湘教版数学七年级下册期中考试

合集下载

湘教版七年级数学下册期中考试卷及答案【可打印】

湘教版七年级数学下册期中考试卷及答案【可打印】

湘教版七年级数学下册期中考试卷及答案【可打印】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.若a≠0, b≠0, 则代数式的取值共有()A. 2个B. 3个C. 4个D. 5个2.如下图, 下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5, 能判定AB∥CD的条件为()A. ①②③④B. ①②④C. ①③④D. ①②③3. ①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180°;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是()A. 、1个B. 2个C. 3个D. 4个4.如图, △ABC中, AD是BC边上的高, AE、BF分别是∠BAC、∠ABC的平分线, ∠BAC=50°, ∠ABC=60°, 则∠EAD+∠ACD=()A. 75°B. 80°C. 85°D. 90°5.如图, 四边形ABCD内接于⊙O, 点I是△ABC的内心, ∠AIC=124°, 点E 在AD的延长线上, 则∠CDE的度数为()A. 56°B. 62°C. 68°D. 78°6.如图, 若AB∥CD, CD∥EF, 那么∠BCE=()A. ∠1+∠2B. ∠2-∠1C. 180°-∠1+∠2D. 180°-∠2+∠17.如图, AB∥CD, BP和CP分别平分∠ABC和∠DCB, AD过点P, 且与AB垂直.若AD=8, 则点P到BC的距离是()A. 8B. 6C. 4D. 28. 已知多项式2x2+bx+c分解因式为2(x-3)(x+1), 则b, c的值为().A. b=3, c=-1B. b=-6, c=2C. b=-6, c=-4D. b=-4, c=-69.关于x的不等式组无解, 那么m的取值范围为( )A. m≤-1B. m<-1C. -1<m≤0D. -1≤m<010. 将9.52变形正确的是()A. 9.52=92+0.52B. 9.52=(10+0.5)(10﹣0.5)C. 9.52=102﹣2×10×0.5+0.52D. 9.52=92+9×0.5+0.52二、填空题(本大题共6小题, 每小题3分, 共18分)1. 一个n边形的内角和为1080°, 则n=________.2.如图, 把三角板的斜边紧靠直尺平移, 一个顶点从刻度“5”平移到刻度“10”, 则顶点C平移的距离CC'=________.3. 分解因式: _________.4.在不透明的口袋中有若干个完全一样的红色小球, 现放入10个仅颜色与红球不同的白色小球, 均匀混合后, 有放回的随机摸取30次, 有10次摸到白色小球, 据此估计该口袋中原有红色小球个数为________.5. 因式分解: _____________.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2. 先化简, 再求值: (a﹣2b)(a+2b)﹣(a﹣2b)2+8b2, 其中a=﹣2, b=3. 如图, △ABC与△DCB中, AC与BD交于点E, 且∠A=∠D, AB=DC(1)求证: △ABE≌DCE;(2)当∠AEB=50°, 求∠EBC的度数.4. 如图, ∠1=70°, ∠.=70°. 说明: AB∥CD.5. 学校开展“书香校园”活动以来, 受到同学们的广泛关注, 学校为了解全校学生课外阅读的情况, 随机调查了部分学生在一周内0次1次2次3次4次及以上借阅图书的次数, 并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数人数7 13 a 10 3请你根据统计图表中的信息, 解答下列问题:______, ______.该调查统计数据的中位数是______, 众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;若该校共有2000名学生, 根据调查结果, 估计该校学生在一周内借阅图书“4次及以上”的人数.(注: 获利=售价-进价)(1) 该商场购进A.B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变, 而购进A种商品的件数是第一次的2倍, A种商品按原价出售, 而B种商品打折销售.若两种商品销售完毕, 要使第二次经营活动获利不少于81600元, B种商品最低售价为每件多少元?参考答案一、选择题(本大题共10小题, 每题3分, 共30分) 1、A2、C3、C4、A5、C6、D7、C8、D9、A10、C二、填空题(本大题共6小题, 每小题3分, 共18分) 1、82、53、()2x x 1-.4、205、(2)(2)a a a +-6.2或-8三、解答题(本大题共6小题, 共72分)1.(1) ;(2)2、4ab, ﹣4.3.见解析(2)∠EBC=25°4、略.5. 17、20; 2次、2次; ; 人.6、(1)该商场购进A 、B 两种商品分别为200件和120件.(2)B 种商品最低售价为每件1080元.。

湘教版七年级下学期期中考试数学试卷及答案

湘教版七年级下学期期中考试数学试卷及答案

七年级下学期期中考试数学试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第三章《因式分解》 班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 甲、乙二人同时同地出发,都以不变的速度在环形路上奔跑.若反向而行,每隔3min 相遇一次,若同向而行,则每隔6min 相遇一次,已知甲比乙跑得快,设甲每分钟跑x 圈,乙每分钟跑y 圈,则可列方程为( )A. {x −y =3x +y =6B. {x +y =3x −y =6C. {3x +3y =16x −6y =1D. {3x −3y =16x +6y =1 2. 下列计算正确的是( )A. b 3⋅b 3=2b 3B. (a +b)2=a 2+b 2C. (a 5)2=a 10D. a −(b +c)=a −b +c3. 下列等式从左到右的变形,属于因式分解的是( )A. x 2+2x −1=(x −1)2B. (a +b)(a −b)=a 2−b 2C. x 2+4x +4=(x +2)2D. ax −a +1=a(x −1)+14. 已知方程组{2x +y =3x −2y =5,则2x +6y 的值是( ) A. −2 B. 2 C. −4 D. 45. 计算a 3⋅(a 3)2的结果是( )A. a 8B. a 9C. a 11D. a 186. 分别表示出如图阴影部分的面积,可以验证公式( )A. (a +b)2=a 2+2ab +b 2B. (a −b)2=a 2−2ab +b 2C. a 2−b 2=(a +b)(a −b)D. (a +2b)(a −b)=a 2+ab −2b 27. 下列方程组:①{x +y =−2y +z =3,②{2x +1y =1x −3y =0,③{3x −y =4y =4−x ,其中是二元一次方程组的是( )A. ①②B. ②③C. ①③D. ③8. 已知a =255,b =344,c =433,d =522,则这四个数从小到大排列顺序是( )A. a <b <c <dB. d <a <c <bC. a <d <c <bD. b <c <a <d9. 把代数式3x 3−12x 2+12x 因式分解,结果正确的是 ( )A. 3x(x 2−4x +4)B. 3x(x −4)2C. 3x(x +2)(x −2)D. 3x(x −2)210. 已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2−ab −ac −bc 的值是( )A. 0B. 1C. 2D. 3第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为______.12. 下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a +b)n (n 为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a +b)5=______.13. 因式分解:a 2b −10ab +25b = ______ .14. 若方程x −y =−1的一个解与方程组{x −2y =k 2x −y =1的解相同,则k 的值为______. 15. 已知a ,b ,c 为三角形的三边,若有(a +c)2=b 2+2ac ,则这个三角形的形状是______三角形.16. 在实数范围内因式分解:2x 2−4xy −3y 2=______.17. 若长方形的长为a ,宽为b ,周长为16,面积为15,则a 2b +ab 2的值为______ .18. 已知x 2−2(m +1)xy +16y 2是一个完全平方式,则m 的值是____.三、解答题(本大题共7小题,共78.0分)19. (10分)解下列二元一次方程组(1) {2x −y =−2x =5−y(2) {x −3y =62x +5y =120.(10分)计算该式,并用幂的形式表示结果:(1)[2(a−b)2]3(2)−(x3)4+3×(x2)4⋅x421.(10分)已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨,某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运转,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计,有几种租车方案?(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请选出最省钱的租车方案,并求出最少租车费.22.(10分)用因式分解的方法进行简便运算:(1)1772+232+46×177;(2)20012−4002×2000+20002.23.(12分)若a m=a n(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)若3x×9x×27x=312,求x的值.(2)若x=5m−3,y=4−25m,用含x的代数式表示y.24.(12分)已知a2+a+1=0,求a4+2a3+5a2+4a的值.25.(14分)如图,将一张矩形纸板按照图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n,(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为___________________;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.答案1.C2.C3.C4.C5.B6.C7.D8.B9.D10.D11.{4x +6y =483x +5y =3812.a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 513.b(a −5)214.−415.直角16.2(x −2+√102y)(x −2−√102y) 17.12018.−5或319.解:{2x −y =−2①x =5−y②, 把②代入①,得2(5−y)−y =−2,解得y =4,将y =4代入②式得x =1,故方程组的解是{x =1y =4; (2){x −3y =6①2x +5y =1②, ①×2−②,得−11y =11,y =−1,则把y =−1代入①得x =3,故方程组的解是{x =3y =−1.20.解:(1)[2(a −b)2]3=8(a −b)6(2)−(x 3)4+3×(x 2)4⋅x 4=−x 12+3x 8·x 4=2x 12.21.解:(1)设1辆A 型车和1辆B 型车一次分别可以运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4, 则1辆A 型车和1辆B 型车一次分别可以运货3吨,4吨;(2)∵某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆, ∴3a +4b =31,则有{a ≥0b =31−3a 4≥0,解得:0≤a ≤1013,∵a 为整数,∴a =0,1,2, (10)∵b =31−3a 4=7−a +3+a 4为整数,∴a =1,5,9,∴a =1,b =7;a =5,b =4;a =9,b =1,∴满足条件的租车方案一共有3种,a =1,b =7;a =5,b =4;a =9,b =1;(3)∵A 型车每辆需租金100元/次,B 型车每辆需租金120元/次,当a =1,b =7,租车费用为:W =100×1+7×120=940元;当a =5,b =4,租车费用为:W =100×5+4×120=980元;当a =9,b =1,租车费用为:W =100×9+1×120=1020元,∴当租用A 型车1辆,B 型车7辆时,租车费最少为940元.22.解:(1)1772+232+46×177=1772+2×23×177+232=(177+23)2=2002=40000.(2)20012−4002×2000+20002=20012−2×2001×2000+20002=(2001−2000)2=12=1.23.解:(1)3x×9x×27x=3x×(32)x×(33)x=3x×32x×33x=36x.∵36x=312,∴6x=12,∴x=2.(2)∵x=5m−3,∴5m=x+3,∵y=4−25m=4−(52)m=4−(5m)2=4−(x+3)2,∴y=−x2−6x−5.24.解:∵a2+a+1=0,∴a2+a=−1,∴a4+2a3+5a2+4a=a2(a2+a)+a(a2+a)+4(a2+a)=a2×(−1)+a×(−1)+4×(−1)=−a2−a−4=−(a2+a+4)=−(−1+4)=−3.25.解:(1)(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴图中所有裁剪线(虚线部分)长之和为6×7=42cm.。

湘教版七年级下册数学期中考试试题及答案

湘教版七年级下册数学期中考试试题及答案

湘教版七年级下册数学期中考试试题及答案湘教版七年级下册数学期中考试试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)计算(-2xy^2)^3的结果是()A。

-2x^3y^6 B。

-6x^3y^6 C。

8x^3y^6 D。

-8x^3y^62.(3分)将多项式-6a^3b^2-3a^2b^2因式分解时,应提取的公因式是()A。

-3a^2b^2 B。

-3ab C。

-3a^2b D。

-3a^3b^33.(3分)下列计算中,正确的是()A。

(m-2)(m+2)=m^2-2 B。

(x-6)(x+6)=x^2-36 C。

y^2 D。

(x+y)(x+y)=x^2+y^24.(3分)下列方程组中,为二元一次方程组的是()A。

B。

C。

D.5.(3分)下列各式从左到右的变形中,为因式分解的是()A。

x(a-b)=ax-bx B。

x^2-1+y^2=(x-1)(x+1)+y^2 C。

y^2-1=(y+1)(y-1) D。

ax+by+c=x(a+b)+c6.(3分)已知 -1 是方程组 4x-3y=11,2x+y=-5 的解,则a-b的值是()A。

-1 B。

3 C。

4 D。

67.(3分)多项式x^2-mxy+9y^2能用完全平方因式分解,则m的值是()A。

3 B。

6 C。

±3 D。

±68.(3分)某商场购进甲、乙两种服装后,都加价40%标价出售。

“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售。

某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A。

50、100 B。

50、56 C。

56、126 D。

100、126二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:(-3x+1)•(-2x)^2=12x^3-4x^210.(3分)因式分解a(b-c)-3(c-b)=a(b-c)+3(b-c)=(a+3)(b-c)11.(3分)解下列方程组:① 3x+2y=5,x-y=1;④ 2x-3y=1,4x-6y=2①解法:x=1,y=1④解法:无解12.(3分)分解因式:(a-b)^2-4b^2=(a-b+2b)(a-b-2b)=(a-3b)(a+b)13.(3分)若x+y=6,xy=5,则x^2+y^2=(x+y)^2-2xy=36-10=2614.(3分)已知x^2-4x+n因式分解的结果为(x+2)(x+m),则n=-4m15.(3分)某宾馆有3人房间和2人房间共20间,总共可以住旅客48人,若设3人房间有x间,2人房间有y间,则可列出方程组为:3x+2y=203x+2y=48解法:无解16.(3分)对于有理数x,y,定义新运算“※”:x※y=ax+by+1,a,b为常数,若3※5=15,4※7=28,则5※9=25a+9b+1解法:将3※5=15和4※7=28带入得到两个方程式:3a+5b+1=154a+7b+1=28解得a=2,b=1,代入5※9=25a+9b+1得到5※9=60.点评】此题考查了多项式因式分解的基本思想和方法,需要掌握提取公因式的技巧和规律。

湘教版七年级下册数学期中考试试卷及答案

湘教版七年级下册数学期中考试试卷及答案

湘教版七年级下册数学期中考试试题一、单选题1.计算(−x 2y)2的结果是()A .x 4y 2B .﹣x 4y 2C .x 2y 2D .﹣x 2y 22.方程组60230x y x y +=⎧⎨-=⎩的解是()A .7010x y =⎧⎨=-⎩B .9030x y =⎧⎨=-⎩C .5010x y =⎧⎨=⎩D .3030x y =⎧⎨=⎩3.下列运算正确的是()A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y-+--=--4.下列各式中,能用完全平方公式分解因式的是()A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+5.为了绿化校园,某班学生共种植了144棵树苗.其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是()A .144328x y x y +=⎧⎨-=⎩B .832144x y x y -=⎧⎨+=⎩C .832144y x x y -=⎧⎨+=⎩D .832144x y x y +=⎧⎨+=⎩6.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为()A .21x x --B .21x x ++C .21x x --D .21x x +-7.计算(0.5×105)3×(4×103)2的结果是()A .13210⨯B .140.510⨯C .21210⨯D .21810⨯8.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A .2mnB .(m+n )2C .(m-n )2D .m 2-n 29.计算(﹣4a ﹣1)(﹣4a+1)的结果为()A .16a 2﹣1B .﹣8a 2﹣1C .﹣4a 2+1D .﹣16a 2+110.下列等式由左到右的变形中,属于因式分解的是()A .x 2+5x ﹣1=x (x+5﹣1x)B .x 2﹣4+3x =(x+2)(x ﹣2)+3x C .x 2﹣6x+9=(x ﹣3)2D .(x+2)(x ﹣2)=x 2﹣4二、填空题11.化简:()()x 111x +-+=_______.12.因式分解:2218x -=______.13.如果有理数x ,y 满足方程组4221x y x y +=⎧⎨-=⎩那么x 2-y 2=________.14.多项式()()x m x n --的展开结果中的x 的一次项系数为3,常数项为2,则22m n mn +的值为_________.15.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m+n 的值为_____.16.若(17x-11)(7x-3)-(7x-3)(9x-2)=(ax+b )(8x-c ),其中a ,b ,c 是整数,则a+b+c 的值等于______.17.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.三、解答题18.已知22610340m n m n +-++=,则m n +=______.19.先化简,再求值:(2x+3)(2x-3)-4x(x-1)-(x+2)2,其中x=-3.20.解下列方程组:(1)38 534 x yx y+=⎧⎨-=⎩(2)132(1)6 x yx y⎧+=⎪⎨⎪+-=⎩21.分解因式或计算:(1)(2m-n)2-169(m+n)2;(2)8(x2-2y2)-x(7x+y)+xy.(3)40×3.152+80×3.15×1.85+40×1.85222.已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.23.已知方程组51542ax yx by-=⎧⎨-=-⎩①②由于甲看错了方程①中的a得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程②中的b得到方程组的解为54xy=⎧⎨=⎩,若按正确的a,b计算,请你求原方程组的解.24.为建设资源节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家今年2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时;(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.25.观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1…①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.②你能否由此归纳出一般性规律:(x-1)(x n+x n-1+…+x+1)=______.③根据②求出:1+2+22+…+234+235的结果.26.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一下正方形.(1)请你用两种不同的方法求图2中阴影部分的面积?①②(2)观察图2,写出三个代数式(m+n)2,(m﹣n)2,4mn之间的等量关系:(3)根据(2)中的等量关系,解决如下问题:若|a+b﹣7|+|ab﹣6|=0,求(a﹣b)2的值.参考答案1.A 【解析】试题分析:(−x 2y)2=x 4y 2.故选A .考点:幂的乘方与积的乘方.2.C 【详解】试题分析:利用加减消元法求出方程组的解即可作出判断:60{230x y x y +=-=①②,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为50{10x y ==.故选C.考点:解二元一次方程组.3.A 【解析】解:A .(-2x 2)3=-8x 6,正确;B .-2x(x +1)=-2x 2-2x ,故B 错误;C .(x +y)2=x 2+2xy+y 2,故C 错误;D .(-x +2y)(-x -2y)=x 2-4y 2,故D 错误;故选A .4.D 【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A.2161x +只有两项,不符合完全平方公式;B.221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C.2224a ab b +-,其中2a 与24b -不能写成平方和的形式,不符合完全平方公式;D.214x x -+符合完全平方公式定义,故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.5.B 【分析】根据“共种植了144棵树苗”,“男生比女生多8人”可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得:832144x y x y -=⎧⎨+=⎩.故选:B .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的二元一次方程组.6.B 【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.7.C【详解】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C.本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.8.C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.9.A【分析】根据平方差公式计算即可.【详解】解:原式=(﹣4a)2﹣12=16a2﹣1.故选:A.【点睛】本题考查整式的乘法、乘法公式等知识,熟练掌握这些法则是解题的关键,属于中考常考题型.10.C【分析】根据多项式因式分解的意义,逐个判断得结论.【详解】解:A等号的右边不是整式积的形式,不属于因式分解;B、D等号的右边是和的形式,不属于因式分解;C属于因式分解.故选:C .【点睛】本题考查了因式分解的意义.因式分解就是把多项式化为几个整式乘积的形式.11.2x .【详解】第一项利用平方差公式展开,去括号合并即可得到结果:()()22x 11111x x x +-+=-+=.考点:整式的混合运算12.2(x+3)(x ﹣3).【详解】试题分析:先提公因式2后,再利用平方差公式分解即可,即2218x -=2(x 2-9)=2(x+3)(x-3).考点:因式分解.13.2【分析】把第一个方程乘以2,然后利用加减消元法求解得到x 、y 的值,然后代入代数式进行计算即可得解.【详解】4221x y x y +=⎧⎨-=⎩①②,①×2得,2x+2y=8③,②+③得,4x=9,解得x=94,把x=94代入①得,94+y=4,解得y=74,∴方程组的解是94{74x y ==,∴x 2-y 2=(94)2-(74)2=32216=.考点:解二元一次方程组.14.-6【详解】分析:根据多项式与多项式相乘的法则把原式变形,根据题意求出m+n和mn,把所求的代数式因式分解、代入计算即可.详解:(x-m)(x-n)=x2-(m+n)x+mn,由题意得,m+n=-3,mn=2,则m2n+mn2=mn(m+n)=-6,故答案为-6.点睛:本题考查的是多项式与多项式相乘的法则,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.15.3【详解】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n=3.故答案为3.16.13【详解】解:(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(7x﹣3)[(17x﹣11)﹣(9x﹣2)]=(7x﹣3)(8x﹣9)∵(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(ax+b)(8x﹣c),可因式分解成(7x﹣3)(8x﹣9),∴a=7,b=﹣3,c=9,∴a+b+c=7﹣3+9=13.故答案为13.【点睛】此题主要考查了提取公因式法分解因式以及代数式求值,根据已知正确分解因式是解题关键.17.25【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩.即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.18.-2【分析】本题利用拆常数项凑完全平方的方法进行求解.【详解】解:22 610340m n m n +-++=22 6910250m m n n -++++=即()()22350m n -++=根据非负数的非负性可得: 3050m n -=+=,解得: 35m n ==-,所以()35 2.m n +=+-=-故答案为:-2.19.-x 2-13,-22【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】(2x+3)(2x-3)-4x (x-1)-(x+2)2=4x 2-9-4x 2+4x-x 2-4x-4=-x 2-13,当x=-3时,原式=-(-3)2-13=-22.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(1)22xy=⎧⎨=⎩(2)32xy=⎧⎨=⎩【详解】试题分析:(1)用加减消元法解方程组即可;(2)用代入法解方程组即可.试题解析:解:(1)38534x yx y+=⎧⎨-=⎩①②①+②,得6x=12,解得x=2.将x=2代入①中,得2+3y=8,解得y=2.∴方程组的解为22 xy=⎧⎨=⎩;(2)原方程组可化为3324x yx y①②=-⎧⎨-=⎩将①代入②中,得2(3y-3)-y=4,解得y=2.将y=2代入①中,得x=3,∴方程组的解为32 xy=⎧⎨=⎩.21.(1)-(15m+12n)(11m+14n);(2)(x+4y)(x-4y);(3)1000.【分析】(1)原式利用平方差公式分解即可;(2)原式整理后,利用平方差公式分解即可;(3)原式提取40,再利用完全平方公式分解即可.【详解】(1)原式=[(2m-n)+13(m+n)][(2m-n)-13(m+n)]=-(15m+12n)(11m+14n);(2)原式=x2-16y2=(x+4y)(x-4y);(3)原式=40×(3.152+2×3.15×1.85+1.852)=40×(3.15+1.85)2=40×25=1000.【点睛】此题考查了因式分解-运用公式法,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22.答案见解析【分析】先计算出(x-1)(x-9)与(x-2)(x-4),根据二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,一次项与(x-2)(x-4)的一次项相同,确定二次三项式,再因式分解.【详解】(x-1)(x-9)=x2-10x+9,由于二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,∴q=9,(x-2)(x-4)=x2-6x+8,由于二次三项式x2+px+q的一次项与(x-2)(x-4)的一次项相同,∴p=-6.∴原二次三项式是x2-6x+9.∴x2-6x+9=(x-3)2.【点睛】本题考查了多项式乘以多项式和多项式的因式分解.解决本题的关键是根据题目条件确定二次三项式.23.14295 xy=⎧⎪⎨=⎪⎩【分析】依题意把31xy=-⎧⎨=-⎩代入②,把54xy=⎧⎨=⎩代入①,组成二元一次方程组即可求出a,b,再求出原方程的解即可.【详解】解:(1)依题意把31xy=-⎧⎨=-⎩代入②,把54xy=⎧⎨=⎩代入①,得52013 122 ab+=⎧⎨-+=-⎩解得7510 ab⎧=-⎪⎨⎪=⎩(2)故原方程为751354102x yx y⎧-+=⎪⎨⎪-=-⎩,解得20415xy=⎧⎪⎨=⎪⎩【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知二元一次方程组的求解方法. 24.(1)“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时;(2)98元.【详解】试题分析:(1)设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时,则根据2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元,列方程组求解;(2)由(1)得出的“基本电价”和“提高电价”求出6月份应上缴的电费.试题解析:解:(1)设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时,根据题意,得:()()801008068801208088x y x y ⎧+-=⎪⎨+-=⎪⎩,解之,得:0.61x y =⎧⎨=⎩.答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80×0.6+(130﹣80)×1=98(元).答:预计小张家6月份上缴的电费为98元.点睛:此题考查的是二元一次方程组的应用,解题的关键是理解明确上缴电费的计算方法,列方程组求解.25.(1)x 7-1;(2)x n +1-1;(3)236-1.【分析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用①中得出的规律化简即可得到结果;③原式变形后,利用②中得出的规律化简即可得到结果.【详解】解:①根据题意得:(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7﹣1;②根据题意得:(x ﹣1)(x n +x n ﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为①x 7﹣1;②x n+1﹣1;③236﹣1【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.26.(1)①(m ﹣n )2;②(m+n )2﹣4mn ;(2)(m ﹣n )2=(m+n )2﹣4mn ;(3)25.【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m n -.根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积.(3)2()a b +正好表示大正方形的面积,2()a b -正好表示阴影部分小正方形的面积,ab 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可.【详解】解:(1)①由图可知,阴影部分是一个正方形,边长为m ﹣n∴阴影部分的面积为:(m ﹣n )2;②由图形知,阴影部分的面积=大正方形的面积减去四个小长方形的面积,∴阴影部分的面积为(m+n )2﹣4mn ;故答案为:①(m ﹣n )2;②(m+n )2﹣4mn ;(2)由(1)知(m ﹣n )2=(m+n )2﹣4mn ,故答案为:(m ﹣n )2=(m+n )2﹣4mn ;(3)∵|a+b ﹣7|+|ab ﹣6|=0∴a+b =7,ab =6,当a+b =7,ab =6时,(a-b )2=(a+b )2-4ab=72-4×6=49﹣24=25,【点睛】此题考查根据图形理解完全平方公式,以及利用整体代入的方法求代数式的值.。

湘教版七年级数学下册期中考试题及答案【完美版】

湘教版七年级数学下册期中考试题及答案【完美版】

湘教版七年级数学下册期中考试题及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥32.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙3.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°4.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B. C. D.5.12-的倒数是( ) A . B . C .12- D .126.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.在同一平面内,设a 、b 、c 是三条互相平行的直线,已知a 与b 的距离为4cm ,b 与c 的距离为1cm ,则a 与c 的距离为( )A .1cmB .3cmC .5cm 或3cmD .1cm 或3cm8.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1a b=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a b a b +的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )A .0个B .1个C .2个D .3个10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)11x -x 的取值范围是_______.25a 13b ,则5a b +=______3.已知80AOB ∠=,40BOC ∠= ,射线OM 是AOB ∠平分线,射线ON 是BOC ∠ 平分线,则MON ∠=________ .4.如果方程(m-1)x |m|+2=0是表示关于x 的一元一次方程,那么m 的取值是________.5.2的相反数是________.6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,DE 平分∠ADC 交BC 于点E ,点F 为线段CD 延长线上一点,∠BAF =∠EDF(1)求证:∠DAF =∠F ;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、A6、C7、C8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1x≥2、13、60°或20°4、-15、﹣2.6、7三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811 x=2、0<m<3.3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1)略(2)成立5、(1)20%;(2)6006、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。

湘教版七年级下册数学期中试卷

湘教版七年级下册数学期中试卷

七年级数学下册期中试卷一.选择题(共10小题,每小题3分,共30分)1.方程359x y -=,用含x 的代数式表示y 为( )A .935x y -=B .953y x -=C .953y x +=D .395x y -= 2.下列二元一次方程组中,以21x y =⎧⎨=-⎩为解的是( ) A .251x y x y -=⎧⎨+=⎩B .3525x y x y -=⎧⎨+=⎩C .325y x y x =-⎧⎨-=⎩D .231x y x y =⎧⎨=+⎩3.下列运算不正确的是( )A .235a a a ⋅=B .3412()y y =C .33(2)8x x -=-D .3362x x x +=4.如图,在边长为a 的正方形中挖掉一个边长为b 的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是( )A .22()()a b a b a b -=+-B .2()a a b a ab -=-C .222()2a b a ab b -=-+D .2()a a b a ab +=+ 5.下列各式从左到右的变形中,属于因式分解的是( )A .(21)2x a ax x +=+B .224(2)4x x x x -+=-+C .2369(6)(6)9x x x x x -+=+-+D .22()()m n m n m n -=-+ 6.已知12x y -=,43xy =,则22xy x y -的值是( ) A .23- B .1 C .116 D .237.若二元一次方程37x y -=,231x y +=,9y kx =-有公共解,则k 的取值为( )A .3B .3-C .4-D .48.张老师到文具店购买A 、B 两种文具,A 种文具每件2.5元,B 种文具每件1元,共花了30元钱,则可供他选择的购买方案的个数为(两样都买)( )A .4B .5C .6D .79.计算2020201940.75()3⨯-的结果是( ) A .43 B .43- C .0.75 D .0.75-10.若2mn =-,3m n -=,则代数式22m n mn -的值是( )A .6-B .5-C .1D .6二.填空题(共8小题,每小题3分,共24分)11.当1x m =-,1y m =+满足方程230x y m -+-=,则m 的值为 .12.已知213a b x y -+=是关于x 、y 的二元一次方程,则ab = .13.若2m a =,32n b =,m ,n 为正整数,则3102m n += .14.多项式316a a -可因式分解为 .15.计算23()mn -的结果为 .16.因式分解:236x x += .17.已知方程组500x y z x y z +-=⎧⎨-+=⎩,则::x y z = . 18.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是 .三.解答题(共8小题,满分66分)19.因式分解:(1)382a a -;(2)2412()9()x y x y +-+-.20.解下列方程组:1242133x y y x -⎧-=⎪⎪⎨-⎪-=⎪⎩. 21.计算:(1)32(2)(5)x xy -;(2)24(1)(25)(25)x x x +-+-.22.观察下列各式2(1)(1)1x x x -+=-23(1)(1)1x x x x -++=-324(1)(1)1x x x x x -+++=-⋯(1)分解因式:51x -= ;(2)根据规律可得1(1)(1)n x x x --+⋯++= (其中n 为正整数);(3)计算:5049482(31)(333331)-+++⋯+++.23.先化简再求值:2(1)(2)3(3)2(2)x x x x x ---+++,其中12x =-. 24.已知方程组51542ax y x by +=⎧⎨-=-⎩①②,甲由于看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙由于看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩;若按正确的a 、b 计算,求原方程组的解. 25.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?26.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法. 如:ax by bx ay +++,2221x xy y ++-分组分解法:解:原式()()()()()()ax bx ay by x a b y a b a b x y =+++=+++=++解:原式2()1(1)(1)x y x y x y =+-=+++-(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:223x x +-解:原式222214(1)2(12)(12)(3)(1)x x x x x x x =++-=+-=+++-=+-请你仿照以上方法,探索并解决下列问题:(1)分解因式:22a b a b -+-;(2)分解因式:267x x --.参考 答案一.选择题(共10小题)1.D . 2.A . 3.D . 4.A . 5.D . 6.A . 7.D . 8.B .9.D . 10.A .二.填空题(共8小题)11. 3 . 12. 1 . 13. 32a b . 14. (4)(4)a a a +- .15. 36m n - .16. 3(2)x x + . 17. 2:3:1 . 18. 8374y x y x =+⎧⎨=-⎩ .三.解答题(共8小题)19.因式分解:(1)382a a -;(2)2412()9()x y x y +-+-.【解】:(1)原式22(41)a a =-2(21)(21)a a a =+-;(2)原式2[3()2]x y =-+2(332)x y =-+.20.解下列方程组:1242133x y y x-⎧-=⎪⎪⎨-⎪-=⎪⎩.【解】:方程组整理得:496x y x y -=⎧⎨-=⎩①②,②-①,得33y =-,解得1y =-,把1y =-代入②,得16x +=,解得5x =,故方程组的解51x y =⎧⎨=-⎩.21.计算:(1)32(2)(5)x xy -;(2)24(1)(25)(25)x x x +-+-.【解】:(1)32(2)(5)x xy -328(5)x xy =⋅-4240x y =-;(2)24(1)(25)(25)x x x +-+-224(21)(425)x x x =++--22484425x x x =++-+829x =+.22.观察下列各式2(1)(1)1x x x -+=-23(1)(1)1x x x x -++=-324(1)(1)1x x x x x -+++=-⋯(1)分解因式:51x -= 432(1)(1)x x x x x -++++ ;(2)根据规律可得1(1)(1)n x x x --+⋯++= (其中n 为正整数);(3)计算:5049482(31)(333331)-+++⋯+++.【解】:(1)原式432(1)(1)x x x x x =-++++;(2)1(1)(1)1n n x x x x --+⋯++=-;(3)原式5131=-.23.先化简再求值:2(1)(2)3(3)2(2)x x x x x ---+++,其中12x =-. 【解】:原式2223239288410x x x x x x x =-+--+++=-+, 当12x =-时,原式21012=+=.24.已知方程组51542ax y x by +=⎧⎨-=-⎩①②,甲由于看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙由于看错了方程②中的b ,得到方程组的解为54x y =⎧⎨=⎩;若按正确的a 、b 计算,求原方程组的解. 【解】:将31x y =-⎧⎨=-⎩代入②得,122b -+=-,10b =; 将54x y =⎧⎨=⎩代入①得,52015a +=,1a =-. 故原方程组为5154102x y x y -+=⎧⎨-=-⎩, 解得14295x y =⎧⎪⎨=⎪⎩. 25.元旦期间银座商城用36000元购进了甲、乙两种商品,其中甲种商品的进价为120元/件,售价为130元/件;乙种商品的进价为100元/件,售价为150元/件,当两种商品销售完后共获利润6000元,求甲、乙两种商品各购进多少件?【解】:设购进甲商品x 件,乙商品y 件,根据题意可得:12010036000(130120)(150100)6000x y x y +=⎧⎨-+-=⎩, 解得:24072x y =⎧⎨=⎩, 答:购进甲商品240件,乙商品72件.26.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法. 如:ax by bx ay +++,2221x xy y ++-分组分解法:解:原式()()()()()()ax bx ay by x a b y a b a b x y =+++=+++=++解:原式2()1(1)(1)x y x y x y =+-=+++-(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法. 如:223x x +-解:原式222214(1)2(12)(12)(3)(1)x x x x x x x =++-=+-=+++-=+-请你仿照以上方法,探索并解决下列问题:(1)分解因式:22a b a b -+-;(2)分解因式:267x x --.【解】:(1)原式()()()a b a b a b =+-+-()(1)a b a b =-++;(2)原式2(6916)x x =-+-2(3)16x =--(34)(34)x x =---+ (7)(1)x x =-+.。

湘教版七年级数学下册期中考试题及答案【完整版】

湘教版七年级数学下册期中考试题及答案【完整版】

湘教版七年级数学下册期中考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A →B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )A.B.C.D.3.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是()A.x=-4 B.x=-3 C.x=-2 D.x=-14.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A .8B .9C .10D .116.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-69.已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列结论正确的是( )A .c+b >a+bB .cb <abC .﹣c+a >﹣b+aD .ac >ab10.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a <二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD ,若∠AOB=15°,则∠AOD=________度.4.方程()()()()32521841x x x x +--+-=的解是_________.5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A ,B 两岛的视角∠ACB =________.6.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是________,理由________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(1)531152x x x x --≥⎧⎪-+⎨-<⎪⎩2.已知m ,n 互为相反数,且m n ≠,p ,q 互为倒数,数轴上表示数a 的点距原点的距离恰为6个单位长度。

湘教版七年级下册数学期中考试试题附答案

湘教版七年级下册数学期中考试试题附答案

湘教版七年级下册数学期中考试试卷一、单选题1.二元一次方程组2x y 53x 4y 2-=⎧⎨+=⎩的解是()A .x 1y 2=-⎧⎨=⎩B .x 1y 2=⎧⎨=⎩C .x 2y 1=⎧⎨=⎩D .x 2y 1=⎧⎨=-⎩2.下列各式中,能用平方差公因式分解的是()A .2x x+B .2x 8x 16++C .2x 4+D .2x 1-3.化简(m 2+1)(m+1)(m-1)-(m 4+1)的值是()A .22m -B .0C .2-D .1-4.某校课外小组的学生分组课外活动,若每组7人,则余下3人;若每组8人,则少5人,求课外小组的人数x 和应分成的组数y .依题意可得方程组()A .7y x 38y 5x =+⎧⎨+=⎩B .7x 3y 8x 5y +=⎧⎨-=⎩C .7y x 38y x 5=-⎧⎨=+⎩D .7y x 38y x 5=+⎧⎨=+⎩5.有一个两位数,它的十位数字和个位数字的和为6,则这样的两位数有()个.A .4B .5C .6D .76.如果x 2+ax-6=(x+b)(x-2),那么a-b 的值为()A .2B .2-C .3D .3-7.小王只带2元和5元两种面值的人民币,他买一件学习用品要支付27元,则付款的方式有()A .1种B .2种C .3种D .4种8.以下方程中,是二元一次方程的是()A .8x y y-=B .xy 3=C .3x 2y 3z+=D .1y x=9.下列各式由左边到右边的变形中,是分解因式的为()A .()a x y ax ay+=+B .()2x 4x 4x x 44-+=-+C .()210x 5x 5x 2x 1-=-D .()()2x 163x x 4x 43x-+=-++10.用代入消元法解方程组3+4=225x y x y ⎧⎨-=⎩①②使得代入后化简比较容易的变形是()A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得y=2x-5二、填空题11.分解因式:291x-=_____.12.若方程组3x5y k22x3y k+=+⎧⎨+=⎩的解x、y的和为0,则k的值为______.13.如x+m与2x+3的乘积中不含x的一次项,则m的值为______.14.计算:(-a2)•a3=______.15.多项式-3x2y3z+9x3y3z-6x4yz2因式分解时,提取的公因式是______.16.计算:(m-3)(m+2)的结果为______.17.(-8)2018×(0.125)2019=______.18.因式分解:3x2-6xy+3y2=______.三、解答题19.解方程组x2y4 2x y6-=⎧⎨-=⎩20.计算:(3x+4y)2-(4y-3x)(3x+4y)21.把下列各式因式分解:(1)4x2-8x+4(2)(x+y)2-4y(x+y)22.先化简,再求值:(x+5)(x-1)+(x-2)2,其中x=-2.23.一种口服液有大盒、小盒两种包装,3大盒4小盒共108瓶;2大盒3小盒共76瓶.求大盒、小盒每盒各装多少瓶?24.已知(x+y)2=25,(x-y)2=81,求x 2+y 2和xy 的值.25.某工地因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:租金(单位:元/台•时)挖掘土石方量(单位:m 3/台•时)甲型机10060乙型机12080(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型的挖掘机各需多少台?(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案.26.一个被墨水污染的方程组如下:x y 2x 7y 8+=⎧⎨-=⎩,小刚回忆说:这个方程组的解是x 3y 2=⎧⎨=-⎩,而我求出的解是x 2y 2=-⎧⎨=⎩,经检查后发现,我的错误是由于看错了第二个方程中的x 的系数所致,请你根据小刚的回忆,把方程组复原出来.参考答案1.D【分析】二元一次方程组将第一个方程×4加第二个方程,利用加减消元法求出解即可.【详解】解:25342x yx y-=⎧⎨+=⎩①②,①×4+②得:11x=22,即x=2,把x=2代入①得:y=-1,则方程组的解为21 xy=⎧⎨=-⎩,故选D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.D【详解】A选项:x2+x不符合平方差公式的形式,可用提公因式法进行分解,故A选项不符合题意. B选项:x2+8x+16可用完全平方公式进行分解,而不是平方差公式,故B选项不符合题意. C选项:通常情况下,x2+4不能进行因式分解,故C选项不符合题意.D选项:x2-1=x2-12符合平方差公式的形式,可用平方差公式进行分解,故D选项符合题意.故本题应选D.3.C【详解】【分析】直接运用整式乘法进行去括号,再合并同类项.【详解】(m2+1)(m+1)(m﹣1)﹣(m4+1)=(m2+1)(m2﹣1)﹣(m4+1)=(m4﹣1)﹣(m4+1)=m4﹣1﹣m4-1=-2故选C【点睛】本题考核知识点:平方差公式,整式化简.解题关键点:运用平方差公式进行化简. 4.C【解析】本题考查的是根据实际问题列方程组根据等量关系:①若每组7人,则余下3人;②每组8人,则少5人,即可列出方程组.根据若每组7人,则余下3人,得方程,根据若每组8人,则少5人,得方程,则可列方程组为73 {85 y xy x=-=+,.故选C.5.C【解析】【分析】可以设两位数的个位数为x,十位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.【详解】解:设两位数的个位数为x,十位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选C.【点睛】本题考查了二元一次方程的应用,解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.6.B【解析】【分析】首先运用多项式的乘法法则将(x+b)(x-2)展开,然后根据对应项系数相等列式求出a、b 的值,再代入求解即可.【详解】解:∵(x+b)(x-2)=x2+(b-2)x-2b=x2+ax-6,∴x2+(b-2)x-2b=x2+ax-6,∴b-2=a,-2b=-6,∴a=1,b=3,∴a-b=1-3=-2.故选B.【点睛】本题主要考查了多项式的乘法法则及两个多项式相等的条件.多项式乘多项式法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.7.C【详解】试题分析:设付款时用了2元x张,5元y张.则:2x+5y=27,x和y只能取正整数.则当y=1时,x=11;当y=3时,x=6,当y=5时,x=1.故选C.考点:二元一次方程点评:本题难度中等,主要考查对二元一次方程求解的掌握.根据题意列出方程代入即可.8.A【解析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.由此可得只有选项A 是二元一次方程,故选A.9.C 【详解】试题分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解:A 、是多项式乘法,故A 选项错误;B 、右边不是积的形式,x 2﹣4x+4=(x ﹣2)2,故B 选项错误;C 、提公因式法,故C 选项正确;D 、右边不是积的形式,故D 选项错误;故选C .考点:因式分解的意义.10.D 【分析】根据代入消元法解二元一次方程组的步骤可知变形②更简单.【详解】解:观察方程①②可知,②中的系数为-1,比其它未知数的系数更为简单,所只要将②变形为y =2x -5③,再把③代入①即可求出方程组的解.故应选D.【点睛】本题考查了用代入消元法解二元一次方程组,理解代入消元法解方程组时化简系数较简单的方程是解题的关键.11.(3x+1)(3x-1)【分析】符合平方差公式的结构特点,利用平方差公式分解即可.【详解】解:291x -()2231x =-()()3131x x =+-.故答案为:(3x+1)(3x-1).【点睛】本题考查了平方差公式因式分解,熟记平方差公式的特点:两项平方项,符号相反是解题的12.2【分析】先求出方程组的解,然后再根据x、y的和为0,得出方程2k-6+4-k=0,解出即可.【详解】解:∵方程组3x5y k22x3y k+=+⎧+=⎨⎩,解得{x2k6y4k=-=-.∵x、y的和为0,则有2k-6+4-k=0,解得k=2.【点睛】本题主要考查二元一次方程组的解法,关键是熟练掌握二元一次方程组的解法即代入消元法和加减消元法.注意:在运用加减消元法消元时,两边同时乘以或除以一个不为0的整数或整式,一定注意不能漏项.13.32 m=-【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把m看作常数合并关于x的同类项,令x的系数为0,得出关于m的方程,求出m的值.【详解】∵(x+m)(2x+3)=2x2+3x+2mx+3m=x2+(3+2m)x+3m,又∵乘积中不含x的一次项,∴3+2m=0,解得32 m=-.故答案为:3 2-.14.-a5【解析】【分析】同底数幂相乘,底数不变,指数相加.解:原式=-a 5,故答案是-a 5.【点睛】本题考查了同底数幂的乘法,解题的关键是注意符号的确定.15.23x yz -【解析】试题分析:根据公因式的意义,当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,且各字母的指数取次数最低的;取相同的多项式,且多项式的次数取最低的.因此可知其公因式为23x yz -.16.26m m --【解析】【分析】根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加计算即可.【详解】()()32m m -+=2236m m m +--=26m m --.故答案为26m m --.【点睛】本题考查多项式乘多项式,熟练掌握运算法则是解题的关键.17.0.125【解析】【分析】首先利用同底数幂的乘法把(0.125)2018化为(0.125)2018×0.125,然后再利用积的乘方计算即可.【详解】解:原式=(-8)2018×(0.125)2018×0.125=(-8×0.125)2018×0.125=1×0.125=0.125,故答案为0.125.【点睛】此题主要考查了同底数幂的乘法和积的乘方,关键是掌握(ab)n=a n b n(n是正整数).18.3(x﹣y)2【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x2﹣6xy+3y2=3(x2﹣2xy+y2)=3(x﹣y)2.考点:提公因式法与公式法的综合运用19.8 x32 y3⎧=⎪⎪⎨⎪=-⎪⎩.【分析】根据二元一次方程组的解法利用加减消元法即可求出答案.【详解】解:24 26 x yx y-=⎧⎨-=⎩①②①×2得:2x-4y=8③③-②得:-3y=2解得:y=2 3-将y=23-代入①得:x=83∴方程组的解为8 x32 y3⎧=⎪⎪⎨⎪=-⎪⎩【点睛】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.20.18x2+24xy.【解析】【分析】根据平方差公式和完全平方公式算乘法,再合并同类项即可.【详解】解:原式=9x2+24xy+16y2-(16y2-9x2)=18x2+24xy.【点睛】本题考查了整式的混合运算,平方差公式和完全平方公式的应用,能熟记公式的特点是解此题的关键,注意:(a+b)(a-b)=a2-b2.21.(1)4(x-1)2;(2)(x+y)(x-3y).【解析】【分析】(1)原式提取4,再利用完全平方公式分解即可;(2)原式提取公因式即可.【详解】解:(1)原式=4(x2-2x+1)=4(x-1)2;(2)原式=(x+y)(x+y-4y)=(x+y)(x-3y).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.7.【分析】根据多项式乘多项式、完全平方公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】解:(x+5)(x-1)+(x-2)2=x2+4x-5+x2-4x+4=2x2-1,当x=-2时,原式=2×(-2)2-1=8-1=7.【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.23.大盒装20瓶,小盒装12瓶.【分析】设大盒每盒装x瓶,小盒每盒装y瓶,根据等量关系:3大盒4小盒共108瓶;2大盒3小盒共76瓶,列出方程组求解即可.【详解】解:设大盒每盒装x瓶,小盒每盒装y瓶.依题意得:3x4y1082x3y76+=⎧+=⎨⎩,解此方程组,得{x20y12==.答:大盒每盒装20瓶,小盒每盒装12瓶.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程组求解.24.x2+y2=53;xy=-14.【解析】【分析】直接利用完全平方公式将原式变形进而得出答案.【详解】解:∵(x+y)2=25,(x-y)2=81,∴(x+y)2+(x-y)2=2x2+2y2=106,则x2+y2=53;∴(x+y)2-(x-y)2=4xy=-56,则xy=-14.【点睛】此题主要考查了完全平方公式,正确将已知变形是解题关键.25.(1)甲、乙两种型号的挖掘机各需5台、3台;(2)有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机【分析】(1)设甲、乙两种型号的挖掘机各需x台、y台,根据题意建立二元一次方程组即可求解;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机,根据题意列出二元一次方程,求出其正整数解,然后分别计算支付租金,选择符合要求的租金方案.【详解】(1)设甲、乙两种型号的挖掘机各需x台、y台.依题意得:8 6080540x yx y+=⎧⎨+=⎩,解得:53xy=⎧⎨=⎩.答:甲、乙两种型号的挖掘机各需5台、3台;(2)设租用m辆甲型挖掘机,n辆乙型挖掘机.依题意得:60m+80n=540,化简得:3m+4n=27.∴m=9﹣4 3 n取正整数解有:53mn=⎧⎨=⎩或16mn=⎧⎨=⎩.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额;当m=1,n=6时,支付租金:100×1+120×6=820元<850元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和6辆乙型挖掘机.【点睛】本题考查二元一次方程的实际应用,根据题意建立等量关系是解题关键.26.原方程组为452 278 x yx y+=⎧⎨--=⎩.【详解】分析:设方程组为278ax bycx y+=⎧⎨-=⎩,而两个解都是第一个方程的解,将两个解代入到第一个方程中得到关于a、b的一元一次方程组求出a和b,再将32xy=⎧⎨=-⎩,代入第二方程得到m的值.详解:由题意知:322 3148 a bc-⎧⎨+⎩==,又∵小明做错的原因是他把c看错了,∴与a、b无关.故-2a+2b=2,由以上三方程可解得:a=4,b=5,c=-2.∴那道题为452 278 x yx y+⎧⎨--⎩==.点睛:此题主要考查了二元一次方程组的解,关键是先设方程组,再根据给出条件求出方程组中待定的系数.。

湘教版七年级下册数学期中考试试卷附答案

湘教版七年级下册数学期中考试试卷附答案

湘教版七年级下册数学期中考试试题一、单选题1.下列选项是方程 327x y -= 的一个解的是( )A .13x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .31x y =⎧⎨=-⎩D .31x y =-⎧⎨=⎩ 2.下列属于二元一次方程组的是( )A .1113x y x y +=⎧⎪⎨+=⎪⎩B .57x y y z +=⎧⎨+=⎩C .1326x x y =⎧⎨-=⎩D .1x y xy x y -=⎧⎨-=⎩ 3.下列各式运算正确的是( )A .235a a a +=B .236a a a •=C .()325a a -=-D .()3236ab a b = 4.下面式子从左到右的变形是因式分解的是( )A .22(1)21x x x +=++B .()()2933x x x -=+-C .2(1)(1)1x x x +-=-D .234(3)4x x x x +-=+-5.下列各式能用完全平方公式因式公解的是( )A .2421x x -+B .2441x x +-C .221x x --D .221x x -+- 6.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售,该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应安排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( ) A .14016615x y x y +=⎧⎨+=⎩ B .14061615x y x y +=⎧⎨+=⎩ C .15166140x y x y +=⎧⎨+=⎩ D .15616140x y x y +=⎧⎨+=⎩7.计算:()433124a b ab -• 的值是( ) A .1374a b - B .874a b - C .1374a b D .874a b 8.多项式22431218a x a x -各项的公因式是( )A .22a xB .6axC .32a xD .226a x 9.若5m n +=,3mn =,则224m mn n ++的值为( )A .27B .31C .35D .3910.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 2二、填空题11.计算:233?2()x x =____________.12.因式分解:24x -=__________.13.已知单项式322x y 与225x y -的积为4n mx y ,那么m n -=______.14.若关于x y 、的二元一次方程27x ay +=有一个解是31x y =⎧⎨=⎩,则a =___________.15.计算:(2)(3)x y x y +-=_______________.16.已知213x y +=,且22439x y -=,则多项式2x y -的值是_________.17.关于x 的二次三项式21x ax -+ 是完全平方式,则a 的值是___________.18.已知13a a -=,则221+=a a _________.三、解答题19.运用乘法公式进行计算(1)(23)(23)x y x y -++-(2)11(2)(2)33a a ---20.已知31x y =⎧⎨=⎩和211x y =-⎧⎨=⎩都是方程ax+by=7 的解,求a 、b 的值.21.先化简,再求值:2(x-y)2-(2x+y)(x-3y),其中x=1,y=−15.22.解方程组(1)26132x y y x +=⎧⎪⎨=-⎪⎩(2)349237a b a b +=-⎧⎨+=-⎩23.把下列各式因式分解:(1)22331827a b ab b -+(2)24()()x x y y x -+-24.甲、乙两地火车线路比汽车线路长30千米,汽车从甲地先开出,速度为40千米/时,开出半小时后,火车也从甲地开出,速度为60千米/时,结果汽车仅比火车晚1小时到达乙地,求甲、乙两地的火车与汽车线路长.25.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a b >),将余下的部分拼成一个梯形,根据两个图形中阴影部分面积关系,解决下列问题:(1)如图①所示,阴影部分的面积为 (写成平方差形式).(2)如图②所示,梯形的上底是 ,下底是 ,高是 ,根据梯形面积公式可以算出面积是 (写成多项式乘法的形式).(3)根据前面两问,可以得到公式.(4)运用你所得到的公式计算:22.25224826.甲、乙两家商场同时出售同样的水瓶和水杯,且定价相同,请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(请列方程解应用题)(2)为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和12个水杯,请问选择哪家商场购买更合算,并说明理由(水瓶和水杯必须在同一家购买).参考答案1.B【分析】根据二元一次方程的解得定义把x,y代入方程检验即可.【详解】解:A 、312337⨯-⨯=-≠,故此选项错误;B 、33217⨯-⨯=,故此选项正确;C 、()3321117⨯-⨯-=≠,故此选项错误;D 、()3321117⨯--⨯=-≠,故此选项错误;故选:B【点睛】此题主要考查了二元一次方程的解,解题的关键是掌握二元一次方程解的定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.2.C【分析】根据二元一次方程组的定义求解即可.【详解】A 、是分式方程组,故A 不符合题意;B 、是三元一次方程组,故B 不符合题意;C 、是二元一次方程组,故C 符合题意;D 、是二元二次方程组,故D 不符合题意;故选:C .【点睛】本题考查了二元一次方程组的定义,利用二元一次方程组的定义是解题关键.3.D【分析】运用幂的运算性质逐项判断即可得到结果;【详解】235a a a +≠,故A 错误;232356+•==≠a a a a a ,故B 错误;()322365⨯-=-=-≠-a a a a ,故C 错误; ()322336⨯==ab ab a b ,故D 正确; 故答案选D .【点睛】本题主要考查了整式乘法的运算,准确运用幂的乘方和积的乘方是解题的关键. 4.B【分析】根据因式分解的定义:把整式分解为几个整式乘积的形式,即可作出判断.【详解】解:A.左边不是多项式,是整式的乘法,不是因式分解,故A 错误.B.直接利用平方差公式,把多项式化为两个因式的乘积,故B 正确.C.左边是两个因式的乘积,不是多项式,是整式的乘法,不是因式分解,故C 错误. D .右边不是因式乘积的形式,不是因式分解,故D 错误.【点睛】本题的关键是要正确理解因式分解的定义,左边是多项式和的形式,右边是因式积的形式,由和转变成积的形式.5.D【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【详解】A 、2421x x -+不符合完全平方公式法分解因式的式子特点,故选项错误;B 、2441x x +-不符合完全平方公式法分解因式的式子特点,故选项错误;C 、221x x --不符合完全平方公式法分解因式的式子特点,故选项错误;D 、22221=(21)=(1)x x x x x -+---+--,故选项正确.故选:D .【点睛】本题考查用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记. 6.D【详解】题目中的等量关系:精加工的天数+粗加工的天数=15,精加工的蔬菜吨数+粗加工的蔬菜吨数=140,列方程组,故选D【分析】先计算积的乘方,再按照单项式乘以单项式的法则可得答案.【详解】解:()12433431371164.1244a b a b ab b b a a =•=-• 故选C .【点睛】本题考查的是单项式与单项式相乘,同时考查了积的乘方,掌握以上知识是解题的关键. 8.D【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】22431218a x a x -=6a 2x 2(2-3a 2x ), 6a 2x 2是公因式,故选:D .【点睛】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“-1”.9.B【分析】化简224m mn n ++为()22m n mn ++,然后代入数值求解即可; 【详解】()22222=+2224++++=++mn m n m mn n m mn n mn ;∵5m n +=,3mn =,代入上式,∴原式=25+23=25+6=31⨯.故答案选B .【点睛】本题主要考查了完全平方公式的应用,准确把已知式子化为完全平方公式是解题的关键.【详解】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )2. 又∵原矩形的面积为4mn ,∴中间空的部分的面积=(m+n )2-4mn=(m-n )2. 故选C .11.76x【分析】先通过幂的乘方计算,再利用同底数幂的乘法进行计算即可.【详解】236732()32=6⋅=⋅⋅x x x x x .故答案是:76x .【点睛】本题主要考查了整式乘法的运用,准确运用的幂的运算公式是解题的关键. 12.(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-13.15.-【分析】先计算单项式乘以单项式,再比较求解,m n ,从而可得答案.【详解】 解: ()22544325102.n x y x x y y x m y •-=-=10,5,m n ∴=-=10515.m n ∴-=--=-故答案为:15.-【点睛】本题考查的是单项式乘以单项式,掌握单项式乘以单项式的法则是解题的关键. 14.1【分析】将方程的解代入27x ay +=,再解关于a 的一元一次方程.【详解】解:将31x y =⎧⎨=⎩代入27x ay +=得,67a +=,解得:1a =.故答案为:1.【点睛】本题考查的知识点是二元一次方程的解以及解一元一次方程,比较基础,难度不大. 15.22253x xy y --【分析】由多项式乘以多项式的运算法则进行计算,即可得到答案.【详解】解:(2)(3)x y x y +-22263x xy xy y =-+-22253x xy y =--;故答案为:22253x xy y --.【点睛】本题考查了整式的乘法,解题的关键是熟练掌握多项式乘以多项式的运算法则. 16.3【分析】直接利用平方差公式,得到224(2)(2)39x y x y x y -=+-=,即可求出答案.【详解】解:∵224(2)(2)39x y x y x y -=+-=,又∵213x y +=,∴239133x y -=÷=;故答案为:3.【点睛】本题考查了平方差公式的运用,解题的关键是掌握平方差公式进行计算.17.±2.【分析】利用完全平方公式的结构特征判断即可求出a 的值.【详解】∵关于x 的二次三项式21x ax -+是完全平方式,∴a=±2,故答案为:±2.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键. 18.11【分析】对已知条件等号两边平方,整理后求解即可.【详解】 ∵13a a -=, ∴21()9a a -=, 即22129-+=a a , ∴22111+=a a .故答案为:11.【点睛】此题的关键是根据a 与1a 互为倒数的特点,利用完全平方公式求解.19.(1)22469x y y -+-(2)2149-a【分析】(1)把两个式子变形,利用平方差公式和完全平方公式计算即可; (2)第一个式子出负号变形,运用平方差公式计算;【详解】(1)(23)(23)x y x y -++-,()()=2323--+-⎡⎤⎡⎤⎣⎦⎣⎦x y x y ,=()()2223--x y ,=22469x y y -+-;(2)11(2)(2)33a a ---, =11(2)(2)33-+-a a , =22123⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦a , =2149⎛⎫-- ⎪⎝⎭a , =2149-a . 【点睛】本题主要考查了平方差公式完全平方公式的应用,在解题过程中准确变形是解题的关键. 20.a=2,b=1.【分析】将方程的解代入方程ax+by=7,得到关于a 、b 的方程组,从而可求得a 、b 的值.【详解】将31x y =⎧⎨=⎩和211x y =-⎧⎨=⎩分别代入方程ax+by=7得: 37? 2117a b a b +=⎧⎨-+=⎩①②①×2+②×3得,35b=35, 解得,b=1把b=1代入①得,3a+1=7解得,a=2,所以,a=2,b=1.【点睛】本题主要考查的是二元一次方程的解,得到关于a 、b 的方程组是解题的关键. 21.xy +5y 2,0【解析】【分析】利用整式的混合运算顺序和运算法则化简,再将x ,y 的值代入计算可得.【详解】原式=2(x 2−2xy +y 2)−(2x 2−6xy +xy −3y 2)=2x 2−4xy +2y 2−2x 2+6xy −xy +3y 2=xy +5y 2当x =1,y =−15时原式= 1×(−15)+5×(−15)2= −15+15=0【点睛】本题主要考查整式的混合运算-化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则. 22.(1)60x y =⎧⎨=⎩;(2)1.3a b =⎧⎨=-⎩【分析】(1)利用代入法解方程组即可;(2)利用加减法解方程组即可.【详解】解:(1)26132x y y x +=⎧⎪⎨=-⎪⎩①② 把②代入①得:1236,2x x ⎛⎫+-= ⎪⎝⎭6,x ∴=把6x =代入①得:0,y =∴方程组的解是: 6.0x y =⎧⎨=⎩(2)349237a b a b +=-⎧⎨+=-⎩①②①-②得:2a b +=-③③2⨯得:224a b +=-④②-④得:3,b =-把3b =-代入③得:1,a =∴方程组的解是:1.3a b =⎧⎨=-⎩【点睛】本题考查的是二元一次方程组的解法,掌握二元一次方程组的解法是解题的关键. 23.(1)()233b a b -;(2)()()()2121.x y x x -+-【分析】(1)先提公因式,再按照完全平方公式分解因式即可;(2)先提公因式,再按照平方差公式分解即可.【详解】解:(1)22331827a b ab b -+()22369b a ab b =-+()233,b a b =-(2)24()()x x y y x -+-()()24x x y x y =---()()241x y x =--()()()2121.x y x x =-+-【点睛】本题考查的是因式分解,掌握提公因式法与公式法分解因式是解题的关键.24.汽车路线240千米,火车路线270千米.【解析】【分析】设汽车路线x 千米,火车路线y 千米,根据题意可列出二元一次方程组进行求解.【详解】设汽车路线x 千米,火车路线y 千米, 依题意得301140602y x xy-=⎧⎪⎨-=⎪⎩解得240270x y =⎧⎨=⎩故汽车路线240千米,火车路线270千米.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据题意找到等量关系进行求解. 25.(1)22a b -;(2)()()a b a b +-;(3)22()()a b a b a b -=+-;(4)2000.【分析】(1)由大正方形减去小正方形的面积,即可得到答案;(2)由梯形的定义,以及梯形的面积公式,即可得到答案;(3)联合(1)(2),即可得到答案;(4)直接利用平方差公式进行计算,即可得到答案.【详解】解:(1)大正方形的面积为:2a ,小正方形的面积为:2b ,∴阴影部分的面积为:22a b -;故答案为:22a b -;(2)由梯形的定义可知:上底是:2b ,下底是:2a ,高是:-a b , ∴梯形的面积为:1(22)()()()2a b a b a b a b ⨯+-=+-;故答案为:()()a b a b +-;(3)由(1)(2)可知,22()()a b a b a b -=+-;故答案为:22()()a b a b a b -=+-;(4)22-252248+-=(252248)(252248)⨯=5004=2000;【点睛】本题考查了平方差公式的几何意义的知识点,解题的关键是熟练掌握平方差公式的运用,注意运用了数形结合的数学思想进行解题.26.(1)一个水瓶40元,一个水杯是8元;(2)选择乙商场购买更合算.【分析】(1)设一个水瓶x元,表示出一个水杯为(48-x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48-x)元,根据题意得:3x+4(48-x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为:(40×5+8×12)×80%=236.8(元);乙商场所需费用为:5×40+(12-5×2)×8=216(元),∵236.8>216,∴选择乙商场购买更合算.【点睛】此题考查了一元一次方程的应用,弄清题意,列出方程是解本题的关键.。

湘教版七年级数学下册期中考试题(完整)

湘教版七年级数学下册期中考试题(完整)

湘教版七年级数学下册期中考试题(完整) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.4的算术平方根是( )A .-2B .2C .2±D .25.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( )A .5°B .13°C .15°D .20°10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.若()2320m n -++=,则m+2n 的值是________.5.若一个数的平方等于5,则这个数等于________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________. 三、解答题(本大题共6小题,共72分)1.解不等式组:3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 13分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.如图,在四边形OBCA中,OA∥BC,∠B=90°,OA=3,OB=4.=18,求BC的长;(1)若S四边形AOBC(2)如图1,设D为边OB上一个动点,当AD⊥AC时,过点A的直线PF与∠ODA 的角平分线交于点P,∠APD=90°,问AF平分∠CAE吗?并说明理由;(3)如图2,当点D在线段OB上运动时,∠ADM=100°,M在线段BC上,∠DAO 和∠BMD的平分线交于H点,则点D在运动过程中,∠H的大小是否变化?若不变,求出其值;若变化,说明理由.4.已知直线l1∥l2,l3和11,l2分别交于C,D两点,点A,B分别在线l1,l2上,且位于l3的左侧,点P在直线l3上,且不和点C,D重合.(1)如图1,有一动点P在线段CD之间运动时,试确定∠1、∠2、∠3之间的关系,并给出证明.(2)如图2,当动点P在射线DC上运动时,上述的结论是否成立?若不成立,请写出∠1、∠2、∠3的关系并证明.5.“中国梦”是中华民族每一个人的梦,也是每一个中小学生的梦,各中小学开展经典诵读活动,无疑是“中国梦”教育这一宏大乐章里的响亮音符,学校在经典诵读活动中,对全校学生用A、B、C、D四个等级进行评价,现从中抽取若干个学生进行调查,绘制出了两幅不完整的统计图,请你根据图中信息解答下列问题:(1)共抽取了多少个学生进行调查?(2)将图甲中的折线统计图补充完整.(3)求出图乙中B等级所占圆心角的度数.6.某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、B6、C7、C8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、-13、<4、-15、6、7⨯6.510三、解答题(本大题共6小题,共72分)1、-7<x≤1.数轴见解析.2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)6;(2)略;(3)略.4、(1)∠2=∠1+∠3;(2)不成立,应为∠3=∠1+∠2,证明略.5、(1)抽取了50个学生进行调查;(2)B等级的人数20人;(3)B等级所占圆心角的度数=144°.6、(1)40,30;(2)购买方案见解析,方案一所需资金最少,900万元.。

湘教版七年级下册数学期中考试试卷带答案

湘教版七年级下册数学期中考试试卷带答案

湘教版七年级下册数学期中考试试题一、单选题1.下列方程中,是二元一次方程的是( )A .12m n =-B .112y x =-C .212x y =-D .3x z y =- 2.下列计算正确的是( )A .()326x x =B .326a a a ⋅=C .()224ab ab =D .()235x x = 3.下列等式从左到右的变形中,属于因式分解的是( )A .8a 2b 2 = 2ab∙4abB .x 2-6x=x(x-6)C .(x+3)2=x 2+6x+9D .x 2-4+4x=(x+2)( x-2) +4x4.方程组43235x y k x y -=⎧⎨+=⎩的解中x 与y 的值相等,则k 等于( ) A .2 B .1 C .3 D .45.下列多项式乘法,能用平方差公式进行计算的是( )A .()()a b a b --+B .(2x 3y)(2x 3)zC .()()x y x y ---D .()()m n n m6.下列代数式中,没有公因式的是( )A .ab 与bB .a+b 与22a b +C .a+b 与22a b -D .x 与26x7.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .98.若()()2325x x mx ++-的计算结果中2x 项的系数为3-,则m 为( )A .3-B .3C .9-D .13- 9.计算10099(2)(2)-+-所得的结果是( )A .2-B .2C .992-D .99210.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩ C .3624601680x y x y +=⎧⎨+=⎩ D .2436601680x y x y +=⎧⎨+=⎩11.无论a ,b 为何值,代数式22462a b b a +++-的值总是( )A .非负数B .0C .正数D .负数 12.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式,例如图甲可以用来解释22()()4a b a b ab +--=.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )A .22()(2)a b a b a ab b -+=+-B .22 ()()a b a b a b -=+-C .222()2a b a ab b +=++D .222()2a b a ab b -=-+二、填空题13.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a+b 的值为_____. 14.若27m a a a ⋅=,则m 的值为_________.15.把多项式329a ab -分解因式的结果是______________________.16.计算2012201320.421⎛⎫-⨯= ⎪⎝⎭__________.17.甲乙两人同求方程7ax by -=的整数解,甲正确地求出一个解为1x =,1y =-,乙把7ax by -=看成1ax by -=,求得一个解为1x =,2y =,则a =_______,b =_______. 18.已知x 2-2(m +3)x +9是一个完全平方式,则m =____________.三、解答题19.解下列方程组:33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩.20.计算()()423424()()2a a a a a -⋅⋅--+-21.化简求值(1)化简:2()()()x y x y x y +-++(2)先化简再求值:222(23)()33x x y x y xy y ⎛⎫---++ ⎪⎝⎭,其中1x =-,2y =22.因式分解(1)3263654a a a -+-(2)229()49()a x y b y x -+-23.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b -值.24.(1)已知2()9a b -=,18ab =,求22a b +的值;(2)已知13a a +=,求221a a+和441a a +的值.25.为了保护环境,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A B 、两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多20万元,购买2台A型车比购买3台B型车少60万元.(1)请求出a和b;(2)若购买这批混合动力公交车每年能节省22.4万升汽油,求购买这批混合动力公交车需要多少万元?26.阅读下列材料在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,使于观察如何进行因式分解我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x²+4x+1)(x²+4x+7)+9 进行因式分解的过程.解:设x²+4x=y原式=(y+1)(y+7)+9 (第一步)=y²+8y+16 (第二步)=(y+4)²(第三步)=(x²+4x+4)²(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的.A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果: .(3)请你用换元法对多项式(x²-2x)(x²-2x+2)+1 进行因式分解(4)当x= 时,多项式(x²-2x)(x²-2x+2)-1 存在最值(填“大”或“小”).请你求出这个最值参考答案1.A【分析】根据二元一次方程的定义逐项判断即可.【详解】解:A 、12m n =-是二元一次方程,符合题意;B 、112y x=-,分母中含有未知数,不是二元一次方程,不符合题意;C 、212x y =-,未知数最高次为2,不是二元一次方程,不符合题意;D 、3x z y =-,含有3个未知数,不是二元一次方程,不符合题意;故选:A .【点睛】本题主要考查了二元一次方程的定义,熟练掌握含有两个未知数,且未知数的次数都是1的整式方程称为二元一次方程是解题的关键.2.A【分析】先求出每个式子的值,再判断即可.【详解】A 选项:()32x =236x x ⨯=,故正确;B 选项:32a a ⋅=a 3+2=a 5,故错误;C 选项:()22ab =a 2b 4,故错误;D 选项:()236x x =,故错误.故选A.【点睛】考查了同底数幂的乘法、积的乘方和幂的乘方,解题关键是熟记其计算法则. 3.B【分析】直接利用因式分解的定义分析得出答案.【详解】A 、8a 2b 2不是多项式,故此选项错误;B 、x 2-6x=x (x-6),正确;C 、(x+3)2=x 2+6x+9,是多项式的乘法运算,故此选项错误;D 、x 2-4+4x=(x+2)(x-2)+4x ,不符合因式分解的定义,故此选项错误.故选:B .【点睛】此题主要考查了分解因式的定义,正确把握定义是解题关键.4.B【分析】根据x 与y 的值代入,把y=x 代入方程组求出k 的值即可.【详解】解:根据题意得:y=x ,代入方程组得:43235x x k x x -=⎧⎨+=⎩, 解得:11x k =⎧⎨=⎩, 故选B.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两个方程都成立的未知数的值.5.C【分析】利用平方差公式的结构特征判断即可.【详解】解:A. ()()a b a b --+ 不能用平方差进行计算,故不符合题意B. (2x 3y)(2x 3)z 不能用平方差进行计算,故不符合题意C. ()()x y x y ---能用平方差公式进行计算的是22()()x y x y y x ---=-,D. ()()m n n m 不能用平方差进行计算,故不符合题意故选:C .此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.B【分析】能因式分解的先进行因式分解,再确定没有公因式即可.【详解】A 选项:ab 与b 的公因式是b ,故不符合题意;B 选项:a+b 与22a b +没有公因式,故符合题意;C 选项:因为a 2-b 2=(a+b)(a-b),所以a+b 与22a b -的公因式为a+b,故不符合题意;D 选项:x 与26x 的公因式是x ,故不符合题意.故选B【点睛】考查公因式的确定,掌握找公因式的正确方法,注意互为相反数的式子,只需改变符号即可变成公因式.7.C【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C .本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.8.C【分析】根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加计算,最后根据条件列式求解即可.【详解】解:∵(3+x )(2x 2+mx ﹣5)=2x 3+(6+m )x 2+(﹣5+3m )x ﹣15,又∵结果中x 2项的系数为﹣3,∴6+m =﹣3,解得m =﹣9.故选:C .【点睛】本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.9.D【分析】根据有理数的乘方的意义可知100(2)-表示100个(-2)的乘积,所以,10099(2)(2)-+-9999=(2)(2)(2)-⨯-+-,再乘法对加法的分配律的逆运算计算即可.【详解】解:10099(2)(2)-+-9999=(2)(2)(2)-⨯-+-[]99=(2)+1(2)-⨯-99=(1)(2)-⨯-99=2故选:D .【点睛】本题考查了有理数的混合运算,在运算中应注意各种运算法则和运算顺序.10.B根据A 、B 两种商品共60件以及用1680元购进A 、B 两种商品,分别得出等式组成方程组即可.【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩. 故选B..【点睛】本题考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,然后再列出方程组.11.C【分析】把含a 的放一块,配成完全平方公式,把含b 的放一块,配成完全平方公式,根据平方的非负性即可得出答案.【详解】解:原式=(a 2﹣2a+1)+(b 2+4b+4)+1=(a ﹣1)2+(b+2)2+1,∵(a ﹣1)2≥0,(b+2)2≥0,∴(a ﹣1)2+(b+2)2+1>0,即原式的值总是正数.故选:C .【点睛】本题考查了完全平方式的应用,对代数式进行正确变形是解题的关键.12.D【分析】根据空白部分的面积等于大正方形的面积减去两个长方形的面积再加上右上角小正方形的面积列式整理即可得解.【详解】解:空白部分的面积:(a-b )2,还可以表示为:a 2-2ab+b 2,所以,此等式是(a-b )2=a 2-2ab+b 2.故选:D .【点睛】本题考查了完全平方公式的几何背景,利用两种方法表示出空白部分的面积是解题的关键.13.8【详解】2226a b a b -=⎧⎨+=⎩①②, ①×2+②得:5a=10,即a=2,将a=2代入①得:b=2,则3a+b=6+2=8.故答案为814.5【分析】根据同底数幂相乘,底数不变,指数相加即可列出方程,求出m 的值.【详解】解:∵27m a a a ⋅=∴27m a a +=∴27m +=解得:m=5故答案为:5.【点睛】此题考查的是幂的运算性质,掌握同底数幂相乘,底数不变,指数相加是解决此题的关键.15.a (3a+b )(3a -b )【详解】试题分析:329a ab -=22(9)a a b -=a (3a+b )(3a ﹣b ).故答案为a (3a+b )(3a ﹣b ). 考点:提公因式法与公式法的综合运用.16.25【详解】20122013120.42⎛⎫-⨯= ⎪⎝⎭20125222()2555-⨯⨯= 17.5 2【分析】首先根据题意把11x y =⎧⎨=-⎩代入ax ﹣by =7中得a+b =7,把12x y =⎧⎨=⎩代入ax ﹣by =1中得:a ﹣2b =1,组成方程组可解得a ,b 的值.【详解】解:把11x y =⎧⎨=-⎩代入ax ﹣by =7中得: a+b =7 ①,把12x y =⎧⎨=⎩代入ax ﹣by =1中得: a ﹣2b =1 ②,把①②组成方程组得:721a b a b +=⎧⎨-=⎩①②, 解得:52a b =⎧⎨=⎩, 故答案为:5,2.【点睛】此题主要考查了二元一次方程组的解,关键是正确把握二元一次方程的解的定义. 18.-6或0.【详解】由题意得-2(m+3)=2()3⨯±,所以解得m=-6或0.19.025x y =⎧⎪⎨=⎪⎩. 【分析】方程组整理后,利用加减消元法由①-②求解即可.【详解】解:原方程组变式为51565104x y x y +=⎧⎨-=-⎩①②, ①-②相得:2510y =, ∴25y =将25y =代入5156x y +=中,得251565x +⨯=,解得:x =0. 所以原方程组的解为025x y =⎧⎪⎨=⎪⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.84a【分析】先算幂的乘方,同底数幂的乘法,然后再算加法;【详解】解:原式8884a a a =-+.84a =【点睛】本题考查幂的乘方,同底数幂的乘法运算,掌握(a m )n =a mn ,a m •a n =a m+n 是解题关键. 21.(1)222x xy +;(2)27x xy -+,-15【分析】(1)先利用平方差公式和完全平方公式计算,再合并同类项,即可求解;(2)先算乘法,再合并同类项,最后代入求值,即可求解.【详解】解:(1)原式22222222x y x xy y x xy =-+++=+;(2)原式222225323x x xy y xy y =-+-++27x xy =-+.当1x =-,2y =时,原式()()2171211415=--+⨯-⨯=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式四则混合运算的法则是解题的关键. 22.(1)()263a a --;(2)()()()3737x y a b a b -+- 【分析】(1)直接提取公因式﹣6a ,再利用完全平方公式分解因式得出答案;(2)直接提取公因式x ﹣y ,再利用平方差公式分解因式即可;【详解】解:(1)原式()2669a a a -=-+()263a a =--;(2)原式()()22949x y a b =-- ()()()3737x y a b a b -+-=【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键.23.-8.【详解】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a ,b 的两个方程联立,组成新的方程组,求出x 和y 的值,再代入含有a ,b 的两个方程中,解关于a ,b 的方程组即可得出a ,b 的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x y x y -=⎧⎨+=-⎩ 和方程组②45228ax by ax by +=-⎧⎨-=⎩ , 解方程组①,得12x y =⎧⎨=-⎩, 代入②得4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 所以(-a)b =(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.24.(1)45;(2)47【分析】(1)利用完全平方公式的变形,即可求解;(2)由13a a +=得219a a ⎛⎫+= ⎪⎝⎭,从而得到2217a a +=,进而得到222149a a ⎛⎫+= ⎪⎝⎭,即可求解.【详解】解:(1)因为()22229a b a b ab -=+-=,所以2292a b ab +=+又因为18ab =, 229293645a b ab +=+=+=,(2)由13a a +=得219a a ⎛⎫+= ⎪⎝⎭,即22129a a ++=, 所以2217a a +=, 由2217a a +=得222149a a ⎛⎫+= ⎪⎝⎭,即441249a a ++=, 所以44147a a +=. 【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a b ab -=+-,及其变形是解题的关键.25.(1)a=120,b=100;(2)1120万元【分析】(1)根据“购买一台A 型车比购买一台B 型车多20万元,购买2台A 型车比购买3台B 型车少60万元.”即可列出关于a 、b 的二元一次方程组,解之即可得出结论;(2)设A 型车购买x 台,则B 型车购买(10-x )台,根据总节油量=2.4×A 型车购买的数量+2×B 型车购买的数量即可得出关于x 的一元一次方程,解之即可得出x 值,再根据总费用=120×A 型车购买的数量+100×B 型车购买的数量即可算出购买这批混合动力公交车的总费用.【详解】解:(1)根据题意得:203260a b b a -=⎧⎨-=⎩, 解得:120100a b =⎧⎨=⎩. (2)设A 型车购买x 台,则B 型车购买(10-x )台,根据题意得:2.4x+2(10-x )=22.4,解得:x=6,∴10-x=4,∴120×6+100×4=1120(万元).答:购买这批混合动力公交车需要1120万元.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)根据A 、B 型车价格间的关系列出关于a 、b 的二元一次方程组;(2)根据总节油量=2.4×A 型车购买的数量+2×B 型车购买的数量列出关于x 的一元一次方程. 26.(1)C ;(2)(x-2)4;(3)见解析;(4)1;小,-2.【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式;(4)把原式变形为22(21)2x x -+-,由22(21)0x x -+≥即可得解.【详解】(1)由第二步到第三步是运用了完全平方公式法,故选C ;(2)(x 2-4x+1)(x 2-4x+7)+9,设x 2-4x=y ,原式=(y+1)(y+7)+9,=y 2+8y+16,=(y+4)2,=(x2-4x+4)2,=(x-2)4;故答案为(x-2)4;(3)设x2-2x=y,原式=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2-2x+1)2,=(x-1)4.(4)设x2-2x=y,原式=y(y+2)-1,=y2+2y-1,=(y+1)2-2,= (x²-2x+1) ²-2= (x-1)4-2∵(x-1)4≥0,∴当x=1时,多项式(x²-2x)(x²-2x+2)-1 存在最小值,为:-2.【点睛】本题考查了因式分解-换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.。

湘教版七年级下册数学期中试题试卷

湘教版七年级下册数学期中试题试卷

湘教版七年级下册数学期中考试试卷题号一二三总分171819202122232425得分一、选择题(每小题3分共24分)1.方程组125x y x y -=⎧⎨+=⎩的解是()A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩2.下列各式从左到右的变形中,是因式分解的为()A .222()a b a b +=+B .2222()a ab b a b -+=-C .2331(1)x x x x+=+D .(1)x y z xy xz x++=++3.下列各式计算正确的是()A .2a +2a =4a B .()23x =26x C .()32x =6x D .()2x y +=22x y +4.若a +b =-1,则a 2+b 2+2ab 的值为()A .1B .-1C .3D .-35.计算:101100(2)(2)-+-的结果是()A .2-B .1002-C .2D .10026.因式分解24x y y -的正确结果是()A .()()22y x x +-B .(4)(4)y x x +-C .2(4)y x -D .2(2)y x -7.若多项式24x mx ++能用完全平方公式分解因式,则m 的值可以是()A .4B .-4C .±2D .±48.如图,设他们中有x 个成人,y 个儿童.根据图中的对话可得方程组()A .303015195x y x y +=+=⎧⎨⎩B .19530158x y x y +=+=⎧⎨⎩C .83015195x y x y +=+=⎧⎨⎩D .153015195x y x y +=+=⎧⎨⎩二、填空题(每小题3分,共24分)9.把方程237x y -=变形,用含y 的代数式表示x ,则x =____________.10.写出一个以2,3x y ==⎧⎨⎩为解的二元一次方程____________.11.已知方程组521,343x y x y +=+=⎧⎨⎩,则x y -的值是_________.12.若226m n -=,且2m n -=,则m n +=_________.13.235()()()b b b ---= .14.2(34)a a b --=.15.因式分解2363a a -+=.16.如果()()23215x x a x x ++=--,则a =.三、解答题(52分)17.整式计算(每小题3分,共6分)(1)(23)(32)(43)(34)x y y x y x x y -+--+(2)2(1)(1)(1)x x x ++-18.因式分解(每小题3分,共6分)(1)3222a a b ab -+(2)256x x ++19.解方程组(每小题3分,共6分)(1)2321x yx y=-⎧⎨+=-⎩(2)233511x yx y+=⎧⎨-=⎩20.若25440a b b-+-+=,求22288a ab b-+的值(5分)21.如右图,求图中阴影部分的面积(图中长度单位:米)(5分)22.已知3,2a b ab +==,求下列代数式的值。

湘教版七年级下册数学期中考试试题带答案

湘教版七年级下册数学期中考试试题带答案

湘教版七年级下册数学期中考试试题带答案湘教版七年级下册数学期中考试试卷一、选择题(每题3分,共30分)1.()下列运算正确的是:A.﹣2(a﹣b)=﹣2a﹣bB.﹣2(a﹣b)=﹣2a+bC.﹣2(a﹣b)=﹣2a﹣2bD.﹣2(a﹣b)=﹣2a+2b2.()下列各组数中,是二元一次方程4x﹣3y=5的解的是:A.(1,2)B.(﹣1,﹣3)C.(2,1)D.(﹣2,﹣1)3.()如果a∥b,b∥c,那么a∥c,这个推理的依据是:A.等量代换B.平行线的定义C.经过直线外一点,有且只有一条直线与已知直线平行D.平行于同一直线的两直线平行4.()多项式8xmyn﹣1﹣12x3myn的公因式是:A.XXXB.xmyn﹣1C.4xmynD.4xmyn﹣15.()若甲数为x,乙数为y,则“甲数的3倍比乙数的一半少2”列成方程是:A.3x+y=2B.3x﹣y=2C.﹣3x+y=2D.3x=y+26.()若64x2+axy+y2是一个完全平方式,那么a的值应该是:A.8B.16C.﹣16D.16或﹣167.()如果方程组的解x、y的值相同,则m的值是:A.1B.﹣1C.2D.﹣28.()下列各多项式中:①x2﹣y2,②x3+2,③x2+4x,④x2﹣10x+25,其中能直接运用公式法分解因式的个数是:A.1B.2C.3D.49.()计算﹣(﹣3a2b3)4的结果是:A.81a8b12B.12a6b7C.﹣12a6b7D.﹣81a8b1210.()若(x+a)(x+b)=x2﹣kx+ab,则k的值为:A.a+bB.﹣a﹣bC.a﹣bD.b﹣a二、填空题(每题3分,共24分)11.()计算:(﹣2a2)•3a的结果是______。

12.()因式分解:2a2﹣8=______。

13.()已知二元一次方程3x﹣5y=8,用含x的代数式表示y,则y=______,若y的值为2,则x的值为______。

14.()已知和都是ax+by=7的解,则a=______,b=______。

湘教版七年级下册数学期中考试题(附答案)

湘教版七年级下册数学期中考试题(附答案)

湘教版七年级下册数学期中考试题(附答案)学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释) )A .a 3•a 2=a 5B .(x 3)2=x 9C .x 3+x 3=2x 3D .(﹣ab )5÷(﹣ab )2=﹣a 3b 32.下列运算正确的是( )A .﹣a (a ﹣b )=﹣a 2﹣abB .(2ab )2÷a 2b=4abC .2ab•3a=6a 2bD .(a ﹣1)(1﹣a )=a 2﹣13.若 2249y kxy x +- 是一个完全平方式,则 k 的值为( )A 、6B 、±6C 、12D 、±124.若()682b a b a n m =,那么n m 22-的值是( )A. 10B. 52C. 20D. 325.下列计算不正确的是( )A .x 2•x 3=x 5B .(x 3)2=x 6C .x 3+x 3=x 6D x )2=3x 2 6.x 2+8x+k 2是完全平方式,则k 的值是( )A .4B .﹣4C .±4D .167.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( ) A. 14016615x y x y +=⎧⎨+=⎩ B. 14061615x y x y +=⎧⎨+=⎩ C.15166140x y x y +=⎧⎨+=⎩ D.15616140x y x y +=⎧⎨+=⎩ 8. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) B.3 C.2 D.1二、填空题9.在实数范围内因式分解:2x ﹣2= .10.写一个解为2{1x y ==-的二元一次方程组____. 11.如果2533428a b a b x y +----=是二元一次方程,那么a =________. b =________.12.写出一个解为1{2x y ==的二元一次方程组___________. 13.分解因式: 236x xy -=_________.14.二元一次方程3x +2y =15共有_______组正整数解....三、解答题15.先化简,再求值:(a+b )(a-b )+(a+b )2-2a 2,其中a=3,b=-13.16.某工程队现有大量的沙石需要运输.工程队下属车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求该车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.17.用如图(1)中的长方形和正方形纸板作侧面和底面,做成如图(2)所示的竖式和横式两种无盖纸盒。

湘教版数学七年级下册期中考试试卷及答案

湘教版数学七年级下册期中考试试卷及答案

湘教版数学七年级下册期中考试试题评卷人得分一、单选题1.给出下列式子:0,3a ,π,2x y -,1,3a 2+1,-11xy ,1x+y.其中单项式的个数是()A .5个B .1个C .2个D .3个2.下列多项式,能用公式法分解因式的有()①22xy +②22-x y +③22-x y -④22x xy y ++⑤222x xy y +-⑥22-44x xy y +-A .2个B .3个C .4个D .5个3.在方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0中,若此方程为关于x ,y 的二元一次方程,则k 的值为()A .-2B .2或-2C .2D .以上答案都不对4.某次数学竞赛的试卷有25道题,若做对一题得4分,不做或做错一题扣1分,小明做完此试卷后,得70分,则他做对了()A .18题B .19题C .20题D .21题5.24(23)(23)x x y x y --+的计算结果是()A .29y B .—29y C .23y D .2223x y +6.解为12x y =⎧⎨=⎩的方程组是()A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩7.已知|x+y -1|+(x -y+3)2=0,则(x+y)2019的值是()A .22019B .-1C .1D .-220198.x 3m +1可以写成()A .x 3·x (m+1)B .x 3+x (m+1)C .x·x 3mD .x m +x (2m+1)9.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为().A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-610.计算(-2)2019+22018的结果是()A .-22018B .22018C .22019D .-2评卷人得分二、填空题11.若3x m y 与﹣5x 2y n 是同类项,则m+2n=.12.分解因式:3x 2-12x+12=.13.计算:2015×2017-20162=__________.14.规定表示ab -c ,表示ad -bc ,试计算×的结果为__________________.15.若==是方程2x+y=0的解,则6a+3b+2=______________.16.已知:7a b +=,13ab =,那么22a ab b -+=________________.17.若x 2+kx+81是完全平方式,则k 的值应是________.18.已知4×8m ×16m =29,则m 的值是______评卷人得分三、解答题19.解方程组:x 4y 1216x y -=-⎧⎨+=⎩.20.先化简,再求值:()()()21a 1a a 2+-+-,其中a=-3.21.已知:22321A x xy x =+--,21B x xy =-+-.(1)若20A B C -+=,求多项式C .(2)若36A B +的值与x 无关,求y 的值.22.下面是某同学对多项式(x 2﹣4x ﹣3)(x 2﹣4x+1)+4进行因式分解的过程.解:设x 2﹣4x=y原式=(y ﹣3)(y+1)+4(第一步)=y 2﹣2y+1(第二步)=(y ﹣1)2(第三步)=(x 2﹣4x ﹣1)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了因式分解的.A .提取公因式法B .平方差公式法C .完全平方公式法(2)请你模仿以上方法尝试对多项式(x 2+2x )(x 2+2x+2)+1进行因式分解.23.解决以下问题:(1)已知方程组27x y ax y b -=⎧⎨+=⎩和方程组38x by ax y +=⎧⎨+=⎩有相同的解,求a b 、的值;(2)已知甲、乙两人解关于x y 、的方程组278ax by cx y ,+=⎧⎨-=⎩甲正确解出32x y =⎧⎨=-⎩,而乙把c 抄错,结果解得22x y ,=-⎧⎨=⎩求a b c ++的值.24.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/公里计算,耗时费按y 元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(1)求x ,y 的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?时间(分钟)里程数(公里)车费(元)小明8812小刚12101625.图a是一个长为2、宽为2的长方形(其中>),沿图中虚线用剪刀均分成四块小长方形,然后按图的形状拼成一个正方形,(1)①请你用两种不同的方法表示图中的阴影部分的面积;;②请写出代数式:(+p2,(−p2,B之间的关系:;(2)若+=10,B=20,求:(−p2的值;(3)已知(2019−p(2018−p=1000,求:(2019−p2+(2018−p2的值.参考答案1.A 【解析】【分析】根据单项式的定义求解即可.【详解】单项式有:0,3a ,π,1,-11xy,共5个.故选A.【点睛】本题考查单项式.2.A 【解析】根据完全平方公式()2222a b a ab b ±=±+,平方差公式()()22a b a b a b +-=-,的特征可判定②可以利用平方差公式进行因式分解,⑥可以利用完全平方公式进行因式分解,因此本题正确选项是A.3.C 【解析】∵方程(k -2)x 2+(2-3k)x +(k +1)y +3k =0是关于x ,y 的二元一次方程,∴2023010k k k -=⎧⎪-≠⎨⎪+≠⎩,解得:k=2.故选C.4.B 【解析】【分析】设做对x 道题,不做或做错y 道题,根据试题数量及小李的得分,可得出方程组,解出即可.【详解】解:设做对x 道题,不做或做错y 道题,由题意得,25{470x y x y +=-=,解得:x=19{y=6.即他做对了19道题.故选B .【点睛】本题考查了二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.5.A 【解析】【分析】利用单项式的乘法法则,计算后直接选取答案.【详解】原式=22224499x x y y -+=.故答案为:29y .【点睛】本题考查了平方差公式,熟练掌握平方差公式是本题解题的关键.6.D 【解析】【分析】根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可.【详解】A 、把12x y =⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12x y =⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B 、把12x y =⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.7.C【解析】【分析】由绝对值和平方的非负性可得+−1=0−+3=0,再解方程组代入原式进行计算即可.【详解】解:根据题意可得+−1=0①−+3=0②,用①加上②可得,2x+2=0,解得x=-1,则y=2,故原式=(2-1)2019=1.故选择C.【点睛】本题结合非负性考查了列和解二元一次方程组.8.C【解析】【分析】根据同底数幂的乘法法则求解.【详解】x3m+1=x3m•x.故选:C.【点睛】本题考查了同底数幂的乘法,解题的关键是掌握同底数幂的乘法的运算法则.9.D【解析】【分析】利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+bx+c对应找到一次项的系数和常数项即可解题.【详解】解:∵2(x-3)(x+1)=2(x2-2x-3)=2x2-4x-6,又∵2x2+bx+c=2(x-3)(x+1),∴b=-4,c=-6,故选D.【点睛】本题考查了因式分解与整式乘法的关系,中等难度,计算整式乘法,对应找到各项系数是解题关键.10.A【解析】【分析】根据乘方的意义,可得(-2)2019+22018=(-2)×22018+22018=22018×(-2+1).【详解】(-2)2019+22018=(-2)×22018+22018=22018×(-2+1)=-22018故选A【点睛】本题考查了乘方的逆运算,熟练理解乘方的意义是关键.11.4【解析】解:根据题意得:m=2,n=1,则m+2n=4.故答案是:4.12.3(x-2)2.【解析】试题解析:原式=3(x2-4x+4)=3(x-2)2.考点:提公因式法与公式法的综合运用.13.-1【解析】原式=(2016−1)(2016+1)−20162=20162−1−20162=−1,故答案为:-1.14.10x 3-99x 2-10x 【解析】【分析】由“表示ab-c ,表示ad-bc”可以推出:表示()()2236x x +--,表示()2134;x x x x --⋅然后将()()2236x x +--与()2134x x x x --⋅相乘即可.【详解】原式=[][]2(2)(36)(21)34x x x x x x ,⨯+--⨯--⋅2[2(2)(36)][(21)12],x x x x x =+----22(2436)(212),x x x x x =+-+⨯--2(10)(10),x x x =---32109910.x x x =--故答案为:32109910.x x x --【点睛】考查整式的混合运算,读懂题目中定义的运算法则以及熟练掌握整式的混合运算法则是解题的关键.15.2【解析】【分析】由二元一次方程解的定义结合已知条件易得2a+b=0,再将6a+3b-2变形为3(2a+b)-2,并将2a+b=0整体代入进行计算即可.【详解】∵==是方程2+=0的一个解,∴2a+b=0,∴6a+3b-2=3(2a+b)-2=0-2=-2.故答案为:-2.【点睛】本题考查了二元一次方程的解和求代数式的值,“由已知条件求出2a+b=0,把6a+3b-2变形为3(2a+b)-2”是解答本题的关键.16.10【解析】∵(a+b)2=72=49,∴a2-ab+b2=(a+b)2-3ab=49-39=10,故答案为10.17.±18【解析】试题分析:利用完全平方公式的结构特征判断即可确定出k的值.解:∵x2+kx+81是完全平方式,∴k=±18.故答案为±18.考点:完全平方式.18.1【解析】∵4×8m×16m=22×(23)m×(24)m=29,∴22+3m+4m=29,∴2+3m+4m=9,∴m=1;故答案为:1.19.72 xy=⎧⎨=⎩【解析】【试题分析】利用代入法解二元一次方程组.【试题解析】由①得:x=4y-1③将③代入②,得:2(4y-1)+y=16,解得:y=2,将y=2代入③,得:x=7.故原方程组的解为72 xy=⎧⎨=⎩.20.17【解析】【分析】原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a 的值代入计算即可求出值.【详解】解:原式221a a 4a 44a 5=-+-+=-+.当a=-3时,原式=12+5=17.21.(1)2421x xy x --+-;(2)25y =.【解析】试题分析:根据整式的运算法则即可求出答案.试题解析:解:(1)∵20A B C -+=,∴2222(1)(2321)C B A x xy x xy x =-=-+--+--222222321x xy x xy x =-+---++2421x xy x =--+-;(2)22363(2321)6(1)A B x xy x x xy +=+--+-+-226x 9xy 6x 36x 6xy 6=+---+-15xy 6x 9=--(156)9y x =--∵36A B +的值与x 无关,∴1560y -=,解得:25y =.点睛:本题考查整式的运算法则,解题的关键是熟练运用整式运算法则.22.(1)C (2)(y+1)2,(x+1)4【解析】试题分析:利用换元法、完全平方公式进行因式分解即可.试题解析:(1)该同学第二步到第三步运用了因式分解的完全平方公式法,故选C .(2)设x 2+2x=y ,原式=y2+2y+1,=(y+1)2,则(x2+2x)(x2+2x+2)+1=(x2+2x+1)2=[(x+1)2]2=(x+1)4.23.(1)a=1,b=2.(2)7【解析】【分析】(1)先把两个不含a、b的方程重新组合,得到一个只含有x,y的二元一次方程组,利用加减消元法求出x、y的值,然后代入另外两个方程得到关于a、b的二元一次方程组,求解即可.(2)甲的计算结果正确,可把甲的结果代入原方程,乙的结果是因为c抄错了才计算有误,故可代入第一个方程中,三个方程联立,解三元一次方程组,即可得到a,b,c的值,相加即可.【详解】(1)解:根据题意,方程组重新组合得,27 38 x yx y-=⎧⎨+=⎩①②①+②得,5x=15,解得x=3,把x=3代入①得,2×3-y=7,解得y=-1,∴方程组的解是31 xy=⎧⎨=-⎩代入另两个方程得,313a bb a-=⎧⎨-=⎩③④③代入④得,3-(3a-1)=a,解得a=1,把a=1代入③得,b=3×1-1=2,∴a、b的值分别是1,2.故答案为:a=1,b=2.(2)甲的计算结果正确,可将32xy=⎧⎨=-⎩代入278ax bycx y+=⎧⎨-=⎩中,乙仅抄错了c,故可将22xy=-⎧⎨=⎩代入 2ax by+=中,联立三个方程组可得322 3148 222 a bca b-=⎧⎪+=⎨⎪-+=⎩解得452 abc=⎧⎪=⎨⎪=-⎩a+b+c=4+5-2=7故答案为7【点睛】本题考查了二元一次方程组的解,(1)根据同解方程,重新组合得到只含有未知数x、y的二元一次方程组并求解是解题的关键,(2)因为乙的c抄错了,但是a,b正确,利用这一点,把结果代入不含c的方程中,联立方程组求解即可.24.(1)112xy=⎧⎪⎨=⎪⎩;(2)小华的打车总费用是18元.【解析】【分析】(1)根据表格内的数据结合打车费=里程费×里程+耗时费×耗时,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据打车费=里程费×里程+耗时费×耗时,列式计算即可求出结论.【详解】解:(1)根据题意得:8812 101216x yx y+=⎧⎨+=⎩,解得:112 xy=⎧⎪⎨=⎪⎩.(2)11×1+14×12=18(元).答:小华的打车总费用是18元.【点睛】本题考查二元一次方程组的应用,解题关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,列式计算.25.(1)①(−p2;(+p2-4B;②(−p2=(+p2-4B;(2)20;(3)2001.【解析】【分析】(1)①根据题意可知图中的阴影部分为正方形,表示出这个正方形的边长,利用正方形的面积公式表示出阴影部分面积即可;图中的阴影部分的面积等于大正方形的面积减去四个小长方形的面积,由此即可求解;②由①的结果即可解答;(2)结合②的结果,整体代入求值即可;(3)把(2019−p2+(2018−p2化为[(2019−p−(2018−p]2+2(2019−p(2018−p,再整体代入求值即可.【详解】解:(1)①(−p2;(+p2-4B;②(−p2=(+p2-4B;(2)∵+=10,B=20,∴(−p2=(+p2-4B=20;(3)∵(2019−p(2018−p=1000,∴(2019−p2+(2018−p2=[(2019−p−(2018−p]2+2(2019−p(2018−p=1+2000=2001.【点睛】本题考查了完全平方公式的几何背景,解题时注意仔细观察图形,表示出各图形的面积是关键.。

湘教版七年级数学下册期中考试及答案【完整】

湘教版七年级数学下册期中考试及答案【完整】

湘教版七年级数学下册期中考试及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .3.下列图形中,是轴对称图形的是( )A .B .C .D .4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.计算22222100-9998-972-1++⋅⋅⋅+的值为( )A .5048B .50C .4950D .50506.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.下列各数中,313.14159 8 257π⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是________. 5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.已知关于x 的方程2x m -=x+ 3m 与方程41210.653y y -+=-的解互为倒数,求m 的值.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC 的度数.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、D6、D7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、1253、135°4、55、2或﹣8.6、2 1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、6 53、(1)35°;(2)36°.4、44°5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.。

湘教版七年级数学下册期中考试测试卷及答案

湘教版七年级数学下册期中考试测试卷及答案

七年级数学下册期中考试测试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第三章《因式分解》班级 姓名 得分第Ⅰ卷一、选择题:(本大题共10小题,每小题4分,共40.0分)本题每小题均有A 、B 、C 、D 四个备选答案,其中只有一个是正确的,请你将正确答案的序号填涂在相应的答题卡上。

1. 下列因式分解正确的是( )A. 2ab 2−4ab =2a(b 2−2b)B. a 2+b 2=(a +b)(a −b)C. x 2+2xy −4y 2=(x −2y)2D. −my 2+4my −4m =−m(y −2)2 2. 计算(a 3)2⋅a 3的结果是( )A. a 8B. a 9C. a 10D. a 113. 已知方程组{a −b =62a +b =m中,a ,b 互为相反数,则m 的值是( )A. 0B. −3C. 3D. 94. 若{x =1y =2是方程组{x +y =32x +ay =6的解,则a 值为( )A. 1B. 2C. 3D. 4 5. 计算(−a)3(−a)2的结果是( )A. −a 5B. a 5C. −a 6D. a 66. 把多项式a 3−a 分解因式,结果正确的是( )A. a(a 2−1)B. a(a −1)2C. a(a +1)2D. a(a +1)(a −1)7. 把多项式3(x −y)−2(y −x)2分解因式结果正确的是( )A. (x −y)(3−2x −2y)B. (x −y)(3−2x +2y)C. (x −y)(3+2x −2y)D. (y −x)(3+2x −2y)8. 下列各式中,计算正确的是( )A. 8a −3b =5abB. (a 2)3=a 5C. a 8÷a 4=a 2D. a 2⋅a =a 3 9. 甲乙两位初三学生练习1000米跑步,如果乙先跑20米,则甲10秒钟可以追上乙,如果乙先跑2秒钟,则甲4秒钟可以追上乙,求甲、乙两人每秒钟各跑多少米.若设甲每秒钟跑x 米,乙每秒钟跑y 米,则所列方程组应该是( )A. {20=10(x −y),(2+4)y =4x B. {10x −10y =20,4x −4y =4C. {10x +20=10y,4x −4y =2D. {10x =10y +20,4x −2=4y10. 将下列多项式因式分解,结果中不含有因式a +1的是( )A. a 2−1B. a 2+aC. a 2+a −2D. (a +2)2−2(a +2)+1第Ⅱ卷二、填空题(本大题共8小题,共32.0分) 11. 分解因式:x 3−4xy 2=______. 12. 若2x+1=16,则x =______.13. 已知方程组{2x +y =3x −2y =5,则2x +6y 的值是______.14. 某水果店购进苹果与提子共60千克进行销售,这两种水果的进价、标价如下表所示,如果店主将这些水果按标价的8折全部售出后,可获利210元,求该水果店购进苹果是______千克.15. ______. 16. 把9m 2−36n 2分解因式的结果是______.17. 若整式x 2+my 2(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以是______(写一个即可).18. 计算:(b −a)2(a −b)3=______(结果用幂的形式表示). 三、解答题(本大题共7小题,共78.0分)19. (10分)已知x m =3,x n =5,求 ①x 2m+n ②x 3m−2n 的值.20. (10分)因式分解(1)a 3b −ab ;(2)(x +y)2−(2x +2y −1).21. (10分)解下列方程组:(1){y =x +37x −5y =9;(2){2x −5y =−3−4x +y =−3;22. (10分)方程组{x +y =−13x −2y =7的解满足2x −ky =10(k 是常数).(1)求k 的值;(2)求出关于x ,y 的方程(k −1)x +2y =13的正整数解.23. (12分)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22−02,12=42−22,20=62−42,因此4,12,20都是“神秘数”.(1)28是“神秘数”吗?为什么?(2)设两个连续偶数为2k +2和2k(其中k 取非负整数),说明这两个连续偶数构造的“神秘数”是4的倍数。

湘教版七年级下册数学期中考试试题有答案

湘教版七年级下册数学期中考试试题有答案

湘教版七年级下册数学期中考试试卷一、单选题1.下列计算正确的是( )A .()33a a -=B .236 a a a ⋅=C .()326a a = D .2322a a a -= 2.下列方程组中,属于二元一次方程组的是( )A .35y x xy =⎧⎨=⎩B .328 2x y x y +=⎧⎨=⎩C .510 15x y x y +=⎧⎪⎨=⎪⎩D .2712260y x x z +=⎧⎨+=⎩ 3.下列式子的变形是因式分解的是( )A .() m x y mx my +=+B .()22 21441x x x -=-+ C .()()2 1343x x x x ++=++ D .()3 11x x x x x -=+-()4.植树节这天有50名同学共种了140棵树苗,其中男生每人种树3棵,女生每人种树2棵.设男生有x 人,女生有y 人,根据题意,下列方程组正确的是( ) A .140 3250x y x y +=⎧⎨+=⎩ B .140 2350x y x y +=⎧⎨+=⎩ C .50 23140x y x y +=⎧⎨+=⎩ D .50 32140x y x y +=⎧⎨+=⎩5.若()3615a b x y x y =,则a ,b 的值分别为( )A .2,5B .3,12C .5,2D .12,3 6.下列各式能用平方差公式计算的是( )A .()()3m n m n +-B .()() 33m n m n ---+C .()()33m n m n +-+D .()() 33m n m n -+-7.若多项式236x kx -+能因式分解为()2x a -,则k 的值是( )A .±12B .12C .6±D .68.对于任何整数a ,多项式()2255a +-都能( )A .被3整除B .被4整除C .被5整除D .被a 整除 9.把一根20m 长的钢管截成2m 长和3m 长两种规格均有的短钢管,且没有余料,设某种截法中2m 长的钢管有a 根,则a 的值可能有( )A .2种B .3种C .4种D .5种10.已知20212020a x =+,20212021b x =+,20212022c x =+,那么222a b c ab bc ca ++---的值等于( )A .0B .1C .2D .3二、填空题11.二元一次方程组15x y xy -=⎧⎨+=⎩的解是 __________________ 12.()4x x -⋅-=______________ ()3233a b -= _______________13.长方体的长是42.410⨯cm ,宽是31.510⨯cm ,高是30.510⨯cm ,这个长方体的体积为_______________ 3cm (用科学计数法表示).14.因式分解:4244x x ++=_________________15.已知关于x ,y 的方程组82x m y m +=⎧⎨-=⎩,则x +y =______________16.计算:()()2323x y z x y z +--+=_______________________17.已知14a a +=,则代数式221a a +=_____________________18.已知2 1x x +=-,则432221x x x +-+=______________三、解答题19.计算(1)()22224x y x y ⋅- (2)()()x y x y ---20.因式分解(1)()21812a b a b ---() (2) 32232xy x y x y -+21.利用简便方法进行计算(1) 118.90.125 1.18⨯+⨯ (2) 2202120202022-⨯22.请用指定的方法解下列方程组(1)521137a b a b +=⎧⎨+=⎩①②(代入消元法)(2)25245231x y x y -=⎧⎨+=⎩①②(加减消元法)23.先化简,再求值:()()()2233x x x -++-,其中2250x x --=.24.如图,在长方形ABCD 中,放入六个形状、大小相同的长方形,所标尺寸如图所示,则图中阴影部分的面积是多少?25.某商场计划拨款9万元从厂家购进50台电视机已知该厂生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,恰好用去9万元,请你研究一下商场的进货方案,并求出两种不同型号电视机的购进台数;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在(1)的方案中,选择哪一种方案销售时获利最多?26.发现与探索.(1)根据小明的解答将下列各式因式分解小明的解答:()()()2226569953451a a a a a a a -+=-+-+=--=--①2718a a +-=②()21817a a ---+()=③2265a ab b -+=(2)根据小丽的思考解决下列问题:小丽的思考:代数式()234a -+,再加上4,则代数式()a -+≥2344,则()234a -+有最小值为4 ①说明:代数式21821a a -+的最小值为-60.②请仿照小丽的思考解释代数式216a -++()的最大值为6,并求代数式2126a a -+-的最大值.参考答案1.C【分析】根据合并同类项法则、同底数幂的乘法的运算法则、幂的乘方的运算法则分别化简得出答案.【详解】解:A.()33 a a -=-,计算错误,不符合题意; B.235 a a a ⋅= ,计算错误,不符合题意;C. ()326a a =,计算正确,符合题意; D.232a a -不是同类项不能合并,不符合题意;故选C .【点睛】此题主要考查了合并同类项、同底数幂的乘法、幂的乘方,正确掌握合并同类项法则、同底数幂的乘法的运算法则、幂的乘方的运算法则是解题的关键.2.B【分析】根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;B、该方程组符合二元一次方程组的定义,是二元一次方程组,故本选项符合题意;C、该方程组的第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意;D、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;故选:B.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.3.D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,属于基础题.4.D【分析】设男生有x 人,女生有y 人,根据男女生人数为50名,共种了140棵树苗,列出方程组即可.【详解】解:设男生有x 人,女生有y 人,根据题意可得:5032140x y x y +=⎧⎨+=⎩故选:D .【点睛】此题考查二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键. 5.A【分析】根据积的乘方的运算法则展开,然后跟已知条件列出关于m 、n 的方程,从而求出m 、n 的值.【详解】解:()333615a b a b x y x y x y ==36,315a b ∴==2,5a b ∴==故选A .【点睛】本题考查了积的乘方,熟练掌握运算法则是解题的关键.6.C【分析】根据平方差公式特征对各选项进行一一分析即可得出结论.【详解】解:A . ()()3m n m n +-根据平方差公特点第一项相同而3m 与m 不同,不能用平方差公式计算,故不是选项A ;B . ()() 33m n m n ---+根据平方差公特点第一项相同而-3m 与-m 不同,第二项互为相反数,而-n 与3n 不是互为相反数,不能用平方差公式计算,故不是选项B ;C . ()()33m n m n +-+根据平方差公特点第一项可互为相反数而3m 与-3m 是互为相反数,第二项相同,而n 与n 相同,能用平方差公式计算,故是选项C ;D . ()() 33m n m n -+-第一项-3m 与3m 互为相反数,第二项n 与-n 也互为相反数,不能用平方差公式计算,故不是选项D .故选择C .【点睛】本题考查平方差公式的应用,掌握平方差公式的特征是解题关键.7.A【分析】根据完全平方公式先确定a ,再确定k 即可.【详解】解:解:因为多项式236x kx -+能因式分解为()2x a -,所以a =±6. 当a =6时,k =12;当a =-6时,k =-12.故选:A .【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k =-12.8.B【分析】多项式利用完全平方公式分解,即可做出判断.【详解】解:原式()22420255455a a a a =++-=++ 则对于任何整数a ,多项式()2255a +-都能被4整除.故选:B .【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.9.B【分析】设3m 长的钢管有b 根,根据钢管的总长度为20m ,即可得出关于a ,b 的二元一次方程,结合a ,b 均为正整数即可得出结论.【详解】设2m 长的钢管有a 根,3m 长的钢管有b 根,∵钢管长20m ,且没有余料,∴2a +3b =20,∴b =2023a -, ∵a ,b 均为正整数,∴16a b =⎧⎨=⎩,44a b =⎧⎨=⎩,72a b =⎧⎨=⎩, ∴a 的值可能有1、4、7,共3种,故选:B .【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键. 10.D【分析】根据20212020a x =+,20212021b x =+,20212022c x =+,分别求出a -b 、a -c 、b -c 的值,然后利用完全平方公式将题目中的式子变形,即可完成.【详解】解:∵20212020a x =+,20212021b x =+,20212022c x =+,∴20212020202120211a b x x -=+--=-20212020202120222a c x x -=+--=-20212021202120221b c x x -=+--=-∴222a b c ab bc ca ++---2221(222222)2a b c ab ac bc =++--- 2222221(222)2a ab b a ac c b bc c =-++-++-+222111()()()222a b a c b c =-+-+- 222111(1)(2)(1)222=⨯-+⨯-+⨯- 11222=++ 3=故选D .【点睛】本题考查完全平方公式的应用,熟练掌握完全平方公式是解题关键.11.32x y =⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解:15x y x y -=⎧⎨+=⎩①② ①+②,得26x =解得:3x =将3x =代入①,得31y -=解得2y =∴二元一次方程组15x y x y -=⎧⎨+=⎩的解是32x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.5x - , 6927a b -【分析】根据积的乘方、幂的乘方、同底数幂的乘法运算法则计算即可.【详解】解:()445x x x x x -⋅-=-⋅=-;()()33223333693273a b b b a a ⨯⨯=--=-故答案为:5x -;6927a b -.【点睛】本题考查了积的乘方、幂的乘方、同底数幂的乘法,熟练掌握运算法则是解题的关键. 13.101.810⨯【分析】根据长方体的体积公式求解即可得到答案.【详解】解:∵长方体的长是42.410⨯cm ,宽是31.510⨯cm ,高是30.510⨯cm ,∴长方体的体积433101.5100.510 1.8102.410⨯⨯⨯⨯=⨯=⨯,故答案为:101.810⨯.【点睛】本题主要考查了科学计数法,同底数幂的乘法,长方体体积,解题的关键在于能够熟练掌握相关知识进行求解.14.()222x + 【分析】根据完全平方公式分解即可.【详解】解: 4244x x ++=()222x +, 故答案为:()222x +. 【点睛】本题考查了用公式法进行因式分解,解题关键是熟练运用完全平方公式进行因式分解. 15.10【分析】把①+②得28x y m m ++-=+即可求解.【详解】解:82x m y m +=⎧⎨-=⎩①②,把① +②得28x y m m ++-=+,∴10x y +=,故答案为:10.【点睛】本题主要考查了代数式求值,解题的关键在于能够熟练掌握相关知识进行求解.16.2224129x y yz z -+-【分析】将各多项式分组,利用平方差公式和完全平方公式计算即可.【详解】解:()()2323x y z x y z +--+()()=2323x y z x y z +---⎡⎤⎡⎤⎣⎦⎣⎦()2223x y z =--()2224129x y yz z =--+222=4129x y yz z -+-故答案为:2224129x y yz z -+-.【点睛】本题考查了利用平方差公式、完全平方公式进行运算,熟记乘法公式是解题关键.17.14【分析】把已知等式两边平方,利用完全平方公式化简求出值即可.【详解】 解:把14a a +=,两边平方得:22211216a a a a ⎛⎫+=++= ⎪⎝⎭221=162=14a a +-∴故答案为:14.【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.18.3【分析】将原式变形为()22221x x x x +-+,再将值代入即可得出答案.【详解】解:21x x +=-432221x x x -∴++()22221x x x x =+-+()22121x x =⨯--+2=221x x --+()221x x =-++()=211-⨯-+=3故答案为:3.【点睛】本题考查了已知式子的值,求代数式的值及整式的四则运算,将原式变形为和2x x +有关的式子是解题的关键.19.(1)x y 6316;(2)22x y -+【分析】根据积的乘方及幂的乘方、同底数幂的乘法、平方差公式的运算法则即可得出答案.【详解】解:(1)()22224x y x y ⋅-()()()42244x x y y =⨯⋅⋅⋅⋅6316x y =; (2)()()x y x y ---()22x y =--22x y =-+.【点睛】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.20.(1)()()a b a b ---6332;(2)()xy y x -2【分析】(1)提取公因式()6a b -即可得到答案;(2)先提取公因式xy ,然后利用完全平方公式求解即可.【详解】解:(1)原式()()632a b a b =---⎡⎤⎣⎦()()6332a b a b =--- ;(2)原式()222xy y xy x =-+()2xy y x =-.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.21.(1)2.5;(2)1【分析】(1)先将18转化为0.125,再根据乘法分配律进行计算即可;(2)将20202022⨯变形为()()2021120211-+,再运用平方差公式计算即可.【详解】解:(1)118.90.125 1.18⨯+⨯()0.12518.9 1.1=⨯+0.12520=⨯2.5=(2)2202120202022-⨯()()220212*********=--+()222202120211=--22202120211=-+ 1=【点睛】本题考查了运算定律与简便运算、四则混合运算、平方差公式.注意运算顺序和运算法则,灵活运用所学的运算定律简便计算.22.(1)32a b =⎧⎨=-⎩;(2)72x y =⎧⎨=-⎩ 【分析】(1)先把②式变形得:73b a =-,然后代入①中求解即可;(2)利用加减消元法解方程即可.【详解】解:(1)②式变形得:73b a =- ③把③式代入①得:()527311a a +-= 解得:3a =把3a =代入①式得:7332b =-⨯=-∴原方程组的解为32a b =⎧⎨=-⎩; (2)① ×5得:1025120x y -=③ , ② ×2得:10462x y +=④ ,③—④得:2958y -=,解得2y =-,把2y =-代入①式得:()25224x -⨯-=,解得7x =∴原方程组的解为72x y =⎧⎨=-⎩. 【点睛】本题主要考查了解二元一次方程组,解题的关键在于能够熟练掌握解二元一次方程组的方法.23.2245x x --;5【分析】先利用完全平方公式和平方差公式化简,再将2250,x x --=变形为225x x -=代入即可得出答案.【详解】解:原式222443x x x =-++-2245x x =--2250,x x --=225x x ∴-=∴原式()22252555x x =--=⨯-=. 【点睛】本题考查了整式的化简求值,熟练掌握完全平方公式和平方差公式是解题的关键. 24.图中阴影部分的面积是244cm【分析】设小长方形的长为xcm ,宽为ycm ,观察图形即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,再根据阴影部分的面积=大长方形的面积﹣6个小长方形的面积,即可求出结论.【详解】解:设小长方形的长为xcm ,宽为ycm ,根据题意得:26314x y y x y +-=⎧⎨+=⎩, 解得:82x y =⎧⎨=⎩, ∴S 阴影=14×(6+2×2)﹣8×2×6=44(cm 2).答:图中阴影部分面积是44cm 2.【点睛】本题考查了二元一次方程组的应用,观察图形列出关于x 、y 的二元一次方程组是解题的关键.25.(1)商场共有两种进货方案.方案一:购进甲种型号电视机25台,乙种型号电视机25台;方案二:购进甲种型号电视机35台,丙种型号电视机15台;(2)选择方案二:购进甲种型号电视机35台,丙种型号电视机15台,获利最多【分析】(1)设甲有x 台,乙有y 台,由题意等量关系是:两种电视的台数和为50台,买两种电视花去的费用9万元.根据等量关系列出方程组,再解即可;(2)与(1)类似的等量关系,分进的两种电视是甲乙,乙丙,甲丙三种情况进行讨论.求出正确的方案;根据所得出的方案,分别计算出各方案的利润,然后判断出获利最多的方案;【详解】解:(1)分三种情况计算:①设商场购进甲种型号电视机x 台,乙种型号电视机y 台,则{501500210090000x y x y +=+=, 解得{2525x y == ②设商场购进甲种型号电视机x 台,丙种型号电视机z 台,则{501500250090000x z x z +=+=,解得{3515x z == ③设商场购进乙种型号电视机y 台,丙种型号电视机z 台,则 {502100250090000y z y z +=+=,解得{37.587.5y z =-=(不符合题意,舍去) 答:商场共有两种进货方案.方案一:购进甲种型号电视机25台,乙种型号电视机25台;方案二:购进甲种型号电视机35台,丙种型号电视机15台.(2)方案一利润:()25150252008750⨯+⨯=元方案二利润:()35150152509000⨯+⨯=元∵8750元<9000元,∴选择方案二:购进甲种型号电视机35台,丙种型号电视机15台,获利最多.【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.26.(1)①()()29a a -+;②()()a a --28;③()()5a b a b --;(2)①见解析;②30【分析】(1)仿照小明的解答过程、利用完全平方公式、平方差公式计算;(2)仿照小丽的思考过程,利用完全平方公式、平方差公式计算、偶次方的非负性解答.【详解】解:(1)①2718a a +-24714a a =-+-()()()2272a a a =+-+-()()=227a a -++()()=29a a -+②()()21817a a ---+()()218116167a a =---+-+()2149a =---()()=5353a a ---+()()28a a =--③2265a ab b +-22226995a ab b b b =-++-()2234a b b =--()()3232a b b a b b =-+--()()=5a b a b --(2)解:代数式()222182118818121960a a a a a -+=-+-+=--无论a 取何值()290a -≥再减去60,则代数式()29-60-60a -≥,则()29-60a -有最小值-60∴代数式21821a a -+的最小值为-60.②解释:无论a 取何值()210a -+≤,再加上6,则代数式()2166a -++≤,则()216a -++有最大值6求值:()221261236366a a a a -+-=--+--()26366a =--+-()2630=--+a()260a--≤()263030∴--+≤a∴代数式2126-+-有最大值30.a a【点睛】本题考查的是因式分解的应用、偶次方的非负性,掌握完全平方公式、平方差公式、偶次方的非负性是解题的关键.。

湘教版七年级数学下册期中考试(及参考答案)

湘教版七年级数学下册期中考试(及参考答案)

湘教版七年级数学下册期中考试(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-32.下列各曲线中表示y是x的函数的是()A.B.C.D.3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一5的绝对值是()A.5 B.15C.15-D.-55.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°6.已知32xy=⎧⎨=-⎩是方程组23ax bybx ay+=⎧⎨+=-⎩的解,则+a b的值是()A.﹣1 B.1 C.﹣5 D.57.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A .13B .710C .35D .13208.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .5210.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若1m +与2-互为相反数,则m 的值为_______.2.如图,点O 是直线AD 上一点,射线OC ,OE 分别平分∠AOB 、∠BOD .若∠AOC =28°,则∠BOE =________.3.若|a|=5,b=﹣2,且ab >0,则a+b=________.4.使分式211x x -+的值为0,这时x=________. 5.若264a =3a =________.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.已知关于x 的方程2x m -=x+ 3m 与方程41210.653y y -+=-的解互为倒数,求m 的值.3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.列方程解应用题:油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、D4、A5、B6、A7、B8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、62°3、-74、15、±26、1三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、6 53、(1)证明见解析;(2)75.4、20°5、(1)40;(2)72;(3)280.6、生产圆形铁片的有24人,生产长方形铁片的有18人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图11
共55
{
共90元
{
初中数学试卷
湖南省邵阳县黄亭市镇中学2017上学期七年级下册期中考试
数 学 试 卷
班级 姓名_____ ____得分__ __
一、选择题(每小题3分,共30分)
1. 如果()2
5-+y x 与1023+-y x 互为相反数,则y x ,的值为( )
A 、2,3==y x
B 、3,2==y x
C 、5,0==y x
D 、0,5==y x
2、某商场将一种商品A 按标价九折出售,仍获利10%,若商品A 标价为33元,那么商品进价为( ) A.31元 B.30.2元 C.29.7元 D.27元
3、若多项式1002
1
322
2
--+--x xy y kxy x 中不含xy 项,则k 取( )
A 、1
B 、1-
C 、4
1
D 、0
4、已知多项式c bx x ++2
2分解因式为)1)(3(2+-x x ,则c b ,的值为( ) A 、1,3-==c b
B 、2,6=-=c b
C 、4,6-=-=c b
D 、6,4-=-=c b
5、三元一次方程组⎪⎩

⎨⎧=--=--=+-556437
222a x z a z y a y x ,x + y + z=( )
A. 36
B.18
C. 9
D. 2
6、已知⎩

⎧==⎩⎨⎧==33
12y x y x ,,都是方程y=kx+b 的解,则k 和b 的值是( ) A.
⎩⎨⎧==2
1b k B.
⎩⎨
⎧-==1
0b k C.
⎩⎨
⎧-==3
2b k D.
⎩⎨
⎧-==2
1b k
7、若⎩

⎧==b y a
x (a ≠0)是方程02=+y x 的一个解,则( ) A.a 和b 同号 B a 和b 异号
C.a 和b 可能同号也可能异号
D.a ≠0, b =0
8、学生问老师多少岁了,老师说:我和你这么大时,你才4岁,你到我这么大时,我就37岁了,则老师比学生大( )
A 8岁
B 9岁
C 10岁
D 11岁
9、对于有理数x ,y ,定义新运算:x ☆y =ax+by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算,已知1☆2=1,(-3)☆3=6,则2☆(-5)的值是( ) A .-5 B .-6 C .-7 D .-8
10、某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:
表格中捐款6元和8元的人数不小心被墨水污染已看不清楚.若设捐款6元的有x 名同学,捐款8元的有y 名同学,根据题意,可得方程组( )
A .
B .
C .
D .
二、填空题(每小题3分,共30 分) 11, 已知a 2—4a+9b 2+6b+5=0,则a+b= 。

12.计算=⨯⎪
⎭⎫

⎛-20132012
4.0212 。

13.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式
是 .
14.已知方程2x+5y –4=0,用含x 的代数式表示y= 则y
x
324⋅= 15.当x = 时,代数式2x -3的值与2
1--互为负倒数.
16.关于y x ,的方程组⎩

⎧=+=-m y x m x y 52的解满足632=+y x ,则m 的值为 17. 母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从如图11中信息可知三束鲜花和五个礼品盒共要______元. 18. 若方程16)2()62(3
2
=+--+-n m y n x
m 是关于x 、y 的二元一次方程,则=+n m .
19,甲队有37人,乙队有23人,现在从乙队抽调x 人到甲队,使甲队人数正好是乙队人数的2倍,根据题意,
列出方程是_____________
20、如果55
2=a ,44
3=b ,33
4=c ,那么 > > 三.解答题(60分)
21.解方程(组):(10分)(1)⎪⎩⎪⎨⎧-=-=+)
2(6)9(534
34y x y x (2)4(x -3) 2-(2x +1) 2=(3x +1)(1-3x )+9x 2
22(20分)因式分解:(1)—4x 3
+16x 2
—20x (2)a 2
(x-2a)2
-2a(2a-x)3
(3)(x 2+2x)2-2(x 2+2x)-3 (4)x 3+3x 2—4 (拆开分解法)
23、m 为何值时,关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍?(6分)
24、若b a b a +=++2
1
2
2
,化简2a 3b (2ab+1)-a 2(-2ab )2,并求它的值.(8分)
25、已知m
4,8n
a b ==,用含a,b 的式子表示下列代数式,求:(1)2m 32n + ;(2)4m 62n
-的值
26.(6分)已知a+b+c=0,求证:03
2
2
3
=+-++b abc c b c a a
27.(10分)某校七年级400名学生到郊外参加植树活动,已知用3辆小客车和1辆大客车每次可运送学生105人,用1辆小客车和2辆大客车每次可运送学生110人.(1)每辆小客车和每辆大客车各能坐多少名学生? (2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案; ②若小客车每辆租金150元,大客车每辆租金250元,请选出最省线的租车方案,并求出最少租金.
湖南省邵阳县黄亭市镇中学2017上学期七年级下册期中考试
数 学 试 卷 答 案
1、C
2、D
3、C
4、D
5、B
6、C
7、B 8、D
9、C
10、B
11、35 12、5
2
13、2
2
2
2)(b ab a b a ++=+ 14、524x y -=
15、25
16、
4
3
17、145
18、-3 19、37+x=2(23-x)
20、b>c>a
21(1)⎪⎩⎪⎨⎧-=-=
+)
2(6)9(53434y x y x
(2)4(x -3) 2-(2x +1) 2=(3x +1)(1-3x )+9x
2
解:①×12得:3x+4y=16 (3)
4(x-3)2-(2x+1)2=(3x+1)(1-3x )+9x 2
由②得:5x-6y=33 (4) 4x 2-24x+36-4x 2-4x-1=1-9x 2+9x 2
22、因式分解:(1)—4x 3
+16x 2
—20x (2)a 2(x-2a)2-2a(2a-x)3
解:原式=)54(42+--x x x
解:原式=[])2(2)2(2a x a a x a -+-
=)32()2(2a x a x a --
(3)(x 2+2x)2-2(x 2+2x)-3 (4)x 3+3x 2—4 (拆开分解法) 解:原式=)12)(32(22++-+x x x x
解:原式=42223-++x x x
=(x-1)(x+3)(x+1)2
=)2)(2()2(2-+++x x x x
23、解:4x-2m=3x-1 x=2m-1 =)2)(2(2
-++x x x x=2x-3m
x=3m
=)1)(2)(2(-++x x x
2m-1=2×3m m=-1/4 =(x+2)2
(x-1) 当m=-1/4时x 的方程4x-2m=3x-1的解是方程x=2x-3m 的解的2倍.
24、解:b a b a +=+
+2
1
2
2 041
4122=+-++
-b b a a 0)2
1
()21(22=-+-b a
∴21,21==
b a ∴ 2a 3b (2ab+1)-a 2(-2ab )2=222324424b a a b a b a ⨯-+=b a 32=21)21(23⨯⨯=8
1
25、解:∵4m
=a ,8n
=b , ∴22m
=a ,23n
=b , ①22m+3n =22m •23n =ab ; ②24m-6n =24m ÷26n =(22m )2÷(23n )2=a 2b 2

26、a 3+a 2c+b 2c-abc+b 3 =a 3-a 2(a+b)-b 2(a+b)+ab(a+b)+b 3 =a 3-a 3-a 2b-ab 2-b 3+a 2b+ab 2+b 3 =0 27.解:(1)设每辆小客车能坐x 人,每辆大客车能坐y 人 据题意:…(4分)解得:…(5分)答:(略) (2)①由题意得:20m+45n=400∴…(8分) ∵m 、n 为非负整数∴ 或 或…(10分) ∴租车方案有三种:
方案一:小客车20车、大客车0辆 方案二:小客车11辆,大客车4辆 方案三:小客车2辆,大客车8辆②
方案一租金:150×20=3000(元)
方案二租金:150×11+250×4=2650(元) 方案三租金:150×2+250×8=2300(元) ∴方案三租金最少,最少租金为2300元.。

相关文档
最新文档