236.已知双曲线的两个焦点分别为(0,4),(0,4)-,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.4B.3C.2D.7.曲线()631f x x x =+-在()0,1-处的切线与坐标轴围成的面积为()A.16B.32C.12D.8.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的大致图像为()A.B.C.D.9.已知cos cos sin ααα=-πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1- C.32D.1原10题略10.设αβ、是两个平面,m n 、是两条直线,且m αβ= .下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n⊥其中所有真命题的编号是()A.①③ B.②④C.①②③D.①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=()A.32B.C.72D.2二、填空题:本题共4小题,每小题5分,共20分.原13题略12.函数()sin f x x x =在[]0,π上的最大值是______.13.已知1a >,8115log log 42a a -=-,则=a ______.14.曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=-.(1)求{}n a 的通项公式;(2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =--+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1ex f x -<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.(二)选考题:共10分.请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值.20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a -+-≥.参考答案2024年普通高等学校招生全国统一考试(新课标I 卷)数学参考答案一、单项选择题【答案】1.A 【解析】【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.【答案】2.C 【解析】【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.【答案】3.D 【解析】【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.【答案】4.A 【解析】【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.【答案】5.B 【解析】【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.【答案】6.B【解析】【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()2021e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.【答案】7.C【解析】【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx∈上函数π2sin36y x⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C【答案】8.B【解析】【详解】因为当3x<时()f x x=,所以(1)1,(2)2f f==,又因为()(1)(2)f x f x f x>-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f>+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f>+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.二、多项选择题【答案】9.BC 【解析】【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC .【答案】10.ACD 【解析】【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B ,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C ,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.【答案】11.ABD 【解析】【详解】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于B24x +=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.三、填空题【答案】12.32【解析】【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:32【答案】13.ln 2【解析】【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 2【答案】14.12【解析】【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.四、解答题【答案】15.(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而sin 2C ==,又因为sin C B =,即cos 2B =,注意到()0,πB ∈,所以π3B =.(2)由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a c b c +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得2338c =,所以c =【答案】16.(1)由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.(2)法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,352AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d ,则1255352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,1255=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k ----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.【答案】17.(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .(2)如图所示,过点D 作DE AC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,2DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.【答案】18.(1)0b =时,()ln 2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,(2)()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .(3)因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【答案】19.(1)首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.(2)由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.(3)定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.2024年普通高等学校招生全国统一考试(新课标II 卷)数学参考答案一、单项选择题【答案】1.C 【解析】【详解】若1i z =--,则z ==.故选:C.【答案】2.B 【解析】【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.【答案】3.B 【解析】【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而22=b .故选:B.【答案】4.C 【解析】【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.【答案】5.A 【解析】【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 【答案】6.D 【解析】【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.【答案】7.B 【解析】【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知111131662222ABC A B C S S =⨯⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -=++=,解得433h =,如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,。

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析

高考数学模拟试卷附答案解析请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数f(x)是定义域为R的偶函数,且满足f(x)=f(2一x),当x e[0,1]时,f(x)=x,则函数F(x)=f(x)+x+4在区间[一9,10]上零点的个数为() 1一2xA.9B.10C.18D.202.如图,ABC中经A=2经B=60。

,点D在BC上,经BAD=30。

,将△ABD沿AD旋转得到三棱锥B,一ADC,分别记B,A,B,D与平面ADC所成角为C,β,则C,β的大小关系是()A.C<β<2C B.2C<β<3CC.β<2C,2C<β<3C两种情况都存在D.存在某一位置使得β>3a3.为计算S=1一2x2+3x22一4x23+...+100x(一2)99,设计了如图所示的程序框图,则空白框中应填入()A.i<100B.i>100C.i<100D.i之1004.已知定义在[1,+伪)上的函数f(x)满足f(3x)=3f(x),且当1<x<3时,f(x)=1一x一2,则方程f (x )=f (2019)的最小实根的值为()A .168B .249C .411D .5615.已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线PA ,PB ,P 为两切线的交点O 为坐标原点若PA .PB =0,则直线OA 与OB 的斜率之积为()11A .—-B .—3C .—-486.在复平面内,复数z =a +bi (a ,b e R )对应向量OZ (O 为坐标原点),设OZ =r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现了棣莫弗定理:z 1=r (cos θ+isin θ),111z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 2cos r (cos θ+isin θ)n =r n (cos n θ+isinn θ)(θ+θ)+isin (θ+121,已知z =(3+i )4θ2),由棣莫弗定理可以导出复数乘方公式:,则z =()A .23B .4C .83D .167.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18C .240,208.直角坐标系xOy 中,双曲线边三角形,则该双曲线的离心率x 2y 2—a 2b 2e =()A .43B .54B .200,20D .200,18=1(a ,b >0)与抛物线y 2=2bx?相交于A 、B 两点,若ΔOAB 是等C .65D .76119.在平行四边形ABCD 中,AB =3,AD =2,AP =AB,AQ =AD,若CP .CQ =12,则经ADC =()32A .5π6B .3π4C .2π3D .π210.在ABC 中,角A ,B,C 的对边分别为a ,b,c ,若c —a cos B =(2a —b)cos A ,则ABC 的形状为()D .—4A .直角三角形C .等腰或直角三角形B .等腰非等边三角形D .钝角三角形11.若复数z =21+i,其中i 为虚数单位,则下列结论正确的是()A .z 的虚部为-iB .z =2C .z 的共轭复数为-1-iD .z 2为纯虚数12.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为()A .C .3336B .D .63336二、填空题:本题共4小题,每小题5分,共20分。

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(六)答案

2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(六)答案

2023年普通高等学校招生全国统一考试·仿真模拟卷数学(六)注意事项:1.本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}210A x x =-≤,{}20B x x a =-≥,若A B B ⋃=,则实数a 的取值范围是()A.(],2-∞- B.[)2,-+∞C.1,2⎡⎫-+∞⎪⎢⎣⎭D.1,2⎛⎤-∞-⎥⎝⎦【答案】C 【解析】【分析】求出{}11A x x =-≤≤,{}2B x x a =≥,根据A B B ⋃=,得到A B ⊆,从而得到不等式,求出实数a 的取值范围.【详解】{}{}21011A x x x x =-≤=-≤≤,{}{}202B x x a x x a =-≥=≥,因为A B B ⋃=,所以A B ⊆,故21a ≤-,解得:12a ≤-,故选:C2.如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数()i 3i z a =-为“等部复数”,则实数a 的值为()A.-1B.0C.3D.-3【答案】C【解析】【分析】利用复数的乘法法则得到3i z a =+,从而得到3a =.【详解】()2i 3i i 3i 3i z a a a =-=-+=+,故3a =.故选:C3.双曲线()222210,0x y a b a b-=>>,且过点()2,2A ,则双曲线方程为()A.2212y x -= B.22124x y -=C.22142x y -= D.22136x y -=【答案】B 【解析】【分析】通过已知得出a 与b 的两个关系式,即可联立求解,代入双曲线方程即可得出答案.【详解】 双曲线()222210,0x ya b a b-=>>ca∴=,222a b c += ,2223a b a+∴=,即222a b =, 双曲线()222210,0x y a b a b-=>>过点()2,2A ,22441a b∴-=,则由222a b =与22441a b -=联立解得:a =,2b =,∴双曲线的方程为:22124x y -=,故选:B.4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如[]2.12=,[]33=,[]1.52-=-,设0x 为函数()33log 1f x x x =-+的零点,则[]0x =()A.2B.3C.4D.5【答案】A 【解析】【分析】首先判断函数的单调性,再根据零点存在性定理判断0x 所在区间,最后根据高斯函数的定义计算可得.【详解】解:因为3log y x =与31y x =-+在()0,∞+上单调递增,所以()33log 1f x x x =-+在()0,∞+上单调递增,又()33313log 3103144f =-=-=>+,()3332log 2log 21021f =-=-<+,所以()f x 在()2,3上存在唯一零点0x ,即()02,3x ∈,所以[]02x =.故选:A5.已知点P 是圆(()22:34C x y -+-=上一点,若点P 到直线2y =-的距离为1,则满足条件的点P 的个数为()A.1B.2C.3D.4【答案】C 【解析】【分析】根据圆心到直线的距离即可求解.【详解】由题意可知圆心为)C,所以)C到2y =-的距离为1d ==,故与直线2y =-平行且过圆心的直线与圆相交的两个交点即为满足条件的点P ,此时有两个,又圆的半径为2,故当过圆心且与2y =-垂直的直线与圆的下半部分相交的一个点也符合,故共有3个.故选:C6.已知ππ,42α⎛⎫∈⎪⎝⎭,且25cos 10sin 29αα+=,则tan α=()A.29B.2C.12D.92【答案】B 【解析】【分析】由已知利用二倍角公式,平方关系22sin cos 1αα+=代换,可得25209t ta an 1n αα+=+,根据α的范围即可求解.【详解】由25cos 10sin 29αα+=,得25cos 20sin cos 9ααα+=,则2225cos 20sin cos 9sin cos ααααα+=+,即25209t ta an 1n αα+=+,得29tan 20tan 40αα-+=,则()()9tan 2tan 20αα--=,得2tan 9α=或tan 2α=,又ππ42α⎛⎫∈ ⎪⎝⎭,,所以tan 1α>,故tan 2α=.故选:B7.随着北京冬奥会的开幕,吉祥物“冰墩墩”火遍国内外,现有甲、乙、丙、丁4名运动员要与1个“冰墩墩”站成一排拍照留恋,已知“冰墩墩”在最中间,甲、乙、丙、丁4名运动员随机站于两侧,则甲、乙2名运动员站“冰墩墩”同一侧的概率为()A.14B.12C.13 D.16【答案】C 【解析】【分析】先求出甲、乙、丙、丁4名运动员与1个“冰墩墩”排成一排,且“冰墩墩”在最中间的所有排法的所有排法,再求甲、乙2名运动员站“冰墩墩”同一侧的排法,根据古典概型概率公式求概率.【详解】甲、乙、丙、丁4名运动员与1个“冰墩墩”排成一排,且“冰墩墩”在最中间的所有排法有44A =24种,甲、乙2名运动员站“冰墩墩”同一侧的排法有22222A A =8种,由古典概型的概率公式可得甲、乙2名运动员站“冰墩墩”同一侧的概率:81243P ==,故选:C .8.如图,在正方体1111ABCD A B C D -中,点P 在线段1BD 上运动(包含端点),则直线1B P 与1C D 所成角的取值范围是()A.ππ,32⎡⎤⎢⎥⎣⎦ B.ππ,63⎡⎤⎢⎥⎣⎦C.ππ,43⎡⎤⎢⎥⎣⎦ D.ππ,62⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】要求直线所成角,转化为方向向量所成角,建立如图所示空间直角坐标系,所以1111B P B B BP B B BD λ=+=+ (,,1)λλλ=---+(01λ≤≤),又1(0,1,1)DC =,设则直线1B P 与1C D 所成角为θ,则11cos cos ,B P DC θ=,结合λ的范围即可得解.【详解】以1,,DA DC DD 为,,x y z 建立如图所示空间直角坐标系,设正方体的棱长为1,则(1,1,0)B ,1(0,0,1)D ,1(0,1,1)C ,1(1,1,1)B ,所以1111B P B B BP B B BD λ=+=+(0,0,1)(1,1,1)(,,1)λλλλ=-+--=---+(01λ≤≤)1(0,1,1)DC =,则设直线1B P 与1C D 所成角为π20θθ⎛⎫≤≤⎪⎝⎭,则111111cos cos ,B P DC B P DC B P DC θ⋅===⋅ ,由01λ≤≤,所以221223213,2333λλλ⎛⎫⎡⎤-+=-+∈ ⎪⎢⎥⎝⎭⎣⎦,13cos ,22θ⎡∈⎢⎣⎦,所以ππ,63θ⎡⎤∈⎢⎥⎣⎦,故选:B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.圆柱的侧面展开图是长4cm ,宽2cm 的矩形,则这个圆柱的体积可能是()A.38πcmB.38cm πC.316cm πD.34cm π【答案】BD 【解析】【分析】由已知中圆柱的侧面展开图是长4cm ,宽2cm 的矩形,我们可以分圆柱的底面周长为4cm ,高为2cm 的和圆柱的底面周长为2cm ,高为4cm ,两种情况分别由体积公式即可求解.【详解】 侧面展开图是长4cm ,宽2cm 的矩形,若圆柱的底面周长为4cm ,则底面半径2cm πR =,2cm h =,此时圆柱的体积238πcm πV R h ==若圆柱的底面周长为2cm ,则底面半径1cm πR =,4cm h =,此时圆柱的体积23πcm π4V R h ==故选:BD10.已知随机变量X 服从二项分布()4,B p ,其方差()1D X =,随机变量Y 服从正态分布(),4N p ,且()()21P X P Y a =+<=,则()A.12p =B.()328P X ==C .()38P Y a <=D.()118P Y a >-=【答案】AB 【解析】【分析】根据二项分布的方差公式得到方程求出p ,再根据独立重复试验的概率公式求出()2P X =,即可判断A 、B 、C ,最后根据正态分布的性质判断D.【详解】解:因为随机变量X 服从二项分布()4,B p ,且其方差()1D X =,所以()()411D X p p =-=,解得12p =,故A 正确;所以()22241132C 1228P X ⎛⎫⎛⎫==⋅-= ⎪ ⎪⎝⎭⎝⎭,又()()21P X P Y a =+<=,所以()58P Y a <=,所以B 正确,C 错误;所以1,42Y N ⎛⎫⎪⎝⎭,则正态曲线关于12x =对称,因为()11122a a -=--,所以()()518P Y a P Y a >-=<=,故D 错误.故选:AB11.已知直线1y x =+交椭圆22:163x yC +=于A ,B 两点,P 是直线AB 上一点,O 为坐标原点,则()A.椭圆C 的离心率为22B.423AB =C.2OA OB ⋅=-D.若1F ,2F 是椭圆C 的左,右焦点,则21PF PF -≤【答案】AD 【解析】【分析】根据椭圆方程求出a 、b 、c ,即可求出离心率,即可判断A ,设()11,A x y ,()22,B x y ,联立直线与椭圆方程,消元、列出韦达定理,根据弦长公式判断B ,求出()()121211y y x x =++,根据数量积的坐标表示判断C,设()1F 关于直线AB 的对称点为(,)E e f ,求出对称点的坐标,再根据221P P F F F E -≤,即可判断D.【详解】解:因为椭圆22:163x y C +=,所以26a =,23b =,则a =,c ==所以离心率22c e a ===,故A 正确;设()11,A x y ,()22,B x y ,由221163y x x y =+⎧⎪⎨+=⎪⎩,消去y 得23440+-=x x ,显然0∆>,所以1243x x +=-,1243x x =-,所以12823AB x =-==,故B 错误;又()()1212121251113y y x x x x x x =++=+++=-,所以12123OA OB x x y y ⋅=+=-,故C 错误;设()1F 关于直线AB 的对称点为(,)E e f ,则13122f e =-+⎪=+⎪⎩,解得11e f =-⎧⎪⎨=-⎪⎩,即(1,1E --,则1PF PE =,2221PF P P F E F E P F =--≤,当且仅当P ,E ,2F 三点共线时取等号,所以21PF PF -的最大值为2EF =,即21PF PF -≤,故D 正确,故选:AD12.已知函数()()3e xf x x =-,若经过点()0,a 且与曲线()y f x =相切的直线有两条,则实数a 的值为()A.3-B.2- C.e- D.2e -【答案】AC【解析】【分析】设出切点并根据导函数性质设出过切点的切线方程,参变分离构建新函数,求导画出草图即可根据条件得出答案.【详解】设切点为()(),3e tt t -,由()()3e xf x x =-,得()()()e 3e 2e xxxf x x x ='+-=-,则过切点的切线方程为:()()()3e 2etty t t x t --=--,把()0,a 代入,得()()()3e 2e 0tta t t t --=--,即()2e 33ta t t -=-+,令()()2e33xg x x x =-+,则()()2e xg x x x ='-,则当()(),01,x ∞∞∈-⋃+时,()0g x '>,当()0,1x ∈时,()0g x '<,()g x ∴的增区间为(),0∞-与()1,+∞,减区间为()0,1,做出草图如下:因为过点()0,a 且与曲线()y f x =相切的直线有两条,则e a -=或3a -=,则3a =-或e a =-,故选:AC.三、填空题:本题共4小题,每小题5分,共20分.13.已知向量(a = ,(b =-,则a b b ⋅-= ______.【答案】0【解析】【分析】根据向量的数量积和向量的模长公式,直接进行计算即可.【详解】((4,1,4620a b b ⋅-=⋅---+-=,故答案为:014.写出一个同时满足下列条件的非常数函数______.①在[)0,∞+单调递增②值域[)1,+∞③()()=f x f x -【答案】()21f x x =+(不唯一)【解析】【分析】结合函数的性质选择合适函数即可.【详解】由()()=f x f x -得函数为偶函数,关于y 轴对称,结合单调性及值域,可以为()21f x x =+.故答案为:()21f x x =+(不唯一).15.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2022这2022个数中,能被3除余1且被4除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为______.【答案】169【解析】【分析】根据题意可知所求数为能被12除余1,得出数列{}n a 的通项公式,然后再求解项数即可.【详解】解:因为能被3除余1且被4除余1的数即为能被12除余1的数,故1211,(N )n a n n *=-∈,又2022n a ≤,即12112022n -≤,解得203312n ≤,又*N n ∈,所以1169n ≤≤且*N n ∈.故答案为:169.16.函数()()π2sin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图中实线所示,A ,C 为()f x 的图象与x 轴交点,且1,06A ⎛⎫- ⎪⎝⎭,M ,N 是()f x 的图象与圆心为C 的圆(虚线所示)的交点,且点M 在y 轴上,N 点的横坐标为23,则圆C 的半径为______.【答案】3【解析】【分析】根据函数()2sin()f x x ωϕ=+的图象以及圆C 的对称性可得函数的周期,结合1,06A ⎛⎫- ⎪⎝⎭可得π()2sin(2π3f x x =+,进而求解M 的坐标,由勾股定理即可求解半径.【详解】根据函数()2sin()f x x ωϕ=+的图象以及圆C 的对称性,可得M ,N 两点关于圆心(,0)C c 对称,所以13c =,于是11π12π2622T c ωω=+=⇒=⇒=,由2πω=及1,06A ⎛⎫- ⎪⎝⎭,得ππ0π,Z π,Z 33k k k k ϕϕ-+=+∈⇒=+∈,由于π2ϕ<,所以π3ϕ=,所以π()2sin(2π)3f x x =+,(0)f =,从而M ,故半径为3CM ==,故答案为:273四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 满足11a =,()()1102n n n a na n ---=≥.(1)求数列{}n a 的通项公式;(2)若2n nn b a =⋅,求数列{}n b 的前n 项和n S .【答案】(1)n a n =(2)()1122n n S n +=-⋅+【解析】【分析】(1)由题意得数列n a n ⎧⎫⎨⎬⎩⎭为常数列,可数列{}n a 的通项公式;(2)利用错位相减法求数列前n 项和.【小问1详解】由()()1102n n n a na n ---=≥,得()121n n a a n n n -=≥-,所以数列n a n ⎧⎫⎨⎬⎩⎭为常数列,有111n a a n ==,∴n a n =【小问2详解】22n n n n b a n =⋅=⋅,()123122232122n n n S n n -=+⨯+⨯++-+⋅ ,()2341222232122n n n S n n +=+⨯+⨯++-+⋅ ,两式相减,()()12311121222222212212n n n n n n S n n n +++--=++++-⋅=-⋅=-⋅-- ,所以()1122n n S n +=-⋅+18.如图,在ABC 中,4AB =,2AC =,π6B =,点D 在边BC 上,且cos 7ADB ∠=-.(1)求BD ;(2)求ABC 的面积.【答案】(1(2)【解析】【分析】(1)由cos 7ADB ∠=-求出sin ADB ∠,再由正弦定理即可求出BD(2)根据余弦定理可求出BC ,进而求出ABC 的面积.【小问1详解】在ADB中,cos 7ADB ∠=-,则sin 7ADB ∠=,π6B =,所以1sin sin 6272714BAD ADB π⎛⎫⎛⎫∠=+∠=⨯-+⨯= ⎪⎪ ⎪⎝⎭⎝⎭,由正弦定理可得:sin sin BD ABBAD ADB=∠∠2127147BD =⇒=.【小问2详解】在ABC 中,由余弦定理可得:23164cos30224BC BC +-︒==⋅,解得:BC =.所以ABC的面积11422S =⨯⨯=.19.近年来,师范专业是高考考生填报志愿的热门专业.某高中随机调查了本校2022年参加高考的100位文科考生首选志愿(第一个院校专业组的第一个专业)填报情况,经统计,首选志愿填报与性别情况如下表:(单位:人)首选志愿为师范专业首选志愿为非师范专业女性4515男性2020假设考生选择每个科目的可能性相等,且他们的选择互不影响.(1)根据表中数据,能否有99%的把握认为首选志愿为师范专业与性别有关?(2)若以上表中的频率代替概率,从该校考生中随机选择8位女生,试估计选择师范专业作为首选志愿的人数.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:()20P K k ≥0.100.050.0100.0010k 2.7063.8416.63510.828【答案】(1)没有99%的把握认为首选志愿为师范专业与性别有关;(2)6.【解析】【分析】(1)首先利用数据求得()2210045201520 6.593 6.63560406535K ⨯-⨯=≈<⨯⨯⨯,对照表格数据即可得解;(2)根据人数可得女生中首选志愿为师范专业的概率0.75P =,设该校考生中随机选择8位女生中选择师范专业作为首选志愿的人数为x ,所以(8,0.75)x B ,利用二项分布即可得解.【小问1详解】根据所给数据求得()2210045201520 6.593 6.63560406535K ⨯-⨯=≈<⨯⨯⨯,所以没有99%的把握认为首选志愿为师范专业与性别有关.【小问2详解】100名高考考生中有60名女生,首选志愿为师范专业有45人,故首选志愿为师范专业的概率0.75P =,设该校考生中随机选择8位女生,选择师范专业作为首选志愿的人数为x ,所以(8,0.75)x B ,所以()80.756E x =⨯=,所以随机选择8位女生计选择师范专业作为首选志愿的人数为6.20.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB CD ∥,AB AD ⊥,1PA =,2BC CD ==,3AB =,点E 在棱PC 上.(1)证明:平面AED ⊥平面PAB ;(2)已知点E 是棱PC 上靠近点P 的三等分点,求二面角C AE D --的余弦值.【答案】(1)见解析(2)14【解析】【分析】(1)由题意可证得PA AD ⊥,又AB AD ⊥,由线面垂直的判定定理可得AD ⊥平面PAB ,再由面面垂直的判定定理即可得证;(2)以A 为原点,AD ,AB ,AP 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,分别求出平面CAE 和平面AED 的法向量,再由二面角公式即可得出答案.【小问1详解】因为PA ⊥平面ABCD ,AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,PA AB A = ,PA AB Ì,平面PAB ,所以AD ⊥平面PAB ,又AD ⊂平面ADE ,所以平面AED ⊥平面PAB .【小问2详解】以A 为原点,AD ,AB ,AP 分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,过C 作//CG AD ,交AB 于点G ,则易知四边形ADCG 是矩形,所以AD CG ===,则(0,0,0)A ,(3,0,0)B ,(0,0,1)P,(2C,D ,E 是棱PC 上靠近点P 的三等分点,所以设(),,E x y z ,则13PE PC = ,所以()()1,,113x y z -=-,则232,,333x y z ===,则232,,333E ⎛⎫ ⎪ ⎪⎝⎭,232,,333AE AD ⎛⎫== ⎪ ⎪⎝⎭,设平面ADE 的法向量为(,,)n x y z = ,则0n AD ⋅= 且0n AE ⋅= ,0=且2320333x y z ++=,∴0y =,令1x =,则1z =-,∴平面ADE 的一个法向量()1,0,1n =-,设平面ACE 的法向量为111(,,)m x y z =,()()0,0,1,AP AC == 则0m AC ⋅= 且0m AP ⋅=,∴10z =且1120x =,∴令x ==2y -,∴平面ACE的一个法向量)2,0m =-,∴cos ,14m n m n m n⋅===,二面角C AE D --的余弦值为14.21.已知直线220x y +-=过抛物线()2:20C x py p =>的焦点.(1)求抛物线C 的方程;(2)动点A 在抛物线C 的准线上,过点A 作抛物线C 的两条切线分别交x 轴于M ,N 两点,当AMN 的面积是时,求点A 的坐标.【答案】(1)24x y =(2)()1,1A -或()1,1--【解析】【分析】(1)求出焦点坐标为()0,1,从而得到2p =,求出抛物线方程;(2)设出(),1A m -,过点A 的抛物线的切线方程设为()1y k x m =-+-,与抛物线方程联立,根据Δ0=得到21616160k mk --=,设过点A 的抛物线的两条切线方程的斜率分别为12,k k ,求出1212,1k k m k k +==-,表达出1221MN x x k k =-=-,AMN S =52=,求出1m =±,得到点A 的坐标.【小问1详解】220x y +-=中令0x =得:1y =,故焦点坐标为()0,1,故12p=,解得:2p =,故抛物线方程为24x y =;【小问2详解】抛物线准线方程为:1y =-,设(),1A m -,过点A 的抛物线的切线方程设为()1y k x m =-+-,联立24x y =得:24440x kx km -++=,由21616160k mk ∆=--=,设过点A 的抛物线的两条切线方程的斜率分别为12,k k ,故1212,1k k m k k +==-,令()1y k x m =-+-中,令0y =得:1x m k=+,不妨设121211,x m x m k k =+=+,故211221121211k k MN x x k k k k k k -=-=-==-,则211151222AMN S MN k k =⨯=-===,解得:1m =±,故点A 的坐标为()1,1A -或()1,1--.【点睛】已知抛物线方程22y px =,点()00,A x y 为抛物线上一点,则过点()00,A x y 的抛物线切线方程为()00y y p x x =+,若点()00,A x y 在抛物线外一点,过点()00,A x y 作抛物线的两条切线,切点弦方程为()00y y p x x =+.22.已知函数()e xf x x =,()2ln22xg x =+.(1)求函数()f x 的最值;(2)若关于x 的不等式()()f x g x kx -≥恒成立,求实数k 的取值范围.【答案】(1)最小值为1(1)f e-=-,无最大值.(2)2k ≤【解析】【分析】(1)利用导函数讨论函数的单调性即可求最值;(2)分离参变量,构造函数22()e ln 2x x g x x x=--,利用导数结合单调性讨论其最小值即可求解.【小问1详解】因为()e xf x x =,所以()e e (1)e xxxf x x x '=+=+,令()(1)e 0xf x x '=+>解得1x >-,令()(1)e 0xf x x '=+<解得1x <-,所以()e xf x x =在(),1-∞-单调递减,在()1,-+∞单调递增,所以当=1x -时,()f x 有最小值为1(1)f e-=-,无最大值.【小问2详解】由()2ln22xg x =+的定义域可得()0,x ∈+∞,()()f x g x kx -≥即e 2ln 22x xx kx --≥,等价于22e ln (0)2xx k x x x≤-->恒成立,令22()e ln 2x x h x x x=--,所以222222e 2ln22222()e ln e ln 22x x x x x x xh x x x xx x +⎡⎤⎛⎫'=--++=+=⎪⎢⎝⎭⎣⎦,令2()e 2ln,02xxF x x x =+>,所以()2()2e 02xxF x x x '=++>在()0,x ∈+∞恒成立,所以2()e 2ln,2xxF x x =+单调递增,1e(1)e ln 40,()ln16024F F =->=->,所以存在唯一01,12x ⎛⎫∈⎪⎝⎭,使得0()0F x =,即0200e 2ln 02x x x +=,所以当()000,x x ∈时,()0<F x ,即()0h x '<,()h x 单调递减,()00,x x ∈+∞时,()0F x >,即()0h x '>,()h x 单调递增,所以00min 00022()()e ln ,2x x h x h x x x ==--由0200e 2ln 02x x x +=得00002e ln02x x x x +=,也即002ln 002e ln e x x x x =,即002()(ln )f x f x =,由(1)知()f x 在()1,-+∞单调递增,所以002lnx x =,00002e ,ln 2x x x x =-=,所以000min 00000022222()()e ln ln 222xx x g x g x x x x x x ==--=-=,所以2k ≤.【点睛】方法点睛:分离参变量是求参数取值范围常用的方法,本题第二问对不等式等价变形为22e ln (0)2xx k x x x ≤-->,从而min 22e ln 2x x k x x ⎛⎫≤-- ⎪⎝⎭,构造函数讨论单调性及最值是常用的方法,解决的关键在于利用零点的存在性定理得0200e 2ln02xx x +=,再根据(1)得()e xf x x =的单调性,进一步得到002lnx x =,00002e ,ln 2x x x x =-=,等量代换求出最小值.。

2024年高考数学(文科)第二次模拟考试卷及答案解析(全国卷)

2024年高考数学(文科)第二次模拟考试卷及答案解析(全国卷)

2024年高考数学(文科)第二次模拟考试卷及答案解析(全国卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}22,U xx x =-≤≤∈∣Z ,集合{1,1,2},{2,0,1,2}A B =-=-,则U ()A B ⋂=ð()A .{1,0,1}-B .∅C .{2,1,0}--D .{}1-【答案】C【分析】本题首先可以根据题意求出A B ⋂,然后根据补集的概念得出结果.【详解】由题意得{}{}{}22,2,1,0,1,2,1,2U xx x A B =-≤≤∈=--⋂=Z ∣,所以,U (){2,1,0}A B =-- ð,故选:C .2.设i 为虚数单位,若复数1i1ia -+为纯虚数,则=a ()A .1-B .1C .0D .2【答案】B【分析】分子分母同乘分母的共轭复数,再根据纯虚数的概念得到答案.【详解】()()()()()1i 1i 11i 1i 1i 1i 1i 22a a a a --+--==-++-,所以102a -=且102a +≠,解得1a =.故选:B3.已知向量()1,0a = ,()4,b m =,若2a b - 不超过3,则m 的取值范围为()A .⎡⎣B .⎡⎣C .[]3,3-D .[]5,5-【答案】B【分析】根据平面向量的坐标表示和几何意义可得249m +≤,解之即可求解.【详解】由题意知,2(2,)a b m -=--,所以23a b -=,得249m +≤,即25m ≤,解得m ≤≤即实数m 的取值范围为[.故选:B4.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D【解析】阅读程序框图,程序运行如下:首先初始化数值:1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句:100,10,1210MS S M M t t =+==-=-=+=;此时应满足t N ≤,执行循环语句:90,1,1310MS S M M t t =+==-==+=;此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2.故选D.5.若{}n a 是等差数列,n S 表示{}n a 的前n 项和,3890,0a a S +><,则{}n S 中最小的项是()A .4S B .5S C .6S D .7S 【答案】B【分析】根据等差数列的前n 项和公式可得50a <,再结合等差数列的性质判断处6a 的符号,即可得出答案.【详解】因为()19959902a a S a +==<,所以50a <,因为56380a a a a +=+>,所以650a a >->,所以公差650d a a =->,故当5n ≤时,0n a <,当6n ≥时,0n a >,所以当5n =时,n S 取得最小值,即{}n S 中最小的项是5S .故选:B.6.已知函数()f x 的定义域为R ,设()()x g x e f x =.设甲:()f x 是增函数,乙:()g x 是增函数,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】D【分析】利用导数分别求出()f x 与()g x 为增函数的条件并结合充分必要条件进行判断即可求解.【详解】由题意得()f x 的定义域为R ,()()xg x f x =e 的定义域也为R ;充分性:若()f x 是增函数,则()0f x '≥恒成立,()()()()xg x f x f x ='+'e ,因为e 0x >,但()()f x f x +'的正负不能确定,所以()g x 的单调性不确定,故充分性不满足;必要性:若()g x 是增函数,则()()()()0xg x f x f x ='+'≥e恒成立,因为e 0x >,所以()()0f x f x +'≥恒成立,但()f x '的正负不能确定,所以()f x 的单调性不确定,故必要性不满足;所以甲既不是乙的充分条件也不是乙的必要条件,故D 正确.故选:D.7.已知点A 为椭圆M :22143x y +=的一点,1F ,2F 分别为椭圆M 的左,右焦点,12F AF ∠的平分线交y 轴于点10,3B ⎛⎫- ⎪⎝⎭,则12AF F △的面积为()A .12B .22C .1D .2【答案】C【分析】结合光学性质,列出直线AB 方程,即可求解答案.【详解】设点()00,A x y 且不为顶点,因为椭圆方程为22143x y +=,所以过A 的切线方程即直线DE 为00143x x y y ⋅⋅+=,即000334x y x y y =-+,由光学几何性质知,1AB DE k k ⋅=-,所以043AB y k x =,则直线AB 的方程为()000043y y y x x x -=-.令0x =,得0133B y y =-=-,所以01y =.所以1212112AF F S =⨯⨯=△.故选:C8.设0.814a ⎛⎫= ⎪⎝⎭,0.3log 0.2b =,0.3log 0.4c =,则a ,b ,c 的大小关系为()A .a b c >>B .b a c >>C .c a b >>D .b c a>>【答案】D【分析】首先将对数式和指数式与临界值比较,再判断大小关系.【详解】 1.61122a ⎛⎫=< ⎪⎝⎭,即102a <<,0.3log 0.21b =>,即1b >,因为20.40.3<,所以20.30.3log 0.4log 0.31>=,即0.31log 0.42>,且0.30.3log 0.4log 0.31<=,则112c <<,所以b c a >>.故选:D9.已知双曲线222:33C x y m -=的一条渐近线l 与椭圆222:1(0)x y E a b a b+=>>交于A ,B 两点,若12||F F AB =,(12,F F 是椭圆的两个焦点),则E 的离心率为()A 1BC .(,1)-∞D .(,0)-∞【答案】A【分析】由题意求出双曲线的渐近线,则可得260AOF ∠=︒,由已知条件可得四边形12AF BF 为矩形,则22AO OF AF c ===,1AF =,再根据椭圆的定义列方程化简可求出离心率.【详解】由已知2222:13x y C m m-=,则双曲线的一条渐近线:l y =,即260AOF ∠=︒,又12F F AB =,即2OF OA =,且四边形12AF BF 为矩形,所以22AO OF AF c ===,则1AF ==,又根据椭圆定义可知122AF AF c a ++=,所以离心率1ce a ==.故选:A10.已知四棱锥P ABCD -中,侧面PAB ⊥底面ABCD ,PA PB ==ABCD 是边长为12的正方形,S 是四边形ABCD 及其内部的动点,且满足6PS ≤,则动点S 构成的区域面积为()A .B .12πC .24πD .【答案】B【分析】取线段AB 的中点E ,连接PE 、SE ,推导出PE ⊥平面ABCD ,可知点S 的轨迹是以点E为圆心,半径为.【详解】取线段AB 的中点E ,连接PE 、SE ,因为PA PB ==E 为AB 的中点,则PE AB ⊥,因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PE ⊂平面PAB ,所以,PE ⊥平面ABCD ,因为SE ⊂平面ABCD ,则PE SE ⊥,因为四边形ABCD 是边长为12的正方形,则6AE =,所以,PE ===SE ==所以,点S 的轨迹是以点E 为圆心,半径为因此,动点S 构成的区域面积为(21π12π2⨯=.故选:B.11.已知等比数列{}n a 的公比为q =n S 为其前n 项和,且*2128,N n nn n S S T n a +-=∈,则当n T 取得最大值时,对应的n 为()A .2B .3C .4D .5【答案】B【分析】利用等比数列通项公式、前n项和公式及已知得12728)2n n T +=-⨯+,应用基本不等式求最大值,并确定取值条件即可.【详解】由题设11nn a a q a +==,1(1)1n n a q S q -==-所以2128(1n n n n S S T a a +-==127128)(228)(1)(14322n +=-⨯+-≤-⨯=-,27n=,即3n =时取等号,所以当n T 取得最大值时,对应的n 为3.故选:B12.已知函数()()sin f x x ϕ=+,0πϕ<<,若函数()f x 在3π0,4⎡⎫⎪⎢⎣⎭上存在最大值,但不存在最小值,则ϕ的取值范围是()A .π0,2⎛⎤ ⎥⎝⎦B .π,8π2⎛⎤ ⎥⎝⎦C .π3π,24⎡⎤⎢⎥⎣⎦D .π3π,84⎛⎤⎥⎝⎦【答案】D【分析】根据题意分类讨论π4ϕ≥和π4ϕ<两种情况,结合题目中所给区间的开和闭以及三角函数图象相关知识求解答案即可.【详解】若3π04x ≤<,则3π4x ϕϕϕ≤+<+,又因为0πϕ<<,函数()f x 在3π0,4⎡⎫⎪⎢⎣⎭上存在最大值,但不存在最小值,所以当3ππ4ϕ+≥,即π4ϕ≥时,只需满足3π3π42ϕ+≤,此时π3π44ϕ≤≤,当3ππ4ϕ+<,即π4ϕ<时,函数一定存在最大值,要让函数无最小值,则π3ππ242ϕϕ-<+-,此时ππ84ϕ<<,综上,π3π84ϕ<≤,即ϕ的取值范围是π3π,84⎛⎤⎥⎝⎦.故选:D第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 是等差数列,数列{}n b 是等比数列,7943a a +=,且26108b b b =.则3813481a a ab b ++=-.【答案】23【分析】根据等差、等比数列的性质即可求解.【详解】因为数列{}n a 是等差数列,且7943a a +=,所以842,3a =即8,32a =因为数列{}n b 是等比数列,且26108b b b =,所以368b =,即62b =,所以81382486332113a a a ab b b ++==--.故答案为:23.14.已知()f x 为定义在R 上的奇函数,当0x ≥时,()()31f x x a x a =-++,则关于x 的不等式()0f x <的解集.【答案】()(),10,1-∞-⋃【分析】由()00f =求出0a =,由奇函数的性质求出()f x 在R 上的解析式,再令()0f x <,即可求出答案.【详解】当0x ≥时,()()31f x x a x a =-++,因为()f x 为定义在R 上的奇函数,所以()00f a ==,所以当0x ≥时,()3f x x x =-,则当0x <时,0x ->,所以()3f x x x -=-+,因为()f x 为定义在R 上的奇函数,所以()()f x f x -=-,所以当0x <时,()3f x x x =-,所以()3,R f x x x x =-∈,令()()()3110f x x x x x x =-=-+<,解得:01x <<或1x <-,故关于x 的不等式()0f x <的解集为()(),10,1-∞-⋃.故答案为:()(),10,1-∞-⋃.15.已知数列{}n a 满足121n n a a n ++=-,若1n n a a +>对*n ∈N 恒成立,则1a 的取值范围为.【答案】11,22⎛⎫- ⎪⎝⎭【分析】先由条件得到22n n a a +-=,再将问题转化为2132a a a a >⎧⎨>⎩或2221212n n n n a a a a +++>⎧⎨>⎩,从而得解.【详解】法一:由121n n a a n ++=-,得2121n n a a n +++=+,两式相减得22n n a a +-=,则数列{}21n a +,{}2n a 都是以2为公差的单调递增数列.要使1n n a a +>对*n ∈N 恒成立,只需2132a a a a >⎧⎨>⎩,而211a a =-,312a a =+,则1111121a a a a ->⎧⎨+>-⎩,解得11122a -<<.法二:由121n n a a n ++=-,得2121n n a a n +++=+,两式相减得22n n a a +-=,又211a a =-,则()21112121n a a n n a =-+-=--,()21112112n a a n n a +=++-=+,要使1n n a a +>对*n ∈N 恒成立,即2221212n n n n a a a a +++>⎧⎨>⎩,即11112212221n a n a n a n a +-->+⎧⎨+>--⎩,解得11122a -<<.故答案为:11,22⎛⎫- ⎪⎝⎭.【点睛】关键点睛:本题解决的关键是将1n n a a +>恒成立,转化为2132a a a a >⎧⎨>⎩或2221212n n n na a a a +++>⎧⎨>⎩,从而得解.16.已知三棱锥S ABC -的所有顶点都在球O 的表面上,且SA ⊥平面π,,3ABC SA ABC AC M ∠===是边BC 上一动点,直线SM 与平面ABC 所成角的正切值的O 的表面积为.【答案】43π【分析】根据题意,结合线面角的定义求得AM 的最小值,从而确定ABC 的形状,再利用直三棱柱的外接球的性质即可得解.【详解】将三棱锥S ABC -放入直三棱柱11SB C ABC -,则两者外接球相同,取底面11,ABC SB C 的外心为12,O O ,连接12O O ,取其中点为O ,连接1,OA AO ,如图所示,SA SA =⊥ 平面ABC ,则SMA ∠为直线SM 与平面ABC 的所成角,又直线SM 与平面ABC所以tan SA SMA AM ∠==min 3AM =,此时AM BC ⊥,在Rt ABM 中,π,33ABM AM ∠==,AB AC ∴==ABC ∴ 是边长为1223O A AM ∴==,又1122SA OO ==,222221143224OA OO O A ⎛∴=+=+= ⎝⎭则球O 的表面积为434π43π4⨯=.故答案为:43π.【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a =,πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭.(1)求角A ;(2)作角A 的平分线与BC 交于点D ,且AD =b c +.【答案】(1)π3(2)6【分析】(1)由正弦定理边角互化,化简后利用正切值求角即得;(2)充分利用三角形的角平分线将三角形面积进行分割化简得b c cb +=,再运用余弦定理解方程即得.【详解】(1)因πsin sin 3a B b A ⎛⎫=+ ⎪⎝⎭,由正弦定理可得:1sin sin sin sin 022B A A A B ⎛⎫+-= ⎪ ⎪⎝⎭,即1sin cos sin 022B A A ⎛⎫-= ⎪ ⎪⎝⎭.因(0,π)B ∈,故sin 0B ≠1sin 2A A =,即tan A =因(0,π)A ∈,故π3A =......................................................6分(2)因为AD 为角平分线,所以DAB DAC ABC S S S += ,所以111sin sin sin 222AB AD DAB AC AD DAC AB AC BAC ⋅∠+⋅∠=⋅∠.因π3BAC ∠=,6πDAB DAC ∠=∠=,AD =AB AC AB AC ⋅,即AB AC AB AC +=⋅,所以b c cb +=.....................................................9分又由余弦定理可得:2222π2cos()33a b c bc b c bc =+-=+-,把a =,b c cb +=分别代入化简得:2()3()180b c b c +-+-=,解得:6b c +=或3b c +=-(舍去),所以6b c +=......................................................12分18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i ix x =-=∑(,2021)9000i i y y =-=∑(,201)800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)niix y x y --∑((≈1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()iix x yy r --=∑计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020ii y ==⨯=∑,地块数为200,该地区这种野生动物的估计值为2006012000⨯=...................................................4分(2)样本(,)i i x y (i =1,2, (20)的相关系数为20()0.943iix x y y r --=≈∑...................................................9分(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计....................................................12分19.(12分)在正方体1AC 中,E 、F 分别为11D C 、11B C 的中点,AC BD P =I ,11A C EF Q =I ,如图.(1)若1A C 交平面EFBD 于点R ,证明:P 、Q 、R 三点共线;(2)线段AC 上是否存在点M ,使得平面11//B D M 平面EFBD ,若存在确定M 的位置,若不存在说明理由.【答案】(1)证明见解析;(2)存在,且14AM AC =.【解析】【分析】(1)先得出PQ 为平面EFBD 与平面11AA C C 的交线,然后说明点R 是平面11AA C C 与平面EFBD 的公共点,即可得出P 、Q 、R 三点共线;(2)设1111B D A C O =I ,过点M 作//OM PQ 交AC 于点M ,然后证明出平面11//B D M 平面EFBD ,再确定出点M 在AC 上的位置即可.【详解】(1)AC BD P =Q I ,AC ⊂平面11AA C C ,BD ⊂平面EFBD ,所以,点P 是平面11AA C C 和平面EFBD 的一个公共点,同理可知,点Q 也是平面11AA C C 和平面EFBD 的公共点,则平面11AA C C 和平面EFBD 的交线为PQ ,1A C 平面EFBD R =,1AC ⊂平面11AA C C ,所以,点R 也是平面11AA C C 和平面EFBD 的公共点,由公理三可知,R PQ ∈,因此,P 、Q 、R 三点共线;...................................................6分(2)如下图所示:设1111B D A C O =I ,过点M 作//OM PQ 交AC 于点M ,下面证明平面11//B D M 平面EFBD .E 、F 分别为11D C 、11B C 的中点,11//B D EF ∴,11B D ⊄Q 平面EFBD ,EF ⊂平面EFBD ,11//B D ∴平面EFBD .又//OM PQ ,OM ⊄平面EFBD ,PQ ⊂平面EFBD ,//OM ∴平面EFBD ,11OM B D O =Q I ,OM 、11B D ⊂平面11B D M ,因此,平面11//B D M 平面EFBD .下面来确定点M 的位置:E 、F 分别为11D C 、11B C 的中点,所以,11//EF B D ,且1EF OC Q =I ,则点Q 为1OC 的中点,易知11//A C AC ,即//OQ PM ,又//OM PQ ,所以,四边形OMPQ 为平行四边形,111111244PM OQ OC A C AC ∴====,四边形ABCD 为正方形,且AC BD P =I ,则P 为AC 的中点,所以,点M 为AP 的中点,1124AM AP AC ∴==,因此,线段AC 上是否存在点M ,且14AM AC =时,平面11//B D M 平面EFBD ...................................................12分20.(12分)已知函数()()2e 211xf x x a x ⎡⎤=-++⎣⎦.(1)若12a =,求曲线()y f x =在点()()0,0f 处的切线;(2)讨论()f x 的单调性;【答案】(1)10x y +-=(2)答案见解析【分析】(1)求导,利用导数的几何意义得到切线方程;(2)求导,对导函数因式分解,分12a >-,12a <-和12a =-三种情况,进行求解函数的单调性.【详解】(1)当12a =时,函数()()2e 21xf x x x =-+,则()01f =,切点坐标为()0,1,()()2e 1x f x x ='-,则曲线()y f x =在点()0,1处的切线斜率为()01f '=-,所求切线方程为()10y x -=--,即10x y +-=.....................................................5分(2)()()2e 211xf x x a x ⎡⎤=-++⎣⎦,函数定义域为R ,()()()()2e 122e 21x x f x x a x a x a x ⎡⎤=+--=-+⎣⎦',①12a >-,()0f x '>解得1x <-或2x a >,()0f x '<解得12x a -<<,所以()f x 在(),1∞--和()2,a ∞+上单调递增,在()1,2a -上单调递减,②12a <-,()0f x '>解得2x a <或1x >-,()0f x '<解得21a x <<-,所以()f x 在(),2a ∞-和()1,∞-+上单调递增,在()2,1a -上单调递减,③12a =-,()0f x '≥恒成立,()f x 在(),∞∞-+上单调递增.综上,当12a >-时,()f x 在(),1∞--和()2,a ∞+上单调递增,在()1,2a -上单调递减;当12a <-时,()f x 在(),2a ∞-和()1,∞-+上单调递增,在()2,1a -上单调递减;当12a =-时,()f x 在(),∞∞-+上单调递增.....................................................12分21.(12分)已知抛物线C :22y px =(0p >)的焦点为F ,点(),0D p ,过F 的直线交C 于A ,B 两点,当A 点的横坐标为1时,点A 到抛物线的焦点F 的距离为2.(1)求抛物线C 的方程;(2)设直线AD ,BD 与C 的另一个交点分别为M ,N ,点P ,Q 分别是AB ,MN 的中点,记直线OP ,OQ 的倾斜角分别为α,β.求()tan αβ-的最大值.【答案】(1)24y x =4【分析】(1)关键抛物线的定义可得22A px +=,求出p 即可求解;(2)设222231241234,,,,,,,4444y y y y A y B y M y N y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,将直线:1AB x my =+112:2x AD x y y -=⋅+和直线BD ,分别联立抛物线方程,利用韦达定理表示121212,,y y y y x x ++,1324,y y y y ,进而可得322y y =、412y y =,由中点坐标公式与斜率公式可得2221OP m k m =+和221OQ mk m =+,则tan tan 22OP OQ k k αβ===,当π0,2β⎛⎫∈ ⎪⎝⎭时tan()αβ-最大,由两角差的正切公式和换元法可得()1tan ()12OQ k k k k αβ-==+,结合基本不等式计算即可求解.【详解】(1)抛物线的准线为2p x =-,由抛物线的定义知,22A px +=,又1A x =,所以2p =,所以抛物线C 的方程为24y x =;.....................................................4分(2)由(1)知,(1,0),(2,0)F D ,设222231241234,,,,,,,4444y y y y A y B y M y N y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则34341212(,),(,)2222x x y y x x y y P Q ++++,设直线:1AB x my =+,由214x my y x =+⎧⎨=⎩可得2440y my --=,2121216160,4,4m y y m y y ∆=+>+==-,则21212111()242x x my my m y y m +=+++=++=+,直线112:2x AD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,211314(2()320,8x y y y -∆=-+>=-,所以322y y =,同理可得412y y =,由斜率公式可得12122121222212OPy y y y mk x x x x m ++===+++,3434121222222343434122()2()221244OQy y y y y y y y m k x x y y x x y y m ++++====+++++,又因为直线OP 、OQ 的倾斜角分别为,αβ,所以tan tan 22OP OQ k k αβ===,若要使tan()αβ-最大,需使αβ-最大,则π0,2β⎛⎫∈ ⎪⎝⎭,设220OP OQ k k k ==>,则()2tan tan 1tan 11tan tan 1242k k k k αβαβαβ--====+++,当且仅当12k k =即2k =时,等号成立,所以()tan αβ-的最大值为4 (12)分【点睛】关键点睛:本题求解过程中,需要熟练运用斜率公式以及类比的思想方法,在得到两条直线的关系后,设220OP OQ k k k ==>,利用换元法,化简式子,求最值是难点,也是关键点,属于难题.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)已知曲线C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),直线l 过点()0,1P .(1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,且1132PA PB +=,求直线l 的倾斜角.【答案】(1)22143x y +=.(2)π4或3π4.【分析】(1)利用参数方程转普通方程即可求解.(2)写出直线l 的参数方程,参数方程代入22143x y +=,设A ,B 两点所对的参数为12,t t ,利用韦达定理代入1132PA PB +=中,化简即可求解.【详解】(1)由曲线C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),得cos 2sin xαα⎧=⎪⎪⎨⎪=⎪⎩,22sin cos 1θθ+=,2212x ⎛⎫∴+= ⎪⎝⎭,即22143x y +=(为焦点在x 轴上的椭圆)....................................................4分(2)设直线l 的倾斜角为θ,直线l 过点()0,1P ∴直线l 的参数方程为cos 1sin x t y t θθ=⎧⎨=+⎩(t 为参数),将直线l 的参数方程代入22143x y +=,可得()()22i 14cos 13s n t t θθ+=+,()2222222234123484120cos 12sin sin cos sin sin t t t t t t θθθθθθ⇒++=⇒++++-=()22sin s 8n 30i 8t t θθ∴++-=,设A ,B 两点所对的参数为12,t t ,221221883sin sin s 3in t t t t θθθ∴+=-⋅=-++,曲线C 与y轴交于((0,,两点,()0,1P ∴在曲线C 的内部,12,t t ∴一正一负,1212t t t t ∴+=-,而1132PA PB +=,121232t t t t +∴=⋅,121232t t t t -∴=⋅,2211222212294t t t t t t -⋅+∴=⋅,()222121212944t t t t t t ∴+-⋅=⋅,22222sin sin si 88984334si 3n n θθθθ⎛⎫⎛⎫⎛⎫∴---=- ⎪ ⎪+++⎝⎭⎝⎭⎝⎭解得21sin 2θ=,θ为直线l 的倾斜角,[)0πθ∈,,[]1sin 0,θ∈∴,sin θ∴π4θ∴=或3π4θ=,直线l 的倾斜角为π4或3π4.....................................................10分选修4-5:不等式选讲23.(10分)已知函数()223f x x x =--.(1)求不等式()5f x ≥的解集;(2)设函数()()12g x f x x =+++的最小值为m ,若0,0a b >>且2a b m +=,求证:2242a b +≥.【答案】(1)][(),24,-∞-⋃+∞(2)证明见解析【分析】(1)解绝对值不等式时,一般考虑分类讨论法求解,最后再合并;(2)分类讨论()g x 的单调性,判断其在不同区间上的最小值,最后确定m 的值,利用基本不等式即可证明.【详解】(1)不等式()5f x ≥可化为2235x x --≥或2235x x --≤-,由2235x x --≥,可得2280x x --≥,解得4x ≥或2x ≤-;由2235x x --≤-,可得2220x x -+≤,解得x ∈∅,所以不等式()5f x ≥的解集为][(),24,∞∞--⋃+.....................................................4分(2)由题意,知()()()()123112g x f x x x x x =+++=-++++,当1x ≤-时,()(3)(1)(1)2g x x x x =-+-++2317()24x =--,因()g x 在(,1]-∞-上单调递减,则min ()(1)2g x g =-=;当13x -<<时,()(3)(1)(1)2g x x x x =--++++=233324x ⎛⎫--+ ⎪⎝⎭,因()g x 在3(1,2-上单调递增,在3(,3)2上单调递减,故()g x 在(1,3)-无最小值,但是()2g x >;当3x ≥时,()(3)(1)(1)2g x x x x =-++++211(24x =--,因()g x 在[3,)+∞上单调递增,则min ()(3)6g x g ==.综上,当=1x -时,函数()g x 取得最小值2,即2m =,所以22a b +=,因0,0a b >>,所以()()2222224222a b a b a b ++=+≥=,当且仅当1,12a b ==时等号成立,故2242a b +≥...................................................10分。

2024年高考数学(理科)第二次模拟考试卷及答案解析(全国卷)

2024年高考数学(理科)第二次模拟考试卷及答案解析(全国卷)

2024年高考数学(理科)第二次模拟考试卷及答案解析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}5log 1A xy x ==-∣,集合{}Z03B y y =∈≤≤∣,则()R A B ⋂=ð()A .()0,1B .[]0,1C .∅D .{}0,1【答案】D【分析】先表示出集合,A B ,再由交集和补集的运算得出结果即可.【详解】集合(){}{}5log 11A xy x x x ==-=>∣∣,集合{}{}Z030,1,2,3B y y =∈≤≤=∣,集合{}R |1A x x =≤ð,所以()R A B ⋂=ð{}0,1.故选:D2.设i 为虚数单位,且()1i 2z +=,则z =()A .1i --B .1i -C .1i -+D .1i+【答案】D【分析】根据复数的除法运算求z ,进而可得共轭复数.【详解】由题意可得:()()()21i 21i 1i 1i 1i z -===-++-,所以z =1i +.故选:D.3.若向量,a b 满足||4,||3a b == ,且(23)(2)61a b a b -⋅+= ,则a 在b上的投影向量为()A .12b- B .13b - C .23bD .23b - 【答案】D【分析】由向量数量积的运算律可得6a b ⋅=- ,再由投影向量的定义求a 在b上的投影向量.【详解】由22(23)(2)44361a b a b a a b b -⋅+=-⋅-= ,则6a b ⋅=-,由a 在b 上的投影向量612333||||a b b b b b b ⋅-⋅=⨯=-.故选:D4.已知等比数列{}n a 的前n 项和为12,12n S a a +=且123,6,a a a +成等差数列,则105S S 为()A .244B .243C .242D .241【答案】A【分析】首先根据条件求公比,再代入等比数列的前n 项和公式,即可求解.【详解】由题意可知,1212a a +=且()13226a a a +=+,设等比数列的公比为q ,则2111112a a q a q a a q +=++,得3q =,()()10110510555113131313244131313a S S a ---===+=---.故选:A5.第19届亚运会在杭州举行,为了弘扬“奉献,友爱,互助,进步”的志愿服务精神,5名大学生将前往3个场馆,,A B C 开展志愿服务工作.若要求每个场馆都要有志愿者,则当甲不去场馆A 时,场馆B 仅有2名志愿者的概率为()A .35B .2150C .611D .34【答案】B【分析】首先得甲去场馆B 或C 的总数为21501003⨯=,进一步由组合数排列数即可得所求概率.【详解】不考虑甲是否去场馆A ,所有志愿者分配方案总数为2233535322C C C A 150A ⎛⎫+= ⎪⎝⎭,甲去场馆,,A B C 的概率相等,所以甲去场馆B 或C 的总数为21501003⨯=,甲不去场馆A ,分两种情况讨论,情形一,甲去场馆B ,场馆B 有两名志愿者共有11243224C C A =种;情形二,甲去场馆C ,场馆B 场馆C 均有两人共有1243C C 12=种,场馆B 场馆A 均有两人共有24C 6=种,所以甲不去场馆A 时,场馆B 仅有2名志愿者的概率为24126422110010050++==.故选:B .6.已知函数()ln(e )ln(e )f x x x =+--,则()f x 是()A .奇函数,且在(0,e)上是增函数B .奇函数,且在(0,e)上是减函数C .偶函数,且在(0,e)上是增函数D .偶函数,且在(0,e)上是减函数【答案】A【分析】求出函数的定义域,利用奇偶函数的定义及复合函数的单调性法则判断即可.【详解】若函数()ln(e )ln(e )f x x x =+--有意义,则e 0e 0x x ->⎧⎨+>⎩,解得e e x -<<,即函数()f x 的定义域为(e,e)-,因为()()()()()ln e ln e ln e ln e ()f x x x x x f x ⎡⎤-=--+=-+--=-⎣⎦,所以函数()f x 是奇函数,函数e 2e ()ln(e )ln(e )ln ln 1e e x f x x x x x +⎛⎫⎛⎫=+--==-+ ⎪ ⎪--⎝⎭⎝⎭,因为函数2e1e u x=-+-在(0,e)上递增,函数ln y u =在定义域上递增,所以函数()f x 在(0,e)上是增函数.故选:A 7.“直线1sin 102x y θ+-=与cos 10x y θ++=平行”是“π4θ=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】根据两条直线平行,对应方程系数的关系求解,分两个方面判断即可.【详解】若直线1sin 102x y θ+-=与cos 10x y θ++=平行,易得:sin 0,cos 0θθ≠≠,故:1sin 121cos 1θθ-=≠,则111ππsin cos ,sin 2,sin 21,22π(),π()22224k k k k θθθθθθ====+∈=+∈Z Z 得不到π4θ=,故不是充分条件;反之,当π4θ=时1sin 121cos 1θθ-=≠成立,故直线1sin 102x y θ+-=与cos 10x y θ++=平行,是必要条件;故“直线1sin 102x y θ+-=与cos 10x y θ++=平行”是“π4θ=”的必要不充分条件,故选:B .8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,A 为C 的右顶点,以12F F 为直径的圆与C 的一条渐近线交于P ,Q 两点,且3π4PAQ ∠=,则双曲线C 的离心率为()ABCD .3【答案】C【分析】联立圆与渐近线方程,得到()(),,,P a b Q a b --,进而得到π4OAQ ∠=,利用直线斜率得到方程,求出2b a =,得到离心率.【详解】由题意得,以12F F 为直径的圆的方程为222x y c +=,(),0A a ,渐近线方程为b y x a=±,联立222x y c by xa ⎧+=⎪⎨=⎪⎩,解得x a =±,不妨令()(),,,P a b Q a b --,故π2OAP ∠=,因为3π4PAQ ∠=,所以3πππ424OAQ ∠=-=,所以0tan 1π4AQ b k a a --===--,解得2b a =,故离心率c e a ==.故选:C9.4211x x ⎛⎫+- ⎪⎝⎭展开式中常数项为().A .11B .11-C .8D .7-【答案】B 【分析】将21x x+看成一个整体,得到41421()(1)rr r r T C x x -+=+-,再展开421()r x x -+得到430r m --=,分别取值得到答案.【详解】将21x x +看成一个整体,展开得到:41421((1)rrr r T C x x-+=+-421()rx x -+的展开式为:4243144m r m m m r mm r r T C x x C x-----+--=⋅=取430r m --=当0m =时,4r =系数为:40440(1)1C C ⨯⨯-=当1m =时,1r =系数为:11143(1)12C C ⨯⨯-=-常数项为11211-=-故答案选B【点睛】本题考查了二项式定理,将21x x +看成整体展开,再用一次二项式展开是解题的关键,计算较为复杂.10.若函数()()π3cos 03f x x ωω⎛⎫=+> ⎪⎝⎭恒有()()2πf x f ≤,且()f x 在ππ,63⎡⎤-⎢⎣⎦上单调递减,则ω的值为()A .16-B .56C .116D .56或116【答案】D【分析】由题意可得当2πx =时,()f x 取得最大值,所以π2π2π3k ω+=,可求出16k ω=-,再由ππ1362T ⎛⎫--≤ ⎪⎝⎭,求出ω的范围,即可得出答案.【详解】由题意可得当2πx =时,()f x 取得最大值,所以π2π2π3k ω+=,16k ω=-,k ∈Z .由()f x 在ππ,63⎡⎤-⎢⎣⎦上单调递减,得ππ1362T ⎛⎫--≤ ⎪⎝⎭,所以02ω<≤.所以56ω=或116.经检验,56ω=或116均满足条件.故选:D .11.在棱长为1的正方体1111ABCD A B C D -中,E 、F 分别为AB 、BC 的中点,则下列说法不正确的是()A .当三棱锥1B BEF -的所有顶点都在球O 的表面上时,球O 的表面积为3π2B .异面直线1DD 与1B FC .点P 为正方形1111D C B A 内一点,当//DP 平面1B EF 时,DP D .过点1D 、E 、F 的平面截正方体1111ABCD A B C D -所得的截面周长为+【答案】D【分析】对于A :转化为长方体的外接球分析运算;对于B :根据异面直线夹角分析运算;对于C :根据面面平行分析判断;对于D :根据平行关系求截面,进而可得周长.【详解】对于A :三棱锥1B BEF -的外接球即为以1BB 、BE 、BF 为邻边的长方体的外接球,因为11BB =,12BE BF ==,可得外接球的半径4R =,所以外接球的表面积23π4π2S R ==,故A 正确;对于B :因为11//DD BB ,则异面直线1DD 与1B F 所成角为1∠BB F ,且11BB =,12BF =,可得12B F =,所以111cos BB BB F B F ∠==所以,异面直线1DD 与1B FB正确;对于C :取11A B 、11A D 、11C D 的中点M 、Q 、N ,连接AM 、MN 、QN 、DN ,,由题意可得:1//AE B M ,1AE B M =,则1AEB M 为平行四边形,所以1//B E AM ,因为四边形1111D C B A 为正方形,M 、N 分别为11A B 、11C D 的中点,则11//A M D N ,11A M D N =,所以,四边形11A D NM 为平行四边形,所以,11//MN A D ,11MN A D =,又因为11//AD A D ,11AD A D =,可得//MN AD ,MN AD =,则AMND 为平行四边形,所以//AM DN ,可得1//B E DN ,因为1B E ⊂平面1B EF ,DN ⊄平面1B EF ,则//DN 平面1B EF ,因为11//AA CC ,11AA CC =,则四边形11AAC C 为平行四边形,则11//AC AC ,因为E 、F 分别为AB 、BC 的中点,则//EF AC ,同理可得11//QN A C ,则11//EF AC ,可得//QN EF ,因为EF ⊂平面1B EF ,QN ⊄平面1B EF ,则//QN 平面1B EF ,因为DN QN N =I ,DN 、QN ⊂平面DNQ ,所以平面//DNQ 平面1B EF ,则点P 在线段QN 上,可得11122QN A C ==,2DQ QN ==,所以当点P 为线段QN 的中点时,DP QN ⊥,DP 4=,故C 正确;对于D :连接AC 、11A C ,因为E 、F 为AB 、BC 的中点,则//EF AC ,又因为11//AA CC ,11AA CC =,则11AAC C 为平行四边形,可得11//AC A C ,则11//EF AC ,过1D 作11//KL AC ,设11KL AB K = ,11KL BC L = ,则//KL EF ,可得111KA AB =,111LCBC =,连接KE 、LF ,设1KE AA G = ,1LF CC H = ,连接1D G 、1D H ,可得过点1D 、E 、F 的平面截正方体1111ABCD A B C D -所得的截面为五边形1EFHDG ,因为12KA AE =,12LC CF =则1223GA AG ==,1223HC CH ==,可得113D G D H ==,6GE HF ==,EF所以截面周长为22+D 错误;故选:D.【点睛】方法点睛:解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.12.若点P 既在直线20l x y -+=:上,又在椭圆2222:1(0)x y C a b a b +=>>上,C 的左、右焦点分别为12,F F ,122F F =,且12F PF ∠的平分线与l 垂直,则C 的长轴长为()AB C D 【答案】B【分析】过点1F 、2F 分别作1F N 、2F M 垂直直线l 于点N 、M ,由12F PF ∠的平分线与l 垂直可得12F PN F PM ∠=∠,即可得1F N P 与2F PM 相似,结合点到直线的距离可得相似比,从而可求出1PF 、2PF ,结合椭圆定义即可得长轴长.【详解】过点1F 、2F 分别作1F N 、2F M 垂直直线l 于点N 、M ,作12F PF ∠的平分线PH 与x 轴交于H ,由122F F =,故()11,0F -、()21,0F ,则1F N =,2F M =,由PH l ⊥且PH 为12F PF ∠的平分线,故12F PH F PH ∠=∠,故12F PN F PM ∠=∠,又1F N l ⊥、2F M l ⊥,故1F N P 与2F PM 相似,故1122132F N NP PF F M MP PF ===,由20l x y -+=:,令0y =,则2x =-,故直线l 与x 轴交于点()2,0G -,故NG ==2MG ==,故22MN =-=由112213F N NP PF F MMPPF ===,故144NP MN ==,344MP MN ==,故14PF ==,24PF ==,由椭圆定义可知,122PF PF a +=,故2a =即C故选:B.【点睛】关键点睛:本题关键在于作出1F N 、2F M 垂直直线l 于点N 、M ,再将12F PF ∠的平分线与l 垂直这个条件转化为12F PN F PM ∠=∠,从而得到相似三角形,结合点到直线距离公式及122F F =得到1PF 、2PF 的值.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知()()5cos 2,tan tan 46αβαββ+=+=-,写出符合条件的一个角α的值为.【答案】2π3(答案不唯一)【分析】根据题目条件得到()1cos cos 6αββ+=和()2sin sin 3αββ+=-,从而求出()121cos cos 632ααββ⎡⎤=+-=-=-⎣⎦,进而求出角α的值.【详解】()()()()cos 2cos cos cos sin sin αβαββαββαββ⎡⎤+=++=+-+⎣⎦,故()()5cos cos sin sin 6αββαββ+-+=,()tan tan 4αββ+=-,即()()sin sin 4cos cos αββαββ+=-+,故()()sin sin 4cos cos αββαββ+=-+,故()55cos cos 6αββ+=,即()1cos cos 6αββ+=,则()()2sin sin 4cos cos 3αββαββ+=-+=-,则()()()cos cos cos cos sin sin ααββαββαββ⎡⎤=+-=+++⎣⎦121632=-=-,可取2π3α=.故答案为:2π314.在正三棱台111ABC A B C -中,2AB =,11AB A B >,侧棱1AA 与底面ABC 若该三棱台存在内切球,则此正三棱台的体积为.【分析】取BC 和11B C 的中点分别为P ,Q ,上、下底面的中心分别为1O ,2O ,设11A B x =,内切球半径为r ,根据题意求出侧棱长以及2O P ,1O Q ,再根据切线的性质及等腰梯形11BB C C 和梯形1AA QP的几何特点列方程组求出半径即可.【详解】如图,取BC 和11B C 的中点分别为P ,Q ,上、下底面的中心分别为1O ,2O ,设11A B x =,内切球半径为r ,因为12tan A AO ∠=2r ,所以111AA BB CC ===,2113323O P AP ==⨯=,同理16O Q x =.因为内切球与平面11BCC B 相切,切点在PQ 上,所以)212PQ O P O Q x =+=+①,在等腰梯形11BB C C 中,)22222x PQ -⎛⎫=- ⎪⎝⎭②,由①②得()222226212x x r +-⎛⎫-= ⎪⎝⎭.在梯形1AA QP 中,()222236PQ r ⎫=+⎪⎪⎝⎭③,由②③得2x -=,代入得1x =,则棱台的高23h r ==,所以棱台的体积为143V =+=⎝⎭.故答案为:12.15.已知函数()32f x x ax b =++满足对任意的实数m ,n 都有()()()()()222f mn f m f n f m f n =+++,则曲线()y f x =在=1x -处的切线方程为.【答案】30x y -=【分析】构造函数()()2g x f x =+,将已知等式转化为()()()g mn g m g n =,再利用赋值法求得()0g 与()1g ,进而求得,a b ,再利用利用导数的几何意义即可得解.【详解】因为()()()()()222f mn f m f n f m f n =+++,所以()()()()()222+=++f mn f m f n ,设()()3222g x f x x b x a +++=+=,则()()()g mn g m g n =,令0m n ==,则()()200g g =,则()00g =,或()01g =,若()01g =,则由()()()00g g m g =,得()1g m =,显然不成立,所以()00g =,即20b +=,则2b =-令1m =,则()()()1g n g g n =,由于()g n 不恒为0,故()11g =,即121a b +++=,则0a =,此时()32f x x =-,经检验,满足要求,则()13f -=-,()23f x x '=,所以()13f '-=,所以曲线()y f x =在=1x -处的切线方程为()331+=+y x ,即30x y -=.故答案为:30x y -=16.在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且()222S a b c =--,则22b c bc+的取值范围为.【答案】342,15⎡⎫⎪⎢⎣⎭【分析】利用三角形面积公式与余弦定理,可得sin 2cos 2A A +=,再根据同角关系式可得sin A ,然后利用正弦定理与三角恒等变换公式化简可得435tan 5b c C =+,结合条件可得tan C 取值范围,进而求得bc 的取值范围,令b t c =,则221b c t bc t +=+,然后由对勾函数的单调性即可求出.【详解】在ABC 中,由余弦定理得2222cos a b c bc A =+-,且ABC 的面积1sin 2S bc A =,由()222S a b c =--,得sin 22cos bc A bc bc A =-,化简得sin 2cos 2A A +=,又0,2A π⎛⎫∈ ⎪⎝⎭,22sin cos 1A A +=,联立得25sin 4sin 0A A -=,解得4sin 5A =或sin 0A =(舍去),所以()sin sin sin cos cos sin 43sin sin sin 5tan 5A C bB AC A C c C C C C ++====+,因为ABC 为锐角三角形,所以02C π<<,2B A C ππ=--<,所以22A C ππ-<<,所以13tan tan 2tan 4C A A π⎛⎫>-== ⎪⎝⎭,所以140,tan 3C ⎛⎫∈ ⎪⎝⎭,所以35,53b c ⎛⎫∈ ⎪⎝⎭,设b t c =,其中35,53t ⎛⎫∈ ⎪⎝⎭,所以221b c b c t bc c b t+=+=+,由对勾函数单调性知1y t t =+在3,15⎛⎫ ⎪⎝⎭上单调递减,在51,3⎛⎫ ⎪⎝⎭上单调递增,当1t =时,2y =;当35t =时,3415y =;当53t =时,3415y =,所以342,15y ∈⎡⎫⎪⎢⎣⎭,即22b c bc+的取值范围是342,15⎡⎫⎪⎢⎣⎭.故答案为:342,15⎡⎫⎪⎢⎣⎭.【点睛】关键点点睛:本题关键在于利用正弦定理与三角恒等变换公式化简可得435tan 5b c C =+,进而可以求解.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知{}n a 是公差不为零的等差数列,11a =,且125,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)若114(1)n n n n n b a a ++=-⋅,求{}n b 的前1012项和1012T .【答案】(1)21n a n =-(2)101220242025T =【分析】(1)根据等差数列的通项公式和等比中项即可得解;(2)由裂项相消法可求出前1012项和.【详解】(1)设等差数列{}n a 的公差为d ,又11a =,则211a a d d =+=+,51414a a d d =+=+,因为125,,a a a 成等比数列,所以2215a a a =⋅,即()()21114d d +=⨯+,得220d d -=,又因为{}n a 是公差不为零的等差数列,所以2d =,即()()1111221n a a n d n n =+-=+-⨯=-....................................................6分(2)由(1)知()()11114411(1)(1)(1)21212121n n n n n n n n b a a n n n n ++++⎛⎫=-=-=-+ ⎪⋅-⋅+-+⎝⎭,1012123410111012T b b b b b b =++++++ 11111111111133557792021202320232025⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 12024120252025=-=.....................................................12分18.(12分)在直角梯形ABCD 中,//AD BC,22BC AD AB ===90ABC ∠=︒,如图(1).把ABD △沿BD 翻折,使得平面ABD ⊥平面BCD .(1)求证:CD AB ⊥;(2)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BN BC的值;若不存在,说明理由.【答案】(1)证明见解析(2)存在,14=BN BC 【分析】(1)利用勾股定理证明CD BD ⊥,再根据面面垂直的性质可得CD ⊥平面ABD ,再根据线面垂直的性质即可得证;(2)以点D 为原点,建立空间直角坐标系,利用向量法求解即可.【详解】(1)因为//AD BC ,且22BC AD AB AB BC ===⊥,可得AD AB ==2BD ==,又因为45DBC ADB ∠=∠=︒,可得2CD ==,所以222BD DC BC +=,则CD BD ⊥,因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,且CD ⊂平面BCD ,所以CD ⊥平面ABD ,又因为AB ⊂平面ABD ,所以CD AB ⊥;....................................................6分(2)因为CD ⊥平面ABD ,且BD ⊂平面ABD ,所以CD BD ⊥,如图所示,以点D 为原点,建立空间直角坐标系,可得()1,0,1A ,()2,0,0B ,()0,2,0C ,()0,0,0D ,所以()0,2,0CD =- ,()1,0,1AD =-- .....................................................7分设平面ACD 的法向量为(),,n x y z = ,则200n CD y n AD x z ⎧⋅=-=⎪⎨⋅=--=⎪⎩,令1x =,可得0,1y z ==-,所以()1,0,1n =- ,....................................................9分假设存在点N ,使得AN 与平面ACD 所成角为60 ,设BN BC λ=uuu r uu u r ,(其中01λ≤≤),则()22,2,0N λλ-,()12,2,1AN λλ=-- ,所以sin 602n AN n AN ⋅︒== ,整理得28210λλ+-=,解得14λ=或12λ=-(舍去),所以在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60︒,此时14=BN BC .....................................................12分19.(12分)正态分布与指数分布均是用于描述连续型随机变量的概率分布.对于一个给定的连续型随机变量X ,定义其累积分布函数为()()F x P X x =≤.已知某系统由一个电源和并联的A ,B ,C 三个元件组成,在电源电压正常的情况下,至少一个元件正常工作才可保证系统正常运行,电源及各元件之间工作相互独立.(1)已知电源电压X (单位:V )服从正态分布(40,4)N ,且X 的累积分布函数为()F x ,求(44)(38)F F -;(2)在数理统计中,指数分布常用于描述事件发生的时间间隔或等待时间.已知随机变量T (单位:天)表示某高稳定性元件的使用寿命,且服从指数分布,其累积分布函数为()0,011,04tt G t t <⎧⎪=⎨-≥⎪⎩.(ⅰ)设120t t >>,证明:1212(|)()P T t T t P T t t >>=>-;(ⅱ)若第n 天元件A 发生故障,求第1n +天系统正常运行的概率.附:若随机变量Y 服从正态分布2(,)N μσ,则(||)0.6827P Y μσ-<=,(||2)0.9545P Y μσ-<=,(||3)0.9973P Y μσ-<=.【答案】(1)0.8186(2)(ⅰ)证明见解析;(ⅱ)716.【分析】(1)根据正态分布的对称性即可结合()()F x P X x =≤的定义求解,(2)(ⅰ)根据条件概率的计算公式集合()()F x P X x =≤的定义以及()G t 的定义域即可求解,(ⅱ)根据独立事件的概率公式求解即可.【详解】(1)由题设得(3842)0.6827P X <<=,(3644)0.9545P X <<=,所以(44)(38)(44)((4044)(3840)F F P X P X P X P X -=-=+≤≤≤≤≤≤1(0.68270.9545)0.81862=⨯+=...................................................3分(2)(ⅰ)由题设得:[]12111122222()()()1()1()(|)()()1()1()P T t T t P T t P T t G t P T t T t P T t P T t P T t G t >⋂>>-≤->>===>>-≤-=1121221111444111144t t t t t t -⎛⎫-- ⎪⎝⎭===⎛⎫-- ⎪⎝⎭,21121212()1()1()4t t P T t t P T t t G t t ->--≤-=--==,所以1212(|)()P T t T t P T t t >>=>-....................................................8分(ⅱ)由(ⅰ)得1(1|)(1)1(1)1(1)4P T n T n P T P T G >+>=>=-=-=≤,所以第1n +天元件B ,C 正常工作的概率均为14.为使第1n +天系统仍正常工作,元件B ,C 必须至少有一个正常工作,因此所求概率为2171(1)416--=.....................................................12分20.(12分)已知抛物线2:4E y x =的焦点为F ,若ABC 的三个顶点都在抛物线E 上,且满足0FA FB FC ++= ,则称该三角形为“核心三角形”.(1)设“核心三角形ABC ”的一边AB 所在直线的斜率为2,求直线AB 的方程;(2)已知ABC 是“核心三角形”,证明:ABC 三个顶点的横坐标都小于2.【答案】(1)210x y --=(2)证明见解析【分析】(1)设AB 的方程为2y x t =+,联立抛物线方程,得到两根之和,两根之积,根据(1,0)F 及0FA FB FC ++= 得到点C 的坐标为(2,2)t +-,代入抛物线方程,求出1t =-,得到直线方程;(2)设直线BC 的方程,联立抛物线方程,得到两根之和,两根之积,求出点A 的坐标为()2342,4m n m ---,代入抛物线方程,得到2342n m =-,由根的判别式得到2n m >-,所以212m <,所以点A 的横坐标242m <,同理可证另两个顶点横坐标也小于2.【详解】(1)设直线AB 的方程为2y x t =+,与24y x =联立得2220y y t -+=,由480t ∆=->得12t <,设()()()112233,,,,,A x y B x y C x y ,则12122,2+==y y y y t ,所以()12121212x x y y t t +=+-=-,由题意知(1,0)F ,因为()()()1122330,1,,1,,1,FA FB FC FA x y FB x y FC x y ++==-=-=- ,所以()1231233,(0,0)x x x y y y ++-++=,所以12312330x x x y y y ++=⎧⎨++=⎩,故()333122x t t y ⎧=--=+⎨=-⎩即点C 的坐标为(2,2)t +-,代入抛物线E 的方程得:44(2)t =+,解得1t =-,满足条件12t <,所以直线AB 的方程为210x y --=.....................................................6分(2)证明:设直线BC 的方程为x my n =+,与24y x =联立得2440y my n --=,()2Δ160m n =+>,所以22323,4,4n m y y m y y n >-+==-,所以()22323242x x m y y n m n +=++=+.由(1)知12312330x x x y y y ++=⎧⎨++=⎩,所以2113424x m n y m ⎧=--⎨=-⎩,即点A 的坐标为()2342,4m n m ---.又点A 在抛物线24y x =上,所以()22164342m m n =--,所以2342n m =-,又2n m >-,所以212m <,所以点A 的横坐标2234242m n m --=<,同理可证,B ,C 两点的横坐标也小于2.所以ABC 三个顶点的横坐标均小于2.....................................................12分【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.21.(12分)已知函数1()ln 1f x x a x ⎛⎫=+- ⎪⎝⎭,0a >.(1)若()0f x ≥恒成立,求a 的取值集合;(2)证明:()111sin sin sin ln 2122n n n n++++<∈++N .【答案】(1){}1(2)证明见解析【分析】(1)利用导数求函数()f x 的最小值,转化恒成立条件列不等式可求a 的取值集合;(2)利用小问(1)构造不等式,赋值结合累加法证明1111ln 21232n n n n>+++++++ ,再结合正弦函数性质和不等式性质即可证明结论.【详解】(1)由题可知函数()f x 的定义域为{}0x x >,221()a x a f x x x x -'=-= ,令()0f x '=,得x a =,由x ,()f x ,()f x '列表如下()()min ln 1f x f a a a ==-+,因为()0f x ≥恒成立,所以ln 10a a -+³,(0,)a ∈+∞.令()ln 1g x x x =-+,则11()1x g x x x -'=-=,由x ,()g x ,()g x '列表如下x ()0,11()1,∞+()g x +0-()g x '递增极大值递减()()max 10g x g ∴==.又()0,1a ∈ ,()ln 1(1)0g a a a g =-+<=,(1,)∈+∞a ,()ln 1(1)0g a a a g =-+<=,1a ∴=,故a 的取值集合为{}1.....................................................5分(2)由(1)可知,当1a =时,()0f x ≥,即1ln 10x x+-≥,11ln 1x x x x -≥-=,ln(1)1x x x ∴+≥+(当0x =时,“=”成立),令1()x n n+=∈N ,111ln 1111n n n n⎛⎫+>= ⎪+⎝⎭+,则11ln 1n n n +⎛⎫> ⎪+⎝⎭,()1ln 1ln 1n n n +->+,由累加法可知()()()()()()()1ln 1ln 11ln 2ln 121ln 3ln 231ln 2ln 212n n n n n n n n n n n n ⎫+->⎪+⎪⎪+-+>⎪+⎪⎬+-+>⎪+⎪⋅⋅⋅⋅⋅⋅⎪⎪-->⎪⎭累加可得1111ln(2)ln 1232n n n n n n ->+++⋅⋅⋅++++,即1111ln 21232n n n n>+++++++ ,令()sin h x x x =-,,()0x ∈+∞,()cos 10h x x '=-≤ 恒成立,()h x ∴在区间(0,)+∞上单调递减,()(0)0h x h <=∴,sin x x ∴<,11111111sin sin sin sin 12321232n n n n n n n n∴++++>++++++++++ ,1111ln 2sinsin sin sin ()1232n n n n n +∴>++++∈+++N ....................................................12分【点睛】方法点睛:(1)导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理;(2)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用;(3)证明不等式,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.(10分)已知曲线C 的参数方程为2cosx y αα=⎧⎪⎨=⎪⎩(α为参数),直线l 过点()0,1P .(1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,且1132PA PB +=,求直线l 的倾斜角.【答案】(1)22143x y +=.(2)π4或3π4.【分析】(1)利用参数方程转普通方程即可求解.(2)写出直线l 的参数方程,参数方程代入22143x y +=,设A ,B 两点所对的参数为12,t t ,利用韦达定理代入1132PA PB +=中,化简即可求解.【详解】(1)由曲线C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),得cos 2sin xαα⎧=⎪⎪⎨⎪=⎪⎩,22sin cos 1θθ+=,2212x ⎛⎫∴+= ⎪⎝⎭,即22143x y +=(为焦点在x 轴上的椭圆)....................................................4分(2)设直线l 的倾斜角为θ,直线l 过点()0,1P ∴直线l 的参数方程为cos 1sin x t y t θθ=⎧⎨=+⎩(t 为参数),将直线l 的参数方程代入22143x y +=,可得()()22i 14cos 13s n t t θθ+=+,()2222222234123484120cos 12sin sin cos sin sin t t t t t t θθθθθθ⇒++=⇒++++-=()22sin s 8n 30i 8t t θθ∴++-=,设A ,B 两点所对的参数为12,t t ,221221883sin sin s 3in t t t t θθθ∴+=-⋅=-++,曲线C 与y轴交于((0,,两点,()0,1P ∴在曲线C 的内部,12,t t ∴一正一负,1212t t t t ∴+=-,而1132PA PB +=,121232t t t t +∴=⋅,121232t t t t -∴=⋅,2211222212294t t t t t t -⋅+∴=⋅,()222121212944t t t t t t ∴+-⋅=⋅,22222sin sin si 88984334si 3n n θθθθ⎛⎫⎛⎫⎛⎫∴---=- ⎪ ⎪+++⎝⎭⎝⎭⎝⎭解得21sin 2θ=,θ为直线l 的倾斜角,[)0πθ∈,,[]1sin 0,θ∈∴,sin θ∴π4θ∴=或3π4θ=,直线l 的倾斜角为π4或3π4.....................................................10分选修4-5:不等式选讲23.(10分)已知函数()223f x x x =--.(1)求不等式()5f x ≥的解集;(2)设函数()()12g x f x x =+++的最小值为m ,若0,0a b >>且2a b m +=,求证:2242a b +≥.【答案】(1)][(),24,-∞-⋃+∞(2)证明见解析【分析】(1)解绝对值不等式时,一般考虑分类讨论法求解,最后再合并;(2)分类讨论()g x 的单调性,判断其在不同区间上的最小值,最后确定m 的值,利用基本不等式即可证明.【详解】(1)不等式()5f x ≥可化为2235x x --≥或2235x x --≤-,由2235x x --≥,可得2280x x --≥,解得4x ≥或2x ≤-;由2235x x --≤-,可得2220x x -+≤,解得x ∈∅,所以不等式()5f x ≥的解集为][()4,∞∞-⋃+.....................................................4分(2)由题意,知()()()()123112g x f x x x x x =+++=-++++,当1x ≤-时,()(3)(1)(1)2g x x x x =-+-++2317()24x =--,因()g x 在(,1]-∞-上单调递减,则min ()(1)2g x g =-=;当13x -<<时,()(3)(1)(1)2g x x x x =--++++=233324x ⎛⎫--+ ⎪⎝⎭,因()g x 在3(1,2-上单调递增,在3(,3)2上单调递减,故()g x 在(1,3)-无最小值,但是()2g x >;当3x ≥时,()(3)(1)(1)2g x x x x =-++++211(24x =--,因()g x 在[3,)+∞上单调递增,则min ()(3)6g x g ==.综上,当=1x -时,函数()g x 取得最小值2,即2m =,所以22a b +=,因0,0a b >>,所以()()2222224222a b a b a b ++=+≥=,当且仅当1,12a b ==时等号成立,故2242a b +≥...................................................10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年高考模拟数学试题(全国新课标卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,复数ii++13= A .i +2 B .i −2 C .2−i D .2−−i2.等边三角形ABC 的边长为1,如果,,,BC a CA b AB c ===那么a b b c c a ⋅−⋅+⋅等于 A .32 B .32− C .12 D .12− 3.已知集合}4|4||{2<−∈=x x Z x A ,}8121|{≥⎪⎭⎫⎝⎛∈=+yN y B ,记A card 为集合A 的元素个数,则下列说法不正确...的是 A .5card =A B .3card =B C .2)card(=B A D .5)card(=B A 4.一个体积为123的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为A .6 3B .8C .8 3D .125.过抛物线24y x =的焦点作直线交抛物线于点()()1122,,,P x y Q x y 两点,若126x x +=,则PQ 中点M 到抛物线准线的距离为A .5B .4C .3D .2 6.下列说法正确的是A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .互斥事件不一定是对立事件,对立事件一定是互斥事件C .事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大D .事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小7.如图是秦九韶算法的一个程序框图,则输出的S 为A .1030020(())a x a x a a x +++的值B .3020100(())a x a x a a x +++的值C .0010230(())a x a x a a x +++的值D .2000310(())a x a x a a x +++的值输入开始01230,,,,a a a a x 33,k S a ==输出S 结束k >0k S a S x =+*1k k =−否是8.若(9x -13x )n(n ∈N *)的展开式的第3项的二项式系数为36,则其展开式中的常数项为A .252B .-252C .84D .-849.若S 1=⎠⎛121x d x ,S 2=⎠⎛12(ln x +1)d x ,S 3=⎠⎛12x d x ,则S 1,S 2,S 3的大小关系为A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 1<S 3<S 2D .S 3<S 1<S 210.在平面直角坐标系中,双曲线221124x y −=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于A ,B 两点。

若△F AB 的面识为83,则直线l 的斜率为 A .13132 B .21 C .41 D .7711.已知三个正数a ,b ,c 满足a c b a 3≤+≤,225)(3b c a a b ≤+≤,则以下四个命题正确的是p 1:对任意满足条件的a 、b 、c ,均有b ≤c ; p 2:存在一组实数a 、b 、c ,使得b >c ; p 3:对任意满足条件的a 、b 、c ,均有6b ≤4a +c ; p 4:存在一组实数a 、b 、c ,使得6b >4a +c . A .p 1,p 3 B .p 1,p 4 C .p 2,p 3 D .p 2,p 4 12.四次多项式)(x f 的四个实根构成公差为2的等差数列,则()f x '的所有根中最大根与最小根之差是A .2B .2 3C .4D .52第Ⅱ卷本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答. 二、填空题:本大题包括4小题,每小题5分.13.某种产品的广告费支出x 与销售额y 之间有如下对应数据(单位:百万元).x 2 4 5 6 8 y304060t70根据上表提供的数据,求出y 关于x 的线性回归方程为y ^=6.5x +17.5,则表中t 的值为 .14.已知函数y =sin ωx (ω>0)在区间[0,π2]上为增函数,且图象关于点(3π,0)对称,则ω的取值集合为 .15.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =2,∠ASC =∠BSC =45°,则棱锥S -ABC 的体积为 .16.等比数列{a n }中,首项a 1=2,公比q =3,a n +a n +1+…+a m =720(m ,n ∈N *,m >n ),则m +n = .三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在∆ABC 中,角A ,B ,C 对应的边分别为a ,b ,c,证明: (1)cos cos b C c B a +=; (2)22sin cos cos 2C A Ba bc+=+.18.(本小题满分12分)直三棱柱111C B A ABC −的所有棱长都为2,D 为CC 1中点.(1)求证:直线BD A AB 11平面⊥; (2)求二面角B D A A −−1的大小正弦值;19.(本小题满分12分)对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录: 日车流量x 50<≤x 105<≤x 1510<≤x 2015<≤x 2520<≤x25≥x 频率0.05 0.25 0.35 0.25 0.10 0 将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.(1)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量 低于5万辆的概率;(2)用X 表示在未来3天时间里日车流量不低于10万辆的天数,求X 的分布列和数学期望.20.(本小题满分12分)已知椭圆C :)0(12222>>=+b a by a x 的焦距为2且过点)23,1(.(1)求椭圆C 的标准方程;(2)若椭圆C 的内接平行四边形的一组对边分别过椭圆的焦点12,F F ,求该平行四边形面积的最大值.21.(本小题满分12分)设函数x c bx ax x f ln )(2++=,(其中c b a ,,为实常数) (1)当1,0==c b 时,讨论)(x f 的单调区间;(2)曲线)(x f y =(其中0>a )在点))1(f 1(,处的切线方程为33−=x y , (ⅰ)若函数)(x f 无极值点且)('x f 存在零点,求c b a ,,的值; (ⅱ)若函数)(x f 有两个极值点,证明)(x f 的极小值小于43-.请考生在22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲.如图AB 是圆O 的一条弦,过点A 作圆的切线AD ,作BC AC ⊥,与该圆交于点D ,若23AC =,2CD =. (1)求圆O 的半径;(2)若点E 为AB 中点,求证,,O E D 三点共线.23.(本小题满分10分)选修4-4:坐标系与参数方程选讲.在直角坐标系xOy 中,曲线1C 的参数方程为22cos ()sin 2x y ααα⎧=⎨=⎩是参数,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为1sin cos ρθθ=−.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)求曲线1C 上的任意一点P 到曲线2C 的最小距离,并求出此时点P 的坐标.24.(本小题满分10分)选修4-5:不等式选讲.设函数()|2|f x x a a =−+.(1) 若不等式()6f x ≤的解集为{|23}x x −≤≤,求实数a 的值;(2) 在(1)条件下,若存在实数n ,使得()()f n m f n −−≤恒成立,求实数m 的取值范围.2016年高考模拟数学试题(全国新课标卷)参考答案一、选择题:本大题包括12小题,每小题5分。

1-12 BDAA BBCC ABCD 二、填空题:13. 50 14.{13,23,1} 15. 43316.9三、解答题: 17.证法一:(余弦定理法)(1)22222222cos cos 222a b c a c b a b C c B b c a ab ac a +−+−+=+==(2)222222223223222cos cos 2222()2a c b b c a A B ac bc a b a bab ac a a b bc b ab a b c abc a b abc+−+−++=+++−++−−−+==+222222212sin1cos 2222a c b CC ab a b c ac c c c abc+−−−−−+===,所以等式成立证法二:(正弦定理法)(1)在∆ABC 中由正弦定理得 2sin ,2sin b R B c R C ==,所以cos cos 2sin cos 2sin cos 2sin()2sin b C c B R B C R C BR B C R A a+=+=+==(2)由(1)知cos cos b C c B a +=, 同理有 cos cos a C c A b +=所以cos cos cos cos b C c B a C c A a b +++=+即 2(cos cos )()(1cos )()2sin 2C c B A a b C a b +=+−=+⋅ 所以22sin cos cos 2C A Ba bc+=+18. 解:(1)取BC 中点O ,连结AO .ABC ∆ 为正三角形,BC AO ⊥∴111C B A ABC −直棱柱11B BCC ABC 平面平面⊥∴且相交于BC 11B BCC AO 平面⊥∴取11C B 中点1O ,则11//BB OO BC OO ⊥∴1 以O 为原点,如图建立空间直角坐标系xyz O −,则()()()()())0,0,1(,0,2,1,3,0,0,3,2,0,0,1,1,0,0,111−−C B A A D B()()()3,2,1,0,1,2,3,2,111−=−=−=∴BA BD AB0,0111=⋅=⋅BA AB BD AB ,111,BA AB BD AB ⊥⊥∴. ⊥∴1AB 平面1A BD .(2)设平面AD A 1的法向量为()z y x n ,,=.()()0,2,0,3,1,11=−−=AA AD .,,1AA n AD n ⊥⊥⎩⎨⎧==−+−∴0203y z y x 令1=z 得()1,0,3−=n 为平面AD A 1的一个法向量.由(1)()3,2,11−=AB 为平面1A BD 的法向量.46,cos 1−>=<∴AB n . ∴所以二面角B D A A −−1的大小的正弦值为410.19. 解:(Ⅰ)设A 1表示事件“日车流量不低于10万辆”,A 2表示事件“日车流量低于5万辆”,B 表示事件“在未来连续3天里有连续2天日车流量不低于10万辆且另1天车流量低于5万辆”.则P (A 1)=0.35+0.25+0.10=0.70, P (A 2)=0.05,所以P (B )=0.7×0.7×0.05×2=0.049(Ⅱ)X 可能取的值为0,1,2,3,相应的概率分别为027.0)7.01()0(303=−⋅==C X P ,189.0)7.01(7.0)1(213=−⋅⋅==C X P ,441.0)7.01(7.0)2(223=−⋅⋅==C X P ,343.07.0)3(333=⋅==C X P .X 的分布列为X 0 1 23 P 0.027 0.189 0.4410.343因为X ~B (3,0.7),所以期望E (X )=3×0.7=2.1.20. 解:(1)由已知可得⎪⎩⎪⎨⎧=+=−=,1491,2222222b ab ac 解得a 2=4,b 2=3,所以椭圆C 的标准方程是13422=+y x .(2)由已知得:122F F =,由于四边形ABCD 是椭圆的内接四边形, 所以原点O 是其对称中心,且122ABCDABF F SS =四边形()()121121222AF F AF B AF F BF F S S S S ∆∆∆∆=+=+()122A B A D F F y y y y =+=−,当直线AD 的斜率存在时,设其方程为()1y k x =−,代入椭圆方程,整理得:()2222344120k x k x k +−+−=,由韦达定理得:22228412,3434A D A D k k x x x x k k −+==++, ∴()()()()()2222222221441434A D A D A D A D k k y y k x x k x x x x k +⎡⎤−=−=+−=⎣⎦+,∴()()()2222222144189226163434ABCDA D k k k Sy y k k ++=−==−<++,当直线AD 的斜率不存在时,易得:331,,1,22A D ⎛⎫⎛⎫− ⎪ ⎪⎝⎭⎝⎭,∴26ABCDA D Sy y =−=,综上知,符合条件的椭圆内接四边形面积的最大值是6.21. 解:(1)当1,0==c b 时xax x ax x f 1212)('2+=+=,)0(>x ………1分当0≥a 时,0)('>x f 很成立,)(x f ∴在),0(+∞上是增函数;………2分当0<a 时,令0)('=x f 得a x 21−=或ax 21−−=(舍)………3分 令0)('>x f 得a x 210−<<;令0)('<x f 得ax 21−> )(x f ∴在上)21,0(a −是增函数,在),21(+∞−a上是减函数………4分 GODCBAF 1F 2yx(2) (i)x cb ax x f ++=2)('由题得⎩⎨⎧==3)1('0)1(f f , 即⎩⎨⎧=++=+320c b a b a ⎩⎨⎧−=−=⇒a c a b 3.则x a ax ax x f ln )3()(2−+−=,xaax ax x a a ax x f −+−=−+−=3232)('2(ⅰ)由)(x f 无极值点且)('x f 存在零点,得0)3(82=−−a a a )0(>a解得38=a ,于是38−=b ,31−=c . (ⅱ)由(i)知)0(32)('2>−+−=x xaax ax x f ,要使函数)(x f 有两个极值点,只要方程0322=−+−a ax ax 有两个不等正根,设两正根为21,x x ,且21x x <,可知当2x x =时有极小值)(2x f .其中这里,4101<<x 由于对称轴为41=x ,所以21x 412<<, 且032222=−+−a ax ax ,得123222−−−=x x a 【也可用以下解法:由(Ⅱ)知)0(32)('2>−+−=x xaax ax x f ,要使函数)(x f 有两个极值点,只要方程0322=−+−a ax ax 有两个不等正根,那么实数a 应满足 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>>−>−−0)2(2030)3(82a aa a a a ,解得338<<a ,aa a a a a x 24941414)3(822−+=−−+=338<<a 12490<−<∴a即21x 412<<】 所以有22222ln )3()(x a ax ax x f −+−=12)ln (3ln 3ln 3)ln (2222222222222−−−−−=+−−=x x x x x x x x x x a )21x 41(2<< 而2222222222)12()ln )(14(3)('−−−−−=x x x x x x x f ,记x x x x g ln )(2−−=,)141(≤<x , 有0)1)(12()('≤−+=xx x x g 对]1,41(∈x 恒成立,又0)1(=g ,故对)21,41(∈x 恒有)1()(g x g >,即0)(>x g .0)('2>∴x f 对于21x 412<<恒成立即)(2x f 在⎪⎭⎫⎝⎛21,41上单调递增, 故43)21()(f 2−=<f x . 22.解: (1) 取BD 中点为F ,连结OF ,由题意知,//OF AC ,OF AC =AC 为圆O 的切线,BC 为割线2CA CD CB ∴=⋅,由23,2AC CD ==,6,4,2BC BD BF ∴=== 在Rt OBF ∆中,由勾股定理得,224r OB OF BF ==+=.(2) 由(1)知,//,OA BD OA BD =所以四边形OADB 为平行四边形,又因为E 为AB 的中点, 所以OD 与AB 交于点E ,所以,,O E D 三点共线. 23.解:(1) 由题意知,1C 的普通方程为22(1)1x y −+=2C 的直角坐标方程为1y x =+.(2) 设(1cos 2,sin 2)P αα+,则P 到2C 的距离2|22cos(2)|24d πα=++,当cos(2)14πα+=−,即322()4k k Z παπ=+∈时,d 取最小值21−,此时P 点坐标为22(1,)22−. 24.解:(1) 由()6f x ≤,得626(6)a x a a a −≤−≤−<,即其解集为{|33}x a x −≤≤,由题意知()6f x ≤的解集为{|23}x x −≤≤,所以1a =.(2) 原不等式等价于,存在实数n ,使得()()|12||12|2m f n f n n n ≥+−=−+++恒成立,即min |12||12|2m n n ≥−+++,而由绝对值三角不等式,|12||12|2n n −++≥, 从而实数4m ≥.。

相关文档
最新文档