安徽省芜湖市中考数学试卷及答案
芜湖县中考数学试卷真题
芜湖县中考数学试卷真题(文章格式为数学试卷类型)芜湖县中考数学试卷真题第一卷(选择题)一、选择题共10小题,每小题4分,共计40分。
从A、B、C、D 四个选项中选择最佳答案,并将选项填涂在答题卡上。
1. 已知函数f(x) = 2x - 3,求f(4)的值是:A. 2B. 5C. 7D. 82. 在平面直角坐标系中,点A(-2, 3)与点B(1, -4)为连线AB的两个端点。
则三角形OAB的面积是:A. 7B. 10C. 12D. 153. 以下哪个数为有理数?A. πB. √2C. 0.81D. -∞4. 设a: b = 4: 5,且a + b = 18,则a的值为:A. 4B. 5C. 8D. 105. 若a:b=3:4,且a-2b=-14,求a的值是:A. -6B. -8C. 2D. 66. 小明和小李共同砍柴,小明砍柴的速度是小李的3倍,已知他们共砍柴9车,小明砍了多少车?A. 3B. 4C. 5D. 67. 若-3是方程2x + a = 7的根,则a的值是:A. -2B. -1C. 1D. 28. 一个学校的学生数是上学期的1.2倍,上学期学生数是1000人,那么现在的学生人数是:A. 800B. 1000C. 1200D. 20009. 如图所示,ΔABC是等边三角形,点D在边AB上,且AD =3cm。
若角ADC = 120°,则CD的长度为:[图略]A. 1 cmB. 2 cmC. 3 cmD. 4 cm10. 若sin x = -0.5,且x ∈ (0°, 180°),则x的大小为:A. 30°B. 45°C. 60°D. 90°第二卷(非选择题)二、填空题。
共5小题,每小题4分,共计20分。
将计算结果填写在答题卡上。
11. 若a + 2b = 5,b - 3a = 11,则a的值为________,b的值为________。
安徽省芜湖市中考数学试题及答案
...../Shop/49.shtml
《员工管理企业学院》
67套讲座+ 8720份资料
...../Shop/42.shtml
《工厂生产管理学院》
52套讲座+ 13920份资料
...../Shop/43.shtml
《财务管理学院》
53套讲座+ 17945份资料
...../Shop/45.shtml
《各阶段员工培训学院》
77套讲座+ 324份资料
《员工管理企业学院》
67套讲座+ 8720份资料
《工厂生产管理学院》
52套讲座+ 13920份资料
《财务管理学院》
53套讲座+ 17945份资料
《销售经理学院》
56套讲座+ 14350份资料
《销售人员培训学院》
72套讲座+ 4879份资料
49套讲座+16388份资料
...../Shop/38.shtml
《中层管理学院》
46套讲座+6020份资料
...../Shop/39.shtml
《国学智慧、易经》
46套讲座
...../Shop/41.shtml
《人力资源学院》
56套讲座+27123份资料
...../Shop/44.shtml
《各阶段员工培训学院》
《销售经理学院》
56套讲座+ 14350份资料
...../Shop/46.shtml
《销售人员培训学院》
72套讲座+ 4879份资料
...../Shop/47.shtml
更多企业学院:
(完整版)安徽中考数学试题及答案
2013年安徽省初中毕业学业考试数学本卷共8大题,计23小题,满分150分,考试时间120分钟得分评卷人一、选择题(本大题共10小题,每小题4分,满分40分)--------------- 每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确--------------- 选项的代号写在题后的括号内。
每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。
1.-2的倒数是.................................................... 【】11A. - 2B.2C. 2D. -22.用科学记数法的是表示537万正确的是 ................................ 【】A. 537x 104B. 5.37x 105C. 5.37x 106D. 0.537x 1073.图中所示的几何体为圆台,其主(正)视图正确的是..................... 【】第3题图 A B C D第3题图 A B C D4.下面运算正确的是........................................ 【】A. 2x+3y=5xyB. 5m2 • m3=5m5C. (a-b)2=a2-b2D. m2 • m3=m6;x-3> 05.已知不等式组+ 1与°其解集在数轴上表示正确的是................ 【】6 .如图,AB 〃CD , NA+NE=75°,则NC 为 A .60°B .65°C .75°D .80°7.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年放给每个经济困难学生389元,今年上半年发放了 438元,设每半年发放的资助金额的平均增长率为x ,则下面列... 出的方程中正确的是 ............................................... 【】A .438(1+x )2=389B . 389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=3898.如图,随机闭合开关K 1K 2K 3中的两个,则能让两盏灯泡同时发光的概率是……【 】A 」B 」6 3C . -D .29.图1所示矩形ABCD 中,BC=x , CD=y , y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是 .......... 【 】-2 -1 O 12 3 x-2 -1 O 12 3-2 -1 O 1 2 3 x-2 -1 O 1 2 3第8题图得分评卷人三.(本大题共2小题,每小题8分,满分16分)A.当 x=3 时,EC<EMB.当 y=9 时,EC>EMC.当x 增大时,EC • CF 的值增大D.当y 增大时,BE-DF 的值不变10 .如图,点P 是等边三角形ABC 外接圆。
2024年安徽省数学中考试题正式版含答案解析
绝密★启用前2024年安徽省数学中考试题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−5的绝对值是( )A. 5B. −5C. 15D. −152.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 0.944×107B. 9.44×106C. 9.44×107D. 94.4×1063.某几何体的三视图如图所示,则该几何体为( )A. B. C. D.4.下列计算正确的是( )A. a3+a5=a6B. a6÷a3=a2C. (−a)2=a2D. √ a2=a5.若扇形AOB的半径为6,∠AOB=120∘,则AB⏜的长为( )A. 2πB. 3πC. 4πD. 6π6.已知反比例函数y=kx(k≠0)与一次函数y=2−x的图象的一个交点的横坐标为3,则k的值为( )A. −3B. −1C. 1D. 37.如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是( )A. √ 10−√ 2B. √ 6−√ 2C. 2√ 2−2D. 2√ 2−√ 68.已知实数a,b满足a−b+1=0,0<a+b+1<1,则下列判断正确的是( )A. −12<a<0 B. 12<b<1C. −2<2a+4b<1D. −1<4a+2b<09.在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能..推出AF与CD一定垂直的是( )A. ∠ABC=∠AEDB. ∠BAF=∠EAFC. ∠BCF=∠EDFD. ∠ABD=∠AEC10.如图,在Rt▵ABC中,∠ABC=90∘,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为( )A. B. C. D.第II卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。
2024年安徽省芜湖市中考一模数学试题(含答案)
2024年九年级毕业暨升学模拟考试(一)数学试卷(答题时间120分钟,满分150分)一、选择题:每小题给出的四个选项中,其中只有一个是正确的.请把正确选项的代号写在下面的答题表内,(本大题共10小题,每题4分,共40分)1.下列抛物线开口朝上的是()A .y =2x 2+4x -6 B .y =-3x ² C .y =-2(x +2) D .y =5-x ²2.如图所示是一个中心对称图形,点A 为对称中心,若∠C =90°,∠B =30°,AC =1,则BB '的长为()A .2 B . 4 C .2 D .23.如图,五线谱是由等距离、等长度的五条平行横线组成的,同一条直线上的三个点A ,B ,C 都在横线上.若线段AC =6,则线段BC 的长是()A . B .1 C . D .24.用配方法解一元二次方程x ²-6x +8=0配方后得到的方程是()A .(x +6)2=28 B .(x -6)²=28 C .(x +3)2=1 D .(x -3)²=15.已知点A (-4,y ₁),B (-2,y 2),C (3,y ₃)都在反比例函数y =(k <0)的图象上,则y 1,y 2,y ₃的大小关系为( )A .y ₃<y 2<y 1 B .y 1<y ₃<y 2 C .y 3<y ₁<y 2 D .y 2<y ₃<y 16.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,依题意可列方程为( )A .3.2(1-x )2=3.7B .3.2(1+x )²=3.7C .3.7(1-x )2=3.2D .3.7(1+x )2=3.27.如图,△ODC 是由△OAB 绕点O 顺时针旋转40°后得到的图形,若点D 恰好落在AB 上,且∠AOC =105°,则∠C 的度数是()A .55° B .45° C .42° D .40°8.如图,四边形ABCD 是⊙O 的内接四边形,∠B =58°,∠ACD =40°.若OO 的半径为5,则弧CD 的长为()A .π B .π C .π D .π353223x k 313910219.小马虎在画二次函数y =2x ²-bx +3的图象时,把-b 看成了+b ,结果所画图象是由原图象向左平移6个单位长度所得的图象,则b 的值为( )A .24B .-24C .-12D .1210.如图所示,△ABC 中,∠ACB =90°,AB =4,AC =x ,∠BAC =α,O 为AB 中点,若点D 为直线BC 下方一点(A ,D 在BC 异侧),且△BCD 与△ABC 相似,则下列结论:11.①若α=45°,BC 与OD 相交于E ,则点E 必为△ABD 的重心;②若α=60°,则AD 的最大值为2;③若α=60°,△ABC ∽△CBD ,则OD 的长为2;④若△ABC ∽△BCD ,则当x =2时,AC +CD 取得最大值.其中正确的为()A .①④B .②③C .②④D .①③④二、填空题(本大题共4小题,每小题5分,满分20分)11.若x =3是关于x 的方程ax ²-bx =6的解,则b -3a 的值为12.如图所示,在平面直角坐标系中已知点A (2,2),B (4,1),以原点O 为位似中心,相似比为2,把△OAB 在第一象限内放大,则点A 的对应点A '的坐标是___13.如图,在平面直角坐标系中,点P (1,m )在函数y =(k >0,x >0)的图象上.设点A (t ,0)为x 轴负半轴一动点,以OA 为边作正方形OABC ,点C 在y 轴负半轴上,点B 在第三象限内,连接BP 、CP ,记△BCP 的面积为S ,设T =2S -2t ²,则T 的最大值为14.如图,已知菱形ABCD 的面积等于24,BD =8,则(1)AC =;(2)点E ,F ,G ,H 分别是此菱形ABCD 的AB ,BC ,CD ,AD 边上的点,且BE =BF =CG =AH ,则EF +GH =三、(本大题共2小题,每小题8分,满分16分)15.解方程:(2x +3)2=(3x +2)2.193xk16.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(即每个小正方形的顶点),OA =3,OB =4,且∠AOB =150°,线段OA 关于直线OB 对称的线段为OA ',将线段OB 绕点O 逆时针旋转45°得到线段OB '.(1)请使用尺规作图画出线段OA ',OB ';(2)将线段OB 绕点O 逆时针旋转a (45°<a <90°)得到线段OC ,连接A ’C ’.若A ’C ’=5,求∠B 'OC '的度数.四、(本大题共2小题,每小题8分,满分16分)17、如图,四边形ABCD 是学校的一块劳动实践基地,其中△ABC 是水果园,△ACD 是蔬菜园,已知AB //CD ,AB =45m ,AC =30m ,CD =20m .(1)求证:△ABC ∽△CAD ;(2)若蔬菜园△ACD 的面积为200m ²,求水果园△ABC 的面积.18.下图是2024年1月的月历表,用矩形方框按如图所示的方法任意圈出4个数,请解答下列问题;(1)若方框中最大数与最小数的乘积为180,求最小数;(2)方框中最大数与最小数的乘积与这四个数的和能为124吗?若能,求最小数;若不能,请说明理由.五、(本大题共2小题,每小题10分,满分20分)19.如图,一次函数y ₁=kx +b (k ≠0)与函数为y ₂=(>0)的图象交于A (4,1),B (,a )两点.x m 21(1)求这两个函数的解析式;(2)根据图象,请你直接写出满足y1-y2>0时x的取值范围_;(3)点P在线段AB上,过点P作x轴的垂线,垂足为M,交函数y₂的图象于点Q,若△POQ的面积为3,求点P的坐标.20.如图,AB为⊙O的直径,点C是弧AD的中点,过点C作射线BD的垂线,垂足为E.(1)求证:CE是⊙O的切线;(2)若BE=3,AB=4,求BC的长;六、(本题满分12分)21.某校开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A,B,C,D,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.七、(本题满分12分)22.【问题背景】数学学习小组发现国旗上五角星的五个角都是顶角为36°的等腰三角形,对此三角形展开了探究.【探究发现】(1)操作发现:如图1,在△ABC 中,∠A =36°,AB =A C .将△ABC 折叠,使边BC 落在边BA 上,点C 的对应点是点E ,折痕交AC 于点D ,连接DE ,DB ,则∠BDE = °,设AC =1,BC =x ,那么AE =(用含x 的式子表示);(2)探究发现:比值被称为黄金比.当等腰三角形的底与腰的比等于黄金比时,这个三角形叫黄金三角形.例如,图1中的△ABC 是黄金三角形.请在(1)的条件下证明:=【拓展应用】(3)如图2,在菱形ABCD 中,∠BAD =72°,AB =1.试求这个菱形较长对角线的长.八、(本题满分14分)23.如图1,在平面直角坐标系xOy 中,二次函数y =x ²-4x +c 的图象与y 轴的交点坐标为(0,5),图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为(1,5).(1)求c 的值及顶点M 的坐标;(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位(O <t <3)得到对应的矩形A 'B 'C 'D '.已知边C ’D ',A 'B '分别与函215-AC BC 腰底215-数y =x ²-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A 'B '于点G .①当t =2时,求QG 的长:②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.2024年九年级毕业暨升学模拟考试(一)数学试题参考答案及评分细则一、选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案A B D D C B B C D C二、填空题(本大题共4小题,每小题5分,共20分)11. 12. 13.1 14.(1)6 (2)6三、(本大题共2小题,每小题8分,满分16分)15.解:开方得:或解得:.16.(1)如图所示,线段即为所求;(2)如图所示,在中,是直角三角形,线段关于直线对称的线段为,,即.四、(本大题共2小题,每小题8分,满分16分)17.(1)证明:..2-()4,42332x x +=+2332x x +=--121,1x x ==-OA OB ''、A OC ''△3,4,5OA OA OC OB A C ==='=''='222A C OA OC A OC '''∴=+''∴'△90A OC ''∴∠=︒150AOB ∠=︒ OA OB OA '15060A OB C OB ∴∠=︒'∴∠='︒60α=︒604515B OC C OB B OB ''''∴∠=∠-∠=︒-︒=︒20220m,30m,303CD CD AC AC ==∴== 30245m,.453AC CD AC AB AB AC AB=∴==∴=又..(2),..18.(1)解:设最小数是,则最大数是,根据题意得:,整理得:,解得:(不符合题意,舍去).答:最小数是10(2)方框中最大数与最小数的乘积与这四个数的和不能为124.理由如下:假设方框中最大数与最小数的乘积与这四个数的和能为124,设最小数是,则另外三个数分别是,根据题意得:,整理得:,解得:(不符合题意,舍去),在最后一列,假设不成立,即方框中最大数与最小数的乘积与这四个数的和不能为124.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)反比例函数的图象经过点,反比例函数解析式为.把代入,得点坐标为,一次函数解析式图象经过,.故一次函数解析式为:,AB CD BAC ACD ∴∠=∠ ∥ABC CAD ∴△∽△ABC CAD △∽△222439ACD ABC S CD S AC ⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭△△222004200m ,,450m 9CAD ABC ABC S S S =∴=∴= △△△x 8x +()8180x x +=281800x x +-=1210,18x x ==-y 1,7,8y y y +++()8178124y y y y y y ++++++++=2121080y y +-=126,18y y ==-6y = ∴ 2(0)m y x x=>()4,1A 1. 4.4m m ∴=∴=∴24(0)y x x=>1,2B a ⎛⎫ ⎪⎝⎭24(0)y x x =>8.a =∴B 1,82⎛⎫ ⎪⎝⎭1y kx b =+()14,1,,82A B ⎛⎫ ⎪⎝⎭412.1982k b k b k b +=⎧=-⎧⎪∴∴⎨⎨=+=⎩⎪⎩129y x =-+(2)由.即反比例函数值小于一次函数值.由图象可得,.(3)由题意,设且...解得.或.20.(1)证明:如图,连接,点是弧的中点,弧弧...半径.是的切线.(2)解:连接,为的直径,.,...六、(本题满分12分)21.(1)解:所有可能出现的结果共6种:.(2)解:记抽到的两张卡片中恰好有数学家华罗庚邮票图案为事件包含的结果有3种,即,且6种可能的结果出现的可能性相等,.七、(本题满分12分)22.(1)72,,;(2)证明:由(1)知:,.12120,y y y y ->∴>142x <<(),29P p p -+144,,2p Q p p ⎛⎫≤≤∴ ⎪⎝⎭429PQ p p∴=-+-142932POQ S p p p ⎛⎫∴=-+-⋅= ⎪⎝⎭△125,22p p ==5,42P ⎛⎫∴ ⎪⎝⎭()2,5OC C AD ∴AC =,DC ABC EBC ∴∠=∠,OB OC ABC OCB =∴∠=∠ ,EBC OCB OC BE ∴∠=∠∴∥,BE CE ⊥∴ OC CE ⊥CE ∴O AC AB O 90ACB ∴∠=︒90ACB CEB ∴∠=∠=︒,ABC EBC ACB CEB ∠=∠∴ △∽△4,3AB BC BC BC BE BC ∴=∴=BC ∴=,,,,,AB AC AD BC BD CD ,M M ,,AC BC CD ()3162P M ∴==1x -36CBD EBD ∠=∠=︒.A CBD EBD AD BD ∴∠=∠=∠∴=.即,解得.(3)如图,在上截取,连接.四边形是菱形,,,,..八、(本题满分14分)23.解:(1)二次函数的图象与轴的交点坐标为,,,顶点的坐标是.(2)①在轴上,的坐标为点的坐标是.当时,的坐标分别是.当时,,即点的纵坐标是2,,C C ABC BDC ∠=∠∴ △∽△AC BC BC DC ∴=11x x x=-BC x AC ==底腰AC AE AD =DE ABCD 1136,3622ACD BCD DAC BAC DAB ∴∠=∠=︒∠=∠=∠=︒1,AD AB CD AB ==∥72,180108ADE AED ADC DAB ∴∠=∠=︒∠=︒-∠=︒DE AD ∴==1087236,CDE ADC ADE CDE ACD ∴∠=∠-∠=︒-︒=︒∴∠=∠CE DE ∴==1AC AE CE ∴=+=+= 24y x x c =-+y ()0,55c ∴=2245(2)1y x x x ∴=-+=-+∴M ()2,1A x B ()1,5,∴A ()1,02t =,D A ''()()2,0,3,03x =2(32)12y =-+=Q当时,,即点的纵坐标是1.点的纵坐标是.(2)存在.理由如下:的面积为1,.根据题意,得的坐标分别是.如图1,当点在点的上方时,,此时(在的范围内).如图2,当点在点的下方时,,此时(在的范围内).或.(注:未说明的取值范围,要扣分)2x =2(22)11y =-+=P ,PG A B '∴'⊥ G 1.211QG ∴=-=PGQ △1,2PG QG =∴=,P Q ()()22,45,1,22t t t t t t -++-+G Q ()224522322QG t t t t t =-+--+=-=12t =03t <<G Q ()222245232QG t t t t t =-+--+=-=52t =03t <<12t ∴=52t。
2024安徽中考数学试卷
一、选择题1.下列哪个数不是有理数?A.0B.-3/2C.π(答案)D.0.52.下列哪个数轴上的点表示的是正数?A.在原点左侧3个单位长度的点B.在原点右侧2个单位长度的点(答案)C.原点D.在原点左侧和右侧各1个单位长度的点3.下列哪个是代数式?A. 5 > 3B.x + 1 = 5C.2a - b(答案)D.你吃了吗?4.下列哪个是单项式?A.x + yB.2x2yC.1/xD.5(答案)5.下列运算正确的是?A.3a - 2a = 1B.a2 + a3 = a5C.7a - a = 6a(答案)D.(ab)2 = ab26.下列哪个是不等式?A.x + 3 = 5B.x - 2 > 3(答案)C.x2 - 4x + 4D.x/27.下列哪个数不是整数?A.-3B.0C.3/2(答案)D.58.下列哪个是多项式?A.x2 - 2x(答案)B.1/xC.√xD.x2 - 2x + 3 = 09.下列哪个是不等式的解?A.x = 2 是不等式x > 3 的解B.x = -1 是不等式x < -2 的解C.x = 4 是不等式x ≥4 的解(答案)D.x = 0 是不等式x ≠0 的解10.下列哪个运算符合分配律?A.a(b + c) = ab + cB.a(b + c) = ab + ac(答案)C. a + b = abD.(a + b)2 = a2 + b2。
2020年安徽省芜湖中考数学试题(word版及答案)
初中毕业学业考试数学试卷温馨提示:L数学试卷共8页,三大题.共24小题.请你仔细核对每页试卷下方页码和题数,核实无误后再答题.考试时间共120分钟.请合理分配时间.2.请你仔细思考、认真答题,不要过于紧张,祝考试顺利!一、选择题(本大题共10小题,每小题4分,共40分.)在每小题给出的四个选项中,只有一项是符合题意的,请把你认为正确的选项前字母填写在该题后面的括号中。
1.-8的相反数是()A. -8B. 一1C. -D. 88 82.我们身处在自然环境中,一年接受的宇宙射线及其它天然辐射照射量约为3 1 00微西弗(1西弗等于1000毫西弗,1毫西弗等于1000微西弗),用科学记数法可表示为()A. 3.1x106西弗g. 3.1X1O'西弗 C. 3.1x10-3西弗口. 3.1x10、西弗3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()。
:D.六棱柱4.函数中,自变量X的取值范围是()A x<6B x>6 C. x<-6 D. x>-65.分式方程汩=—匚的解是(), ZN工一2 2-x /尸 X6.如图,已知aABC中,ZABC=45° ,F是高AD和BE的交点,CD=4,则线段DF的长度为()产 ------- 今一A. 2& B. 4 C. 3& D. 4& 第6题图7.已知直线),=辰+。
经过点(k, 3)和(1, k),则k的值为()A. 6B. 土6C.五D. ±728.如图,直径为10的OA山经过点C(0, 5)和点0(0, 0), B是y轴右侧。
A 优弧上一点,则N0BC的余弦值为()A- B. 3 C.且 D.士2 42 59.如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长 为(〃 +1)cm的正方形(〃>0),剩余部分沿虚线乂剪拼成一个矩形(不 重叠无缝隙),则矩形的面积为()A. (2a 2+5a )cm 2B. (3« + 15)c/n 2C. (6a + 9)c 〃/D. (6d + 15)cn/210,二次函数y = ad+法+ c 的图象如图所示,则反比例函数y = B 与一次函数x y = Z?x+c 在同一坐标系中的大致图象是()二、填空题(本大题共6小题.每小题5分.共30分.)将正确的答案填在题中 的横线上.11. 一个角的补角是36° 35' .这个角是 _______o 12.因式分解/一2/),+92=o 13.方程组9T2 = 7解是 __________ 。
安徽省2024年中考数学试卷(解析版)
2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。
2024年安徽芜湖中考二模数学试题+答案
2024届芜湖市初中毕业班教学质量统测数学试题卷注意事项:1.本试卷满分为150分,考试时间为120分钟。
2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共6页,“答题卷”共6页。
3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的。
4.考试结束后,请将“答题卷”交回。
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是符合题目要求的.1.2024的倒数是( ) A .2024B .-2024C .12024−D .120242.下列计算正确的是( ) A .()235aa =B .235a a a ⋅=C .235a a a +=D .()()523a a a −÷−=3.如图,某几何体由8个完全相同的小正方体搭成,其箭头所指为主视方向,则该几何体的左视图是( )A .B .C .D .4.据统计,奇瑞集团在2023年汽车总销量为188万辆,其中188万用科学记数法表示为( ) A .418810×B .518.810×C .51.8810×D .61.8810×5.某校九年级有13名同学参加百米竞赛,预赛成绩各不相同,取前6名参加决赛.小梅已知自己的成绩,判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .中位数B .众数C .平均数D .方差6.某日的最低气温是11C,最高气温是27C,在数轴上表示该日气温变化范围正确的是( )A .B .C .D .7.如图,平行四边形ABCD 的对角线,AC BD 交于点O ,若11AB =,OCD △的周长为29,则AC BD +的值为( )A .18B .36C .38D .398.如图,在Rt ABC △中,90C ∠=,分别以各边为直径在AB 同侧作半圆,图中的阴影部分在数学史上称为“希波克拉底月牙”,若4,2AC BC ==,则阴影部分的面积为( )A .4B .8C .4πD .8π9.已知二次函数2y ax bx =+和反比例函数c y x=的图象如图所示,则一次函数cy x b a =−的图象可能是( )A .B .C .D .10.如图,正方形ABCD 边长为4,点,E F 分别在边,BC CD 上,且满足,,BE CF AE BF =交于P 点,,M N 分别是,CD BC 的中点,则12PM PN +的最小值为( )AB .CD 二、填空题(本大题共4小题,每小题5分,满分20分)11.若分式11x −有意义,则x 的取值范围是______. 12.分解因式3x x −=______. 13.如图,O 内切于ABC △,切点分别为,,D E F ,且3,5,4AB BC AC ===,则CD =______.14.如图,在ABC △中,90,ACB CA x ∠⊥轴于点A ,双曲线()0ky x x=>经过点C ,且与AB 交于点D .若ABC △的面积为12,3BD AD =.请解决以下问题:(1)若点D 纵坐标为1,则B 点的纵坐标为______. (2)k =______.三、(本大题共2小题,每小题8分,满分16分)1501122 +− .16.某校九年级举行“书香润心灵,阅读促成长”活动.学校要求各班班长根据学生阅读需求,统计需购的书籍类型和数量,如表所示.文学类(本/人) 科普类(本/人) 九(1)班 3 2 九(2)班41 共计(本) 265110请你根据以上信息,求九(1)班和九(2)班各有多少人.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1的正方形的网格中,已知ABC △及直线l . (1)画出ABC △关于直线l 的对称图形111A B C △;(2)仅用无刻度直尺在边AC 上找到点E ,使得ABE △的面积等于ABC △面积的13(保留作图痕迹).18.下图被称为“杨辉三角”或“贾宪三角”.其规律是:从第3行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.图中两平行线之间的一列数:1,3,6,10,15,……,我们把第1个数记为1a ,第2个数记为2a ,第3个数记为3,.a .,第n 个数记为n a . (1)根据这列数的规律,8a =______,n a =______;(2)这列数中有66这个数吗?如果有,求n ;如果没有,请说明理由.五、(本大题共2小题,每小题10分,满分20分)19.图乙为某大桥桥型(图甲)的示意图.拉索AB 与水平桥面的夹角约为37,拉索CD 与水平桥面的夹角约为53,两拉索顶端的距离BC 为3米,两拉索底端距离AD 为20米,求立柱BH 的长(结果精确到0.1米).(参考数据:sin370.60,cos370.80,tan370.75,sin530.80≈≈≈≈ ,4cos530.60,tan533≈≈.)甲 乙20.如图,在ABC △中,AB AC =,以AB 为直径作O ,交BC 于点,D DE 是O 的切线且交AC 于点E ,延长CA 交O 于点F .(1)求证:DE AC ⊥;(2)若sin 3C DE =,求EF 的长. 六、(本题满分12分)21.芜湖市已建成并开放“芜湖书屋”55家,可谓“半城山水,满城书香”.政府着力打造高品质城市阅读空间,努力做到人人享阅读,处处能阅读,时时可阅读,切实提升了城市品位和文化氛围.市区某校九年级二班调查了同学们最喜欢的“芜湖书房”情况,上榜五大书房,分别是A .滨江书苑、B .悦享书吧、C .赤铸书院、D .葵月书房、E .占川书局,并绘制了如下两幅不完整的统计图.图1 图2 (1)该班共有学生______人,请把条形统计图补充完整;(2)扇形统计图中,m =______,n =______,最喜欢滨江书苑所对应的扇形圆心角为______度; (3)小鹏和小兵均选择了葵月书房,若从选择了葵月书房的学生中随机选取2人参加该书房志愿者活动,求恰好是小鹏和小兵当选葵月书房志愿者的概率,并说明理由.七、(本题满分12分)22.如图1,在Rt ABC △中,AB AC =,点O 是斜边BC 上的一点,连接AO ,点D 是线段AO 上一点,过点D 分别作//,//DE AB DF AC 交BC 于点,E F .图1 图2 图3 (1)填空:当EDFBACS S = ______时,35EF BC =; (2)如图2,若点O 为斜边BC 的中点,将DEF △绕点O 顺时针旋转α度()090α<<,连接AD ,,BE OD ,求证:AOD BOE △≌△;(3)如图3,若点O 是斜边BC 上的一点,将DEF △绕点O 顺时针旋转α度()090α<<,连接,,AD BE OD ,求证:AOD BOE △∽△. 八、(本题满分14分)23.如图1,抛物线()21y x c =−−+与x 轴交于点A 和点B (点A 在原点的左侧,点B 在原点的右侧),且3OB =.在x 轴上有一动点()(),003E m m <<,过点E 作直线l x ⊥轴,交抛物线于点M . (1)求点A 的坐标及抛物线的解析式;(2)如图2,连接AM ,若60MAB ∠=,求此时点E 的坐标; (3)如图3,连接BM 并延长交y N ,连接OM ,记AEM △的面积为1,S MON △的面积为2S ,若12S S =,求此时点E 的坐标.图1 图2 图32024届芜湖市初中毕业班教学质量统测数学试题参考答案一、选择题(本大题共10小题,每题4分,共40分)题号 1 2 3 4 5 67 89 10答案 D B C D A A B A B C10.解析:由,,BE CF ABE BCF AB BC =∠=∠=可得ABE BCF △≌△,从而由角的关系可知AE BF⊥,故点P 在以AB 为直径的半圆O 上移动,如图2,连,OM OP ,在OM 上截取1OQ=,连QP ,如图2.1,2,4,::1:2OQ OP OM OQ OP OP OM ===∴== 又1,.2QOP POM QOP POM MP QP∠=∠∴∴=∽△△,12PM PN QP NP ∴+=+,而QP NP +的最小值为线段QN 的长度,如图3,作NG OM ⊥,垂足为G ,可知1,2QG GN ==,则QN 12PM PN +的最小值为QN =.二、填空题(本大题共4小题,每小题5分,共20分)11.1x ≠ 12.()()11x x x +− 1314.(1)4(2)2(说明:第14题第一空2分,第二空3分) 解析:(1)113,,44DBy AD AD BD AD AB y AB =∴=∴== 1,4D B y y =∴= (2)设,k C a a,则(),0k A a AC a ∴= 1242412,,2ABC a a k S AC BC BC B a k k a=⋅=∴=∴+63,,4a k BD AD D a k a=∴+双曲线k y x =经过点6,4a k D k a k a ∴+⋅2k ∴= 三、(本大题共2小题,每小题8分,满分16分)15.解:原式11122=−+−=16.解:设九(1)班有x 人,九(2)班有y 人 由题意得:342652110x y x y += += 解得:3540x y = =答:九(1)班有35人,九(2)班有40人.四、(本大题共2小题,每小题8分,满分16分)17.(1)如下图示4分(2)如下图示(BE 不连接不扣分).或18.(1)()136,2n n +.有()1662n n +=()()()21132,1320,12110n n n n n n ∴+=+−=+−=11(12n n ∴==−舍去) ∴有66这个数,是第11个数.五、(本大题共2小题,每小题10分,满分20分)19.解:设DH x =米53,90CDH H ∠=∠=4tan533CH DH x ∴=⋅=433BH BC CH x ∴=+=+ 37A ∠= 416439AH BH x ∴==+AH AD DH =+ 164209x x ∴+=+解得:1447x =4144330.437BH ∴=+×≈(米)答:立柱BH 的长约为30.4米20.(1)证明:如图所示,连接OD ,AB AC = ,C B ∴∠=∠,OB OD = ,,B ODB C ODB∴∠=∠∠=∠//OD AC ∴DE 是O 的切线OD DE DE AC ∴⊥∴⊥(2)解:连接FD ,如图得F B ∠=∠C B ∠=∠ (已证)F C ∴∠=∠,sin sin C F ∴==DE FC ⊥ ,90DEF ∴∠= ,DE FD ∴,3DE = ,FD ∴,6EF ∴=(此题方法不唯一,先证明EF EC =,求出EC 的值也可.)六、(本题满分12分)21.(1)该班共有学生人数为:510%50÷=. 把条形统计图补充完整如下:(2)%1050100%20%,550100%10%m n =÷×==÷×= 20,10m n ∴==. 最喜欢滨江书苑所对应的扇形圆心角2036014450×= (3)把小鹏和小兵分别记为a b 、,其他同学分别记为c d e 、、,画树状图如下:共有20种等可能的结果,其中恰好是小鹏和小兵参加比赛的结果有2种,∴恰好是小鹏和小兵参加比赛的概率为212010=. 七、(本题满分12分)22.解:(1)925EDF BAC S S =时. (2)证明:O 为等腰Rt ABC △斜边BC 的中点AO BO ∴=由图1//,//DE AB DF AC 且ABC △为等腰直角三角形DEF ∴△为等腰直角三角形,,,OED OBA ODE OAB ODF OAC OFD OCA ∴∠=∠∠=∠∠=∠∠=∠45OED ODE ∴∠=∠= EO DO ∴=将DEF △绕点O 顺时针旋转任意一个角度AOD BOE ∴∠=∠又AO BO = ()SAS AOD BOE ∴△≌△(3)解:如图1,旋转前,//DE AB ,OEOD OE OBOB OA OD OA∴==如图3,旋转后, 将DEF △绕点O 顺时针旋转任意一个角度AOD BOE ∴∠=∠AOD BOE ∴△∽△ 八、(本题满分14分)23.解:(1)()1,0A − 22 3.?y x x =−++ (2)由题意,设点M 坐标为()2,23m m m −++,则223OM m m =−++()1,0A − ,则1AE m =+60MAB ∠=)2123m m m +=−++, 1m ∴=−(舍去)或3m =()3E ∴.(3)由题意,设点M 坐标为()2,23m m m −++设直线BM 的表达式为y sx t =+ 则22303m m sm t s t −++=+=+,解得133s m t m =−− =+故直线BM 的表达式为()133y m x m =−−++,当0x =时,33y m =+ 故点N 坐标为()0,33m +,则33,1ON m AE m =+=+()()211112322M S AE y m m m =××=×+×−++ ()()()22111133123222M S ON x m m S m m m =××=×+×==×+×−++ ()()()231123m m m m m ∴×+=+×−++,即10m +=或2323m m m =−++舍去负值,故m =E。
2024年芜湖中考数学试卷
1、若一个正多边形的每个内角都是150°,则这个正多边形是A、正六边形B、正八边形C、正十边形D、正十二边形(答案:D。
正多边形的内角和外角互补,即内角+外角=180°。
已知内角为150°,则外角为30°。
正多边形的所有外角之和为360°,因此边数n=360°/30°=12,为正十二边形。
)2、下列哪个数集没有最大值?A、{1, 2, 3, 4, 5}B、{x | x是小于10的正整数}C、{x | x是大于-1且小于1的实数}D、{x | x是奇数且x<10}(答案:C。
选项A、B、D均为有限集或有界集,存在最大值。
而选项C表示的是开区间(-1, 1)内的所有实数,这个区间内的数可以无限接近但永远不等于1,因此没有最大值。
)3、在△ABC中,若∠A=∠B+∠C,则△ABC是A、锐角三角形B、直角三角形C、钝角三角形D、等腰三角形(答案:B。
根据三角形内角和定理,∠A+∠B+∠C=180°。
若∠A=∠B+∠C,则2∠A=180°,即∠A=90°,所以△ABC是直角三角形。
)4、一个矩形的长是宽的2倍,且其面积为128平方厘米,则该矩形的周长为A、32厘米B、48厘米C、64厘米D、96厘米(答案:C。
设矩形的宽为x厘米,则长为2x厘米。
由面积公式得x×2x=128,解得x=8(负值舍去),所以长为16厘米,周长为2×(8+16)=48×2=96/2=48的2倍=96/2×2=64厘米。
)5、若一组数据的平均数为7,方差为4,加入一个新数据9后,新的平均数可能为A、小于7B、等于7C、大于7但小于8D、大于8(答案:C。
原平均数为7,加入一个新数据9,由于9大于7,所以新的平均数会增大,但不会直接跳到9,因为新平均数是所有数据的和除以数据个数,故新的平均数会大于7但小于8。
安徽省2024年中考数学真题含解析
2024年安徽中考数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15-D. 152. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410⨯B. 69.4410⨯C. 79.4410⨯D. 694.410⨯3. 某几何体的三视图如图所示,则该几何体为( )A. B.C D.4. 下列计算正确的是( )A. 356a a a +=B. 632a a a ÷=C ()22a a -=D. a=5. 若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为( )A 2π B. 3π C. 4π D. 6π6. 已知反比例函数()0ky k x =≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()...A. 3-B. 1-C. 1D. 37. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是( )A. B. - C. 2- D. 8. 已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是( )A. 102a -<< B. 112b <<C. 2241a b -<+< D. 1420a b -<+<9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A. ABC AED∠=∠ B. BAF EAF ∠=∠C. BCF EDF ∠=∠ D. ABD AEC∠=∠10. 如图,在Rt ABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14-x 有意义,则实数x 的取值范围是_____.12.,祖冲之给出圆周率的一种分数形式的近似值为227.比较大______227(填“>”或“<”).13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=______(用含α的式子表示);(2)再沿垂直于MN 直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:223x x -=16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C为顶点的四边形的面积;的(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-表示结果LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=( )2-( )2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值.数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;【②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.七、(本题满分12分)22. 如图1,ABCD Y 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.八、(本题满分14分)23. 已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22yx x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值数学试题解析注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15-D. 15答案:A解析:【分析】根据负数的绝对值等于它的相反数可得答案.解:|﹣5|=5.故选A .2. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410⨯ B. 69.4410⨯ C. 79.4410⨯ D. 694.410⨯答案:B解析:【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10na ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.解:944万694400009.4410==⨯,故选:B .3. 某几何体的三视图如图所示,则该几何体为( )A. B.C. D.答案:D解析:【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4. 下列计算正确的是( )A. 356a a a += B. 632a a a ÷=C. ()22a a -= D. a=答案:C解析:【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据相应运算法则依次判断即可解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;C 、()22a a -=,选项正确,符合题意;D 、当0a ≥a =,当0a <a =-,选项错误,不符合题意;故选:C5. 若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为( )A. 2πB. 3πC. 4πD. 6π 答案:C解析:【分析】此题考查了弧长公式,根据弧长公式计算即可.解:由题意可得, AB 的长为12064180ππ⨯=,故选:C .6. 已知反比例函数()0k y k x =≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为( )A. 3- B. 1- C. 1 D. 3答案:A解析:【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可解:∵反比例函数()0k y k x =≠与一次函数2y x =-图象的一个交点的横坐标为3,∴231y =-=-,∴13k -=,∴3k =-,故选:A7. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是( )A.B.C. 2-D. 答案:B解析:【分析】本题考查了等腰直角三角形的判定和性质,对顶角的性质,勾股定理,过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=︒,由90ACB ∠=︒,2AC BC ==,可得AB =,45A ABC ∠=∠=︒,进而得到CD =,45DBE ∠=︒,即得BDE △为等腰直角三角形,得到DE BE =,设DE BE x ==,由勾股定理得()(2222x x ++=,求出x 即可求解,正确作出辅助线是解题的关键.解:过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=︒,∵90ACB ∠=︒,2AC BC ==,的∴AB ==,45A ABC ∠=∠=︒,∴CD =,45DBE ∠=︒,∴BDE △为等腰直角三角形,∴DE BE =,设DE BE x ==,则2CE x =+,在Rt CDE △中,222CE DE CD +=,∴()(2222x x ++=,解得11x =-,21x =-(舍去),∴1DE BE ==-,∴BD ==-,故选:B .8. 已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是( )A. 102a -<<B. 112b <<C. 2241a b -<+< D. 1420a b -<+<答案:C解析:【分析】题目主要考查不等式的性质和解一元一次不等式组,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键解:∵10a b -+=,∴1a b =-,∵011a b <++<,∴0111b b <-++<,∴102b <<,选项B 错误,不符合题意;∵10a b -+=,∴1b a =+,∵011a b <++<,∴0111a a <+++<,∴112a -<<-,选项A 错误,不符合题意;∵112a -<<-,102b <<,∴221a -<<-,042b <<,∴2241a b -<+<,选项C 正确,符合题意;∵112a -<<-,102b <<,∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A. ABC AED∠=∠ B. BAF EAF ∠=∠C. BCF EDF∠=∠ D. ABD AEC∠=∠答案:D解析:【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,结合根据等腰三角形“三线合一”的性质即可证得结论.解:A 、连接AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD =又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连接BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =, AFB AFE∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连接BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =, CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()ABF AEF SSS ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出题干结论,符合题意;故选:D .10. 如图,在Rt ABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为( )A. B.C. D.答案:A解析:【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定理的应用,过点E 作EH AC ⊥于点H ,由勾股定理求出AC ,根据等面积法求出BD ,先证明ABC ADB ∽,由相似三角形的性质可得出AB AC AD AB =,即可求出AD ,再证明AED BFD ∽,由相似三角形的性质可得出2AED BFD S AD S BD ⎛⎫= ⎪⎝⎭ ,即可得出4AED BFD S S = ,根据()ABC AED BDC BDF DEBF S S S S S =--- 四边形,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.解:过点E 作EH AC ⊥于点H ,如下图:∵90ABC ∠=︒,4AB =,2BC =,∴AC ==,∵BD 是边AC 上的高.∴1122AB BC AC BD ⋅=⋅,∴BD =∵BAC CAB ∠=∠,90ABC ADB ∠=∠=︒,∴ABC ADB ∽△△,∴AB AC AD AB=,解得:AD =,∴DC AC AD =-==∵90BDF BDE BDE EDA ∠+∠=∠+∠=︒,90CBD DBA DBA A ∠+∠=∠+∠=︒,∴DBC A ∠=∠,BDF EDA ∠=∠,∴AED BFD ∽,∴224AEDBFD S AD S BD ⎛⎫ ⎪⎛⎫=== ⎪⎝⎭ ,∴4AED BFD S S = ,∴()ABC AED BDC BDF DEBF S S S S S =--- 四边形1111sin 2224AED AB BC AE AD A DC DB S =⋅-⋅∠-⋅+1311422422x =⨯⨯-⨯16355x =-∵04x <<,∴当0x =时,165DEBF S =四边形 ,当4x =时,45DEBF S =四边形.故选:A .二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14-x 有意义,则实数x 的取值范围是_____.答案:4x ≠解析:【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12. ,祖冲之给出圆周率的一种分数形式的近似值为227.比较大______227(填“>”或“<”).答案:>解析:【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.解:∵222484749⎛⎫= ⎪⎝⎭,24901049==,而4844904949<,∴22227⎛⎫< ⎪⎝⎭,227>;故答案为:>13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.答案:16解析:【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.详解】解:画树状图如下:由树状图可得,共有12种等结果,其中恰为2个红球的结果有2种,∴恰为2个红球的概率为21126=,故答案为:16.14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=______(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.答案:①. 90α︒-##90α-+︒ ②. 解析:【分析】①连接CC ',根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,【再结合平行线的性质即可求解;②记H G 与NC '交于点K , 可证:AEH BFE DHG CGF △≌△≌△≌△,则4AE CG DH ===,8DG BE ==,由勾股定理可求HG =,由折叠的性质得到:90NC B NCB ''∠=∠=︒,89∠=∠,90D GD H '∠=∠=︒,NC NC '=,8GD GD '==,则NG NK =,4KC GC '==,由NC GD ''∥,得HC K HD G ''△∽△,继而可证明HK KG =,由等腰三角形的性质得到PK PG =,故34PH HG ==解:①连接CC ',由题意得4C NM '∠=∠,MN CC '⊥,∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,190BEF ∠+∠=︒,∴24∠∠=,190α∠=︒-,∴490α∠=︒-∴90C NM α'∠=︒-,故答案为:90α︒-;②记H G 与NC '交于点K ,如图:∵四边形ABCD 是正方形,四边形EFGH 是正方形,∴90A B C D ∠=∠=∠=∠=︒,HE FE =,90HEF ∠=︒,∴567690∠+∠=∠+∠=︒,∴57∠=∠,∴AEH BFE △≌△,同理可证:AEH BFE DHG CGF △≌△≌△≌△,∴4AE CG DH ===,8DG BE ==,在Rt HDG △中,由勾股定理得HG ==由题意得:90NC B NCB ''∠=∠=︒,89∠=∠,90D GD H '∠=∠=︒,NC NC '=,8GD GD '==,∴NC GD ''∥,∴9NKG ∠=∠,∴8NKG ∠=∠,∴NG NK =,∴NC NG NC NK '-=-,即4KC GC '==,∵NC GD ''∥,∴HC K HD G ''△∽△,∴12HK C K HG D G '==',∴12HK HG =,∴HK KG =,由题意得MN HG ⊥,而NG NK =,∴PK PG =,∴34PH HG ==故答案为:.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:223x x -=答案:13x =,21x =-解析:【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.答案:(1)见详解 (2)40(3)()6,6E (答案不唯一)解析:【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A ,B ,C 分别绕点D 旋转180︒得到对应点,即可得出111A B C △.(2)连接1BB ,1CC ,证明四边形11BC B C 是平行四边形,利用平行四边形性质以及网格求出面积即可.(3)根据网格信息可得出5AB =,5AC ==,即可得出ABC 是等腰三角形,根据三线合一的性质即可求出点E 的坐标.【小问1详解】解:111A B C △如下图所示: 【小问2详解】连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点D 成中心对称,∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴1111122104402BC B C S CC B ==⨯⨯⨯= .的【小问3详解】∵根据网格信息可得出5AB =,5AC ==,∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,()10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?答案:A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.解析:【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-表示结果L L 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=( )2-( )2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.答案:(1)(ⅰ)7,5;(ⅱ)()()2211n n +--; (2)()224k m k m-+-解析:【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【小问1详解】(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;【小问2详解】解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:,cos36.90.80︒≈,).答案:43解析:【分析】本题考查了解直角三角形,勾股定理,三角函数,过点EF AD ⊥于F ,则90AFE ∠=︒,DF CE =,由题意可得,36.9BEC α∠=∠=︒,CBE β∠=∠, 1.2m =EF ,解Rt BCE 求出CE 、BE ,可求出sin β,再由勾股定理可得AE ,进而得到sin γ,即可求解,正确作出辅助线是解题的关键.解:过点EF AD ⊥于F ,则90AFE ∠=︒,DF CE =,由题意可得,36.9BEC α∠=∠=︒,sin 36.90.60︒≈tan 36.90.75︒≈CBE β∠=∠, 1.2m =EF ,在Rt BCE 中, 1.2 1.6m tan 0.75BC CE α=≈=, 1.22m sin 0.6BC BE α=≈=,∴ 1.64sin 25CE BE β===, 1.6m DF =,∴ 2.5 1.60.9m AF AD DF =-=-=,∴在Rt AFE, 1.5m AE ===,∴0.93sin 1.55AF AE γ===,∴4sin 453sin 35βγ==.20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.答案:(1)见详解(2)解析:【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.(1)由等边对等角得出FAE AEF ∠=∠,由同弧所对的圆周角相等得出FAE BCE ∠=∠,由对顶角相等得出AEF CEB ∠=∠,等量代换得出CEB BCE ∠=∠,由角平分线的定义可得出ACE DCE ∠=∠,由直径所对的圆周角等于90︒可得出90ACB ∠=︒,即可得出90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=︒,即90CDE ∠=︒.(2)由(1)知,CEB BCE ∠=∠,根据等边对等角得出BE BC =,根据等腰三角形三线合一的性质可得出MA ,AE 的值,进一步求出OA ,BE ,再利用勾股定理即可求出AC .【小问1详解】证明:∵FA FE =,∴FAE AEF ∠=∠,又FAE ∠与BCE ∠都是 BF所对的圆周角,∴FAE BCE ∠=∠,∵AEF CEB ∠=∠,∴CEB BCE ∠=∠,∵CE 平分ACD ∠,∴ACE DCE ∠=∠,∵AB 直径,∴90ACB ∠=︒,∴90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=︒,故90CDE ∠=︒,即CD AB ⊥.【小问2详解】由(1)知,CEB BCE ∠=∠,∴BE BC =,又FA FE =,FM AB ⊥,∴2MA ME MO OE ==+=,4AE =,∴圆的半径3OA OB AE OE ==-=,∴2BE BC OB OE ==-=,在ABC 中.26AB OA ==,2BC =∴AC ===即AC的长为.六、(本题满分12分)21. 综合与实践是【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值.【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.答案:任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析解析:【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.任务1:直接根据总数减去各部分的数据即可;任务2:根据加权平均数的计算方法求解即可;任务3:根据中位数、众数的定义及样本中的数据求解即可;任务4:分别计算甲和乙的一级率,比较即可.解:任务1:2001570502540a =----=;任务2:1545057065071586200⨯+⨯+⨯+⨯+⨯=,乙园样本数据的平均数为6;任务3:①∵1570100,157050101+++,∴甲园样本数据的中位数在C 组,∵1550100,155070101+++,∴乙园样本数据的中位数在C 组,故①正确;②由样本数据频数直方图得,甲园样本数据的众数均在B 组,乙园样本数据的众数均在C 组,故②错误;③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;故答案为:①;任务4:甲园样本数据的一级率为:5040100%45%200+⨯=,乙园样本数据的一级率为:7050100%60%200+⨯=,∵乙园样本数据的一级率高于甲园样本数据的一级率,∴乙园的柑橘品质更优.七、(本题满分12分)22. 如图1,ABCD Y 对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;的(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.答案:(1)见详解(2)(ⅰ)见详解,(ⅱ解析:【分析】(1)利用平行四边形的性质得出AM CN ∥,再证明AMCN 是平行四边形,再根据平行四边形的性质可得出OAE OCF ∠=∠,再利用ASA 证明AOE COF △≌△,利用全等三角形的性质可得出OE OF =.(2)(ⅰ)由平行线截线段成比例可得出OH OE OA OB=,结合已知条件等量代换OH OF OA OD =,进一步证明HOF AOD ∽ ,由相似三角形的性质可得出OHF OAD ∠=∠,即可得出HF AD ∥.(ⅱ)由菱形的性质得出AC BD ⊥,进一步得出30EHO FHO ∠=∠=︒,OH =,进一步可得出13AH AM HC BC ==,进一步得出2OA OH =,同理可求出5OB OE =,再根据25AC OA OH BD OB OE==即可得出答案.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,OA OC =,∴AM CN ∥,又∵AM CN =,∴四边形AMCN 是平行四边形,∴∥AN CM ,∴OAE OCF ∠=∠.在AOE △与COF 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌.∴OE OF =.【小问2详解】(ⅰ)∵HE AB∥∴OH OE OA OB =,又OB OD =.OE OF =,∴OH OF OA OD=,∵HOF AOD ∠=∠,∴HOF AOD ∽ ,∴OHF OAD ∠=∠,∴HF AD∥(ⅱ)∵ABCD 是菱形,∴AC BD ⊥,又OE OF =,60EHF ∠=︒,∴30EHO FHO ∠=∠=︒,∴OH =,∵AM BC ∥.2MD AM =,∴AHM CHB ∽,∴13AH AM HC BC ==,即3HC AH =,∴()3OA AH OA OH +=-,∴2OA OH =,∵,2MD AM =,AM CN =,∴BNE DAE ∽,∴23BE BN ED AD ==,即32BE ED =,∴()()32OB OE OB OE -=+∴5OB OE =,故25AC OA OH BD OB OE ====.【点睛】本题主要考查了平行四边形的判定以及性质,全等三角形判定以及性质,相似三角形的判定以及性质,平行线截线段成比例以及菱形的性质,掌握这些判定方法以及性质是解题的关键.八、(本题满分14分)23. 已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.BN AD ∥。
【精选试卷】安徽芜湖市中考数学专项练习知识点复习(含答案解析)
一、选择题1.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .2.下列二次根式中,与3是同类二次根式的是()A .18B .13C.24D.0.33.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 4.如图中的几何体是由一个圆柱和个长方体组成的,该几何体的俯视图是( )A.B.C.D.5.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=6.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)7.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A .1B .23C .22D .528.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°10.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a11.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A .3B .3C .2D .612.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .13.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=14.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3B .x ≥-3且1x ≠C .1x ≠D .3x ≠-且1x ≠15.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个 16.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=17.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( ) A .94B .95分C .95.5分D .96分18.-2的相反数是( ) A .2B .12C .-12D .不存在19.下列运算正确的是( ) A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =20.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .421.如图,A ,B ,P 是半径为2的⊙O 上的三点,∠APB =45°,则弦AB 的长为( )A .2B .4C .22D .222.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤23.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=24.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =- B .24y x =+ C .22y x =+ D .22y x =- 25.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°26.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间27.如图,点A ,B 在反比例函数y =1x(x >0)的图象上,点C ,D 在反比例函数y =k x(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为94,则k 的值为( )A .2B .3C .4D .28.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .29.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)30.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( ) A .1069605076020500x x -=+B .5076010696020500x x -=+ C .1069605076050020x x-=+D .5076010696050020x x -=+【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.A 2.B 3.D 4.D5.C 6.D 7.C 8.C 9.D 10.C 11.B 12.B 13.A 14.B 15.C 16.D 17.B 18.A 19.C 20.C 21.C 22.A 23.D 24.A 25.C 26.B 27.C 28.B 29.D 30.A2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】 【分析】先求出不等式组的解集,再在数轴上表示出来即可. 【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A . 【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.2.B解析:B 【解析】 【分析】 【详解】A 18323B 1333 C 24=63D =10故选B .3.D解析:D 【解析】 【详解】A .因为2+3=5,所以不能构成三角形,故A 错误;B .因为2+4<6,所以不能构成三角形,故B 错误;C .因为3+4<8,所以不能构成三角形,故C 错误;D .因为3+3>4,所以能构成三角形,故D 正确. 故选D .4.D解析:D 【解析】 【分析】根据从上边看得到的图形是俯视图,可得答案. 【详解】解:从上边看是一个圆形,圆形内部是一个虚线的正方形. 故选:D . 【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.5.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.6.D解析:D 【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.7.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12×22PD DG+=22,故选:C.点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.8.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.9.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.C解析:C【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a b ab b --=-+,故该选项计算错误, C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误,故选B.【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.11.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM ,再由AN 平分∠MAB ,得出∠DAM=∠MAN=∠NAB ,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM ≌△ADM ,∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∠MAN=∠NAB ,∴∠DAM=∠MAN=∠NAB ,∵四边形ABCD 是矩形,∴∠DAB=90°,∴∠DAM=30°,∴== 故选:B .【点睛】本题考查了矩形 的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 12.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.13.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:1x(x﹣1)=36,2故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 14.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.15.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.16.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.17.B解析:B【解析】【分析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,=95分;则该同学这6次成绩的中位数是:95+952故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.18.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.19.C解析:C【解析】【分析】分别计算出各项的结果,再进行判断即可.【详解】A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C【点睛】本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.20.C解析:C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.21.C解析:C【解析】【分析】由A 、B 、P 是半径为2的⊙O 上的三点,∠APB=45°,可得△OAB 是等腰直角三角形,继而求得答案.解:连接OA ,OB .∵∠APB =45°,∴∠AOB =2∠APB =90°.∵OA =OB =2,∴AB =22OA OB +=22.故选C .22.A解析:A【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0. 【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确;②∵对称轴1,2b x a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <0,∴a ﹣(﹣2a )+c=3a+c <0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am 2+bm+c≤a+b+c ,所以a+b≥m (am+b )(m 为实数).故正确.⑤如图,当﹣1<x <3时,y 不只是大于0.故错误.故选A .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c ).23.D解析:D【解析】【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可.【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=, 又,a b 满足等式:229a b +=,∴()222349m n ++=,故选D .【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式. 24.A解析:A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.25.C解析:C【解析】【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n 边形,根据题意得:180(n-2)=540,解得:n=5, ∴这个正多边形的每一个外角等于:3605=72°. 故选C .【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°. 26.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B .【点睛】是解题关键.27.C解析:C【解析】【分析】由题意,可得A (1,1),C (1,k ),B (2,12),D (2,12k ),则△OAC 面积=12(k-1),△CBD 的面积=12×(2-1)×(12k-12)=14(k-1),根据△OAC 与△CBD 的面积之和为94,即可得出k 的值.【详解】∵AC ∥BD ∥y 轴,点A ,B 的横坐标分别为1、2,∴A (1,1),C (1,k ),B (2,12),D (2,12k ), ∴△OAC 面积=12×1×(k-1),△CBD 的面积=12×(2-1)×(12k-12)=14(k-1), ∵△OAC 与△CBD 的面积之和为94, ∴12(k-1)+ 14(k-1)=94, ∴k =4.故选C .【点睛】本题考查反比例函数系数k 的几何意义,三角形面积的计算,解题的关键是用k 表示出△OAC 与△CBD 的面积.28.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是中心对称图形,不是轴对称图形,故该选项不符合题意,B 、是中心对称图形,也是轴对称图形,故该选项符合题意,C 、不是中心对称图形,是轴对称图形,故该选项不符合题意,D 、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.29.D解析:D【解析】【分析】【详解】解:根据正比例函数与反比例函数关于原点对称的性质,正比例函数1y=k x 与反比例函数2k y=x的图象的两交点A 、B 关于原点对称; 由A 的坐标为(2,1),根据关于原点对称的点的坐标是横、纵坐标都互为相反数的坐标特征,得点B 的坐标是(-2,-1).故选:D30.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x -=+.故选A . 考点:由实际问题抽象出分式方程.。
【真题汇总卷】2022年安徽芜湖市中考数学三年高频真题汇总 卷(Ⅱ)(含详解)
2022年安徽芜湖市中考数学三年高频真题汇总 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、某厂前5个月生产的总产量y (件)与时间x (月)的关系如图所示,则下列说法正确的是( )A .1﹣3月的月产量逐月增加,4、5两月产量逐月减少B .1﹣3月的月产量逐月增加,4、5两月产量与3月持平C .1﹣3月的月产量逐月增加,4、5两月停产D .1﹣3月的月产量逐月持平,4、5两月停产 2、已知a 、b 、c 为实数,若a b >,C≠0,则下列结论不一定正确的是( ) A .a c b c +>+ B .c a c b -<- C .ac bc > D .22ac bc > 3、角平分线的作法(尺规作图) ·线○封○密○外①以点O 为圆心,任意长为半径画弧,交OA 、OB 于C 、D 两点;②分别以C 、D 为圆心,大于CD 长为半径画弧,两弧交于点P ;③过点P 作射线OP ,射线OP 即为所求.角平分线的作法依据的是( )A .SSSB .SASC .AASD .ASA4、已知,x y 为实数且|1|0x +,则2012x y ⎛⎫ ⎪⎝⎭的值为( )A .0B .1C .-1D .20125、如图,菱形ABCD 中,对角线AC 等于D =120°,则菱形ABCD 的面积为( )A .B .54C .36D .6、如图,将两根钢条AA ',BB '的中点O 连在一起,使AA ',BB '可绕点O 自由转动,就做成了一个测量工件,则A B ''的长等于内槽宽AB ,那么判定OAB OA B ''△≌△的理由是( )A .边角边B .角边角C .边边边D .角角边7、图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( ) A .aB .2()a b +C . 2()a b -D .22a b - 8、设1a =,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5 9、如果一个直角三角形的两条边长分别是3和4,另一个与它相似的直角三角形的三边长分别是9,12及x ,那么x 的值( ) A .只有1个 B .可以有2个 C .可以有3个 D .有无数个 10、如图,在四边形ABCD中,90,A AB AD ︒∠===,M N 分别为线段,BC AB 上的动点(含端点,但点M 不与点B 重合),点,E F 分别为,DM MN 的中点,则EF 长度的最大值为( ) AB .2.5C .5D .3.5第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、若 a-b=3,b-c=2,那么 a 2 + b 2 + c 2- ab - ac - bc =________ ·线○封○密○外2、如图,在Rt△ABC 中,∠C=90°,CA =CB =2.分别以A 、B 、C 为圆心,以12AC 为半径画弧,三条弧与边AB 所围成的阴影部分的面积是_____.(保留π)3、25-=_______;2(5)-=_________.4、2009年4月,5.12地震重灾区映秀镇灾后恢复重建基本完成,总投入约20亿元人民币,此数据可以用科学计数法表示为________元.5、利用完全平方公式计算:1022+ 982=(_______)三、解答题(5小题,每小题10分,共计50分)1、今年6月初三(1)班同学毕业合影留念,拍摄一张宽幅彩色合影需支付底片费及摄影师劳务费合计58元;冲印一张彩照需3.5元,每位同学预定1张,惠赠6张母校留存;结果参加合影同学分摊的费用没超过5元,问参加合影的同学至少有多少人2、2(2)(2)(2)(3)()⎡⎤+-+---÷-⎣⎦x y x y x y x x y x3、解方程:2x 13+=x 24+-1. 4、如图,△ABC 中,点E ,F 分别在边CB 及其延长线上,且CE =BF ,DF ∥AC ,且DF =AC ,连接DE ,求证:∠A =∠D .5、求值: 2(2x y +xy )-3(2x y -xy )-22x y ,其中x =1,y =-1.-参考答案-一、单选题1、D【分析】本题是一个分段函数,在1、2、3月该产品的总产量y (件)与时间x (月)的函数图象是正比例函数图象,4、5月总产量没有变化. 【详解】 解:根据图象得: 1月至3月,该产品的总产量y (件)与时间x (月)的函数图象是正比例函数图象, 所以每月产量是一样的, 4月至5月,产品的总产量y (件)没有变化,即4月、5月停止了生产. 故选:D . 【点睛】 本题主要考查了分段函数的图象,正确理解函数图象横纵坐标表示的意义,能够通过图象知道函数值是随自变量的增大而增大、减小、还是不变. 2、C 【解析】 【分析】 根据不等式的性质逐一进行分析即可得. 【详解】 A.不等式两边同时加上c ,不等号的方向不变,故A 正确,不符合题意; B.不等式a b >两边先同时乘以-1,然后再加上c ,结果为 c a c b -<-,故B 正确,不符合题意; C.若c 为负数,则ac bc <,故C 错误,符合题意; ·线○封○密·○外D.由c≠0,则c 2>0,则22ac bc >正确,故D 不符合题意,故选C.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的性质是解题的关键.3、A【分析】根据角平分线的作法步骤,连接CP 、DP ,由作图可证△OCP ≌△ODP ,则∠COP =∠DOP ,而证明△OCP ≌△ODP 的条件就是作图的依据.【详解】解:如下图所示:连接CP 、DP在△OCP 与△ODP 中,由作图可知:OC OD CP DP OP OP =⎧⎪=⎨⎪=⎩∴△OCP ≌△ODP (SSS )故选:A .【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。
安徽省芜湖繁昌县联考2024届中考考前最后一卷数学试卷含解析
安徽省芜湖繁昌县联考2024届中考考前最后一卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.图为一根圆柱形的空心钢管,它的主视图是( )A.B.C.D.2.一、单选题如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°3.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1084.我市某小区开展了“节约用水为环保作贡献”的活动,为了解居民用水情况,在小区随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)8 9 10户数 2 6 2则关于这10户家庭的月用水量,下列说法错误的是()A.方差是4 B.极差是2 C.平均数是9 D.众数是95.在3,0,-2,-四个数中,最小的数是( ) A .3 B .0 C .-2 D .-6.如图,正方形被分割成四部分,其中I 、II 为正方形,III 、IV 为长方形,I 、II 的面积之和等于III 、IV 面积之和的2倍,若II 的边长为2,且I 的面积小于II 的面积,则I 的边长为( )A .4B .3C .423-D .423+7.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )A .B .C .D .8.计算:9115()515÷⨯-得( ) A .-95 B .-1125 C .-15 D .11259.下列计算正确的是( )A .(a 2)3=a 6B .a 2•a 3=a 6C .a 3+a 4=a 7D .(ab )3=ab 310.如图,是一个工件的三视图,则此工件的全面积是( )A .60πcm 2B .90πcm 2C .96πcm 2D .120πcm 2二、填空题(共7小题,每小题3分,满分21分)11.已知一组数据4,x ,5,y ,7,9的平均数为6,众数为5,则这组数据的中位数是_____.12.如图,以长为18的线段AB 为直径的⊙O 交△ABC 的边BC 于点D ,点E 在AC 上,直线DE 与⊙O 相切于点D .已知∠CDE=20°,则AD 的长为_____.13.分解因式:x 2﹣1=____.14.已知一元二次方程2x 2﹣5x+1=0的两根为m ,n ,则m 2+n 2=_____.15.如图,在边长为1正方形ABCD 中,点P 是边AD 上的动点,将△PAB 沿直线BP 翻折,点A 的对应点为点Q ,连接BQ 、DQ .则当BQ+DQ 的值最小时,tan ∠ABP =_____.16.若关于x 的一元二次方程240x x m ﹣=有两个不相等的实数根,则m 的取值范围为__________.17.计算:sin30°﹣(﹣3)0=_____.三、解答题(共7小题,满分69分)18.(10分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?19.(5分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A ,B 两种型号的学习用品共1000件,已知A 型学习用品的单价为20元,B 型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A ,B 两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B 型学习用品多少件?20.(8分)先化简,再求值:22111x x x x ⎛⎫-+ ⎪--⎝⎭,其中x 满足2410x x -+=. 21.(10分)如图,在ABC 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.22.(10分)(1)解方程:11122x x --+=0; (2)解不等式组32193(1)x x x ->⎧⎨+<+⎩,并把所得解集表示在数轴上. 23.(12分)已知如图①Rt △ABC 和Rt △EDC 中,∠ACB=∠ECD=90°,A,C,D 在同一条直线上,点M,N,F 分别为AB ,ED ,AD 的中点,∠B=∠EDC=45°,(1)求证MF=NF(2)当∠B=∠EDC=30°,A,C,D 在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF ,NF 之间的数量关系.(不必证明)24.(14分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A 点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】试题解析:从正面看是三个矩形,中间矩形的左右两边是虚线,故选B.2、A【解题分析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A.点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.3、C【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】解:5300万=53000000=75.310⨯.故选C.【题目点拨】在把一个绝对值较大的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ).4、A【解题分析】分析:根据极差=最大值-最小值;平均数指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数,以及方差公式S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],分别进行计算可得答案. 详解:极差:10-8=2,平均数:(8×2+9×6+10×2)÷10=9, 众数为9,方差:S 2=110[(8-9)2×2+(9-9)2×6+(10-9)2×2]=0.4, 故选A .点睛:此题主要考查了极差、众数、平均数、方差,关键是掌握各知识点的计算方法.5、C【解题分析】根据比较实数大小的方法进行比较即可.根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【题目详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以, 所以最小的数是, 故选C.此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小.6、C【解题分析】设I 的边长为x ,根据“I 、II 的面积之和等于III 、IV 面积之和的2倍”列出方程并解方程即可.【题目详解】设I 的边长为x根据题意有2222(22)x x x +=+ 解得423x =-或423x =+(舍去)故选:C . 【题目点拨】 本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.7、B【解题分析】根据俯视图是从上往下看的图形解答即可.【题目详解】从上往下看到的图形是: .故选B.【题目点拨】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.8、B【解题分析】同级运算从左向右依次计算,计算过程中注意正负符号的变化.【题目详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125 故选B.本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.9、A【解题分析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案.详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=5a,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=33a b,计算错误;故选A.点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型.理解各种计算法则是解题的关键.10、C【解题分析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【题目详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长,所以此工件的全面积=π⋅62+12⋅2π⋅6⋅10=96π(cm2).故答案选C.【题目点拨】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.二、填空题(共7小题,每小题3分,满分21分)11、1.1【解题分析】【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.【题目详解】∵一组数据4,x,1,y,7,9的众数为1,∴x,y中至少有一个是1,∵一组数据4,x,1,y,7,9的平均数为6,∴16(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一个是1,另一个是6,∴这组数为4,1,1,6,7,9,∴这组数据的中位数是12×(1+6)=1.1,故答案为:1.1.【题目点拨】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.12、7π【解题分析】连接OD,由切线的性质和已知条件可求出∠AOD的度数,再根据弧长公式即可求出AD的长.【题目详解】连接OD,∵直线DE与⊙O相切于点D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴AD的长=1409180π⨯⨯=7π,故答案为:7π.【题目点拨】本题考查了切线的性质、等腰三角形的判断和性质以及弧长公式的运用,求出∠AOD的度数是解题的关键.13、(x+1)(x﹣1).【解题分析】试题解析:x2﹣1=(x+1)(x﹣1).考点:因式分解﹣运用公式法.14、214 【解题分析】 先由根与系数的关系得:两根和与两根积,再将m 2+n 2进行变形,化成和或积的形式,代入即可.【题目详解】由根与系数的关系得:m+n=52,mn=12, ∴m 2+n 2=(m+n )2-2mn=(52)2-2×12=214, 故答案为:214. 【题目点拨】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211 x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化. 15、2﹣1【解题分析】连接DB ,若Q 点落在BD 上,此时和最短,且为2,设AP =x ,则PD =1﹣x ,PQ =x .解直角三角形得到AP =2﹣1,根据三角函数的定义即可得到结论.【题目详解】如图:连接DB ,若Q 点落在BD 2,设AP =x ,则PD =1﹣x ,PQ =x .∵∠PDQ =45°,∴PD 2PQ ,即1﹣x 2,∴x 2﹣1,∴AP ﹣1,∴tan ∠ABP =AP AB 1,1.【题目点拨】本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键. 16、4m <.【解题分析】根据判别式的意义得到2440m =(﹣)﹣>,然后解不等式即可.【题目详解】 解:关于x 的一元二次方程240x x m +﹣=有两个不相等的实数根,2440m ∴=(﹣)﹣>,解得:4m <,故答案为:4m <.【题目点拨】此题考查了一元二次方程200ax bx c a ++≠=()的根的判别式24b ac =﹣:当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.17、-12【解题分析】 sin30°=12,a 0=1(a≠0) 【题目详解】 解:原式=12-1 =-12故答案为:-12. 【题目点拨】本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.三、解答题(共7小题,满分69分)18、(1)50;4;5;画图见解析;(2)144°;(3)64(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.【题目详解】解:(1)∵课外阅读达3小时的共10人,占总人数的20%,∴1020%=50(人).∵课外阅读4小时的人数是32%,∴50×32%=16(人),∴男生人数=16﹣8=8(人);∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,∴中位数是4小时,众数是5小时.补全图形如图所示.故答案为50,4,5;(2)∵课外阅读5小时的人数是20人,∴2050×360°=144°.故答案为144°;(3)∵课外阅读6小时的人数是4人,∴800×450=64(人).答:九年级一周课外阅读时间为6小时的学生大约有64人.本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.19、(1)购买A 型学习用品400件,B 型学习用品600件.(2)最多购买B 型学习用品1件【解题分析】(1)设购买A 型学习用品x 件,B 型学习用品y 件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.【题目详解】解:(1)设购买A 型学习用品x 件,B 型学习用品y 件,由题意,得x y 100020x 30y 26000+=⎧⎨+=⎩,解得:x 400y 600=⎧⎨=⎩. 答:购买A 型学习用品400件,B 型学习用品600件.(2)设最多可以购买B 型产品a 件,则A 型产品(1000﹣a )件,由题意,得20(1000﹣a )+30a≤210,解得:a≤1.答:最多购买B 型学习用品1件20、21x x+,1. 【解题分析】原式括号中的两项通分并利用同分母分式的加法法则计算,再与括号外的分式通分后利用同分母分式的加法法则计算,约分得到最简结果,将2410x x -+=变形为214x x +=,整体代入计算即可.【题目详解】 解:原式2(1)11(1)(1)x x x x x x x x ⎡⎤-=-+⎢⎥---⎣⎦ 2211(1)x x x x x x -+=--- 321(1)(1)x x x x x x x -+=--- 321(1)x x x x x -+-=-2(1)(1)(1)x x x x x -+-=- 21x x+= ∵2410x x -+=,∴214x x +=, ∴原式44x x== 【题目点拨】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21、DG ∥BC ,理由见解析【解题分析】由垂线的性质得出CD ∥EF ,由平行线的性质得出∠2=∠DCE ,再由已知条件得出∠1=∠DCE ,即可得出结论.【题目详解】解:DG ∥BC ,理由如下:∵CD ⊥AB ,EF ⊥AB ,∴CD ∥EF ,∴∠2=∠DCE ,∵∠1=∠2,∴∠1=∠DCE ,∴DG ∥BC .【题目点拨】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE 是解题关键.22、(1)x=13;(2)x >3;数轴见解析; 【解题分析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【题目详解】解:(1)方程两边都乘以(1﹣2x )(x+2)得:x+2﹣(1﹣2x )=0, 解得:1,3x =-检验:当13x =-时,(1﹣2x )(x+2)≠0,所以13x =-是原方程的解,所以原方程的解是13x =-; (2)()321931x x x ->⎧⎪⎨+<+⎪⎩①② ,∵解不等式①得:x >1,解不等式②得:x >3,∴不等式组的解集为x >3,在数轴上表示为:.【题目点拨】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.23、(1)见解析;(2)MF=3 NF.【解题分析】(1)连接AE,BD ,先证明△ACE 和△BCD 全等,然后得到AE=BD ,然后再通过三角形中位线证明即可. (2)根据图(2)(3)进行合理猜想即可.【题目详解】解:(1)连接AE,BD在△ACE 和△BCD 中AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△BCD∴AE=BD又∵点M,N,F分别为AB,ED,AD的中点∴MF=12BD,NF=12AE∴MF=NFNF.方法同上.【题目点拨】本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.24、1)米【解题分析】解:如图,过点D作DE⊥AC于点E,作DF⊥BC于点F,则有DE∥FC,DF∥EC.∵∠DEC=90°,∴四边形DECF是矩形,∴DE=FC.∵∠HBA=∠BAC=45°,∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,∴△ADB是等腰三角形.∴AD=BD=180(米).在Rt△AED中,sin∠DAE=sin30°=DE AD,∴DE=180•sin30°=180×12=90(米),∴FC=90米,在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=BF BD,∴BF=180•sin60°=180×2=(米).∴+90=90+1)(米).答:小山的高度BC为90)米.。
2024年芜湖数学中考试卷
2024年芜湖数学中考试卷一、以下哪个数不是有理数?A. 1/2B. √2C. 0.333...D. -5(答案)B。
解析:有理数可以表示为两个整数的比,而√2无法表示为两个整数的比,所以√2是无理数。
二、若a > b,则下列不等式中正确的是?A. a - c > b - cB. ac > bcC. a/c > b/cD. a2 > b2(答案)A。
解析:根据不等式的基本性质,两边同时加减同一个数,不等号方向不变,所以A选项正确。
三、函数y = 2x + 1与y轴的交点是?A. (0,1)B. (1,0)C. (0,-1)D. (-1,0)(答案)A。
解析:将x = 0代入y = 2x + 1,得到y = 1,所以交点为(0,1)。
四、一个直角三角形的两条直角边分别为3和4,则其斜边长为?A. 5B. 6C. 7D. 8(答案)A。
解析:根据勾股定理,斜边平方等于两直角边平方和,即32 + 42 = 52,所以斜边长为5。
五、下列哪个图形是轴对称图形但不是中心对称图形?A. 正方形B. 等边三角形C. 圆D. 平行四边形(答案)B。
解析:等边三角形有三条对称轴,但不是中心对称图形,因为不能找到一个点使得图形关于该点中心对称。
六、若一元二次方程x2 - 2x - 3 = 0的两个根为x1和x2,则x1 * x2的值为?A. -3B. 2C. 3D. -2(答案)A。
解析:根据一元二次方程的根与系数的关系,x1 * x2 = c/a = -3/1 = -3。
七、下列哪个选项是函数y = x2 - 4x + 5的最小值?A. 1B. 2C. 3D. 4(答案)A。
解析:将y = x2 - 4x + 5配方得到y = (x - 2)2 + 1,由于(x - 2)2 ≥ 0,所以y的最小值为1。
八、在平面直角坐标系中,点A(2,3)关于x轴对称的点的坐标是?A. (-2,3)B. (2,-3)C. (-2,-3)D. (3,2)(答案)B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年安徽省芜湖市初中毕业学业考试数 学 试 卷考生注意:数学试卷共8页,共24题.请您仔细核对每页试卷下方页码和题数,核实无误后再答题. 一、选择题(本大题共10小题,每小题4分,共40分.)1. 下列几何图形中,一定是轴对称图形的有 ( )A . 2个B . 3个C . 4个D . 5个2. 今年5月,随着第四条水泥熟料生产线的点火投产,芜湖海螺水泥熟料已达年产6000000吨,用科学记数法可记作( )A .80.610⨯吨 B . 70.610⨯吨 C . 6610⨯吨 D . 7610⨯吨3. 如果2ab=,则2222a ab b a b -++= ( )A .45B . 1C . 35D . 24. 下列计算中,正确的是( )A . 3232a a a +=B . 632a a a ÷=C . 1(2)2a a -=- D . 236(2)8a a -=-5. 如图, 在△ABC 中AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH =EB=3、AE =4,则CH 的长是 ( ) A . 1 B . 2 C . 3 D .4 6. 已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围是( )A . m >-1B . m <-2C .m ≥0D .m <07.筹建中的安徽芜湖核电站芭茅山厂址位于长江南岸繁昌县狄港镇,距离繁昌县县城约17km ,距离芜湖市区约35km ,距离无为县城约18km ,距离巢湖市区约50km ,距离铜陵市区约36km ,距离合肥市区约99km .以上这组数据17、35、18、50、36、99的中位数为( ). A .18 B .50 C .35 D .35.58.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( ) A .14cm B .4cm C . 15cm D . 3cm9.函数1x y +=中自变量x 的取值范围是( ) A . x ≥1- B . x ≠3 C . x ≥1-且x ≠3 D . 1x <-10.如图, Rt △ABC 绕O 点旋转90°得Rt △BDE ,其中∠ACB =∠E = 90°, AC =3,DE =5, 则OC 的长为( )A .25+ B . 42 C . 322+ D . 43+二、填空题(本大题共6小题,每小题5分,共30分)11.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离 是 米. 13.据芜湖市环保局6月5日发布的2006年环境状况公报,去年我市城市空气质量符合国家二级标准.请根据图中数据计算出该年空气质量达到一级标准的天数是 天.(结果四舍五入取整数).14.因式分解: 2(2)(3)4x x x +++-= .15. 如图,3PQ =,以PQ 为直径的圆与一个以5为半径的圆相切于点P ,正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与CD 切于点Q .则AB = .16. 定义运算“@”的运算法则为: x @y =4xy + ,则 (2@6)@8= .三、解答题(本大题共8小题,共80分.)解答应写明文字说明和运算步骤. 17.(本题共两小题,每小题6分,满分12分) (1) 计算:01132()22sin 605--+-+°. 解:(2) 解不等式组43;213(1)6.x x x x -⎧+⎪⎨⎪--<-⎩≥①②解:18. (本小题满分8分)芜湖供电公司分时电价执行时段分为平、谷两个时段,平段为8:00~22:00,14小时,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时, 谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算, 5月份小明家将多支付电费多少元? 解:19. (本小题满分8分)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠, (1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长. (1)证:(2)解:20. (本小题满分8分)已知多边形ABDEC 是由边长为2的等边三角形ABC 和正方形BDEC 组成,一圆过A 、D 、E 三点,求该圆半径的长. 解:21. (本小题满分10分)如图,在直角坐标系中△ABC 的A 、B 、C 三点坐标为A (7,1)、B (8,2)、C (9,0).(1) 请在图中画出△ABC 的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC 同在P 点一侧);(2)求线段BC的对应线段B C''所在直线的解析式.解:22.(本小题满分10分)一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径;(2)若L=160m,r=10m,求使图2面积为最大时的θ值.解:23.(本小题满分12分)阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N= m + n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N=m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3) 现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?解:24.(本小题满分12分)已知圆P的圆心在反比例函数kyx=(1)k>图象上,并与x轴相交于A、B两点.且始终与y轴相切于定点C(0,1).(1)求经过A、B、C三点的二次函数图象的解析式;(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.2007年芜湖市初中毕业学业考试数学试题参考答案一、选择题(本大题共10小题,每题4分,满分40分)二、填空题(本大题共6小题,每题5分,满分30分)11.2+ 12.0.5 13.117 14.(2)(21)x x ++ 15.6 16.6三、解答题(本大题共8小题,共80分)解答应写明文字说明和运算步骤. 17.(本小题满分12分) (1)解:原式= 12122-+ …………………………………4分= 132-= 122. ………………………………6分(2)解:解不等式①, 得:46x x -+≥2x ≤2. ………………………………2分解不等式②,得1336x x -+<-x >-1. ………………………………4分所以原不等式组的解集为-1<x ≤2. ………………………………6分 18.(本小题满分8分)解:(1)设原销售电价为每千瓦时x 元,根据题意得: ……………………………1分40(0.03)60(0.25)42.73x x ⨯++⨯-= ………………………………3分40 1.2601542.73x x ++-=10042.7313.8x =+0.5653x =. ………………………………4分∴当0.5653x =时,0.030.5953x +=;0.250.3153x -=.答:小明家该月支付平段电价为每千瓦时0.5953元、谷段电价每千瓦时0.3153元.……6分 (2) 1000.565342.7313.8⨯-=(元)答:如不使用分时电价结算,小明家5月份将多支付13.8元. ……………………8分 19.(本小题满分8分)解:(1)∵AD 是BC 上的高,∴AD ⊥BC .∴∠ADB =90°,∠ADC =90°. …………………………………………1分 在Rt △ABD 和Rt △ADC 中,∵tan B =AD BD ,cos DAC ∠=ADAC…………………………………………3分 又已知tan cos B DAC =∠ ∴AD BD =AD AC.∴AC=BD . ………………………………4分(2)在Rt △ADC 中, 12sin 13C =,故可设AD =12k ,AC =13k .∴CD =22AC AD -=5k . ………………………………5分∵BC=BD+CD ,又AC=BD ,∴BC=13k+5k=18k ………………………………6分 由已知BC=12, ∴18k=12.∴k=23. ………………………………7分 ∴AD=12k=1223⨯=8. ………………………………8分 20.(本小题满分8分)解:方法一.如图1,将正方形BDEC 上的等边△ABC 向下平移得等边△ODE ,其底边与DE 重合.………………………1分 ∵A 、B 、C 的对应点是O 、D 、E .∴OD =AB ,OE =AC ,AO =BD . …………………3分 ∵等边△ABC 和正方形BDEC 的边长都是2, ∴AB =BD =AC =2.∴OD =OA =OE =2. ………………………4分 ∵A 、D 、E 三点不在同一直线上,∴A 、D 、E 三点确定一圆, ………………………6分∵O 到A 、D 、E 三点的距离相等,∴O 点为圆心,OA 为半径. ∴该圆的半径长为2. ………………………8分方法二.如图2,作AF ⊥BC ,垂足为F ,并延长交DE 于H 点. ………………………1分 ∵△ABC 为等边三角形, ∴AF 垂直平分BC ,∵四边形BDEC 为正方形,∴AH 垂直平分正方形的边DE .……………………3分又DE 是圆的弦,∴AH 必过圆心,记圆心为O 点,并设⊙O 的半径为r .在Rt △ABF 中, ∵∠BAF =°30, ∴°3cos30232AF AB =⋅=⨯=. ∴OH =AF FH OA +-=32+-r. ……………………………………………………5分 在Rt △ODH 中, 222OH DH OD +=.∴222(23)1r r +-+=.解得r=2..……………………………………………………7分∴该圆的半径长为2. ………………………8分 21.(本小题满分10分) 解:(1)画出A B C '''△,如图所示. ………………………2分(2)作BD x ⊥轴, B E 'x ⊥轴,垂直分别是D ,E 点.∴B E '∥BD . ∴B E PE PB BD PD PB''==.………………………………………………………………………3分 ∵B (8,2),∴8OD =,2BD =. ∴1284PD =-=.∵A B C '''△与△ABC 的相似比为3,∴3PB PB'=. ∴324B E PE'==. ∴6B E '=,PE =12. …………………………………………………………………………5分 ∵PO =12.,∴E 与O 点重合,线段B E '在y 轴上.∴B '点坐标为(0,6). ………………………………………………………………………6分 同理':3PC PC =:1.又∵PC OP OC =-=1293-=,∴'9PC =. ∴'1293OC =-=.∴'C 点坐标为(3,0). ………………………………………… ………………………7分 设线段B C ''所在直线的解析式为y kx b =+. 则6003k bk b=⋅+⎧⎨=⋅+⎩ ………………………8分∴26k b =-=,.∴线段B C ''所在直线解析式为26y x =-+. ………………………10分 22.(本小题满分10分)(1) 解:若使形如图1花圃面积为最大,则必定要求图2扇环面积最大. 设图2扇环的圆心角为θ,面积为S ,根据题意得:2()180180R rL R r θπθπ=++-, ………………………2分=()2()180R r R r πθ+⋅+-.∴[]1802()()L R r R r θπ--=+. ……………………………3分∴22360360R r S θπθπ=-=22()360R r πθ⋅⋅- ……………………………4分=[]221802()()360()L R r R r R r ππ--⋅⋅-+=[]12()()2L R r R r --⋅-=21()()2R r L R r --+- 22[()]416L L R r =---+22[()]416L L R r =---+. ……………………………5分∵式中0,2L R r <-<∴S 在4LR r -=时为最大,最大值为216L . ………6分∴花圃面积最大时R r -的值为4L,最大面积为224164L L ⨯=. ……………7分(2)∵当4LR r -=时,S 取值最大, ∴1604044L R r -===(m),40401050R r =+=+=(m). …………………………8分∴[]1802()()L R r R r θπ--=+=180(160240)60π⨯-⨯⨯=240π(度). ………………………10分23.(本小题满分12分)解: (1)∵完成从A 点到B 点必须向北走,或向东走,∴到达A 点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和. 故使用分类加法计数原理,由此算出从A 点到达其余各交叉点的走法数,填表如图1, 答:从A 点到B 点的走法共有35种. ……………………………………5分(2) 方法一: 可先求从A 点到B 点,并经过交叉点C 的走法数,再用从A 点到B 点总走法数减去它,即得从A 点到B 点,但不经过交叉点C 的走法数.完成从A 点出发经C 点到B 点这件事可分两步,先从A 点到C 点,再从C 点到B 点. 使用分类加法计数原理,算出从A 点到C 点的走法是3种,见图2;算出从C 点到B 点的走法为6种,见图3,再运用分步乘法计数原理,得到从A 点经C 点到B 点的走法有3×6=18种.∴从A 点到B 点但不经过C 点的走法数为35-18=17种. ………………………10分方法二:由于交叉点C 道路施工,禁止通行,故视为相邻道路不通,可删除与C 点紧相连的线段.运用分类加法计数原理,算出从A 点到B 点并禁止通过交叉点C 的走法有17种. 从A 点到各交叉点的走法数见图4.∴从A 点到B 点并禁止经过C 点的走法数为35-18=17种.………10分 (3) P(顺利开车到达B 点)=1735. 答:任选一种走法,顺利开车到达B 点的概率是1735. ………………12分 24.(本小题满分12分)解:(1)连结PC 、P A 、PB ,过P 点作PH ⊥x 轴,垂足为H . …………………1分 ∵⊙P 与y 轴相切于点C (0,1), ∴PC ⊥y 轴. ∵P 点在反比例函数ky x=的图象上, ∴P 点坐标为(k ,1). …………………2分 ∴P A=PC=k .在Rt △APH 中,AH =22PA PH -=21k -,∴OA=OH —AH =k -21k -. ∴A(k-21k -,0). ……………………………………………………………………3分∵由⊙P 交x 轴于A 、B 两点,且PH ⊥AB ,由垂径定理可知, PH 垂直平分AB . ∴OB=OA +2AH = k -21k -+221k -=k +21k -,∴B (k +21k -,0). ……………………………………………………………………4分 故过A 、B 两点的抛物线的对称轴为PH 所在的直线解析式为x=k .可设该抛物线解析式为y=a 2()x k -+h . …………………………………………………5分又抛物线过C (0,1), B (k +21k -,0), 得:2221;(1)0.ak h a k k k h ⎧+=⎪⎨+--+=⎪⎩ 解得a =1,h =1-2k . …………………7分∴抛物线解析式为y =2()x k -+1-2k .……8分(2)由(1)知抛物线顶点D 坐标为(k , 1-2k )∴DH =2k -1.若四边形ADBP 为菱形.则必有PH=DH .………………………………………………10分 ∵PH =1,∴2k -1=1.又∵k >1,∴k =2 …………………………………………………………11分 ∴当k 取2时,PD 与AB 互相垂直平分,则四边形ADBP 为菱形. …………………12分[注:对于以上各大题的不同解法,解答正确可参照评分!]。