3-三江学院毕业设计(论文)外文资料翻译
毕业设计外文翻译_英文版
A Design and Implementation of Active NetworkSocket ProgrammingK.L. Eddie Law, Roy LeungThe Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoToronto, Canadaeddie@, roy.leung@utoronto.caAbstract—The concept of programmable nodes and active networks introduces programmability into communication networks. Code and data can be sent and modified on their ways to destinations. Recently, various research groups have designed and implemented their own design platforms. Each design has its own benefits and drawbacks. Moreover, there exists an interoperability problem among platforms. As a result, we introduce a concept that is similar to the network socket programming. We intentionally establish a set of simple interfaces for programming active applications. This set of interfaces, known as Active Network Socket Programming (ANSP), will be working on top of all other execution environments in future. Therefore, the ANSP offers a concept that is similar to “write once, run everywhere.” It is an open programming model that active applications can work on all execution environments. It solves the heterogeneity within active networks. This is especially useful when active applications need to access all regions within a heterogeneous network to deploy special service at critical points or to monitor the performance of the entire networks. Instead of introducing a new platform, our approach provides a thin, transparent layer on top of existing environments that can be easily installed for all active applications.Keywords-active networks; application programming interface; active network socket programming;I. I NTRODUCTIONIn 1990, Clark and Tennenhouse [1] proposed a design framework for introducing new network protocols for the Internet. Since the publication of that position paper, active network design framework [2, 3, 10] has slowly taken shape in the late 1990s. The active network paradigm allows program code and data to be delivered simultaneously on the Internet. Moreover, they may get executed and modified on their ways to their destinations. At the moment, there is a global active network backbone, the ABone, for experiments on active networks. Apart from the immaturity of the executing platform, the primary hindrance on the deployment of active networks on the Internet is more on the commercially related issues. For example, a vendor may hesitate to allow network routers to run some unknown programs that may affect their expected routing performance. As a result, alternatives were proposed to allow active network concept to operate on the Internet, such as the application layer active networking (ALAN) project [4] from the European research community. In the ALAN project, there are active server systems located at different places in the networks and active applications are allowed to run in these servers at the application layer. Another potential approach from the network service provider is to offer active network service as the premium service class in the networks. This service class should provide the best Quality of Service (QoS), and allow the access of computing facility in routers. With this approach, the network service providers can create a new source of income.The research in active networks has been progressing steadily. Since active networks introduce programmability on the Internet, appropriate executing platforms for the active applications to execute should be established. These operating platforms are known as execution environments (EEs) and a few of them have been created, e.g., the Active Signaling Protocol (ASP) [12] and the Active Network Transport System (ANTS) [11]. Hence, different active applications can be implemented to test the active networking concept.With these EEs, some experiments have been carried out to examine the active network concept, for example, the mobile networks [5], web proxies [6], and multicast routers [7]. Active networks introduce a lot of program flexibility and extensibility in networks. Several research groups have proposed various designs of execution environments to offer network computation within routers. Their performance and potential benefits to existing infrastructure are being evaluated [8, 9]. Unfortunately, they seldom concern the interoperability problems when the active networks consist of multiple execution environments. For example, there are three EEs in ABone. Active applications written for one particular EE cannot be operated on other platforms. This introduces another problem of resources partitioning for different EEs to operate. Moreover, there are always some critical network applications that need to run under all network routers, such as collecting information and deploying service at critical points to monitor the networks.In this paper, a framework known as Active Network Socket Programming (ANSP) model is proposed to work with all EEs. It offers the following primary objectives.• One single programming interface is introduced for writing active applications.• Since ANSP offers the programming interface, the design of EE can be made independent of the ANSP.This enables a transparency in developing andenhancing future execution environments.• ANSP addresses the interoperability issues among different execution environments.• Through the design of ANSP, the pros and cons of different EEs will be gained. This may help design abetter EE with improved performance in future.The primary objective of the ANSP is to enable all active applications that are written in ANSP can operate in the ABone testbed . While the proposed ANSP framework is essential in unifying the network environments, we believe that the availability of different environments is beneficial in the development of a better execution environment in future. ANSP is not intended to replace all existing environments, but to enable the studies of new network services which are orthogonal to the designs of execution environments. Therefore, ANSP is designed to be a thin and transparent layer on top of all execution environments. Currently, its deployment relies on automatic code loading with the underlying environments. As a result, the deployment of ANSP at a router is optional and does not require any change to the execution environments.II. D ESIGN I SSUES ON ANSPThe ANSP unifies existing programming interfaces among all EEs. Conceptually, the design of ANSP is similar to the middleware design that offers proper translation mechanisms to different EEs. The provisioning of a unified interface is only one part of the whole ANSP platform. There are many other issues that need to be considered. Apart from translating a set of programming interfaces to other executable calls in different EEs, there are other design issues that should be covered, e.g., • a unified thread library handles thread operations regardless of the thread libraries used in the EEs;• a global soft-store allows information sharing among capsules that may execute over different environmentsat a given router;• a unified addressing scheme used across different environments; more importantly, a routing informationexchange mechanism should be designed across EEs toobtain a global view of the unified networks;• a programming model that should be independent to any programming languages in active networks;• and finally, a translation mechanism to hide the heterogeneity of capsule header structures.A. Heterogeneity in programming modelEach execution environment provides various abstractions for its services and resources in the form of program calls. The model consists of a set of well-defined components, each of them has its own programming interfaces. For the abstractions, capsule-based programming model [10] is the most popular design in active networks. It is used in ANTS [11] and ASP [12], and they are being supported in ABone. Although they are developed based on the same capsule model, their respective components and interfaces are different. Therefore, programs written in one EE cannot run in anther EE. The conceptual views of the programming models in ANTS and ASP are shown in Figure 1.There are three distinct components in ANTS: application, capsule, and execution environment. There exist user interfaces for the active applications at only the source and destination routers. Then the users can specify their customized actions to the networks. According to the program function, the applications send one or more capsules to carry out the operations. Both applications and capsules operate on top of an execution environment that exports an interface to its internal programming resources. Capsule executes its program at each router it has visited. When it arrives at its destination, the application at destination may either reply it with another capsule or presents this arrival event to the user. One drawback with ANTS is that it only allows “bootstrap” application.Figure 1. Programming Models in ASP and ANTS.In contrast, ASP does not limit its users to run “bootstrap” applications. Its program interfaces are different from ANTS, but there are also has three components in ASP: application client, environment, and AAContext. The application client can run on active or non-active host. It can start an active application by simply sending a request message to the EE. The client presents information to users and allows its users to trigger actions at a nearby active router. AAContext is the core of the network service and its specification is divided into two parts. One part specifies its actions at its source and destination routers. Its role is similar to that of the application in ANTS, except that it does not provide a direct interface with the user. The other part defines its actions when it runs inside the active networks and it is similar to the functional behaviors of a capsule in ANTS.In order to deal with the heterogeneity of these two models, ANSP needs to introduce a new set of programming interfaces and map its interfaces and execution model to those within the routers’ EEs.B. Unified Thread LibraryEach execution environment must ensure the isolation of instance executions, so they do not affect each other or accessThe authors appreciate the Nortel Institute for Telecommunications (NIT) at the University of Toronto to allow them to access the computing facilitiesothers’ information. There are various ways to enforce the access control. One simple way is to have one virtual machine for one instance of active applications. This relies on the security design in the virtual machines to isolate services. ANTS is one example that is using this method. Nevertheless, the use of multiple virtual machines requires relatively large amount of resources and may be inefficient in some cases. Therefore, certain environments, such as ASP, allow network services to run within a virtual machine but restrict the use of their services to a limited set of libraries in their packages. For instance, ASP provides its thread library to enforce access control. Because of the differences in these types of thread mechanism, ANSP devises a new thread library to allow uniform accesses to different thread mechanisms.C. Soft-StoreSoft-store allows capsule to insert and retrieve information at a router, thus allowing more than one capsules to exchange information within a network. However, problem arises when a network service can execute under different environments within a router. The problem occurs especially when a network service inserts its soft-store information in one environment and retrieves its data at a later time in another environment at the same router. Due to the fact that execution environments are not allowed to exchange information, the network service cannot retrieve its previous data. Therefore, our ANSP framework needs to take into account of this problem and provides soft-store mechanism that allows universal access of its data at each router.D. Global View of a Unified NetworkWhen an active application is written with ANSP, it can execute on different environment seamlessly. The previously smaller and partitioned networks based on different EEs can now be merging into one large active network. It is then necessary to advise the network topology across the networks. However, different execution environments have different addressing schemes and proprietary routing protocols. In order to merge these partitions together, ANSP must provide a new unified addressing scheme. This new scheme should be interpretable by any environments through appropriate translations with the ANSP. Upon defining the new addressing scheme, a new routing protocol should be designed to operate among environments to exchange topology information. This allows each environment in a network to have a complete view of its network topology.E. Language-Independent ModelExecution environment can be programmed in any programming language. One of the most commonly used languages is Java [13] due to its dynamic code loading capability. In fact, both ANTS and ASP are developed in Java. Nevertheless, the active network architecture shown in Figure 2 does not restrict the use of additional environments that are developed in other languages. For instance, the active network daemon, anted, in Abone provides a workspace to execute multiple execution environments within a router. PLAN, for example, is implemented in Ocaml that will be deployable on ABone in future. Although the current active network is designed to deploy multiple environments that can be in any programming languages, there lacks the tool to allow active applications to run seamlessly upon these environments. Hence, one of the issues that ANSP needs to address is to design a programming model that can work with different programming languages. Although our current prototype only considers ANTS and ASP in its design, PLAN will be the next target to address the programming language issue and to improve the design of ANSP.Figure 2. ANSP Framework Model.F. Heterogeneity of Capsule Header StructureThe structures of the capsule headers are different in different EEs. They carries capsule-related information, for example, the capsule types, sources and destinations. This information is important when certain decision needs to be made within its target environment. A unified model should allow its program code to be executed on different environments. However, the capsule header prevents different environments to interpret its information successfully. Therefore, ANSP should carry out appropriate translation to the header information before the target environment receives this capsule.III. ANSP P ROGRAMMING M ODELWe have outlined the design issues encountered with the ANSP. In the following, the design of the programming model in ANSP will be discussed. This proposed framework provides a set of unified programming interfaces that allows active applications to work on all execution environments. The framework is shown in Figure 2. It is composed of two layers integrated within the active network architecture. These two layers can operate independently without the other layer. The upper layer provides a unified programming model to active applications. The lower layer provides appropriate translation procedure to the ANSP applications when it is processed by different environments. This service is necessary because each environment has its own header definition.The ANSP framework provides a set of programming calls which are abstractions of ANSP services and resources. A capsule-based model is used for ANSP, and it is currently extended to map to other capsule-based models used in ANTSand ASP. The mapping possibility to other models remains as our future works. Hence, the mapping technique in ANSP allows any ANSP applications to access the same programming resources in different environments through a single set of interfaces. The mapping has to be done in a consistent and transparent manner. Therefore, the ANSP appears as an execution environment that provides a complete set of functionalities to active applications. While in fact, it is an overlay structure that makes use of the services provided from the underlying environments. In the following, the high-level functional descriptions of the ANSP model are described. Then, the implementations will be discussed. The ANSP programming model is based upon the interactions between four components: application client , application stub , capsule , and active service base.Figure 3. Information Flow with the ANSP.•Application Client : In a typical scenario, an active application requires some means to present information to its users, e.g., the state of the networks. A graphical user interface (GUI) is designed to operate with the application client if the ANSP runs on a non-active host.•Application Stub : When an application starts, it activates the application client to create a new instance of application stub at its near-by active node. There are two responsibilities for the application stub. One of them is to receive users’ instructions from the application client. Another one is to receive incoming capsules from networks and to perform appropriate actions. Typically, there are two types of actions, thatare, to reply or relay in capsules through the networks, or to notify the users regarding the incoming capsule. •Capsule : An active application may contain several capsule types. Each of them carries program code (also referred to as forwarding routine). Since the application defines a protocol to specify the interactions among capsules as well as the application stubs. Every capsule executes its forwarding routine at each router it visits along the path between the source and destination.•Active Service Base : An active service base is designed to export routers’ environments’ services and execute program calls from application stubs and capsules from different EEs. The base is loaded automatically at each router whenever a capsule arrives.The interactions among components within ANSP are shown in Figure 3. The designs of some key components in the ANSP will be discussed in the following subsections. A. Capsule (ANSPCapsule)ANSPXdr decode () ANSPXdr encode () int length ()Boolean execute ()New types of capsule are created by extending the abstract class ANSPCapsule . New extensions are required to define their own forwarding routines as well as their serialization procedures. These methods are indicated below:The execution of a capsule in ANSP is listed below. It is similar to the process in ANTS.1. A capsule is in serial binary representation before it issent to the network. When an active router receives a byte sequence, it invokes decode() to convert the sequence into a capsule. 2. The router invokes the forwarding routine of thecapsule, execute(). 3. When the capsule has finished its job and forwardsitself to its next hop by calling send(), this call implicitly invokes encode() to convert the capsule into a new serial byte representation. length() isused inside the call of encode() to determine the length of the resulting byte sequence. ANSP provides a XDR library called ANSPXdr to ease the jobs of encoding and decoding.B. Active Service Base (ANSPBase)In an active node, the Active Service Base provides a unified interface to export the available resources in EEs for the rest of the ANSP components. The services may include thread management, node query, and soft-store operation, as shown in Table 1.TABLE I. ACTIVE SERVICE BASE FUNCTION CALLSFunction Definition Descriptionboolean send (Capsule, Address) Transmit a capsule towards its destination using the routing table of theunderlying environment.ANSPAddress getLocalHost () Return address of the local host as an ANSPAddress structure. This isuseful when a capsule wants to check its current location.boolean isLocal (ANSPAddress) Return true if its input argument matches the local host’s address andreturn false otherwise.createThread () Create a new thread that is a class ofANSPThreadInterface (discussed later in Section VIA “Unified Thread Abstraction”).putSStore (key, Object) Object getSStore (key) removeSStore (key)The soft-store operations are provided by putSStore(), getSSTore(), and removeSStore(), and they put, retrieve, and remove data respectively. forName (PathName) Supported in ANSP to retrieve a classobject corresponding to the given path name in its argument. This code retrieval may rely on the code loading mechanism in the environment whennecessary.C. Application Client (ANSPClient)boolean start (args[])boolean start (args[],runningEEs) boolean start (args[],startClient)boolean start (args[],startClient, runningEE)Application Client is an interface between users and the nearby active source router. It does the following responsibilities.1. Code registration: It may be necessary to specify thelocation and name of the application code in some execution environments, e.g., ANTS. 2. Application initialization: It includes selecting anexecution environment to execute the application among those are available at the source router. Each active application can create an application client instance by extending the abstract class, ANSPClient . The extension inherits a method, start(), to automatically handle both the registration and initialization processes. All overloaded versions of start() accept a list of arguments, args , that are passed to the application stub during its initialization. An optional argument called runningEEs allows an application client to select a particular set of environment variables, specified by a list of standardized numerical environment ID, the ANEP ID, to perform code registration. If this argument is not specified, the default setting can only include ANTS and ASP. D. Application Stub (ANSPApplication)receive (ANSPCapsule)Application stubs reside at the source and destination routers to initialize the ANSP application after the application clients complete the initialization and registration processes. It is responsible for receiving and serving capsules from the networks as well as actions requested from the clients. A new instance is created by extending the application client abstract class, ANSPApplication . This extension includes the definition of a handling routine called receive(), which is invoked when a stub receives a new capsule.IV. ANSP E XAMPLE : T RACE -R OUTEA testbed has been created to verify the design correctnessof ANSP in heterogeneous environments. There are three types of router setting on this testbed:1. Router that contains ANTS and a ANSP daemonrunning on behalf of ASP; 2. Router that contains ASP and a ANSP daemon thatruns on behalf of ANTS; 3. Router that contains both ASP and ANTS.The prototype is written in Java [11] with a traceroute testing program. The program records the execution environments of all intermediate routers that it has visited between the source and destination. It also measures the RTT between them. Figure 4 shows the GUI from the application client, and it finds three execution environments along the path: ASP, ANTS, and ASP. The execution sequence of the traceroute program is shown in Figure 5.Figure 4. The GUI for the TRACEROUTE Program.The TraceCapsule program code is created byextending the ANSPCapsule abstract class. When execute() starts, it checks the Boolean value of returning to determine if it is returning from the destination. It is set to true if TraceCapsule is traveling back to the source router; otherwise it is false . When traveling towards the destination, TraceCapsule keeps track of the environments and addresses of the routers it has visited in two arrays, path and trace , respectively. When it arrives at a new router, it calls addHop() to append the router address and its environment to these two arrays. When it finally arrives at the destination, it sets returning to false and forwards itself back to the source by calling send().When it returns to source, it invokes deliverToApp() to deliver itself to the application stub that has been running at the source. TraceCapsule carries information in its data field through the networks by executing encode() and decode(), which encapsulates and de-capsulates its data using External Data Representation (XDR) respectively. The syntax of ANSP XDR follows the syntax of XDR library from ANTS. length() in TraceCapsule returns the data length, or it can be calculated by using the primitive types in the XDRlibrary.Figure 5. Flow of the TRACEROUTE Capsules.V. C ONCLUSIONSIn this paper, we present a new unified layered architecture for active networks. The new model is known as Active Network Socket Programming (ANSP). It allows each active application to be written once and run on multiple environments in active networks. Our experiments successfully verify the design of ANSP architecture, and it has been successfully deployed to work harmoniously with ANTS and ASP without making any changes to their architectures. In fact, the unified programming interface layer is light-weighted and can be dynamically deployable upon request.R EFERENCES[1] D.D. Clark, D.L. Tennenhouse, “Architectural Considerations for a NewGeneration of Protocols,” in Proc. ACM Sigcomm’90, pp.200-208, 1990. [2] D. Tennenhouse, J. M. Smith, W. D. Sicoskie, D. J. Wetherall, and G. J.Minden, “A survey of active network research,” IEEE Communications Magazine , pp. 80-86, Jan 1997.[3] D. Wetherall, U. Legedza, and J. Guttag, “Introducing new internetservices: Why and how,” IEEE Network Magazine, July/August 1998. [4] M. Fry, A. Ghosh, “Application Layer Active Networking,” in ComputerNetworks , Vol.31, No.7, pp.655-667, 1999.[5] K. W. Chin, “An Investigation into The Application of Active Networksto Mobile Computing Environments”, Curtin University of Technology, March 2000.[6] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Self OrganizingWide-Area Network Caches”, Proc. IEEE INFOCOM ’98, San Francisco, CA, 29 March-2 April 1998.[7] L. H. Leman, S. J. Garland, and D. L. Tennenhouse, “Active ReliableMulticast”, Proc. IEEE INFOCOM ’98, San Francisco, CA, 29 March-2 April 1998.[8] D. Descasper, G. Parulkar, B. Plattner, “A Scalable, High PerformanceActive Network Node”, In IEEE Network, January/February 1999.[9] E. L. Nygren, S. J. Garland, and M. F. Kaashoek, “PAN: a high-performance active network node supporting multiple mobile code system”, In the Proceedings of the 2nd IEEE Conference on Open Architectures and Network Programming (OpenArch ’99), March 1999. [10] D. L. Tennenhouse, and D. J. Wetherall. “Towards an Active NetworkArchitecture”, In Proceeding of Multimedia Computing and Networking , January 1996.[11] D. J. Wetherall, J. V. Guttag, D. L. Tennenhouse, “ANTS: A toolkit forBuilding and Dynamically Deploying Network Protocols”, Open Architectures and Network Programming, 1998 IEEE , 1998 , Page(s): 117 –129.[12] B. Braden, A. Cerpa, T. Faber, B. Lindell, G. Phillips, and J. Kann.“Introduction to the ASP Execution Environment”: /active-signal/ARP/index.html .[13] “The java language: A white paper,” Tech. Rep., Sun Microsystems,1998.。
毕业设计外文和翻译
视觉零——道路交通安全的一项实施政策罗杰约翰逊道路安全司,瑞典公路管理局,罗达沃根1,78187 Borlange ,瑞典关键词:视觉零、道路安全、实施摘要:本文的范畴是一个提纲,一般来说,道路安全理念本来就存在于现在道路和道路设计中。
追踪这种理念的起源,提出了新的街道道路的设计原则有人会争辩说,在目前的道路设计理念的缺陷。
是主要的原因全球道路安全危机,清楚表明其人造的性质。
一个由决策过程所构成的简短的描述,导致零视觉在1997 年作为瑞典交通安全政策确立。
通过对问题的分析,为寻求解决之道提出建议。
这些解决方案基于视觉零中的一些原则。
这些措施包括一个用于创建错误容忍的道路系统的新的基本机制,和道路、街道新的设计原则。
因此,传统的“怪罪受害者”的质疑和焦点放在了需要专业人士基于这些新的标准所采取的行动。
在过去10 年在瑞典的死亡人数已经从大约550 /年下降到450 /年。
重新设计的道路中央分隔带已经减少了80%在死亡。
街道以30 公里/小时的设计速度显示出类似的结果。
这表明,从视觉零衍生出来的策略是有效的,但还没有大规模实施。
1、过程自1993 年,在瑞典瑞典公路管理局(SRA )的有一个整体的责任道路交通安全。
在1996 年,这一责任被政府进一步澄清。
瑞典已有非常小的部委(人员数)。
因此,像SRA 的管理部门经常有半政治任务,如发展政策和目标。
政策决定、长期目标和总体预算是由政府或议会做出的,而发展是在管理部门做出的。
继1994 年秋季瑞典有了一个新选举的交通部长。
交通部长宣布,安全将是她的优先事项之一。
部长的工作人员就如何使部长能够做出交通安全优先课题和SRA 之间展开对话。
在1994年春天,SRA 和主要利益相关者一起对1994-2000年的行车安全提出了一项短期方案。
它不仅有和先前工作的连续性,而且更加强调关键行动和重视成果之间的协作。
这个方案后,直接推动SRA 开始制定交通安全长期战略的基本思路。
毕业设计外文资料翻译sc-pdf
毕业设计外文资料翻译题目甲醇氧化生产甲醛的银催化剂改性学院化学化工学院专业化学工程与工艺班级0803学生许继盟学号20080207167指导教师倪献智二〇一二年三月十五日Catalysts Today, 1996, (28): 239-244.甲醇氧化生产甲醛的银催化剂的改性A.N.Pestryakov摘 要 银催化剂的性能可用Zr ,La , Rb ,C s 的氧化物改性,改性后的银催化剂的物化性能和催化性能已在甲醇的选择性氧化工艺中研究过,甲醇氧化制甲醛工艺中,质量分数为1%-10%的改性添加物会改变载体银的有效电荷及氧化还原性能、金属分散度和其表面扩散、催化剂表面酸度及结焦程度。
当银催化性能改变时,改性物主要影响催化剂活性位(++δn Ag Ag)。
关键词 银催化剂;甲醇氧化为甲醛 1 简介甲醇选择性氧化生产甲醛工艺中使用大量的载体银催化剂[1-3]。
采用不同的非有机添加物对银催化剂进行改性是提高其性能的最有前景的方法之一。
在银催化剂发现之后,人们致力于对其进行改进,以达到提高其催化活性和寿命,降低银使用量和扩展其工艺操作条件的目的。
广泛使用载体以减少银使用量及防止银在“严酷”条件(600-700 ℃)下烧结也是改性方法之一。
但是载体的堆积有限,不同改性化合物的少量添加(质量分数0.1-10%)可以使银可变的催化性能产生较大差异。
在科技和专利文献中提到过很多不同的添加物,它们能改善并激发银的催化性能[3-14]。
在这其中,研究人员提到改性作用的不同机理:银上金属的电子功能和电子密度改变[7-9],O 2吸附的差异[3,10],催化剂表面酸度[11],催化剂表面的机械堵塞[12],添加物的固有催化性质[13,14]。
然而,所有这些仅描述了催化剂改性的几个分散的方面,并没有涉及添加物对银催化剂改性影响的差异。
也没有考虑改性物对银催化剂活性位电子状态的影响。
在本文中,我们研究了改性物对银的性能影响的几个方面[15-18],目的是在甲醇氧化制甲醛工艺中对稀有和稀土金属氧化物反应及银催化剂的电子属性、物化属性和催化属性进行综合研究。
毕业设计(论文)外文资料翻译
南京理工大学紫金学院毕业设计(论文)外文资料翻译系:机械工程系专业:机械工程及自动化姓名:徐华俊学号:100104348外文出处:WASTE FOOD DISPOSAL SYSTEM(3)(用外文写)附件:1.外文资料翻译译文;2.外文原文。
指导教师评语:该生翻译了一篇有关《废弃食物处理系统》的论文,论文内容跟课题的研究领域相关,在将来的课题设计中可以借鉴。
译文语句基本通顺,专业术语正确,标点符号运用无误。
说明该生具备一定的英语水平和翻译能力。
但文中仍有部分语句组织得不够完善,可以进一步修改。
签名:年月日注:请将该封面与附件装订成册。
附件1:外文资料翻译译文垃圾食物处理系统(3)打开功率继电器32的驱动,关闭与其相连的常闭开关118,从而消除了在此之前被施加到定时器单元40的控制终端146的触发信号,并且需要注意的是,功率继电器30的电源开关108供应了一个类似的功能,如本文所述的,启动系统10每天第一次激活功率继电器30的时候,这个功能中断了定时器单元40的控制终端146,即先前追踪的触发信号电路,如本文所述。
进一步,在与功率继电器32相连的开关被关闭的时候,它的驱动被触发的结果是非常明显的,断开常开继电器开关119,为高流量水阀22的电磁阀80建立了一个到地面的备用路径,也就是可以追踪到电源线200;通过导线202;电磁阀80;导线204;导线416和现在被断开的功率继电器32的闭合开关119到地面,如此一来就能明显并且很方便的注意到,与功率继电器30相连的开关109执行同样的功能,通过一个完全可追踪的功率继电器30,而不是功率继电器32,使功率继电器30处于启动状态,所以在任何时期,控制单元12的电动机46可在任意一个方向操作(这取决于功率继电器30或功率继电器32处于激活状态),电磁阀80也将保持通电,来保持高流量水阀22在该段时期内处于闭合状态,这样的话,水流将会在需要大幅率的时候流通,通过管道76和78流到控制单元12,这个控制单元12的机构52正积极粉碎积累废料,并且已经积累或正在采用,接着顺着水流冲到下水道或者通过类似单元12的出口58.你将会很方便的观察到电磁阀74保持通电,并且在控制单元12积极运作期间,低流量水阀20也保持闭合,并且应当在任何特定安装情况下,把阀22的流通能力考虑在内。
三江学院文件
三江学院文件校教字〔2018〕30号关于印发《三江学院教学单位本科教学档案建设与管理办法》的通知各二级教学单位:为进一步规范我校本科教学档案工作,加强教学单位本科教学档案管理,做好本科教学文件材料的收集、整理、归档和保管工作,促进工作日常教学管理和专业改革建设,现将《三江学院教学单位本科教学档案建设与管理办法》印发给你们,请遵照执行。
请各教学单位按照要求确定一名兼职教学档案管理人员,请于2018年7月15日前上报发展规划与质量评估处(联系人:陆美;电话:4906)。
附件:三江学院教学单位本科教学档案建设与管理办法三江学院2018年7月11日三江学院校长办公室2018年7月11日印发附件:三江学院教学单位本科教学档案建设与管理办法第一章总则第一条教学档案是高等院校在教学实践活动中形成的,具有保存价值的文字、图表、声像载体等不同形式的教学文件材料的总称。
教学档案是教学管理工作中的重要组成部分,是衡量学校教学管理水平和教育质量的重要标志之一。
为了进一步加强我校本科教学档案工作,特制定本办法。
第二条根据《中华人民共和国档案法》、《高等学校档案实体分类法》、《江苏省高等学校档案管理办法》和《三江学院档案管理办法》等法律、法规,结合我校实际情况,制定本办法,以进一步规范教学单位本科教学档案工作,为日常教学管理和专业改革建设服务。
第三条我校本科教学档案实行学校和教学单位二级管理。
学校保存的本科教学文件材料按《三江学院档案管理办法》中的相关规定执行;教学单位本科教学档案是指由二级学院(部)自行收集、整理、保管的本科教学文件材料,归档范围、分类编号和保管期限等按本办法执行。
第四条教学单位应配备兼职档案管理人员,做到“三纳入”(即将教学档案工作纳入工作计划,纳入管理制度,纳入岗位职责)和“三同步”(即下达教学任务与提出文件材料归档要求同步,检查教学工作与检查文件材料形成积累情况同步,评审、鉴定教学质量与审查、验收档案材料同步)。
毕业设计外文翻译原文
Optimum blank design of an automobile sub-frameJong-Yop Kim a ,Naksoo Kim a,*,Man-Sung Huh baDepartment of Mechanical Engineering,Sogang University,Shinsu-dong 1,Mapo-ku,Seoul 121-742,South KoreabHwa-shin Corporation,Young-chun,Kyung-buk,770-140,South KoreaReceived 17July 1998AbstractA roll-back method is proposed to predict the optimum initial blank shape in the sheet metal forming process.The method takes the difference between the ®nal deformed shape and the target contour shape into account.Based on the method,a computer program composed of a blank design module,an FE-analysis program and a mesh generation module is developed.The roll-back method is applied to the drawing of a square cup with the ¯ange of uniform size around its periphery,to con®rm its validity.Good agreement is recognized between the numerical results and the published results for initial blank shape and thickness strain distribution.The optimum blank shapes for two parts of an automobile sub-frame are designed.Both the thickness distribution and the level of punch load are improved with the designed blank.Also,the method is applied to design the weld line in a tailor-welded blank.It is concluded that the roll-back method is an effective and convenient method for an optimum blank shape design.#2000Elsevier Science S.A.All rights reserved.Keywords:Blank design;Sheet metal forming;Finite element method;Roll-back method1.IntroductionIt is important to determine the optimum blank shape of a sheet metal part.However,because its deformation during the forming process is very complicated,it is not easy to design the optimum blank shape even by the skilled labor based on the experience of many years.Recently,computa-tional analysis for a complex automobile part has been able to be carried out easily due to improved computer perfor-mance and the numerical analysis technique.In the analysis process,all kinds of variables that affect the deformation should be considered.The optimum blank shape leads to the prevention of tearing,uniform thickness distribution and to the reduction of the press load during drawing.If the blank shape is designed optimally,the formability will be increased and the ®nal product will require the least amount of trimming at the end of the process.Therefore,it is desirable to design the blank shape with a uniform ¯ange of its periphery after deep drawing.Several numerical solutions for the deep drawing process of non-circular components have been reported.Hasek and Lange [1]gave an analytical solution to this problem usingthe slip-line ®eld-method with the assumption of plane-strain ¯ange deformation.Also,Jimma [2]and Karima [3]used the same method.V ogel and Lee [4]and Chen and Sowerby [5]developed ideal blank shapes by the method of plane-stress characteristics.Sowerby et al.[6]developed a geometric mapping method providing a trans-formation between a ¯at sheet and the ®nal surface.Majlessi and Lee [7,8]developed a multi-stage sheet metal forming analysis method.Chung and Richmond [9±12]determined ideal con®gurations for both the initial and the intermediate stages that are required to form a speci®ed ®nal shape using the ideal forming theory.Lee and Huh [13]introduced a three-dimensional multi-step inverse method for the optimum design of blank shapes.Toh and Kobayashi [14]developed a rigid±plastic ®nite-element method for the drawing of general shapes based on membrane theory and ®nite-strain formulations.Zhaotao [15]used the boundary element method for a 2D potential problem to design optimum blank shapes.This paper presents an optimum design method of blank shapes for the square cup drawing process considering process variables.An optimum blank shape of square cup drawing was obtained using the proposed method.Also,it was applied to the deep drawing of an automobile sub-frame,and an optimum blank shape with a uniform ¯ange at its periphery weredetermined.Journal of Materials Processing Technology 101(2000)31±43*Corresponding author.Tel.: 82-2-705-8635;fax: 82-2-712-0799.E-mail address :nskim@ccs.sogang.ac.kr (Naksoo Kim)0924-0136/00/$±see front matter #2000Elsevier Science S.A.All rights reserved.PII:S 0924-0136(99)00436-72.Design of optimum blank shapeThe de®nition of the optimum blank shape is the mini-mization of the difference between the outer contour of the deformed blank and the target contour that indicates the residual ¯ange of uniform size around the periphery of the product.The target contour is generated from the outer contour of the product and determines an optimum blank shape using the results of ®nite-element simulation with the roll-back method.In the process of blank design the simula-tion is performed using an explicit ®nite-element software PAM-STAMP and the interface program is developed for con-necting the blank design module,the remeshing module,the post-processor module and the FE-analysis package.2.1.Roll-back method`The roll-back method starts by de®ning the target con-tour.After determining the length of the ¯ange that remains around the periphery of the product,the pro®le of the target contour is created by offsetting an equal distance from the outer contour of the product and its mesh system is gener-ated by beam elements.The process of blank design is illustrated in Fig.1.The mesh system of the prepared square blank for initial analysis is shown in Fig.1(a).After an analysis,the mesh system of the deformed blank and the target contour are shown in Fig.1(b).At the ¯ange of the deformed blank,a distinction is made between the interior ¯ange within the target contour and the exterior ¯ange out ofthe target contour.The ¯ange out of the target contour is the part that will be trimmed and the ¯ange within the target contour is the part which does not keep shape is due to the incompletion of the blank shape.Thus the modi®ed blank shape should be designed to take the shape of the outer contour of the product completely.The contour of the modi®ed blank shape using the roll-back method and the initial blank shape is shown in Fig.1(c).The mesh system of the modi®ed blank shape for FE-analysis is shown in Fig.1(d).The blank design method will be introduced in detail.The quarter of the deformed blank and the target contour are shown in Fig.2(a).According to the previous explanation,the remained ¯ange can be divided into the interior and the exterior ¯ange.The design process of region A is shown in Fig.2(b).In the mesh of the deformed blank a square grid IJKL on the target contour will be considered,and then the internal dividing point Q in will be calculated at the ratio of m tonFig.1.Illustrating the process of ®nding the optimum blank:(a)initial blank shape;(b)deformed blank and target contour;(c)roll-back blank and contour;(d)modi®ed blankshape.Fig.2.The roll-back process of a mesh located on the surface of the ¯ange:(a)a mesh located on the surface of the ¯ange;(b)region A:residual drawing part out of target contour;(c)region B:residual drawing part inside the target contour.32J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±43between the node J and K.This point is mapped back into the mesh system of the initial blank.The internal dividing point Q H in is calculated at the ratio of m to n between the same node J H and K H.The following process is performed on the element of the deformed blank on the target contour.The describing point of the outer contour of the modi®ed blank shape can be calculated.If the coordinates of the nodes J and K are J(x1,y1),K(x2,y2)and the coordinates of the nodes J H and K H are J H x H1Y y H1 Y K H x H2Y y H2 ,the ratio of m to n ism X n JQJKX QKJK(1)The coordinate of the internal dividing point Q H in can be expressed asQ H inmx H2 nx H1m nYmy H2 ny H1m n(2)The design process of region B is shown in Fig.2(c).In the mesh of the deformed blank a square grid MNOP of which the outward edge crosses the target contour should be considered,and then the external dividing point Q out can be calculated at the ratio of m to n between nodes O and P.This point is mapped back into the mesh system of the initial blank.The external dividing point Q H out can be calculated at the ratio of m to n between the same nodes Q H and P H.If the coordinates of the nodes O and P are O(x1,y1),P(x2,y2)and the coordinates of the O H and P H are O H x H1Y y H1 Y P H x H2Y y H2 ,the ratio of m to n ism X n OQOPX QPOP(3)The coordinate of the external dividing point Q H out can be expressed asQ H outmx H2Ànx H1Ymy H2Àny H1(4)The following process is performed on all the element of the deformed blank related on the target contour.The points describing the outer contour of modi®ed blank shape can be calculated.When all points of two cases are connected by the spline,the outer contour of modi®ed blank can be described.This process is shown in Fig.3.2.2.The development of the optimum blank design programTo optimize the initial blank shape,a design program was developed following the prescribing method and procedures. This program consists of the blank shaper design module, the mesh generation module and the post-processor module. The whole procedure is illustrated in Fig.4.To perform the design process of a blank shape,an interface module is needed.This module is developed to read the output®le of ®nite-element analysis and design the optimum blank shape and generate the input®le.3.Designs of blank shape and application3.1.Blank design of a square cupTo verify the validity of the roll-back method,it is applied to the process of square cup deep drawing.Several numerical solutions of the deep drawing process for non-circular components have been reported recently.The pub-lished blank shapes by Lee and coworkers[16±18]are compared with the resultusing the roll-back method.The Fig.3.Flowchart of the blank design module.Fig.4.Flow chart of the main program.J.-Y.Kim et al./Journal of Materials Processing Technology101(2000)31±4333dimensions of the die and punch set for an analysis are shown in Fig.5.The material of the sheet metal is cold-rolled steel for an automobile part.The following are the material propertiesand process variables.Stress±strain relation:"s58X 78Â 0X 00003 "e0X 274 kgf a mm 2 ;Lankford value:"R 1X 679;initial blank size:160mm Â160mm square blank;initial thickness:t 0.69mm;friction coef®cient:m 0.123;and blank-holding force:4000kgf (1kgf 9.81N).The deformed shapes of the square cup obtained from the initial blank and the optimum blank are shown in Fig.6.Inthe present work the optimum blank shape for a square cup that is of 40mm height and 5mm width of ¯ange will be determined.Each modi®ed blank shape after the application of the roll-back method is illustrated in Fig.7.When an 160mm Â160mm square blank is used for an initial blank the outer contour of deformed blank is shown in Fig.7(a).A ®rst modi®ed blank shape can be calculated with the result of the initial square blank.An analysis result is shown in Fig.7(b).The difference between the deformed shape and the target contour is signi®cant.If the blank design process is repeated several times the difference decreases and con-verges to zero.Hence a square cup with a uniform ¯ange at its periphery can be made.The comparison between the ®nal result and a published result is shown in Fig.8.In the transverse direction the optimum blank shape using the roll-back method is larger than the published result.The load±displacement curves in square cup drawing process with various initial blank shapes are shown in Fig.9.As the modi®cation is repeated,the gap of the load±displacement curves before and after iteration decreases.Thus after the third modi®cation the maximum value of the load becomes the mean value between that of the ®rst and second modi®cation.After three modi®cations the optimum blank shape is determined,then the result with the optimum blank shape is compared with results in the literature.The thickness strain distribution in the diagonal direction is shown in Fig.10(a),whilst the thickness strain distribution in the transverse direction is shown in Fig.10(b).In the thickness strain distribution the result using the roll-back method is slightly different from the published result,but the overall strain distributions are quite similar.It is thus veri®ed that the roll-back method is a useful approach in the design of optimum blank shapes.3.2.Blank design of the left member of a front sub-frameAn analysis for members of a box-type front sub-frame is performed.The left member is selected as one of the subjects for analysis because its shape is shallow but complex.Fig.11shows the manufacturing set-up as modeled for the numer-ical simulation.The left member requires a uniform ¯ange for the spot welding between the upper and the lower parts besides the improvement of formability.It is recommended that the length of uniform ¯ange is 30mm.The target contour is de®ned at the position which is 30mm from the outer contour of product and is shown in Fig.12.Its mesh system is generated by beam elements.The material of the sheet metal is SAPH38P,a hot-rolled steel for automobile parts.The following are the material properties and process variables.Stress±strain relationship:"s 629Â"e 0X 274(MPa);Lankford value:"R1X 030;initial thickness:t 2.3mm;friction coef®cient:m 0.1;blank holding pressure:1MPa.Fig.5.Geometrical description of the tooling for the deep drawing of a square cup (dimensions:mm).Fig.6.The deformed shape of square cups with FE-mesh geometry where the cup height is 40mm:(a)deformed shape of the square cup obtained from the initial blank;(b)deformed shape of the square cup obtained from the optimum blank.34J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±43A hexagonal blank is used as the initial blank.After three modi®cations the optimum blank shape is determined.For this case,the load±displacement curves with various blank shapes are shown in Fig.13.The comparison of the initial ¯ange and the deformed ¯ange with various blank shapes is shown in Fig.14.As the modi®cation is repeated,the maximum punch load is reduced and the outer contour may be drawn to the target contour at the same time.The thickness distribution is improved step by step;the thickness distribution with various blank shapes being shown in Fig.15.The comparison between the optimum blank shape designed by the roll-back method and the blank shape for mass production is illustrated in Fig.16.The optimum blank shape shows curvature because the outer contour of the product and the ¯ow rate of the sheet metal are considered.However,the blank shape for mass production is simple and straight because the convenience of cutting is considered.To verify the result an initial blank cut by a laser-cutting machine was prepared.The ®nal shape drawn with the initial blank in the press shop isshownparison of the initial ¯ange shapes and the deformed ¯ange shapes:(a)initial square blank;(b)®rst modi®ed blank;(c)second modi®ed blank;(d)third modi®edblank.parison of the initial blank contour between the roll-back method and Huh's method.J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±4335in Fig.17.It had a ¯ange of uniform size around its periphery.The thickness distribution at the position of four sections in the longitudinal direction of the left member was mea-sured.Fig.18shows a comparison of thickness between the computed results and the experimental results in each sec-tion.In section A,the thickness distribution has some error at the end of the ¯ange,whilst in sections B and C,the computed results are compatible with the experimentalresults.In section D,the computed results predicted that a split might happen,but the experimental cup did notsplit.Fig.9.Load±displacement curves in the square cup drawing process with various initial blankshapes.Fig.10.Thickness strain distribution in a square cup:(a)diagonal direction;(b)transversedirection.Fig.11.FE-model for a sub-frame left member.36J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±43If the initial blank shape,the ®nal shape and thickness distribution are considered,the results predicted by the roll-back method has a good agreement with the experimental values.Therefore,as well as the roll-back method being applicable to a simple shape,it can be applied to a complex and large shape.3.3.Blank design of No.2member of front sub-frame An analysis of No.2member is performed,with its deep and complex shape.Its optimum blank shape is designed using the roll-back method.Fig.19shows the manufacturing set-up as modeled for the numerical simulation.Because its drawing depth is very deep,eccentricity may occur due to the blank initial position or shape.Thus the target contour is de®ned at the position that is 40mm from the outer contour of product and it is shown in Fig.20.A square blank is used as the initial blank.After three modi®cations the optimum blank shape isdetermined.Fig.12.Target contour for the leftmember.Fig.13.Load±displacement curves in the left member drawing process with various blankshapes.parison of the initial ¯ange shapes and the deformed ¯ange shapes:(a)initial blank;(b)®rst modi®ed blank;(c)second modi®ed blank;(d)third modi®ed blank.J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±4337Fig.15.Thickness distribution with various blank shapes (unit:mm):(a)initial blank;(b)®rst modi®ed blank;(c)second modi®ed blank;(d)third modi®edblank.parison of the initial blank shapes predicted by the roll-back method and those designed by skilled labor.38J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±43For this case,load±displacement curves for various blank shapes are shown in Fig.21,whilst a comparison of the initial ¯ange and the deformed ¯ange with various blank shapes in shown in Fig.22.The thickness distribution with the initial shape is shown in Fig.23,whilst the thickness distribution with the optimum blank shape is shown in Fig.24.The thickness distribution of the side-wall and of the ®llet connecting the side-wall to the top isimproved.Fig.17.Left member drawn in the press shop with the initial blank predicted by the roll-backmethod.Fig.18.(a)Sections for measuring the thickness distribution.(b±e)Thickness distributions at sections A±D,respectively.J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±43393.4.Design of the welding line with TWB analysis of No.2memberAfter designing the optimum blank shape of No.2member,a tailor-welded blank is applied to this member.To reduce the weight of the sub-frame,structural analysis is performed.On the area where the stress intensity level is low,it is proposed to reduce the thickness locally.Therefore,it is required to design a tailor-welded blank that makes a speci®ed shape after deformation.When two sheet metals of different thickness are welded together,their metal ¯ow is different from that of sheet metal of the same thickness.Thus it is dif®cult to design the location of the weld line.In this simulation the weld line is designed by the use of the roll-back method and the welding line should be located at the speci®ed position after deformation:the speci®ed position is 120mm on both sides of the centerline.Thus the target line is de®ned and meshed by beam elements.The outer contour of TWB and the welding line are shown in Fig.25,and the results are shown in Figs.26and 27.The welding lines can be reached to the target line but,on the top of the blank that has the lower thickness,fracture may occur.This is the same as the result that in the deep drawing of a tailor-welded blank with different thickness,failure occurred at the ¯at bottom of the punch parallel to the weld line.This is due to the deformation not beingdis-Fig.19.FE-model for the sub-frame leftmember.Fig.20.Target contour for the No.2member.Fig.21.Load±displacement curves in the No.2member drawing process with various blank shapes.40J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±43parison of the initial¯ange shapes and the deformed¯ange shapes:(a)initial blank;(b)®rst modi®ed blank;(c)second modi®ed blank;(d)third modi®edblank.Fig.23.Thickness distribution with the initial blank shape(unit:mm):(a)front view;(b)rearview.Fig.24.Thickness distribution with the optimum blank shape(unit:mm):(a)front view;(b)rearview.parison of the weld line between the initial blank shape andthe deformed blank shape.J.-Y.Kim et al./Journal of Materials Processing Technology101(2000)31±4341tributed uniformly,most of the stretching being concentrated on the side of the blank with lower strength.The process condition without fracture should be determined for the combination of the drawing depth and the two different thickness as shown in Fig.28.4.ConclusionsIn this paper the roll-back method that designs an opti-mum blank shape is proposed.Based on the method,a computer program composed of a blank design module,an FE-analysis program and a mesh generation module is developed and it is applied to the deep drawing of a front sub-frame.The results of the present paper are summarized as follows:1.To verify the validity of the proposed method it is applied to the deep drawing of a square cup.The outer contour may be drawn to the target contour.2.The roll-back method is applied to the optimum blank design of a left member of an automobile sub-frame.The thickness distribution and the load level are improved.When the initial blank shape,the ®nal shape and thickness distribution are compared,the results predicted by the roll-back method have a good agreement with the experimental results.It is concluded that this method can be applied to the deep drawing of the complex automobile parts.3.The analysis of No.2member with a tailor-welded blank is performed.The position of welding lines on the initial blank is designed.The roll-back method can be applied to the design of the welding line position.4.In most cases,the edge of blank takes the shape of the target contour within a few iterations,which shows that the roll-back method is an effective and convenient method for an optimum blank shape design.References[1]V .V .Hasek,nge,Use of slip line ®eld method in deep drawingof large irregular shaped components,Proceedings of the Seventh NAMRC,Ann Arbor,MI,1979,pp.65±71.[2]T.Jimma,Deep drawing convex polygon shell researches on the deepdrawing of sheet metal by the slip line theory.First report,Jpn.Soc.Tech.Plasticity 11(116)(1970)653±670.[3]M.Karima,Blank development and tooling design for drawn partsusing a modi®ed slip line ®eld based approach,ASME Trans.11(1989)345±350.[4]J.H.V ogel,D.Lee,An analysis method for deep drawing processdesign,Int.J.Mech.Sci.32(1990)891.[5]X.Chen,R.Sowerby,The development of ideas blank shapes by themethod of plane stress characteristics,Int.J.Mech.Sci.34(2)(1992)159±166.[6]R.Sowerby,J.L.Duncan,E.Chu,The modelling of sheet metalstamping,Int.J.Mech.Sci.28(7)(1986)415±430.[7]S.A.Majlessi,D.Lee,Further development of sheet metal forminganalysis method,ASME Trans.109(1987)330±337.[8]S.A.Majlessi,D.Lee,Development of multistage sheet metalforming analysis method,J.Mater.Shap.Technol.6(1)(1988)41±54.[9]K.Chung,O.Richmond,Ideal forming-I.Homogeneous deformationwith minimum plastic work,Int.J.Mech.Sci.34(7)(1992)575±591.[10]K.Chung,O.Richmond,Ideal forming-II.Sheet forming withoptimum deformation,Int.J.Mech.Sci.34(8)(1992)617±633.Fig.26.Deformed shape of No.2member with the tailor-weldedblank.Fig.27.Deformed shape of No.2member with the tailor-welded blank:(a)front view;(b)rearview.Fig.28.Thickness distribution with the tailor-welded blank (unit:mm):(a)front view;(b)rear view.42J.-Y.Kim et al./Journal of Materials Processing Technology 101(2000)31±43[11]K.Chung,O.Richmond,Sheet forming process design based onideal forming theory,Proceedings of the Fourth International Conference on NUMIFORM,1992,pp.455±460.[12]K.Chung,O.Richmond,The mechanics of ideal forming,ASMETrans.61(1994)176±181.[13]C.H.Lee,H.Huh,Blank design and strain prediction of automobilestamping parts by and inverse®nite element approach,J.Mater.Process.Technol.63(1997)645±650.[14]C.H.Toh,S.Kobayashi,Deformation analysis and blank design insquare cup drawing,Int.J.Mech.Tool Des.Res.25(1)(1985)15±32.[15]Z.Zhatao,L.Bingwen,Determination of blank shapes for drawingirregular cups using and electrical analogue methods,Int.J.Mech.Sci.28(8)(1986)499±503.[16]H.Huh,S.S.Han,Analysis of square cup deep drawing from twotypes of blanks with a modi®ed membrane®nite element method, Trans.KSME18(10)(1994)2653±2663.[17]C.H.Lee,H.Huh,Blank design and strain prediction in sheet metalforming process,Trans.KSME A20(6)(1996)1810±1818. [18]C.H.Lee,H.Huh,Three-dimensional multi-step inverse analysis foroptimum design of initial blank in sheet metal forming,Trans.KSME A21(12)(1997)2055±2067.J.-Y.Kim et al./Journal of Materials Processing Technology101(2000)31±4343。
毕业设计外文资料翻译汇编
毕业设计(论文)外文资料翻译系:电气工程专业:电气工程及其自动化姓名:史航学号:0901011125外文出处:Current control techniques for three-phase(用外文写)voltage-source PWM converters:A Survey附件:1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文双闭环直流调速系统的说明一、系统分析与综合1.系统分析(1)在转速、电流双闭环调速系统中,若要改变电动机的转速,应调节什么参数?改变转速调节器的放大倍数Kn行不行?改变电力电子变换器的放大系数Ks行不行?改变转速反馈系数∂行不行?若要改变电动机的堵转电流,应调节系统中的什么参数?答:若要改变电动机的转速,改变转速调节器的放大倍数Kn和电力电子变换器的放大系数Ks都不行,稳定时∂n=Un=Un*,所以只有改变给定值Un*和反馈系数∂才行。
若要改变电动机的堵转电流,同样只须改变给定值Uim*和反馈系数β,因为,稳定时,Uim* =βIdm,从式中可得出。
(2)转速、电流双闭环调速系统稳态运行时,两个调节器的输入偏差电压和输出电压各是多少?答:转速、电流双闭环调速系统稳态运行时,两个调节器的输入偏差电压均是零,由式子∂n=Un=Un*,n=n; Uim* =βIdm, Idm=Idl。
(3)在转速、电流双闭环调速系统中,两个调节器均采用PI调节器。
当系统带额定负载运行时,转速反馈线突然断线,系统重新进入稳态后,电流调节器的输入偏差电压Ui∆是否为零?为什么?答:当系统带额定负载运行时,转速反馈线突然断线,则Un=0,Un∆=Un*-Un=Un*,使Ui迅速达到Uim ,Ui∆〉0 ,速度 n 上升,当系统重新进入稳态后,即Id=Idl ,那么,Ui∆= Uim*-βIdl〉0,Ui∆也不再变化,转速n也不再变化,但,此时的转速n比反馈线断线时的转速要大。
(4)为什么用积分控制的调速系统是无静差的?答:在积分调节器的调速系统中,能实现无静差,是由于积分调节器控制特点,即积分的记忆和积累作用。
外文翻译
淮阴工学院毕业设计(论文)外文资料翻译学院:机械工程学院专业:机械设计制造及其自动化姓名:唐伟学号:1091101521外文出处:2011 Second International Conference (用外文写)on Digital Manufacturing & Automation 附件: 1.外文资料翻译译文;2.外文原文。
注:请将该封面与附件装订成册。
附件1:外文资料翻译译文PLC在数控机床发展中的应用桥东开1,2,阳翔瑜1,珈金鑫11华南科技大学,电力学院,广东广州510640,中国2广东工业大学石油化工学院,机电工程学院,茂名,广东,525000,中国e-mail: qiaodongkai@摘要:介绍了基于PLC和可编程多轴控制器数控系统的非标准机床,这种数控系统用于数控机床。
与传统的数控系统相比,所提出的设计不仅简化了机床结构和控制系统,而且也使用户程序简化。
本文对PLC的控制功能进行介绍,并给出了PLC梯形图。
关键词:PLC,数控,机床,梯形图1引言由于不同的特定的应用程序和加工方法,计算机数控机床的结构也被改变。
从一般结构上来看,数控机床是由床身、数控系统、设备驱动程序、执行电机、辅助设备、控制电路和接口等,这些部分相互分工,并协调在一起,达到一定的动作的要求。
数控机床有两种基本控制功能:一种是实现定期的刀具相对于工件坐标系的几何运动规律的数字控制,这个任务是通过数控装置来完成;另一种是相对开关量信号的顺序控制,和各轴的起 - 停的控制,更换刀具,开关冷却液辅助功能等,现在这种开关量控制信息一般通过PLC(可编程逻辑控制器)实现。
PLC具有面向用户指令,并致力于存储用户的程序的存储器。
存储器适用于控制对象的动作复杂的情况,逻辑控制需要有灵活的变化的地方。
PLC可以连接到计算机及其他设备,因此,它极易实现如显示、编辑、诊断、存储和交付方案等操作,而PC机主机将协调这两种控制信息,以实现正常的运作。
三江学院本科生毕业设计(论文)撰写规范
三江学院本科生毕业设计(论文)撰写规范一、毕业设计(论文)内容的要求一份完整的毕业设计(论文)应包括以下几部分内容:论文题目、摘要和关键词、目录、正文、结束语、致谢、参考文献、附录等。
1.毕业设计(论文)题目毕业设计(论文)题目应简短、明确,通过标题把毕业设计(论文)的内容、专业特点概括出来。
题目字数要适当,一般不宜超过20个字。
如果有些细节必须放进标题,为避免冗长,可以将主标题与副标题分列,把细节放在副标题里。
2.摘要和关键词(中文在前,英文在后;外语类毕业论文的摘要则颠倒顺序)摘要应反映毕业设计(论文)的精华,概括地阐述课题研究的基本观点、主要研究内容、研究方法、取得的成果和结论。
摘要字数要适当,中文摘要一般以300字左右为宜,外文摘250个实词左右为宜。
关键词是直接选自设计(论文)标题或内容中具有实质意义、作为标引和检索文献主题概念的名词或词组。
关键词的个数一般取3—5个左右。
3.目录目录是毕业设计(论文)的篇章名目,要按顺序写清楚毕业设计(论文)构成部分的名称和正文中的小标题,并在每一个标题后面注明页码。
4.正文正文是作者对研究工作的详细表述。
其内容包括:问题的提出,研究的目的、意义、理论依据,基本观点,解决问题的基本方法与实验手段,设计、计算的主要方法和内容,必要的统计数据和图表,以及研究得出的结果与对结果的讨论等。
5.结束语结束语是对主体的最终结论,应准确、完整、精炼。
阐述作者创造性工作在本研究领域的地位和作用,对存在的问题和不足应给予客观的说明,也可提出进一步的设想。
6.致谢谢辞通常以简短的文字对在课题研究与论文撰写过程中直接给予帮助的指导教师、答疑教师和其他人员表示自己的谢意。
7.参考文献参考文献是毕业设计(论文)中引用文献出处的目录表,在论文中引用参考文献时,引出处右上角用方括号标注阿拉伯数字编排的序号(必须与参考文献一致)。
参考文献应列出主要参考书和文献资料的名录、作者姓名、出版社或期刊名称、以及出版日期或期刊的卷数、期数、页码等。
三江学院2008年优秀毕业设计(论文)评选结果
高艳萍
﹡15
文学院
汪雪筠
从《汉语史稿》(中册)到《汉语语法史》
高小方
16
文学院
陈逸闻
也谈新闻自由——“上海记者起诉市规划局信息不公开”引发的新闻采访优先权思考
毕春富
17
文学院
赵芸芸
历史观点和美学观点统一的评论标准
包忠文
18
旅游学院
邹亚男
南京国内旅游消费结构存在问题及优化研究
余子萍
19
旅游学院
丁勇
南京高星级酒店发展经济型酒店的营销策略
电气学院
张译江
基于顺序功能图编程思想的FESTO MPS 工作站(加工站)的监控
柴瑞娟
﹡43
电子学院
周志富
智能车的路径识别与控制电路设计
胡宴如 吴正平
44
电子学院
刘维佳
低噪声放大器
顾小军 杨亦文
45
电子学院
杨飞
楼宇火灾自动报警系统设计
费诺
46
电子学院
孙靖成
公交车自动报站系统的产品化设计(软件部分)
梁军
曾田康载
10
日语系
钱正芳
从拟声词拟态词看日本人的自然观——以雪、雨、风、浪以及植物为中心
吴立新
11
日语系
徐丹
“OTAKU”引致的偏见和歧视——关于二次元情结
神田耕太郎
12
文学院
陈文捷
从《红楼梦》看曹雪芹诗学观
顾玉文
13
文学院
倪江燕
缘在那一刻
孙力 王建军
14
文学院
孙静娟
狂欢着的堂吉诃德——从巴赫金狂欢化理论看《堂•吉诃德》
47
毕业设计(论文)外文资料及译文(模板)
大连东软信息学院
毕业设计(论文)外文资料及译文
系所:
专业:
班级:
姓名:
学号:
大连东软信息学院
Dalian Neusoft University of Information
外文资料和译文格式要求
一、装订要求
1、外文资料原文(复印或打印)在前、译文在后、最后为指导教师评定成绩。
2、译文必须采用计算机输入、打印。
3、A4幅面打印,于左侧装订。
二、撰写要求
1、外文文献内容与所选课题相关。
2、本科学生译文汉字字数不少于4000字,高职学生译文汉字字数不少于2000字。
三、格式要求
1、译文字号:中文小四号宋体,英文小四号“Times New Roman”字型,全文统一,首行缩进2个中文字符,1.5倍行距。
2、译文页码:页码用阿拉伯数字连续编页,字体采用“Times New Roman”字体,字号小五,页底居中。
3、译文页眉:眉体使用单线,页眉说明五号宋体,居中“大连东软信息学院本科毕业设计(论文)译文”。
大连东软信息学院毕业设计(论文)译文
大连东软信息学院毕业设计(论文)译文
大连东软信息学院毕业设计(论文)译文
大连东软信息学院毕业设计(论文)译文
大连东软信息学院毕业设计(论文)译文。
(最新版)_毕业设计外文翻译_27413
南京邮电大学毕业设计(论文)外文资料翻译学院专业学生姓名班级学号外文出处附件:1.外文资料翻译译文;2.外文原文指导教师评价:1.翻译内容与课题的结合度:□优□良□中□差2.翻译内容的准确、流畅:□优□良□中□差3.专业词汇翻译的准确性:□优□良□中□差4.翻译字符数是否符合规定要求:□符合□不符合指导教师签名:年月日附件1:外文资料翻译译文非常1.1Web 部署项目当ASP 第一次发布时,Web 编程还比较困难,因为需要 IIS 来处理 ASP 页。
后来, 2.0 和Visual Studio® 2005 通过引入网站开发模型使一切工作都变得容易了。
借助该网站模型,您不必在 Visual Studio 中创建新项目,而是可以指向一个目录并开始编写网页和代码。
此外,您还可以使用内置的 Development Server 快速测试站点, Development Server 将 寄宿在一个本地进程中,并消除了必须安装 IIS 才能进行开发这一先决条件。
该网站模型的魅力在于您在开发 Web 应用程序时无需考虑打包和部署。
需要其他类时怎么办?向 App_Code 目录添加一个 .cs 文件即可开始编写。
希望将可本地化的字符串存储在资源文件中时怎么办?向App_GlobalResources 目录添加一个 .resx 文件并键入字符串。
一切都顺顺当当;您根本就不必考虑编译和部署方面的事情。
在准备进行部署时,您有多种可选方案。
最简单的方案是将文件复制到主运行服务器并按要求编译每一个文件(和在测试环境中一样)。
第二种方案是使用aspnet_compiler.exe 实用工具将应用程序预编译为二进制版本,之后将只剩下要放到服务器上的一组程序集、静态内容和配置文件。
第三种方案也使用 aspnet_compiler.exe,但要创建一个可更新的二进制部署,其中 .as*x 文件保持不变(并且可修改),而所有代码文件都编译为二进制程序集。
外文资料翻译
淮阴工学院毕业设计外文资料翻译学院(系):建筑工程系专业:土木工程姓名:叶冬梅学号: 1091407130 外文出处:Building and Environment(用外文写)38 (2003) 291-295附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文作墙体和隔墙的磷石膏粉煤灰空心砖摘要在建造行业里,磷石膏粉煤灰空心砖(Fal-G)是最佳替代传统的粘土空心砖或混凝土空心砖.空心砖是空心、重量轻、保温的,可用于建筑物. 本文的研究结果依据实验调查Fal-G空心砖的抗压强度、重量和吸水量而确定的。
在这篇文章中也提出了,这些砖的耐久性方面的抗压强度损失。
它指出Fal-G空心砖有足够的强度用于一般建筑物。
关键词:建筑物;耐久性;环境;粉煤灰;磷石膏;废弃物管理1 介绍目前是一个很好的时机去放眼未来,去提高公众意识。
因为能源、资源、生态问题不受工业增长的阻碍,不能视为理所当然。
今后,在负责选择工程材料时,将考虑全面的社会责任,不仅要有工程特性及生态环保,还要有工程材料的成本。
磷石膏和粉煤灰主要分别来自下游的磷酸肥料工业废水和热电厂。
在印度,平均每年生产磷石膏和粉煤灰是500万吨和5亿吨。
这两个问题所造成的废料处理的环境恶化,以及自然原因所造成的空气和水污染大。
磷石膏使用的范围有限,而作为建材其存在诸如五氧化二磷、氟化物、碱等不良的有机物杂质。
在水泥工业中,经过适当的处理后,磷石膏可用来替代作为天然石膏。
但是,面对如何对待磷石膏非常昂贵的问题,因此其在水泥业中越来越多的使用,尚未普及。
虽有少部分的波特兰粉煤灰、黏土水泥灰、灰砖等应用于生产,但仍未有大量的粉煤灰被使用。
在印度仅有约3%的粉煤灰用做商业用途。
在建筑业中,磷石膏、粉煤灰及石灰的组合使得这些数量庞大的工业废物再次利用。
在许多方面,磷石膏、粉煤灰、石灰是可以相互结合的。
如果这些物质可以用来制造具有足够强度的砖和空心砖,以节约替代粘土烧砖、空心砖、以及那种殉葬用的烧结空心砖等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三江学院毕业设计(论文)外文资料翻译院系计算机科学与工程学院专业网络工程学生姓名宋玥杰班级学号12010055016外文出处附件:1.外文资料翻译译文(约3000汉字);2.外文资料原文(与课题相关的1万印刷符号左右)。
附件1:外文资料翻译译文无线局域网一、为何使用无线局域网络对于局域网络管理主要工作之一,对于铺设电缆或是检查电缆是否断线这种耗时的工作,很容易令人烦躁,也不容易在短时间内找出断线所在。
再者,由于配合企业及应用环境不断的更新与发展,原有的企业网络必须配合重新布局,需要重新安装网络线路,虽然电缆本身并不贵,可是请技术人员来配线的成本很高,尤其是老旧的大楼,配线工程费用就更高了。
因此,架设无线局域网络就成为最佳解决方案。
二、什么情形需要无线局域网络无线局域网络绝不是用来替代有限局域网络,而是用来弥补有线局域网络之不足,以达到网络延伸之目的,下列情形可能须要无线局域网络。
●无固定工作场所的使用者●有线局域网络架设受环境限制●作为有线局域网络的备用系统三、无线局域网络存取技术目前厂商在设计无线局域网络产品时,有相当多种存取设计方式,大致可分为三大类:窄频微波技术、展频(Spread Spectrum)技术、及红外线(Infrared)技术,每种技术皆有其优缺点、限制及比较,接下来是这些技术方法的详细探讨。
1.技术要求由于无线局域网需要支持高速、突发的数据业务,在室内使用还需要解决多径衰落以及各子网间串扰等问题。
具体来说,无线局域网必须实现以下技术要求:1)可靠性:无线局域网的系统分组丢失率应该低于10-5,误码率应该低于10-8。
2)兼容性:对于室内使用的无线局域网,应尽可能使其跟现有的有线局域网在网络操作系统和网络软件上相互兼容。
3)数据速率:为了满足局域网业务量的需要,无线局域网的数据传输速率应该在1Mbps以上。
4)通信保密:由于数据通过无线介质在空中传播,无线局域网必须在不同层次采取有效的措施以提高通信保密和数据安全性能。
5)移动性:支持全移动网络或半移动网络。
6)节能管理:当无数据收发时使站点机处于休眠状态,当有数据收发时再激活,从而达到节省电力消耗的目的。
7)小型化、低价格:这是无线局域网得以普及的关键。
8)电磁环境:无线局域网应考虑电磁对人体和周边环境的影响问题。
Android是Google开发的基于Linux平台的开源手机操作系统(在华注册商标名为“安致”)。
它包括操作系统、用户界面和应用程序——移动电话工作所需的全部软件,而且不存在任何以往阻碍移动产业创新的专有权障碍,号称是首个为移动终端打造的真正开放和完整的移动软件。
Google 与开放手机联盟合作开发了Android,这个联盟由包括中国移动、摩托罗拉、高通和T-Mobile在内的30多家技术和无线应用的领军企业组成。
Google 通过与运营商、设备制造商、开发商和其他有关各方结成深层次的合作伙伴关系,希望借助建立标准化、开放式的移动电话软件平台,在移动产业内形成一个开放式的生态系统。
它采用了软件堆层(software stack,又名软件叠层)的架构,主要分为三部分:底层以Linux核心为基础,由c语言开发,只提供基本功能。
中间层包括函数库Library和虚拟机Virtual Machine,由c++语言开发。
最上层是各种应用软件,包括通话程序,短信程序等,应用软件则由各公司自行开发,以Java编写。
为了推广此技术,Google和其它几十个手机公司建立了开放手机联盟(Open Handset Alliance)。
2.特性应用程序框架:支持组件的重用与替换●Dalvik虚拟机:专门为移动设备做了优化●内部集成浏览器:该浏览器基于开源的WebKit引擎●优化的图形库:包括2D和3D图形库,3D图形库基于OpenGL ES1.0 (硬件加速可选)●#SQLite:用作结构化的数据存储●多媒体支持:包括常见的音频、视频和静态印象文件格式(如MPEG4,H.264,MP3,AAC,AMR,JPG,PNG,GIF)●GSM电话(依赖于硬件)●蓝牙Bluetooth,EDGE,3G和WiFi(依赖于硬件)●照相机,GPS,指南针和加速度计(依赖于硬件)●丰富的开发环境:包括设备模拟器,调试工具,内存及性能分析图表,和Eclipse集成开发环境插件3.应用程序Android会同一个核心应用程序包一起发布,该应用程序包包括email 客户端,SMS短消息程序,日历,地图,浏览器,联系人管理程序等。
所有的应用程序都是用Java编写的。
Android应用程序框架开发者也完全可以访问核心应用程序所使用的API框架。
该应用程序架构用来简化组件软件的重用,任何一个应用程序都可以发布它的功能块并且任何其它的应用程序都可以使用其所发布的功能块(不过得遵循框架的安全性限制)。
该应用程序重用机制使得组建可以被用户替换。
以下所有的应用程序都由一系列的服务和系统组成,包括:●一个可扩展的视图(Views)可以用来建应用程序,包括列表(lists),网格(grids),文本框(text boxes),按钮(buttons),甚至包括一个可嵌入的web浏览器●内容管理器(Content Providers)使得应用程序可以访问另一个应用程序的数据(如联系人数据库),或者共享它们自己的数据。
●一个资源管理器(Resource Manager)提供非代码资源的访问,如本地字符串,图形,和分层文件(layout files)。
●一个通知管理器(Notification Manager)使得应用程序可以在状态栏中显示客户通知信息。
●一个活动类管理器(Activity Manager)用来管理应用程序生命周期并提供常用的导航回退功能。
4.点餐系统点餐系统利用软件的全自动信息化手段,实现点菜、配菜、炒菜到传菜的全部管理过程;完成点菜单计算机管理、点菜单前端收银台与各厨房的同步打印;实现菜单无纸化操作;后台经理查询;仓库进销存管理等。
除此之外,点餐系统还可以对客户资料进行有效的管理,存档和备查,杜绝酒楼“漏单”、“跑单”现象;帮助酒楼利用计算机强大的数据处理能力和流程优化能力,实现自动化管理,简化酒楼的工作流程,减少浪费及人为管理的疏漏现象,重新优化配置企业资源,把经营成本降低到最低。
功能强大的点餐系统除支持一般的单机和局域网应用之外,还支持总店/分店多级架构的远程联网应用于分店使用POS系统实现前台销售收银、即时打印销售小票、销售日结、上报销售数据和接收新菜品信息等功能。
目前点餐系统共有三种实现模式:1)触摸屏点菜模式:它利用了目前最为流行的触摸式电脑实现点菜过程,即点菜员可以根据软件的画面提示,只需用手指点击画面就可以完成整个点菜过程,方便快捷,这种模式适用于菜式和做法丰富大型的酒楼、酒家和菜馆等。
2)无线PDA点菜模式:它利用了无线WiFi技术,通过PDA显示点菜界面,使用触摸笔完成点菜过程,真正实现随时随地点菜实时响应,这种模式适用于菜式和做法较为简单的西餐厅、特色菜馆和特具情调的中高级餐厅等。
3)无线点菜宝模式:它使用了ISM频段,可以在有楼层或其它障碍物阻挡的情况下无缝覆盖达10米之远,而信号依然稳定,这是其比之无线PDA点菜模式最大的优势,这种模式适用于菜式和做法较为简单及其它要求较少的快餐店、火锅店等。
附件2:外文原文WLANWhy use WLANFor one of the main local area network management, for the laying of cables, or check the cable is disconnected this time-consuming work, it is easy to upset, not easy to break in a short time to find out where. Furthermore, for the business and application environment constantly updating and development of enterprise network must be matched with the original re-layout, need to re-install the network lines, although the cable itself is not expensive, but requested the technical staff to the high cost of wiring, especially the old building, wiring project costs even higher. Therefore, the construction of wireless local area network has become the best solution.What conditions need to use WLANWLAN is not limited to alternative local area network, but to make up for lack of wired local area networks, in order to achieve the purpose of extending the network, the following circumstances may have wireless local area network.●no fixed workplace users●wired local area network set up by the environmental constraints●As a wired local area network backup systemWLAN access technologyCurrently manufacturers in the design of wireless local area network products, there are quite a variety of access design methods can be divided into three categories: narrowband microwave, spread spectrum (Spread Spectrum) technology, and infrared have their advantages and disadvantages, limitations, and more, followed by detailed discussion of these techniques. (Infrared) technology, each technique has their advantages and disadvantages, limitations, and more, followed by detailed discussion of these techniques.Technical requirementsAs wireless local area network needs to support high-speed, burst data services, need to be addressed in the indoor use of multipath fading, as well as issues such as crosstalk subnets. Specifically, wireless local area network must achieve the following technical requirements:1)Reliability: Wireless LAN system packet loss rate should be lower than 10-5,the error rate should be lower than 10-8.2)Compatibility: For indoor use of wireless local area network, so as far aspossible with the existing wired LAN network operating system andnetwork software compatible.3)Data rate: In order to meet the needs of local area network traffic, wirelessLAN data transfer rate should be more than 1Mbps.4)The confidentiality of communications: As the data transmitted in the air viawireless media, wireless local area networks at different levels must takeeffective measures to improve communication security and data security.5)Mobility: support for all mobile networks or semi-mobile network.6)Energy Management: When receiving or sending data to the site when themachine is in sleep mode, when activated again when the data transceiver toachieve the savings in power consumption.7)small size and low price: This is the key to the popularity of wireless localarea network can be.8)Electromagnetic environment: wireless LAN should consider thehumanbodyand the surrounding electromagnetic environment effects.AndroidGoogle Android is a Linux-based platform for developing open-source phone operating system (registered trademark in China called "Achi;). It includes operating systems, user interface and applications - mobile phone work required by the software, but there is no past, the exclusive right to impede innovation and barriers to mobile industry, called mobile terminal is the first to create a truly open and complete mobile software. Google and Open Handset Alliance to develop the Android,the alliance by including China Mobile, Motorola, Qualcomm and T-Mobile, including more than 30 technology and the composition of a leader in wireless applications. Google with operators, equipment manufacturers, developers and other interested parties to form deep-level partnerships, hoping to establish a standardized, open software platform for mobile phones in the mobile industry to form an open ecosystem .It uses software stack layers (software stack, also known as the software stack) architecture, is divided into three parts: the core of the underlying Linux-based language developed by the c, only basic functions. Middle layer consists of library. Library and Virtual Machine Virtual Machine, developed by the C +. At the top are a variety of applications, including the call procedures, SMS procedures, application software is developed by the companies themselves to write java.To promote this technology, Google, and dozens of other phone company has established the Open Handset Alliance (Open Handset Alliance).Characteristic●application framework to support component reuse and replacement●Dalvik virtual machine specifically for mobile devices is optimized●Internal integrated browser, the browser-based open-source WebKit engine●optimization of 2D and 3D graphics library includes graphics library, 3Dgraphics library based on OpenGL ES 1.0 (hardware-accelerated optional)●# SQLite for structured data storage●Multimedia support includes the common audio, video and static image fileformats (such as MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, GIF)●GSM phone (depending on hardware)●Bluetooth Bluetooth, EDGE, 3G, and WiFi (hardware dependent)●Camera, GPS, compass, and accelerometer (hardware dependent)●Rich development environment including a device emulator, debugger,memory and performance analysis charts, and the Eclipse integrateddevelopment environment plug-insApplicationsA core Android application package together with the release of the application package, including email client, SMS short messaging program, calendar, maps, browser, contact management procedures. A ll applications are written using JA V A.Android Application Framework Developers have full access to core applications used by the API framework. The application framework designed to simplify the reuse of software components; any application can publish its functional blocks and any other applications can use the function block its release (but must follow the framework of security restrictions). Reuse mechanism allows the application form can be user replaced.All of the following applications by the composition of a range of services and systems, including:●an expanded view (Views) can be used to build applications, including a listof (lists), grid (grids), text boxes (text boxes), buttons (buttons),and even an embeddable web browser.●Content Manager (Content Providers) allows applications to access data fromanother application program (such as the contact database), or to share theirown data.● A resource manager (Resource Manager) to provide access to non-coderesources, such as local strings, graphics, and hierarchical file (layout files).● A notification manager (Notification Manager) allows applications tocustomers in the status bar display notification information.●An activity class Manager (Activity Manager) to manage the application lifecycle and provides common navigation rollback feature.Ordering the systemOrdering the system information using automated software tools to achieve la carte, side dishes, stir fry vegetables to the transfer of all management processes; completion point, the computer management menu, point the menu and the kitchen, front-end checkout synchronization print; achieved without the menu paper-based operation; backstage manager of inquiry; warehouse inventory management and so on.In addition, ordering the system can also effectively manage customer data, archiving and future reference, put an end to the restaurant "leakage List", "run list" phenomenon; help restaurants using computer data processing capability and powerful ability to process optimization to achieve automated management, streamline workflow restaurant, reduce waste and man-made phenomenon of management oversight, re-optimal allocation of corporate resources, the operating costs to a minimum.Powerful addition to ordering the system to support the general application of stand-alone and LAN in addition to support head office / branch of multi-level framework used for remote network using the POS system to achieve front store sales cashier, sales of small-ticket instantly print sales day-end, reporting sales data and receive information of new features dishes.There are three currently ordering the system to achieve mode:First, the touch screen a la carte model: It uses the currently most popular touch-computer ordering process to achieve that members can to order the software screen prompts, simply click on the screen with your fingers can complete the entire ordering process and convenient This model applies to the practice of rich dishes and large restaurants, restaurants, and restaurant, etc..Second,the wireless PDA ordering mode: it uses a wireless WiFi technology, a la carte interface by PDA display, use touch pen to complete the ordering process, virtually anywhere, anytime to order real-time response, this model is more suitable for dishes and practices simple restaurant, features a restaurant and special mood of senior restaurants.Third, the wireless ordering Po mode: it uses the ISM band, can be a floor or other obstruction in the case of seamless coverage up to 10 meters away, while the signal remained stable, which is the ratio of the wireless PDA ordering model's greatest strength, this model applies to simple dishes and practices and other requirements with fewer fast food restaurants, pot shops.。