中考数学专题复习——锐角三角函数的实际应用
锐角三角函数有哪些实际应用场景
锐角三角函数有哪些实际应用场景锐角三角函数在咱们的日常生活中那可是有着超级多的实际应用场景呢,简直无处不在!先来说说建筑领域吧。
你知道吗,建筑工人在盖房子的时候,可离不开锐角三角函数的知识。
比如说,要建造一个有特定倾斜角度的屋顶,这就需要计算出屋顶的角度以及所需材料的长度和数量。
想象一下,工人们站在高高的脚手架上,拿着测量工具,认真地计算着角度和长度。
他们的眼神专注,手中的工具就像是神奇的魔法棒,通过锐角三角函数,把一堆堆的建筑材料变成了坚固又美观的房子。
再讲讲导航和地图。
当我们使用手机导航去一个陌生的地方时,导航软件会根据我们的位置和目的地,计算出最佳的路线。
这背后可就有锐角三角函数的功劳啦!它帮助确定我们与目的地之间的直线距离和实际行走的路程。
就像有一次我自己出门旅行,在一个完全陌生的城市里,靠着导航找到了一家特别棒的小吃店。
那个时候我就在想,要是没有这些数学知识的支撑,我可能还在街头瞎转悠,找不到美食的方向呢。
还有测量山峰的高度。
测量人员没办法直接爬到山顶去测量,那怎么办呢?这时候就轮到锐角三角函数登场啦!他们在山脚下选好测量点,测量出观测点与山顶的角度,再结合测量点与山底的距离,就能算出山峰的高度。
这就像是解开了一个神秘的谜题,让人充满了成就感。
在航海中,锐角三角函数也发挥着重要作用。
船员们需要根据星星的位置和角度来确定船只的方向和位置。
想象一下,在浩瀚的大海上,满天繁星闪烁,船员们依靠着锐角三角函数的知识,勇敢地驶向目的地,是不是特别酷?在日常生活中,我们装修房子的时候,如果想要在墙上挂一幅画,而且要保证画是水平的,那就得用到锐角三角函数来测量和计算。
又比如,我们要搭建一个秋千,要确定秋千的绳子长度和角度,让秋千荡起来既安全又有趣,这也需要锐角三角函数的帮忙。
甚至在体育比赛中也有它的身影。
比如滑雪运动员在从山坡上滑下来的时候,他们需要根据山坡的角度和自己的速度来调整姿势和控制方向,以确保安全和取得好成绩。
【中考数学考点复习】第六节 锐角三角函数及其应用 课件(共33张PPT)
返回目录
第1题图
第六节 锐角三角函数及其应用
返回目录
改编条件:题干改变“测量点的高度”;“两个非特殊角”改为“两个 特殊角” 2.(2020 贺州)如图,小丽站在电子显示屏正前方 5 m 远的 A1 处看“防溺 水六不准”,她看显示屏顶端 B 的仰角为 60°,显示屏底端 C 的仰角为 45°,已知小丽的眼睛与地面距离 AA1=1.6 m, 3.求电子显示屏高 BC 的值.(结果保留一位小数. 4.参考数据: 2≈1.414, 3≈1.732).
第 6 题图
第六节 锐角三角函数及其应用
解:如解图,延长 BC 交 MN 于点 F, 由题意得 AD=BE=3.5 米,AB=DE=FN=1.6 米,
在 Rt△MFE 中,∠MEF=45°,∴MF=EF,
在 Rt△MFB 中,∠MBF=33°,
∴MF=BF·tan33°=(MF+3.5)·tan33°,
第六节 锐角三角函数及其应用
返回目录
3. .如图,为测量电视塔观景台 A 处的高度,某数学兴趣小组在电视塔 附近一建筑物楼顶 D 处测得塔 A 处的仰角为 45°,塔底部 B 处的俯角为 22°.已知建筑物的高 CD 约为 61 米,请计算观景台的高 AB 的值.(结果 精确到 1 米,参考数据:sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)
形的边角 1. 三边关系:a2+b2=c2
关系
2. 两锐角关系:∠A+∠B=90° 3. 边角关系:sinA=cosB= a ;cosA=sinB= b;
tanA=
a
c
;tanB=
b
c
图②用
返回思维导图
返回目录
1.仰角、俯角:如图③,当从低处观测高处的目标时,视线与水平线 锐角三角 所成的锐角称为__仰__角____,当从高处观测低处的目标时,视线与水平 函数的实 线所成的锐角称为___俯__角___ 际应用 2.坡度(坡比)、坡角:如图④,坡面的铅直高度h和水平宽度l的比叫坡
中考专题复习-锐角三角函数的应用
第8题解图
答: 旗杆AB的高度约为18米.
感谢聆听!
答:A.B间的距离约为115.5海里.
3. (2019内江)如图,两座建筑物DA与CB,其中CB的高为120米,从DA的顶点A测得
CB顶部B的仰角为30°,测得其底部C的俯角为45°,求这两座建筑物的地面距离DC
为多少米? (结果保留根号)
Rt△ABE
Rt△ACE
120
30° 45°
列方程
第3题图
解: 如解图,作FG⊥AB于点G,AG=AB-GB=AB-FD=AB-1.8,
由题意知,△ABE和△FDE均为等腰直角三角形,
∴AB=BE,DE=FD=1.8米,
∴FG=DB=DE+BE=AB+1.8.
在Rt△AFG中,
即
A B -1.8 A B +1.8
∴AB≈18.2≈18.
AG=tan∠AFG=tan39.3°, FG
模型一 解一个直角三角形
基本图形及所作辅 助线
总结
作BE⊥AC,构造Rt△ABE和矩形BDCE,根据已知条件求解
针对训练
1. (2019吉林)墙壁及淋浴花洒截面如图所示.已知花洒底座A与地面的距离AB为170 cm,花洒AC的长为30 cm,与墙壁的夹角∠CAD为43°.求花洒顶端C到地面的距离 CE(结果精确到1 cm).(参考数据: sin43°=0.68,cos43°=0.73,tan43°=0.93)
tanα
3.方向角
锐角三 角函数 的实际 应用
1.方向角:如图4, A点位于O点的北偏东30°方向, B点位于O点的南偏东60° 方向, C点位于O点的北偏西45°方向(或西北方向)
图4
图5
中考数学专题讲练 锐角三角函数的实际应用三大模型
度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(
精确到1m).(参考数据:sin55°≈0.82,cos55°≈0.57,
tan55°≈1.43)
[思维方法]过点N作EF∥AC交AB于点E,交CD于
点F,构造Rt△BEN、Rt△DNF和矩形AEFC,分别解
两个直角三角形可得DF、BE的长,进而可得AB的高
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
回 首 页
总 目 录
总
62m,100m,200m.若管道AB与水平线AA2的夹角为30°,管道BC与水
目 录
平线BB2夹角为45°,求管道AB和BC的总长度(结果保留根号).
回 首 页
总 目 录
回 首 页
总 目 录
模型三 拥抱型
分别解两个直角三角形,其中公共边BC是解题的关键.在
Rt△ABC和Rt△DCB中,BC=BC.图形演变及对应的数量关系
回 首 页
总 目 录
模 型 一 背靠背型
通过在三角形内作高CD,构造出两个直角三角形求解,其中
公共边CD是解题的关键.在Rt△ACD和Rt△BCD中,CD为公共
回
边,AD+BD=AB.图形演变及对应的数量关系如下:
首 页
总 目 录
经典母题
如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口
C测得教学楼楼顶D的仰角为18°,教学楼底部B的俯角为20°
总 目
录
回 首 页
总 目 录
3.(2020·邵阳)2019年12月23日,湖南省政府批准,全国“十三五”规划
2.中考数学锐角三角函数实际应用
中考复习——锐角三角函数的实际应用1、在东西方向的海岸线l 上有一长为1km 的码头MN (如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东60°,且与A 相距 km 的C 处. (1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN 靠岸?请说明理由.2、如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45)3、如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶的MN 这层上晒太阳.( 取73.1)(1)求楼房的高度约为多少米?(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由.第25题图DBAC东l4,图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE 为12°,支架AC长为0.8m,∠ACD为80°,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)5.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)6.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.(1)山坡坡角(即∠ABC)的度数等于▲度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).7.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.41,≈1.73)8、如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:≈1.4,≈1.7,结果保留整数.)9、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).10、如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).11、如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,≈1.73)12.如图,小莉的家在锦江河畔的电梯公寓AD内,她家的河对岸新建了一座大厦BC,为了测量大厦的高度,小莉在她家的楼底A处测得大厦顶部B的仰角为60°,爬上楼顶D处测得大厦顶部B的仰角为30°,已知电梯公寓高82米,请你帮助小莉计算出大厦的高度BC及大厦与电梯公寓间的距离AC.13.如图,一辆摩拜单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于地面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD 为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)14.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)15.如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC 的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)16.小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)17.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).18.为给人们的生活带来方便,2017年兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离(结果保留整数).(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)图1 图219.如图2,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,展开小桌板使桌面保持水平时如图1,小桌板的边沿O点与收起时桌面顶端A点的距离OA=75厘米,此时CB⊥AO,∠AOB=∠ACB=37°,且支架长OB与支架长BC的长度之和等于OA的长度.(1)求∠CBO的度数;(2)求小桌板桌面的宽度BC.(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)20.如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为31°,塔底B的仰角为26.6°.已知塔高BC=40米,塔所在的山高OB=240米,OA=300米,图中的点O、B、C、A、P在同一平面内.求:(1)P到OC的距离.(2)山坡的坡度tanα.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin31°≈0.52,tan31°≈0.60)21.(2017湖南常德第24题)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米)(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.414,≈1.732)22.如图所示,电工李师傅借助梯子安装天花板上距地面2.90m的顶灯。
锐角三角函数及其应用(共60题)(学生版)
锐角三角函数及其应用(60题)一、解答题1(2023·河南·统考中考真题)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,AB=30cm,顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交BC于点H.经测量,点A距地面1.8m,到树EG的距离AF= 11m,BH=20cm.求树EG的高度(结果精确到0.1m).2(2023·四川宜宾·统考中考真题)渝昆高速铁路的建成,将会显著提升宜宾的交通地位.渝昆高速铁路宜宾临港长江公铁两用大桥(如图1),桥面采用国内首创的公铁平层设计.为测量左桥墩底到桥面的距离CD,如图2.在桥面上点A处,测得A到左桥墩D的距离AD=200米,左桥墩所在塔顶B的仰角∠BAD=45°,左桥墩底C的俯角∠CAD=15°,求CD的长度.(结果精确到1米.参考数据:2≈1.41,3≈1.73)3(2023·辽宁·统考中考真题)暑假期间,小明与小亮相约到某旅游风景区登山,需要登顶600m高的山峰,由山底A处先步行300m到达B处,再由B处乘坐登山缆车到达山顶D处.已知点A,B.D,E,F在同一平面内,山坡AB的坡角为30°,缆车行驶路线BD与水平面的夹角为53°(换乘登山缆车的时间忽略不计)(1)求登山缆车上升的高度DE;(2)若步行速度为30m/min,登山缆车的速度为60m/min,求从山底A处到达山顶D处大约需要多少分钟(结果精确到0.1min)(参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)4(2023·甘肃兰州·统考中考真题)如图1是我国第一个以“龙”为主题的主题公园--“兰州龙源”.“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动.具体过程如下:如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得∠BAC=38°、∠BAD=53°,AB=18m.求“龙”字雕塑CD的高度.(B,C,D三点共线,BD⊥AB.结果精确到0.1m)(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)5(2023·内蒙古通辽·统考中考真题)如图,一艘海轮位于灯塔P的北偏东72°方向,距离灯塔100nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东40°方向上的B处.这时,B 处距离灯塔P有多远(结果取整数)?(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84.)6(2023·湖北·统考中考真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比.已知斜坡CD长度为20米,∠C=18°,求斜坡AB的长.(结果精确到米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)7(2023·湖南张家界·统考中考真题)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB的高度,测量方案如图:先将无人机垂直上升至距水平地面225m的P 点,测得奇楼顶端A的俯角为15°,再将无人机沿水平方向飞行200m到达点Q,测得奇楼底端B的俯角为45°,求奇楼AB的高度.(结果精确到1m,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)8(2023·辽宁大连·统考中考真题)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE,BC ⊥BE,CD∥BE,AC=10.4m,BC=1.26m,点A关于点C的仰角为70°,则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)9(2023·广东·统考中考真题)2023年5月30日,神舟十六号载人飞船发射取得圆满成功,3名航天员顺利进驻中国空间站,如图中的照片展示了中国空间站上机械臂的一种工作状态,当两臂AC=BC= 10m,两臂夹角∠ACB=100°时,求A,B两点间的距离.(结果精确到0.1m,参考数据sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)10(2023·湖南·统考中考真题)我国航天事业捷报频传,2023年5月30日,被誉为“神箭”的长征二号F运载火箭托举神舟十六号载人飞船跃入苍穹中国空间站应用与发展阶段首次载人发射任务取得圆满成功,如图(九),有一枚运载火箭从地面O处发射,当火箭到达P处时,地面A处的雷达站测得AP距离是5000m,仰角为23°.9s,火箭直线到达Q处,此时地面A处雷达站测得Q处的仰角为45°.求火箭从P 到Q处的平均速度(结果精确到1m/s).(参考数据:sin23°≈0.39,cos23°≈0.92,tan23°≈0.42)11(2023·浙江绍兴·统考中考真题)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG⊥CD交OA于点G,支架DE平行地面OB,篮筺EF与支架DE在同一直线上,OA=2.5米,AD=0.8米,∠AGC=32°.(1)求∠GAC的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)12(2023·浙江台州·统考中考真题)教室里的投影仪投影时,可以把投影光线CA,CB及在黑板上的投影图像高度AB抽象成如图所示的△ABC,∠BAC=90°.黑板上投影图像的高度AB=120cm,CB 与AB的夹角∠B=33.7°,求AC的长.(结果精确到1cm.参考数据:sin33.7°≈0.55,cos33.7°≈0.83,tan33.7°≈0.67)13(2023·湖南怀化·统考中考真题)为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD(碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A点用测角仪测得碑顶D的仰角为30°,在B点处测得碑顶D的仰角为60°,已知AB=35m,测角仪的高度是1.5m(A、B、C在同一直线上),根据以上数据求烈士纪念碑的通高CD.(3≈1.732,结果保留一位小数)14(2023·新疆·统考中考真题)烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图1).某数学兴趣小组利用无人机测量该烽燧的高度,如图2,无人机飞至距地面高度31.5米的A处,测得烽燧BC的顶部C处的俯角为50°,测得烽燧BC的底部B处的俯角为65°,试根据提供的数据计算烽燧BC的高度.(参数据:sin50°≈0.8,cos50°≈0.6,tan50≈1.2,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)15(2023·四川遂宁·统考中考真题)某实践探究小组想测得湖边两处的距离,数据勘测组通过勘测,得到了如下记录表:实践探究活动记录表活动内容 测量湖边A、B两处的距离成员 组长:××× 组员:××××××××××××测量工具 测角仪,皮尺等测量示意图说明:因为湖边A、B两处的距离无法直接测量,数据勘测组在湖边找了一处位置C.可测量C处到A、B两处的距离.通过测角仪可测得∠A、∠B、∠C的度数.测量数据角的度数∠A=30°∠B=45°∠C=105°边的长度BC=40.0米AC=56.4米数据处理组得到上面数据以后做了认真分析.他们发现不需要勘测组的全部数据就可以计算出A、B之间的距离.于是数据处理组写出了以下过程,请补全内容.已知:如图,在△ABC中,∠A=30°,∠B=45°..(从记录表中再选一个条件填入横线)求:线段AB的长.(为减小结果的误差,若有需要,2取1.41,3取1.73,6取2.45进行计算,最后结果保留整数.)16(2023·四川成都·统考中考真题)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16°,且靠墙端离地高BC为4米,当太阳光线AD与地面CE的夹角为45°时,求阴影CD的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)17(2023·贵州·统考中考真题)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线夹角为45°,A、B两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,2≈1.41)18(2023·湖北鄂州·统考中考真题)鄂州市莲花山是国家4A级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G处挂一条大型竖直条幅到点E处,挂好后,小明进行实地测量,从元明塔底部F点沿水平方向步行30米到达自动扶梯底端A点,在A点用仪器测得条幅下端E的仰角为30°;接着他沿自动扶梯AD到达扶梯顶端D点,测得点A和点D的水平距离为15米,且tan∠DAB=43;然后他从D点又沿水平方向行走了45米到达C点,在C点测得条幅上端G的仰角为45°.(图上各点均在同一个平面内,且G,C,B共线,F,A,B共线,G、E、F共线,CD∥AB,GF⊥FB).(1)求自动扶梯AD的长度;(2)求大型条幅GE的长度.(结果保留根号)19(2023·山东东营·统考中考真题)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km至C港,则A,C两港之间的距离为多少km?20(2023·四川凉山·统考中考真题)超速容易造成交通事故.高速公路管理部门在某隧道内的C、E 两处安装了测速仪,该段隧道的截面示意图如图所示,图中所有点都在同一平面内,且A、D、B、F在同一直线上.点C、点E到AB的距离分别为CD、EF,且CD=EF=7m,CE=895m,在C处测得A点的俯角为30°,在E处测得B点的俯角为45°,小型汽车从点A行驶到点B所用时间为45s.(1)求A,B两点之间的距离(结果精确到1m);(2)若该隧道限速80千米/小时,判断小型汽车从点A行驶到点B是否超速?并通过计算说明理由.(参考数据:2≈1.4,3≈1.7)21(2023·内蒙古·统考中考真题)为了增强学生体质、锤炼学生意志,某校组织一次定向越野拉练活动.如图,A点为出发点,途中设置两个检查点,分别为B点和C点,行进路线为A→B→C→A.B点在A点的南偏东25°方向32km处,C点在A点的北偏东80°方向,行进路线AB和BC所在直线的夹角∠ABC为45°.(1)求行进路线BC和CA所在直线的夹角∠BCA的度数;(2)求检查点B和C之间的距离(结果保留根号).22(2023·湖南常德·统考中考真题)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,△EBC是等腰三角形且BC=CE,∠FBA=114.2°,靠背FC=57cm,支架AN=43cm,扶手的一部分BE=16.4cm.这时她问小余同学,你能算出靠背顶端F点距地面(MN)的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.8°=0.91,cos65.8°=0.41,tan65.8°=2.23)23(2023·山东·统考中考真题)无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC,无人机在空中点P处,测得点P距地面上A点80米,点A处俯角为60°,楼顶C点处的俯角为30°,已知点A与大楼的距离AB为70米(点A,B,C,P在同一平面内),求大楼的高度BC(结果保留根号)24(2023·重庆·统考中考真题)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品,经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:2≈1.414,3≈1.732)25(2023·山东聊城·统考中考真题)东昌湖西岸的明珠大剧院,隔湖与远处的角楼、城门楼、龙堤、南关桥等景观遥相呼应.如图所示,城门楼B在角楼A的正东方向520m处,南关桥C在城门楼B的正南方向1200m处.在明珠大剧院P测得角楼A在北偏东68.2°方向,南关桥C在南偏东56.31°方向(点A,B,C,P四点在同一平面内).求明珠大剧院到龙堤BC的距离(结果精确到1m).(参考数据:sin68.2°≈0.928,cos68.2°≈0.371,tan68.2°≈2.50,sin56.31°≈0.832,cos56.31°≈0.555,tan56.31°≈1.50)26(2023·四川·统考中考真题)“一缕清风银叶转”,某市20台风机依次矗立在云遮雾绕的山脊之上,风叶转动,风能就能转换成电能,造福千家万户.某中学初三数学兴趣小组,为测量风叶的长度进行了实地测量.如图,三片风叶两两所成的角为120°,当其中一片风叶OB 与塔干OD 叠合时,在与塔底D 水平距离为60米的E 处,测得塔顶部O 的仰角∠OED =45°,风叶OA 的视角∠OEA =30°.(1)已知α,β两角和的余弦公式为:cos α+β =cos αcos β-sin αsin β,请利用公式计算cos75°;(2)求风叶OA 的长度.27(2023·湖北宜昌·统考中考真题)2023年5月30日,“神舟十六号”航天飞船成功发射.如图,飞船在离地球大约330km 的圆形轨道上,当运行到地球表面P 点的正上方F 点时,从中直接看到地球表面一个最远的点是点Q .在Rt △OQF 中,OP =OQ ≈6400km .(参考数据:cos16°≈0.96,cos18°≈0.95,cos20°≈0.94,cos22°≈0.93,π≈3.14)(1)求cos α的值(精确到0.01);(2)在⊙O 中,求PQ的长(结果取整数).28(2023·四川泸州·统考中考真题)如图,某数学兴趣小组为了测量古树DE的高度,采用了如下的方法:先从与古树底端D在同一水平线上的点A出发,沿斜面坡度为i=2:3的斜坡AB前进207m到达点B,再沿水平方向继续前进一段距离后到达点C.在点C处测得古树DE的顶端E的俯角为37°,底部D的俯角为60°,求古树DE的高度(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,计算结果用根号表示,不取近似值).29(2023·山西·统考中考真题)2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑各种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算BC 和AB 的长度(结果精确到0.1m .参考数据:3≈1.73,2≈1.41).课题母亲河驳岸的调研与计算调查方式资料查阅、水利部门走访、实地查看了解功能驳岸是用来保护河岸,阻止河岸崩塌或冲刷的构筑物驳岸剖面图相关数据及说明,图中,点A ,B ,C ,D ,E 在同一竖直平面内,AE 与CD 均与地面平行,岸墙AB ⊥AE 于点A ,∠BCD =135°,∠EDC =60°,ED =6m ,AE =1.5m ,CD =3.5m计算结果交流展示30(2023·湖南·统考中考真题)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”一辆车从被山峰POQ遮挡的道路②上的点B处由南向北行驶.已知∠POQ=30°,BC∥OQ,OC⊥OQ,AO⊥OP,线段AO的延长线交直线BC于点D.(1)求∠COD的大小;(2)若在点B处测得点O在北偏西α方向上,其中tanα=35,OD=12米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点A处的货车)31(2023·四川内江·统考中考真题)某中学依山而建,校门A处有一坡角α=30°的斜坡AB,长度为30米,在坡顶B处测得教学楼CF的楼顶C的仰角∠CBF=45°,离B点4米远的E处有一个花台,在E 处测得C的仰角∠CEF=60°,CF的延长线交水平线AM于点D,求DC的长(结果保留根号).32(2023·湖北随州·统考中考真题)某校学生开展综合实践活动,测量某建筑物的高度AB,在建筑物附近有一斜坡,坡长CD=10米,坡角α=30°,小华在C处测得建筑物顶端A的仰角为60°,在D处测得建筑物顶端A的仰角为30°.(已知点A,B,C,D在同一平面内,B,C在同一水平线上)(1)求点D到地面BC的距离;(2)求该建筑物的高度AB.33(2023·天津·统考中考真题)综合与实践活动中,要利用测角仪测量塔的高度.如图,塔AB前有一座高为DE的观景台,已知CD=6m,∠DCE=30°,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为45°,在观景台D处测得塔顶部B的仰角为27°.(1)求DE的长;(2)设塔AB的高度为h(单位:m).①用含有h的式子表示线段EA的长(结果保留根号);②求塔AB的高度(tan27°取0.5,3取1.7,结果取整数).34(2023·山东临沂·统考中考真题)如图,灯塔A周围9海里内有暗礁.一渔船由东向西航行至B 处,测得灯塔A在北偏西58°方向上,继续航行6海里后到达C处,测得灯塔A在西北方向上.如果渔船不改变航线继续向西航行,有没有触礁的危险?(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625;sin58°≈0.848,cos58°≈0.530,tan58°≈1.6)35(2023·湖南永州·统考中考真题)永州市道县陈树湘纪念馆中陈列的陈树湘雕像高2.9米(如图1所示),寓意陈树湘为中国革命“断肠明志”牺牲时的年龄为29岁.如图2,以线段AB代表陈树湘雕像,一参观者在水平地面BN上D处为陈树湘雕拍照,相机支架CD高0.9米,在相机C处观测雕像顶端A的仰角为45°,然后将相机架移到MN处拍照,在相机M处观测雕像顶端A的仰角为30°,求D、N两点间的距离(结果精确到0.1米,参考数据:3≈1.732)36(2023·重庆·统考中考真题)为了满足市民的需求,我市在一条小河AB两侧开辟了两条长跑锻炼线路,如图;①A-D-C-B;②A-E-B.经勘测,点B在点A的正东方,点C在点B的正北方10千米处,点D在点C的正西方14千米处,点D在点A的北偏东45°方向,点E在点A的正南方,点E在点B 的南偏西60°方向.(参考数据:2≈1.41,3≈1.73)(1)求AD的长度.(结果精确到1千米)(2)由于时间原因,小明决定选择一条较短线路进行锻炼,请计算说明他应该选择线路①还是线路②?37(2023·江苏苏州·统考中考真题)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为H),在B,C处与篮板连接(BC所在直线垂直于MN),EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD=BC,DH=208cm,测得∠GAE=60°时,点C离地面的高度为288cm.调节伸缩臂EF,将∠GAE由60°调节为54°,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin54°≈0.8,cos54°≈0.6)38(2023·湖南·统考中考真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼AB的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部243米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼AB的顶部B处的俯角为30°,CD长为49.6米.已知目高CE为1.6米.(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于CA的方向,以43米/秒的速度继续向前匀速飞行,求经过多少秒时,无人机刚好离开圆圆的视线EB.39(2023·山东烟台·统考中考真题)风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为30°的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡CD长16米,在地面点A处测得风力发电机塔杆顶端P点的仰角为45°,利用无人机在点A的正上方53米的点B处测得P点的俯角为18°,求该风力发电机塔杆PD的高度.(参考数据:sin18°≈0.309,cos18°≈0.951,tan18°≈0.325)40(2023·甘肃武威·统考中考真题)如图1,某人的一器官后面A处长了一个新生物,现需检测到皮肤的距离(图1).为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离.方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图说明如图2,新生物在A处,先在皮肤上选择最大限度地避开器官的B处照射新生物,检测射线与皮肤MN的夹角为∠DBN;再在皮肤上选择距离B处9cm的C处照射新生物,检测射线与皮肤MN的夹角为∠ECN.测量数据∠DBN=35°,∠ECN=22°,BC=9cm请你根据上表中的测量数据,计算新生物A处到皮肤的距离.(结果精确到0.1cm)(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)41(2023·四川达州·统考中考真题)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最大高度为多少m?(结果精确到0.1m;参考数据:sin26°≈0.44,cos26°≈0.9,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)42(2023·江西·统考中考真题)如图1是某红色文化主题公园内的雕塑,将其抽象成加如图2所示的示意图,已知点B,A,D,E均在同一直线上,AB=AC=AD,测得∠B=55°,BC=1.8m,DE=2m.(结果保小数点后一位)(1)连接CD,求证:DC⊥BC;(2)求雕塑的高(即点E到直线BC的距离).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)43(2023·浙江宁波·统考中考真题)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为α,设仰角为β,请直接用含α的代数式示β.(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角∠ABD为37°,∠ACD为45°,地面上点B,C,D在同一水平直线上,BC=20m,求气球A离地面的高度AD.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)44(2023·江苏连云港·统考中考真题)渔湾是国家“AAAA”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A处出发,沿着坡角为48°的山坡向上走了92m到达B处的三龙潭瀑布,再沿坡角为37°的山坡向上走了30m到达C处的二龙潭瀑布.求小卓从A处的九孔桥到C处的二龙潭瀑布上升的高度DC为多少米?(结果精确到0.1m)(参考数据:sin48°≈0.74,cos48°≈0.67,sin37°≈0.60,cos37°≈0.80)45(2023·四川广安·统考中考真题)为了美化环境,提高民众的生活质量,市政府在三角形花园ABC 边上修建一个四边形人工湖泊ABDE,并沿湖泊修建了人行步道.如图,点C在点A的正东方向170米处,点E在点A的正北方向,点B、D都在点C的正北方向,BD长为100米,点B在点A的北偏东30°方向,点D在点E的北偏东58°方向.(1)求步道DE的长度.(2)点D处有一个小商店,某人从点A出发沿人行步道去商店购物,可以经点B到达点D,也可以经点E到达点D,请通过计算说明他走哪条路较近.结果精确到个位)(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,3≈1.73)46(2023·浙江嘉兴·统考中考真题)图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A的仰角、俯角均为15°,摄像头高度OA=160cm,识别的最远水平距离OB=150cm.(1)身高208cm的小杜,头部高度为26cm,他站在离摄像头水平距离130cm的点C处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm的小若,头部高度为15cm,踮起脚尖可以增高3cm,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到0.1cm,参考数据sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)47(2023·安徽·统考中考真题)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.48(2023·浙江·统考中考真题)如图,某工厂为了提升生产过程中所产生废气的净化效率,需在气体净化设备上增加一条管道A -D -C ,已知DC ⊥BC ,AB ⊥BC ,∠A =60°,AB =11m ,CD =4m ,求管道A -D -C的总长.49(2023·浙江温州·统考中考真题)根据背景素材,探索解决问题.测算发射塔的高度背景素材某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN (如图1).他们通过自制的测倾仪(如图2)在A ,B ,C 三个位置观测,测倾仪上的示数如图3所示.经讨论,只需选择其中两个合适的位置,通过测量、换算就能计算发射塔的高度.问题解决任务1分析规划选择两个观测位置:点_________和点_________获取数据写出所选位置观测角的正切值,并量出观测点之间的图上距离.任务2推理计算计算发射塔的图上高度MN.任务3换算高度楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.注:测量时,以答题纸上的图上距离为准,并精确到1mm.50(2023·四川自贡·统考中考真题)为测量学校后山高度,数学兴趣小组活动过程如下:(1)测量坡角如图1,后山一侧有三段相对平直的山坡AB,BC,CD,山的高度即为三段坡面的铅直高度BH,CQ,DR之和,坡面的长度可以直接测量得到,要求山坡高度还需要知道坡角大小.如图2,同学们将两根直杆MN,MP的一端放在坡面起始端A处,直杆MP沿坡面AB方向放置,在直杆MN另一端N用细线系小重物G,当直杆MN与铅垂线NG重合时,测得两杆夹角α的度数,由此可得山坡AB坡角β的度数.请直接写出α,β之间的数量关系.(2)测量山高同学们测得山坡AB,BC,CD的坡长依次为40米,50米,40米,坡角依次为24°,30°,45°;为求BH,小熠同学在作业本上画了一个含24°角的Rt△TKS(如图3),量得KT≈5cm,TS≈2cm.求山高DF.(2≈1.41,结果精确到1米)(3)测量改进由于测量工作量较大,同学们围绕如何优化测量进行了深入探究,有了以下新的测量方法.如图4,5,在学校操场上,将直杆NP置于MN的顶端,当MN与铅垂线NG重合时,转动直杆NP,使点N,P,D共线,测得∠MNP的度数,从而得到山顶仰角β1,向后山方向前进40米,采用相同方式,测得山顶仰角β2;画一个含β1的直角三角形,量得该角对边和另一直角边分别为a1厘米,b1厘米,再画一个含β2的直角三角形,量得该角对边和另一直角边分别为a2厘米,b2厘米.已知杆高MN为1.6米,求山高DF.(结果用不含β1,β2的字母表示)。
2023中考一轮复习:锐角三角函数及其应用
考点16锐角三角函数及其应用【命题趋势】中考数学中,对锐角三角函数的考察主要以特殊角的三角函数值及其有关计算、解直角三角形、解直角三角形的应用三个方面为主。
其中,锐角三角函数的性质及解直角三角形多以选择填空题为主,解直角三角形的应用多以解答题为主。
整体难度不大,但是所占分值有3~12分,还是需要考生对这块易拿分的考点多加重视。
【中考考查重点】一、锐角三角函数的定义及其性质二、特殊角的三角函数值三、解直角三角形四、解直角三角形的应用考向一:锐角三角函数的定义及其性质一.锐角三角函数的定义:在Rt △AABC 中,∠C=90°,AB=c ,BC=a ,AC=b 则:∠A 正弦:caA A =∠=斜边的对边sin ;∠A 余弦:c bA A =∠=斜边的邻边cos ;∠A 正切:baA A A =∠∠=的邻边的对边tan ;二.锐角三角函数的函数关系当∠A +∠B=90°时,有以下两种关系:(1).同角三角函数的关系:AAA cos sin tan =;1cos sin 22=+A A (2)互余两角的三角函数的关系:B A B A sin cos ;cos sin ==;)90(1tan tan ︒=∠+∠=∙B A B A 【同步练习】1.(2021•句容市模拟)在△ABC 中,∠C =90°,设∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,则()A .c =b sin BB .b =c sin BC .a =b tan BD .b =c tan BACBabc2.(2021•饶平县校级模拟)如图,在Rt△ABC中,∠C=90°,BC=m,∠B=β,那么AB=()A.m⋅sinβB.C.m⋅cosβD.3.(2021•张湾区模拟)如图,小正方形的边长均为1,有格点△ABC,则sin C=()A.B.C.D.4.(2021•商河县校级模拟)当A为锐角,且<cos∠A<时,∠A的范围是()A.0°<∠A<30°B.30A<60°C.60°<∠A<90°D.30°<∠A<45°5.(2021•桓台县一模)在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.6.(2021•蒙阴县模拟)如图,在△ABC中,∠ACB=∠ADC=90°,若sin A=,则cos∠BCD的值为.考向二:特殊角的三角函数值特殊角的三角函数值表αsin αcos αtan α30°21233345°2222160°23213【同步练习】1.(2021•宜兴市模拟)已知cos α=,且α是锐角,则α=()A .30°B .45°C .60°D .90°2.(2022•龙岗区一模)Rt △ABC 中∠C =90°,sin A =,则tan A 的值是()A .B .C .D .3.(2021•邵阳模拟)在△ABC 中,若|sin A ﹣|+(cos B ﹣)2=0,则∠C 的度数是()A .30°B .45°C .60°D .90°4.(2022•无为市校级一模)计算:(1)sin60°•cos30°﹣1;(2)2sin30°+3cos60°﹣4tan45°.考向三:解直角三角形解直角三角形相关:在Rt△ABC中,∠C=90°AB=c,BC=a,AC=b 三边关系:222cba=+两锐角关系:︒=∠∠90BA+边与角关系:caBA==cossin,cbBA==sincos,baanA=t,abanB=t锐角α是a、b的夹角面积:αsin21abS=【方法提炼】与三角函数有关的倍半角问题倍半角模型①知“半角”求“倍角”→知θ,截取使相等(或中垂线),得2θ②知“倍角”求“半角”→知2θ,延长使相等(或做角平分线),得θ(等腰出,半角现)解题主要思想特别记忆:1.“倍半角”模型也可用于“角平分线”类问题2.“倍半角模型”常常转化为“θ”的正切值来计算3.☆【同步练习】1.(2021•樊城区一模)如图,A 、B 、C 是3×1的正方形网格的三个格点,则tan ∠ABC 的值为()A .B .C .D .2.(2021•滨江区校级三模)如图,点A 为∠B 边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示tan B 的值,错误的是()A .B .C .D .3.(2021•榆阳区模拟)如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是的中点,若tan ∠ACB =2,AC=,则BC 的长为()A .B .2C .1D .2时,③当时,②当时,①当7242tan 43tan 432tan 31tan 342tan 21tan ======θθθθθθ相等角倍角半角常构造(或选择)Rt △延长直角边=斜边,得半角作斜边的中垂线,得2倍角可构造K 型相似,得矩形当有特殊tan α值时,可转化为“倍半角”问题主要思想变“求点的坐标”为“求直线与函数图象交点”抓本质——对称全等+l 1⊥l 2此处k 型相似比已知,矩形对边相等是列方程的等量关系4.(2021•阿城区模拟)如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足是D,设∠CAB=α,CD=h,那么BC的长度为()A.B.C.D.h•cosα考向四:解直角三角形的应用解直角三角形的应用:仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角坡度和坡角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作lhi=坡角:坡面与水平面的夹角叫做坡角,记作α,αtan=i坡度越大,坡角越大,坡面越陡【方法提炼】1.在实际测量高度、宽度、距离等问题中,常结合平面几何知识构造直角三角形,利用三角函数或相似三角形来解决问题,常见的构造的基本图形有如下几种:(1)不同地点看同一点,如图①(2)同一地点看不同点,如图②(3)利用反射构造相似,如图③2.常用结论:【同步练习】1.(2022•鹿城区校级一模)如图,在Rt△ABC中,∠CAB=90°,点A,B分别在墙面ED和地面FD上,且斜边BC∥ED,若AC=1,∠CBA=α,则AD的长为()A.cosα×tanαB.C.D.2.(2022•无为市校级一模)如图,给出了一种机器零件的示意图,其中CE=1米,BF=米,则AB=()A.(1+)米B.(﹣1)米C.(2﹣)米D.(2+)米3.(2020•秦皇岛一模)如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼上钩的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A.3m B.m C.m D.4m1.在直角△ABC中,∠C=90°,AB=3,AC=2,则sin A的值为()A.B.C.D.2.如图所示,△ABC的顶点是正方形网格的格点,则sin B的值为()A.B.C.D.13.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°4.下列计算错误的个数是()①sin60°﹣sin30°=sin30°;②sin245°+cos245°=1;③;④.A.1B.2C.3D.45.如图所示,网格中的每个小正方形的边长都是1,△ABC的顶点都在交点处,则∠ABC的正弦值为()A.B.C.D.6.把直尺、三角尺和圆形螺母按如图所示的方式放置于桌面上,AB与螺母相切,D为螺母与桌面的切点,∠CAB=60°.若量出AD=6cm,则圆形螺母的外直径是()A.cm B.12cm C.cm D.cm7.计算tan30°•sin60°的结果是.8.如图所示,在一次数学活动课上,初三1班的同学们利用长杆来测量某段城墙的倾斜角α,把一根长为6.6米的长杆AC斜靠在城墙旁,量出杆长2米处在地面投影AE的长约为1米,长杆的底端与墙角的距离AB约为2.7米,则倾斜角α的正切值约为.(结果精确到0.01,参考数据≈1.73)9.如图1是我们经常看到的一种折叠桌子,它是由下面的支架AD,BC与桌面构成如图2,已知OA=OB=OC=OD=20cm,∠COD=60°,则点A到地面(CD所在的平面)的距离是cm.10.计算:tan30°sin60°﹣cos245°+tan45°.11.计算:(1)sin60°•cos30°﹣1;(2)2sin30°+3cos60°﹣4tan45°.12.如图,在△ABC中,BC=4,∠B=45°,∠A=30°,求AB.13.如图1,2分别是某款篮球架的实物图与示意图,已知支架AB与支架AC所成的角∠BAC=15°,点A、H、F在同一条直线上,支架AH段的长为0.5米,HF段的长为1.50米,篮板底部水平支架HE的长为0.75米,篮板顶端F到地面的距离为4.4米.(1)则篮板底部支架HE与支架AF所成的角∠FHE的度数为;(2)求底座BC的长(结果精确到0.1米;参考数据:sin15°≈026,cos15°≈097,tan15°≈027,≈1.732,≈1.414).1.(2021·浙江湖州)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是.2.(2021·浙江金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A.4cosα米B.4sinα米C.4tanα米D.米3.(2021·浙江丽水)如图,AB是⊙O的直径,弦CD⊥OA于点E,连结OC,OD.若⊙O的半径为m,∠AOD =∠α,则下列结论一定成立的是()A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=m2•sinα4.(2021·浙江温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为()A.+1B.sin2α+1C.+1D.cos2α+15.(2021·浙江绍兴)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.26.(2021·浙江杭州)计算:sin30°=.7.(2021·浙江金华)计算:(﹣1)2021+﹣4sin45°+|﹣2|.8.(2021·浙江嘉兴)计算:2﹣1+﹣sin30°;9.(2021·浙江绍兴)计算:4sin60°﹣+(2﹣)0.10.(2021·浙江衢州)计算:+()0﹣|﹣3|+2cos60°.11.(2021·浙江金华)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长;(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.12.(2021·浙江台州)图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地面l,活动杆CD固定在支撑杆上的点E处.若∠AED=48°,BE=110cm,DE=80cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)13.(2021·浙江嘉兴)一酒精消毒瓶如图1,AB为喷嘴,△BCD为按压柄,CE为伸缩连杆,BE和EF为导管,其示意图如图2,∠DBE=∠BEF=108°,BD=6cm,BE=4cm.当按压柄△BCD按压到底时,BD转动到BD′,此时BD′∥EF(如图3).(1)求点D转动到点D′的路径长;(2)求点D到直线EF的距离(结果精确到0.1cm).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)14.(2021·浙江宁波)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D'的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC =140°时,伞完全张开.(1)求AB的长.(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)15.(2021·浙江绍兴)拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内.(1)转动连杆BC,手臂CD,使∠ABC=143°,CD∥l,如图2,求手臂端点D离操作台l的高度DE的长(精确到1cm,参考数据:sin53°≈0.8,cos53°≈0.6).(2)物品在操作台l上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.16.(2021·浙江衢州)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得FA=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD的度数达到最小值30°时,A,B两点间的距离为cm(结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)1.(2021•余杭区二模)若sinα=,则锐角α=()A.30°B.45°C.50°D.60°2.(2021•吴兴区一模)如图,已知Rt△ABC中,∠ACB=90°,AC:AB=3:5,则tan A的值为()A.B.C.D.3.(2021•杭州二模)如图,在Rt△ACB中,∠C=90°,sin B=0.5,若AC=6,则AB的长为()A.8B.12C.6D.124.(2021•婺城区模拟)若∠A,∠B都是锐角,且tan A=1,sin B=,则△ABC不可能是()A.等腰三角形B.等腰直角三角形C.锐角三角形D.直角三角形5.(2021•余杭区一模)在Rt△ABC中,∠C=90°,cos B=,则tan A的值为()A.B.C.D.6.(2021•宁波模拟)如图,A,B,C,D均为网格图中的格点,线段AB与CD相交于点P,则∠APD的正切值为()A.3B.2C.2D.37.(2021•北仑区一模)如图,点A在半径为6的⊙O内,OA=2,P为⊙O上一动点,当∠OPA取最大值时,PA的长等于()A.3B.2C.D.28.(2021•吴兴区二模)如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.2B.C.D.9.(2021•金华模拟)如图,点A(x,4)在第一象限,OA与x轴所夹的锐角为α,cosα=,则tanα的值为()A.B.C.D.10.(2021•越秀区校级三模)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠BAC的值为()A.B.C.D.11.(2021•拱墅区二模)如图,△ABC中,∠A=120°,若BM,CM分别是△ABC的外角平分线,则∠M的余弦值是()A.B.C.D.12.(2022•温州模拟)一个长方体木箱放置在斜面上,其端点A落在水平地面上,相关数据如图所示,则木箱端点C距地面m的高度是()A.a•cosα+b•sinαB.a•sinα+b•cosαC.a•sinα+b•sinαD.a•cosα+b•cosα13.(2021•下城区校级四模)在直角三角形ABC中,若cos C=,则=.14.(2022•温州模拟)如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm),且AC=BD,AF∥BE,sin∠BAF=0.8,箱盖开起过程中,点A,C,F不随箱盖转动,点B,D,E 绕点A沿逆时针方向转动相同角度,分别到点B′,D′,E′的位置,气簧活塞杆CD随之伸长CD′.已知直线BE⊥B′E′,CD′=2CD,那么AB的长为cm,CD′的长为cm.15.(2021•杭州校级模拟)计算:tan45°﹣sin30°cos60°﹣cos245°.16.(2021•鹿城区校级三模)如图,△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,DB=3.(1)求BE的长;(2)若sin∠DAB=,求△CAD的面积.17.(2021•宁波模拟)把矩形纸片ABCD,先沿AE折叠使点B落在AD边上的B',再沿AC折叠,恰好点E也落到AD上,记为E'.求:(1)∠B'EE'的度数;(2)∠DAC的正切值.18.(2022•宁波模拟)如图①,一台灯放置在水平桌面上,底座AB与桌面垂直,底座高AB=5cm,连杆BC=CD=20cm,BC,CD与AB始终在同一平面内.(1)如图②,转动连杆BC,CD,使∠BCD成平角,∠ABC=143°,求连杆端点D离桌面l的高度DE.(2)将图②中的连杆CD再绕点C逆时针旋转16°,如图③,此时连杆端点D离桌面l的高度减小了多少cm?(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75)19.(2021•宁波模拟)小甬要外出参加“建党100周年”庆祝活动,需网购一个拉杆箱,图①,图②分别是他上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求DE的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).。
2020年中考数学复习微专题 锐角三角函数的实际应用三大模型(无答案)
2020年中考数学复习微专题锐角三角函数的实际应用三大模型模型一背靠背型一.模型分析1.若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边CD是解题的关键.等量关系:CD为公共边,AD+BD=AB.2.模型变式如图①,CE=DA,CD=EA,CE+BD=AB;如图②,CD=EF,CE=DF,AD+CE+BF =AB.二.练习反馈1.某条道路上通行车辆限速为72千米/时,在离道路50米的点P处建一个监测点,道路AB段为检测区(如图).在△ABP中,已知∠PAB=30°,∠PBA=37°,那么车辆通过AB段的时间在多少秒以内时,可认定为超速?(结果精确到0.1秒,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,.模型二母子型一.模型分析1.若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键.等量关系:BC为公共边,如图①,AD+DC=AC;如图②,DC-BC=DB.2.模型变形(1):等量关系:.模型变形(2):如图③,DF=EC,DE=FC,BF+DE=BC,AE+DF=AC;如图④,AF=CE,AC=FE,BC+AF=BE.等量关系:如图⑤,BE+EC=BC;如图⑥,EC-BC=BE;如图⑦,AC=FG,AF=CG,AD+DC=FG,BC+AF=BG..模型变形(3):等量关系:如图⑧,BC=FG,BF=CG,AC+BF=AG,EF+BC=EG;如图⑨,BC=FG,BF=CG,EF+BC=EG,BD+DF=BF,AC+BD+DF=AG.二.练习反馈1.如图,一枚运载火箭从距雷达站C处5 km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上,求A,B两点间的距离.(结果精确到0.1 km,参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)2.如图,一幢楼的楼顶端挂着一幅长10米的宣传条幅AB,某数学兴趣小组在一次活动中,准备测量该楼的高度,但被建筑物FGHM挡住,不能直接到达楼的底部,他们在点D处测得条幅顶端A的仰角∠CDA=45°,向后退8米到达点E 处,测得条幅底端B的仰角∠CEB=30°(点C,D,E在同一直线上,EC⊥AC).请你根据以上数据,帮助该兴趣小组计算楼高AC.(结果精确到0.01米,参考数据:√ 3 ≈1.732,√ 2 ≈1.414)模型三拥抱型一.模型分析:1.分别解两个直角三角形,其中公共边BC是解题的关键.等量关系:BC为公共边2.模型变形:等量关系:如图①,BF+FC+CE=BE;如图②,BC+CE=BE;如图③,AB=GE,AG=BE,BC+CE=AG,DG+AB=DE.二.练习反馈1.如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15 m,CD=20 m.AB和CD 之间有一景观池,小双在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°,点B、E、D在同一直线上.求两幢建筑物之间的距离BD.(结果精确到0.1 m,参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)。
中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)
中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。
中考专项复习锐角三角函数
与几何图形有关的锐角三角函数问题
总结词
理解几何图形中的角度关系与边长关 系,掌握三角函数的定义及使用。
详细描述
在几何图形中,锐角三角函数通常被 用于求解角度、边长等问题。例如, 在直角三角形中,可以用正弦、余弦 、正切等函数来描述各边与斜边的关 系。
与实际生活有关的锐角三角函数问题
总结词
将实际问题转化为数学问题,通过锐 角三角函数求解。
余弦函数的图像与性质
图像描述
余弦函数图像也是周期性的,但其波形与正弦函数相反,波 峰和波谷随着x的增大而交替出现,且函数值先正后负,周期 为2π。
性质总结
余弦函数具有对称性和周期性,其对称轴为y轴,对称中心为 (kπ+π/2,0),其中k为整数。此外,余弦函数在区间[0,π/2] 上为增函数,在区间[π/2,π]上为减函数。
中考专项复习锐角三角函
数
汇报人:
2023-12-11
• 锐角三角函数概述 • 锐角三角函数的图像与性质 • 锐角三角函数的应用题解析 • 锐角三角函数的实际应用 • 中考中锐角三角函数的常见考点与题
型 • 中考真题解析与备考策略01锐角三角函数概述
锐角三角函数的定义
正弦函数(sine function): 锐角α的正弦值与直角三角形 斜边长度的比值,记作sin α。
总结
中考中锐角三角函数一般以填空题和选择题 的形式出现,主要考察的是锐角三角函数的 定义以及运用。题目会设定一个或者几个锐 角,然后利用锐角三角函数的定义,求出这 个锐角的三角函数值。
例子
例如,如果一个锐角A的对边长度为4,邻 边长度为3,那么我们可以使用锐角三角函 数的定义来求出这个锐角的正弦值和余弦值 。根据定义,正弦值=对边长度/斜边长度
中考复习专题之-锐角三角函数实际应用
事故船位于巡逻艇的北偏东58°方向上,巡逻艇立刻前往A处救援,已知巡逻艇每分钟行驶120米,请估计几分
钟可以到达事故船A处.
(结果保留整数.参考数据: 3 1.73
cos53 3
, sin 53 4
, tan 53 54
, )
5
3
名校模拟
10.(2023·安徽亳州·校联考模拟预测)如图,某数学兴趣小组为了测量塔AB的高度,他们先在水平地面上的
典例2.先化简,再求值
6a a2
9
1
2a 3 a3
其中 a 2sin30 3
典例3.如图,在△ABC中,C 90 , tan A 3 , ABC 的平分线BD交AC于点D,CD= 3.求AB的 3
长?
典例剖析
典例4.如图,△ABC的顶点B,C的坐标分别是1,0,0,3 且 ABC 90 A 30,求点A的坐标?
求观测点B到A船的距离(结果精确到0.1海里).
参考数据:
sin 67.4 12 , cos 67.4 5 ,sin 67.6 0.925, cos 67.6 0.381, 2 1.4临沂·统考一模)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能 环保的举措,某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度,如图,已知测倾器的高度为 1.5米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3米的测点D处安置测倾器,测得点M 的仰角∠MEC=45°(点A,D与N在一条直线上).求电池板离地面的高度MN的长
5
4
5
3
名校模拟
11.(2023·安徽亳州·统考一模)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量 距离和角度.某校“综合与实践”活动小组的同学要测量AB、CD两座楼之间的距离,他们借助无人机设计了如下 测量方案:无人机在AB、CD两楼之间上方的点O处,点O距地面AC的高度为120m,此时观测到楼AB底部点A 处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行48m到达点F,测得点E处俯角为60°,其中 点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确
专题07 利用锐角三角函数解实际问题(教师版含解析) -2021年中考数学复习重难点与压轴题型训练
备战2021年中考复习重难点与压轴题型专项训练专题07 利用锐角三角函数解实际问题【专题训练】一、解答题1.(2020·江西中考真题)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长AB =120mm ,支撑板长CD =80mm ,底座长DE =90mm ,托板AB 固定在支撑板顶端点C 处,且CB =40mm ,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(1)若∠DCB =80°,∠CDE =60°,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10°后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)【答案】(1)如图所示,过点A 作AMDE ⊥,CN DE ⊥,CP AM ⊥, 则90CPM CMD CND ∠=∠=∠=︒,∵120mm AB =,40mm CB =,∵80mm =AC , 又∵80DCB ︒∠=,60CDE ︒∠=,∵100ACD ∠=︒,120CDM∠=︒, ∵360909012060PCD∠=︒-︒-︒-︒=︒, ∵1006040ACP∠=︒-︒=︒, ∵sin 40800.64351.44mm AP AC =︒=⨯=,又∵60CDN =︒,80mm CD =,∵sin 608069.28CN CD =︒=⨯=≈mm , ∵69.2851.44120.72120.7AM mm =+=≈.∵点A 到直线DE 的距离是120.7mm .(2)如图所示,根据题意可得90DCE ∠=︒,40mm CB =,80mm CD =, ∵401tan 802BC CDB DC ∠===, ∵26.6CDB ∠=︒,根据(1)可得60CDE ︒∠=,∵CD 旋转的角度=60-26.6=33.4︒︒︒.【点睛】本题主要考查了解直角三角形的应用,准确的构造直角三角形,利用三角函数的定义求解是解题的关键.2.(2020·浙江宁波市·中考真题)图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB =AC =50cm ,∵ABC =47°.(1)求车位锁的底盒长BC .(2)若一辆汽车的底盘高度为30cm ,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:sin 47°≈0.73,cos 47°≈0.68,tan 47°≈1.07)【答案】解:(1)过点A作AH∵BC于点H,∵AB=AC,∵BH=HC,在Rt∵ABH中,∵B=47°,AB=50,∵BH=ABcosB=50cos47°≈50×0.68=34,∵BC=2BH=68cm.(2)在Rt∵ABH中,∵AH=ABsinB=50sin47°≈50×0.73=36.5,∵36.5>30,∵当车位锁上锁时,这辆汽车不能进入该车位.【点睛】本题考查解直角三角形,解题的关键是熟练运用锐角函数的定义,本题属于基础题型.3.(2020·浙江绍兴市·中考真题)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF=EF=FG=1m.(1)若移动滑块使AE=EF,求∵AFE的度数和棚宽BC的长.(2)当∵AFE由60°变为74°时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】解:(1)∵AE=EF=AF=1,∵∵AEF是等边三角形,∵∵AFE=60°,连接MF并延长交AE于K,则FM=2FK,∵∵AEF是等边三角形,∵AK=1 2,∵FK==,∵FM=2FK∵BC=4FM=6.92≈6.9(m); (2)∵∵AFE=74°,∵∵AFK=37°,∵KF=AF•cos37°≈0.80,∵FM=2FK=1.60,∵BC=4FM=6.40<6.92,6.92﹣6.40=0.5,答:当∵AFE由60°变为74°时,棚宽BC是减少了,减少了0.5m.【点睛】本题主要考查了解直角三角形的应用,观察图形,发现直角三角形是解题的关键.4.(2020·浙江中考真题)有一种升降熨烫台如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.图2是这种升降熨烫台的平面示意图.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图2﹣1.若AB=CD=110cm,∵AOC=120°,求h的值;(2)爱动脑筋的小明发现,当家里这种升降熨烫台的高度为120cm时,两根支撑杆的夹角∵AOC是74°(如图2﹣2).求该熨烫台支撑杆AB的长度(结果精确到lcm).(参考数据:sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)【答案】(1)过点B作BE∵AC于E,∵OA=OC,∵AOC=120°,∵∵OAC=∵OCA=1801202︒︒-=30°,∵h=BE=AB•sin30°=110×12=55;(2)过点B作BE∵AC于E,∵OA=OC,∵AOC=74°,∵∵OAC=∵OCA=180742︒︒-=53°,∵AB=BE÷sin53°=120÷0.8=150(cm),即该熨烫台支撑杆AB的长度约为150cm.【点睛】本题考查了解直角三角形的应用,作出辅助线构造直角三角形,弄清题中的数据是解本题的关键.5.(2020·四川广安市·中考真题)如图所示的是某品牌太阳能热水器的实物图和横断面示意图,己知真空集热管AB与支架CD 所在直线相交于水箱横断面∵O的圆心,支架CD与水平线AE垂直,AB=154cm,∵A=30°,另一根辅助支架DE=78cm,∵E=60°.(1)求CD的长度.(结果保留根号)(2)求OD 的长度.(≈1.414≈1.732)【答案】解:(1)在Rt CDE △中,6078cm CED DE ∠=︒=,,·60CD DE sin ∴=︒=答:CD 的长度为;(2)设水箱半径OD 的长度为x 厘米,则CO =(x )厘米,AO =(154+x )厘米, ∵∵A =30°,∵CO =12AO ,x =12(154+x ),解得:x =154-154-135.096≈18.9cm .答:OD 的长度为18.9cm .【点睛】此题考查的是解直角三角形的应用和圆的基本性质,掌握利用锐角三角函数解直角三角形和圆的半径相等是解题关键. 6.(2020·湖南衡阳市·中考真题)小华同学将笔记本电脑水平放置在桌子上,当是示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B 、O 、C 在同一直线上,24cm OA OB ==,BC AC ⊥,30OAC ∠=︒.(1)求OC 的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB 与水平线的夹角仍保持120°,求点B '到AC 的距离.(结果保留根号)【答案】解:(1)∵24cm OA =,BC AC ⊥,30OAC ∠=︒ ∵1122OC OA cm ==. 即OC 的长度为12cm .(2)如图,过点O 作OM ∵AC ,过点B ′作B ′E ∵AC 交AC 的延长线于点E ,交OM 于点D ,B ′E 即为点B '到AC 的距离,∵OM ∵AC ,B ′E ∵AC , ∵B ′E ∵OD ,∵MN ∵AC ,∵∵NOA =∵OAC =30°,∵∵AOB =120°,∵∵NOB =90°,∵∵NOB ′=120°,∵∵BOB ′=120°-90°=30°,∵BC ∵AC ,B ′E ∵AE ,MN ∵AE ,∵BC ∵B ′E ,四边形OCED 为矩形,∵∵OB ′D =∵BOB ′=30°,DE =OC =12cm ,在Rt ∵B ′OD 中,∵∵OB ′D =30°,B ′O =BO =24cm ,∵B'D cos OB'D==B'O 2∠B ′D = ,B ′E =B ′D +DE = ()12cm ,答:点B '到AC 的距离为()12cm .【点睛】本题考查解直角三角形的应用、矩形的判定和性质和直角三角形中30度角所对的直角边长度是斜边的一半,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.7.(2020·湖南益阳市·中考真题)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD ,高DH =12米,斜坡CD 的坡度1:1i =,此处大堤的正上方有高压电线穿过,PD 表示高压线上的点与堤面AD 的最近距离(P 、D 、H 在同一直线上),在点C 处测得26DCP ∠=︒.(1)求斜坡CD 的坡角α(2)电力部门要求此处高压线离堤面AD 的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin 260.44≈,tan 260.49≈,sin 710.95≈,tan 71 2.90≈)【答案】解(1)∵tan 1:11i α===,∵=45α︒;(2)延长AD 交PC 于点E ,过点E 作EF ∵BC 于F ,如图,则四边形DEFH 是矩形,∵EF =DH =12m ,DE =HF ,∵HDE =∵EFH =∵DHF =90°,∵α=45°,∵∵HDC =45°,∵HC =DH =12m ,又∵PCD =26°,∵∵ECF =45°+26°=71°,∵tan 71EF FC ︒=,即12 4.14tan 71 2.90EF FC ==≈︒m , ∵HF =HC -CF =12-4.14=7.86m ,∵DE =7.86m ,∵AE //BC ,∵∵PED =∵PCH =71°,在Rt ∵PDE 中,tan PD PED DE ∠=,即 tan 717.86PD ︒=, ∵7.86 2.9022.8018PD =⨯≈>m ,∵此次改造符合电力部门的安全要求.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键. 8.(2020·辽宁葫芦岛市·中考真题)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB ,在观测点C 处测得大桥主架顶端A 的仰角为30°,测得大桥主架与水面交汇点B 的俯角为14°,观测点与大桥主架的水平距离CM 为60米,且AB 垂直于桥面.(点A ,B ,C ,M 在同一平面内)(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)【答案】解:(1)AB 垂直于桥面90︒∴∠=∠=AMC BMC在Rt AMC △中,60,30︒=∠=CM ACMtan ∠=AM ACM CMtan 3060︒∴=⋅==AM CM (米)答:大桥主架在桥面以上的高度AM 为(2)在Rt BMC △中,60,14︒=∠=CM BCMtan ∠=MBBCM CMtan14600.2515︒∴=⋅=⨯≈MB CM=+AB AM MB1550∴≈+≈AB (米)答:大桥主架在水面以上的高度AB 约为50米.【点睛】本题考查直角三角形的边角关系,锐角三角函数的意义,掌握锐角三角函数的意义是解决问题的前提.9.(2020·四川内江市·中考真题)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30方向上.(1)求B处到灯塔P的距离;(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?【答案】(1)过点P作PD∵AB于点D,由题意得,AB=60(海里),∵P AB=30°,∵PBD=60°,∵∵APB=∵PBD-∵P AB=60°-30°=30°=∵P AB,∵PB=AB=60(海里),答:B处到灯塔P的距离为60海里;(2)由(1)可知∵APB=∵P AB=30°,∵PB=AB=60(海里)在Rt∵PBD中,PD=BPsin60°=60=海里),∵50>,∵海监船继续向正东方向航行是安全的.【点睛】本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.10.(2020·湖北随州市·中考真题)如图,某楼房AB 顶部有一根天线BE ,为了测量天线的高度,在地面上取同一条直线上的三点C ,D ,A ,在点C 处测得天线顶端E 的仰角为60︒,从点C 走到点D ,测得CD =5米,从点D 测得天线底端B 的仰角为45°,已知A ,B ,E 在同一条垂直于地面的直线上,AB =25米.(1)求A 与C 之间的距离;(2)求天线BE 的高度.( 1.73≈,结果保留整数)【答案】(1)依题意可得,在Rt ABD △中,45ADB ∠=︒ ,25AD AB ∴==米,5CD =米,25530AC AD CD ∴=+=+=米.即,A C 之间的距离为30米.(2)在Rt ACE △中,60ACE ∠=︒,30AC =米,30tan 60AE ∴=⋅︒=米),25AB =米,25)(BE AE AB ∴=-=-米.173≈..并精确到整数可得27BE ≈米.即天线BE 的高度约为27米.【点睛】(1)本题主要考查等腰直角三角形的性质,掌握等腰直角三角形的性质是解答本题的关键.(2)本题主要考查三角函数的灵活运用,正确运用三角函数是解答本题的关键.11.(2020·湖北鄂州市·中考真题)鄂州市某校数学兴趣小组借助无人机测量一条河流的宽度CD .如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行50米至B 处,测得正前方河流右岸D 处的俯角为30°.线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一条直线上.其中tan 2,MC α==米. (1)求无人机的飞行高度AM ;(结果保留根号)(2)求河流的宽度CD .(结果精确到1 1.73≈≈)【答案】(1)由题意可得AF∵MD∵∵ACM=∵F AC=αα==米);在Rt∵ACM中,AM=CMtan∵ACM=CM tan2(2)如图,过点B作BH∵MD,在Rt∵BDH中,∵BDH=∵FBD=30°,BH=∵DH=BH÷tan30°=300米,∵AM∵DM,AM∵AF∵四边形ABHM是矩形∵MH=AB=50米∵CH=CM-MH=50(米)∵CD=DH-CH=300-(50)=350-263(米)故河流的宽度CD为263米.【点睛】此题主要考查三角函数的应用,解题的关键是熟知解直角三角形的方法.12.(2020·山东临沂市·中考真题)如图.要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足6075α︒︒,现有一架长5.5m 的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m 时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin 750.97︒=,cos750.26︒=,tan 75 3.73︒=,sin 23.60.40︒=,cos56.40.40︒=,tan 21.80.40︒=)【答案】解:(1)当∵ABC =75°时,梯子能安全使用且它的顶端最高;在Rt ∵ABC 中,有sin ∵ABC =AC AB∵AC =AB •sin ∵ABC =5.5×sin 75°≈5.3;答:安全使用这个梯子时,梯子的顶端距离地面的最大高度AC 约为5.3m(2)在Rt ∵ABC 中,有cos ∵ABC =BC AB =2.25.5=0.4 由题目给的参考数据cos56.40.40︒=,可知∵ABC =56.4° ∵56.4°<60°,不在安全角度内;∵这时人不能安全使用这个梯子,答:人不能够安全使用这个梯子.【点睛】此题考查的是解直角三角形的实际应用,熟练掌握并能灵活运用各锐角三角函数是解答此类题的关键.13.(2020·贵州贵阳市·中考真题)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35°,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF =12m ,EF ∥CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈ 1.7≈)(1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).【答案】解:(1)∵房屋的侧面示意图是轴对称图形,AB 所在直线是对称轴,EF ∥CB ,∵AG EF ⊥,162EG EF ==,35AEG ACB ∠=∠=︒. 在Rt AGE ∆中,90AGE ∠=︒,35AEG ∠=°,∵tan AEG AG EG∠=,6EG =,tan350.7︒≈. ∵6tan3542AG =≈°(米)答:屋顶到横梁的距离AG 约是4.2米.(2)过点E 作EH CB ⊥于点H ,设EH x =,在Rt EDH ∆中,90EHD ∠=︒,60EDH∠=°, ∵tan EHEDH DH ∠=,∵tan 60x DH =°, 在Rt ECH ∆中,90EHC ∠=︒,35ECH ∠=°, ∵tan EHECH CH ∠=,∵tan 35x CH =°. ∵8CH DH CD -==, ∵8tan 35tan 60x x -=°°,∵tan350.7︒≈, 1.7≈,解得9.52x ≈.∵ 4.29.5213.7214AB AG BG =+=+=≈(米)答:房屋的高AB 约是14米.【点睛】本题主要考查了仰角的定义及其解直角三角形的应用,解题时首先正确理解仰角的定义,然后构造直角三角形利用三角函数和已知条件列方程解决问题.14.(2020·河南中考真题)位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水平步道MP上架设测角仪,先在点M处测得观星台最高点A的仰角为22°,然后沿MP方向前进16m到达点N处,测得点A的仰角为45°.测角仪的高度为1.6m,(1)求观星台最高点A距离地面的高度(结果精确到0.1m.参考数据:︒≈︒≈︒≈≈);220.37,220.93,22 1.41sin cos tan(2)“景点简介”显示,观星台的高度为12.6m,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.【答案】解:(1)如图,过点A作AE∵MN交MN的延长线于点E,交BC的延长线于点D,设AD的长为xm,∵AE∵ME,BC∵MN,∵AD∵BD,∵ADC=90°,∵∵ACD=45°,∵CD=AD=xm,BD=BC+CD=(16+x)m,由题易得,四边形BMNC为矩形,∵四边形CNED 为矩形,∵DE =CN =BM =1.6m ,在Rt ∵ABD 中,tan ABD=0.4016AD x BD x==+∠, 解得:10.7x ≈,即AD =10.7m ,AE =AD +DE =10.7+1.6=12.3m ,答:观星台最高点A 距离地面的高度为12.3m .(2)本次测量结果的误差为:12.6-12.3=0.3m ,减小误差的合理化建议:多次测量,求平均值.【点睛】本题考查解直角三角形的实际应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.(2020·四川攀枝花市·中考真题)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN 的距离皆为100cm .王诗嬑观测到高度90cm 矮圆柱的影子落在地面上,其长为72cm ;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN 互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i =,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm ?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm ,则高圆柱的高度为多少cm ?解:(1)设王诗嬑的影长为xcm , 由题意可得:9015072x=, 解得:x =120,经检验:x =120是分式方程的解,王诗嬑的的影子长为120cm ;(2)正确,因为高圆柱在地面的影子与MN 垂直,所以太阳光的光线与MN 垂直,则在斜坡上的影子也与MN 垂直,则过斜坡上的影子的横截面与MN 垂直,而横截面与地面垂直,高圆柱也与地面垂直,∵高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB 为高圆柱,AF 为太阳光,∵CDE 为斜坡,CF 为圆柱在斜坡上的影子,过点F 作FG ∵CE 于点G ,由题意可得:BC =100,CF =100,∵斜坡坡度1:0.75i =, ∵140.753DE FG CE CG ===, ∵设FG =4m ,CG =3m ,在∵CFG 中,()()22243100m m +=,解得:m =20, ∵CG =60,FG =80,∵BG=BC+CG=160,过点F作FH∵AB于点H,∵同一时刻,90cm矮圆柱的影子落在地面上,其长为72cm,FG∵BE,AB∵BE,FH∵AB,可知四边形HBGF为矩形,∵9072AH AHHF BG==,∵AH=9090160 7272BG⨯=⨯=200,∵AB=AH+BH=AH+FG=200+80=280,故高圆柱的高度为280cm.【点睛】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.。
中考数学专题复习10锐角三角函数及其运用(解析版)
锐角三角函数及其运用复习考点攻略考点一 锐角三角函数1. 锐角三角函数的定义:在Rt △ABC 中.∠C =90°.AB =c .BC =a .AC =b .正弦:sin A =∠的对边=斜边A ac ;余弦:cos A =∠的邻边=斜边A bc;正切:tanA =∠的对边=邻边A ab.【注意】根据定义求三角函数值时.一定要根据题目图形来理解.严格按照三角函数的定义求解.有时需要通过辅助线来构造直角三角形.2【例2】A .BCD .1【答案】C 【解析】把sin45°=代入原式得:原式=2×.故选C . 考点三 解直角三角形1.在直角三角形中.求直角三角形所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系: 在Rt △ABC 中.∠C =90°.则: (1)三边关系:a 2+b 2=c 2; (2)两锐角关系:∠A +∠B =90°; (3)边与角关系:sin A =cos B =a c .cos A =sin B =b c .tan A =ab; (4)sin 2A +cos 2A =1.3.科学选择解直角三角形的方法口诀: 已知斜边求直边.正弦、余弦很方便; 已知直边求直边.理所当然用正切; 已知两边求一边.勾股定理最方便; 已知两边求一角.函数关系要记牢; 已知锐角求锐角.互余关系不能少; 已知直边求斜边.用除还需正余弦.【例3】如图.我市在建高铁的某段路基横断面为梯形ABCD .DC ∥AB ,BC 长为6米.坡角β为45°.AD 的坡角α为30°.则AD 的长为 ________ 米 (结果保留根号)2sin 222【答案】62【解析】解:过C 作CE ⊥AB 于E.DF ⊥AB 于F.可得矩形CEFD 和Rt △CEB 与Rt △DFA. ∵BC=6.∴CE=2sin 456322BC ︒=⨯=.∴DF=CE=32.∴62sin 30DF AD ==︒.故答案为:62.【例4】如图.大海中有A 和B 两个岛屿.为测量它们之间的距离.在海岸线PQ 上点E 处测得74AEP =︒∠.30BEQ =︒∠;在点F 处测得60AFP =︒∠.60BFQ =︒∠.1km EF =.⑴ 判断AB 、AE 的数量关系.并说明理由⑵ 求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3 1.73≈. sin740.96︒≈.cos740.28︒≈.tan74 3.49︒≈.sin760.97︒≈.cos760.24︒≈)【答案】(1)见解析;(2)3.6km【解析】(1)相等.证明:∵30BEQ =︒∠.60BFQ =︒∠.∴30EBF =︒∠.EF BF =.又∵60AFP =︒∠.∴60BFA =︒∠.在AEF △与ABF △中.EF BF =.AFE AFB =∠∠.AF AF =. ∴AEF ABF △≌∠.∴AB AE =. (2)作AH PQ ⊥.垂足为H .设AE x =.则sin74AH x =︒.cos74HE x =︒.cos741HF x =︒+.Rt AHF △中.tan60AH HF =⋅︒.∴()cos74cos741tan 60x x ︒=︒+⋅︒.即()0.960.281 1.73x x =+⨯. ∴ 3.6x ≈.即 3.6km AB ≈.考点四 锐角三角函数的应用1.仰角和俯角:仰角:在视线与水平线所成的角中.视线在水平线上方的角叫做仰角. 俯角:在视线与水平线所成的角中.视线在水平线下方的角叫做俯角. 2.坡度和坡角坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比).记作i =h l. 坡角:坡面与水平面的夹角叫做坡角.记作α.i =tan α. 坡度越大.α角越大.坡面越陡. 3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语.根据题意画出图形.建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系.把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式.使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义.从而得到问题的解.6.解直角三角形应用题应注意的问题:(1)分析题意.根据已知条件画出它的平面或截面示意图.分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形.但可添加适当的辅助线.把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件.选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算.检验是否符合实际.并按题目要求的精确度取近似值.注明单位.【例5】如图.一名滑雪爱好者先从山脚下A处沿登山步道走到点B处.再沿索道乘坐缆车到达顶部C.已知在点A处观测点C.得仰角为35°.且A.B的水平距离AE=1000米.索道BC 的坡度i=1:1.长度为2600米.求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57.cos35°≈0.82.tan35°≈0.70.≈1.41.结果保留整数)【答案】1983米【解析】:如图.作CD⊥AE于点D.BF⊥CD于点F.又∵BE⊥AD.∴四边形BEDF是矩形.在Rt△BCF中.∵BC的坡度i=1:1.∴∠CBF=45°.∵BC=2600米.∴米.∴米.∵A.B的水平距离AE=1000米.∴米.∵∠CAD=35°.∴(米).答:山高CD约为1983米.【例6】如图.一艘海轮位于灯塔P的南偏东30°方向.距离灯塔100海里的A处.它计划沿正北方向航行.去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域.它的圆心位于射线PB上.距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里.进入这个区域.就有触礁的危险.请判断海轮到达B处是否有触礁的危险?如果海伦从B处继续向正北方向航行.是否有触礁的危险?并说明理由.(参考数据:≈1.414.≈1.732)【答案】(1)71海里;(2)见解析【解析】解:(1)过点P作PD⊥AB于点D.依题意可知.P A=100.∠APD=60°.∠BPD=45°.∴∠A=30°.∴PD=50.在△PBD中.BD=PD=50.∴PB =50≈71.答:B 处距离灯塔P 约71海里.(2)依题意知:OP =150.OB =150﹣71=79>60. ∴海轮到达B 处没有触礁的危险.海伦从B 处继续向正北方向航行.有触礁的危险.第一部分 选择题一、选择题(本题有10小题.每题3分.共30分)1. 比萨斜塔是意大利的著名建筑.其示意图如图所示.设塔顶中心点为点B .塔身中心线AB 与垂直中心线AC 的夹角为A ∠.过点B 向垂直中心线AC 引垂线.垂足为点D .通过测量可得AB 、BD 、AD 的长度.利用测量所得的数据计算A ∠的三角函数值.进而可求A ∠的大小.下列关系式正确的是( )A .sin BDA AB= B .cos ABA AD=C .tan ADA BD=D .sin ADA AB=【答案】A【解析】由题可知.△ABD 是直角三角形.90BDA ∠=︒.sin BD A AB ∴=.cos AD A AB=,tan BDA AD =.∴选项B 、C 、D 都是错误的.故答案选A . 2. 如图.在ABC 中.∠C =90°.设∠A .∠B .∠C 所对的边分别为a .b .c .则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B【答案】B【解析】∵Rt ABC 中.90C ∠=︒.A ∠、B 、C ∠所对的边分别为a 、b 、c ∴sin bB c=.即sin b c B =.则A 选项不成立.B 选项成立 tan bB a=.即tan b a B =.则C 、D 选项均不成立故选:B . 3. 已知α是锐角.sin α=cos60°.则α等于( ) A .30° B .45°C .60°D .不能确定4. 若∠A 是锐角.且sinA= 3.则( )A. 0°<∠A<30°B. 30°<∠A<45°C. 45°<∠A<60°D. 60°<∠A<90° 【答案】 A【解析】∵sin0°=0.sinα= 13.sin30°= 12.又0< 13< 12.∴0°<α<30°. 故答案为:A .5. 点(-sin60°.cos60°)关于y 轴对称的点的坐标是( )A. (√32.12) B. (-√32.12) C. (-√32.-12) D. (- 12.- 32)【答案】 A 【解析】∵sin60°=√32.cos60°=12.∴(-sin60°.cos60°)=(-√32. 12).关于y 轴对称点的坐标是( √32.12).故答案为:A .6. 在Rt △ABC 中.∠C =90°.BC =5.AC =12.则sinB 的值是( )A .512B .125C .513D .1213【答案】D【解析】解:如图所示:∵∠C =90°.BC =5.AC =12.∴13AB =. ∴12sin 13AC B AB ==.故选:D .7. 如图.某停车场入口的栏杆AB.从水平位置绕点O 旋转到A′B′的位置.已知AO 的长为4米.若栏杆的旋转角∠AOA′=α.则栏杆A 端升高的高度为( ) A .米 B .4sinα米 C .米 D .4cosα米【答案】B【解析】 解:如答图.过点A′作A′C ⊥AB 于点C .在Rt △OCA′.sinα=.所以A′C =A′O ·sinα.由题意得A′O =AO =4.所以A′C =4sinα.因此本题选B .8. 菱形ABCD 的对角线AC =10cm.BD =6cm.那么tan为( )【解析】如图.由题意得.AO ⊥BO .AO =AC =5cm.BO =BD =3cm. 4sin α4cos αA CA O''2B1212则tan=tan ∠OBA .故选A.9. 如图.AB 是圆锥的母线.BC 为底面直径.已知BC =6 cm.圆锥的侧面积为15π cm 2 . 则sin∠ABC 的值为 ( )A.34B.35C.45 D. 53【答案】 C【解析】解:设圆锥的母线长为R.由题意得: 15π=π6R.解得:R=5. ∴圆锥的高为4. ∴.故答案为:C.10. 如图.四边形ABCD 是一张平行四边形纸片.其高2cm AG =.底边6cm BC .45B ∠=︒.沿虚线EF 将纸片剪成两个全等的梯形.若30BEF ∠=︒.则AF 的长为( )2B53AO BO ==A .1cm B.cm 3C.3)cm - D.(2-【答案】D【解析】如图所示.过点F 作FM BC ⊥交BC 于点M.∵AG BC ⊥.45B ∠=︒.AG=2.∴BG=FM=2.AF=GM.令AF=x. ∵两个梯形全等.∴AF=GM=EC=x.又∵30BEF ∠=︒.∴2=tan 30FMME =︒.∴ME =.又∵BC=6.∴26BC BG GM ME EC x x =+++=+++=.∴2x =-D .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11..若tan (α–15°)= .则锐角α的度数是________.【答案】 75°【解析】【解答】由tan(α−15°)= √3.得 α−15°=60°. 解得α=75°. 故答案为:75°12.如图.在Rt △ABC 中.∠C =90°.BC =12.tan A =.则sin B =___________.125【答案】【解析】在Rt △ABC 中.∠C =90°.BC =12.tan A =.得.即. ∴AC =5.由勾股定理.得AB.所以sin B =. 故答案为:.13. 如图.A.B.C 是O上的三点.若OBC ∆是等边三角形.则cos A ∠=___________.【解析】解:∵△OBC 是等边三角形∴∠COB=60° ∴∠A=12COB ∠=30°∴cos cos30A ∠= 14. 如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30.在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60︒.A 、C 之间的距离为4m . 则自动扶梯的垂直高度BD =_________m .(结果保留根号)【答案】【解析】∵∠BAC+∠ABC=∠BCD=60°.∠BAC=30°. ∴∠ABC=30°.∴∠ABC=∠BAC.∴BC=AC=4. 在Rt △BCD 中.BD=BCsin60°=4×2=故答案为: 513125125BC AC =12125AC =513AC AB =51315. 如图所示.在四边形ABCD 中.90B ∠=︒.2AB =.8CD =.连接AC .AC CD ⊥.若1sin 3ACB ∠=.则AD 长度是_________.【答案】10【解析】解:在Rt ABC 中.∵12,sin 3AB AB ACB AC =∠==.∴1263AC =÷=.在Rt ADC 中.AD ==10=.故答案为:10.16. 如图.某校教学楼后面紧邻着一个山坡.坡上面是一块平地.//,BC AD BE AD ⊥.斜坡AB 长26m .斜坡AB 的坡比为12∶5.为了减缓坡面.防止山体滑坡.学校决定对该斜坡进行改造.经地质人员勘测.当坡角不超过50°时.可确保山体不滑坡.如果改造时保持坡脚A 不动.则坡顶B 沿BC 至少向右移________m 时.才能确保山体不滑坡.(取tan50 1.2︒=)【答案】10【解析】解:如图.设点B 沿BC 向右移动至点H.使得∠HAD=50°.过点H 作HF ⊥AD 于点F.∵AB=26.斜坡AB 的坡比为12∶5.则设BE=12a.AE=5a.∴()()22212526a a +=.解得:a=2.∴BE=24.AE=10.∴HF=BE=24.∵∠HAF=50°.则24tan50 1.2HFAF AF︒===.解得:AF=20.∴BH=EF=20-10=10.故坡顶B沿BC至少向右移10m时.才能确保山体不滑坡.故答案为:10.第三部分解答题二、解答题(本题有7小题.共46分)17. 如图.在ABC中.90,tanC A ABC∠==∠的平分线BD交AC于点.D CD=AB的长?【答案】6【解析】解:在Rt ABC中.90,3C tanA∠==30,60,A ABC∴∠=∠=BD是ABC∠的平分线.30,CBD ABD∴∠=∠=︒又3,CD=330CDBCtan∴==.在Rt ABC中.90,30∠=︒∠=︒C A.630BCABsin∴==︒.故答案为:6.18. 已知:如图.在菱形ABCD中.AE⊥BC.垂足为E.对角线BD=8.tan∠CBD=.(1)求边AB的长;(2)求cos∠BAE的值.12【答案】(1)2√5 ;(2)35【解析】(1)连接AC .AC 与BD 相交于点O .∵四边形ABCD 是菱形.∴AC ⊥BD .BO =BD =4. ∵Rt △BOC 中.tan ∠CBD ==.∴OC =2. ∴AB =BC(2)∵AE ⊥BC.∴S 菱形ABCD =BC ·AE=BD ·AC . ∵AC=2OC =4.∴=×8×4.∴AE =.∴BE. ∴cos ∠ABE ==.19. 如图.小明利用学到的数学知识测量大桥主架在水面以上的高度AB .在观测点C 处测得大桥主架顶端A 的仰角为30°.测得大桥主架与水面交汇点B 的俯角为14°.观测点与大桥主架的水平距离CM 为60米.且AB 垂直于桥面.(点,,,A B C M 在同一平面内)12OC OB 1212125BE AB 35(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)【答案】(1)大桥主架在桥面以上的高度AM 为(2)大桥主架在水面以上的高度AB 约为50米.【解析】解:(1)AB 垂直于桥面90︒∴∠=∠=AMC BMC在Rt AMC △中.60,30︒=∠=CM ACMtan ∠=AM ACM CM tan 30603︒∴=⋅=⨯=AM CM (米)答:大桥主架在桥面以上的高度AM 为(2)在Rt BMC △中.60,14︒=∠=CM BCMtan ∠=MBBCM CMtan14600.2515︒∴=⋅=⨯≈MB CM=+AB AM MB 1550∴≈+≈AB (米)答:大桥主架在水面以上的高度AB 约为50米.20. 如图.某船向正东航行.在A 处望见海岛C 在北偏东60°.前进6海里到B 点.此时测得海岛C 在北偏东45°.已知在该岛周围6海里内有暗礁.问船继续向正东航行.有触礁的危险吗?【答案】见解析【解析】 解:如图.过点C 作CD ⊥AB 于点D.∵∠CAD=90°-60°=30°.∠CBD=90°-45°=45°.∴BD=CD.设CD=x.∴AD=AB+6=6+x.在Rt△CAD中.tan∠CAD=CD AD.∴√33= xx+6.3x=6 √3+ √3x.(3-√3)x=6 √3.解得x=3 √3+3>6.答:若船继续向东航行.无触礁危险。
2024年中考数学总复习考点梳理第四章第六节锐角三角函数及其实际应用
/
/
)
间接
sin45°,cos30°
解答题(三
求值 2020 25(3)
4 30°,45° ,cos45°,
/
/
)
tan30°
解答题(三
第六节 锐角三角函数及其实际应用
返回目录
命题点2 锐角三角函数的实际应用(6年2考) 课标要求 1.能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际 问题; 2.在平面上,能用方位角和距离刻画两个物体的相对位置.(2022年版课 标将“能用”改为“运用”)
题情境 海等,该考法试题详见练习册.
第六节 锐角三角函数及其实际应用
返回目录
教材改编题课前测
1. [北师九下P25习题改编]如图为东西
流向且河岸平行的一段河道,A,B分别
为两岸上一点,且点B在点A的正北方向,
由点A向正东方向走a米到达点C,此时测
第1题图
得点B在点C的北偏西55°方向上,则河道AB的宽为( D )
背靠背 、俯
实验楼
角
30°, 45°
结果保 留根号
教学楼 的高度
人教九下 P75例4( 改变角度
背景)
第六节 锐角三角函数及其实际应用
返回目录
命题趋势·新考法分析 新考法— 《关于加强初中学业水平考试命题工作的意见》和《课程标准(2022年版)》中均指出: —真实问 情境创设的真实性.近两年真实问题情境全国新增考查较多,如河南、陕西、武汉、威
第六节 锐角三角函数及其实际应用
考点 4 锐角三角函数的实际应用(6年2考)
在视线与水平线所成的锐角中,视线 仰角、
在水平线上方的角叫仰角,视线在水 俯角
平线下方的角叫俯角,如图
2024中考第一轮复习锐角三角函数及其应用
图22-13
CD= 3,所以 DB=2 3.
考向三
解直角三角形的实际应用
例3 某电工想换房间的灯泡,已知灯泡到地面的距离为2.65 m,现有一架家用可
调节式脚踏人字梯,其中踏板、地面都是水平的,梯子的侧面简化结构如图2214所示,左右支撑架长度相等,BD=1 m.设梯子一边AD与地面的夹角为α,且α可
顶端的仰角为50°,测高仪高度为1.5 m,则建 由题意可得:BE=DC=1.5 m,DE=
筑物AB的高度为
m.(精确到0.1 m, BC=5 m.
sin50°=0.77,cos50°=0.64,tan50°=1.19)
在
Rt△ AED 中,tan∠ADE= ,
∴AE=5tan50°≈5×1.19=5.95,
调节式脚踏人字梯,其中踏板、地面都是水平的,梯子的侧面简化结构如图2214所示,左右支撑架长度相等,BD=1 m.设梯子一边AD与地面的夹角为α,且α可
调节的范围为60°≤α≤75°,当α=60°时,电工站在梯子安全档中最高一档踏板BE
上的最大触及高度为2.60 m.
(2)调节角度,试判断电工是否可以换下灯泡,并说明理由.
90°,点 D 在 AC 上,∠DBC=∠A,若 AC=4,cosA [解析] 在 Rt△ ABC 中,cosA= = 4,
4
=5,则 BD 的长度为 (
9
A.
4
12
B.
5
15
C.
4
图22-3
)
5
5
4
则 AB= AC=5,∴BC= 2 - 2 =3.
D.4
锐角三角函数在日常生活中有哪些用途
锐角三角函数在日常生活中有哪些用途锐角三角函数在日常生活中的用途那可真是不少!咱们先来说说建筑方面。
就拿盖房子来说吧,建筑工人师傅们在搭建脚手架的时候,可就得用到锐角三角函数的知识。
我之前亲眼见过一个建筑工人师傅,他站在地上,拿着测量工具,眼睛专注地盯着上面的架子,嘴里还念念有词。
我好奇凑过去一听,原来他在计算架子与地面形成的角度,用的就是锐角三角函数。
他跟我说,如果角度算不对,这脚手架搭得不稳当,那可就危险啦!再说说装修的时候,要安装一个斜着的窗户。
这时候就得算出窗户与墙面的夹角,才能保证窗户安装得既美观又实用。
工人师傅们会拿着尺子和量角器,在那比划来比划去,其实就是在运用锐角三角函数的原理呢。
还有测量山的高度。
有一次我去爬山,碰到一群搞测量的人。
他们站在山脚下,拿着各种仪器。
其中一个人拿着望远镜看向山顶,另外几个人在本子上记录着数据。
我好奇地问他们在干啥,他们说在测量这座山的高度。
原来他们是通过测量山脚下到山顶的角度,还有他们与山之间的距离,利用锐角三角函数来算出山的高度。
这可真神奇,我当时就在想,这小小的锐角三角函数居然有这么大的本事!在航海中,锐角三角函数也起着重要作用。
船长要确定船只的位置和航向,就得依靠对角度的测量和计算。
比如说,通过测量灯塔与船只的夹角,结合已知的距离,就能准确判断出船只的位置,避免触礁或者迷路。
在日常生活里,如果你想在墙上挂一幅画,要挂得正又好看,也得用到锐角三角函数。
你得先测量画框与墙面的角度,还有画框的长度和高度,这样才能确定钉子应该钉在哪个位置,画才能挂得稳稳当当,不会歪歪斜斜的。
还有啊,比如你想在院子里搭一个滑梯给小朋友玩。
滑梯的坡度太陡,小朋友滑下来速度太快不安全;坡度太缓,又滑得不痛快。
这时候就得通过锐角三角函数来计算出最合适的角度,让小朋友既能玩得开心又能保证安全。
甚至在拍照的时候,有时候为了拍出特别的效果,摄影师也会考虑角度的问题。
通过计算拍摄角度和距离,来达到想要的构图和视觉效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)三边之间的关系: (勾股定理)
(2)锐角之间的关系:∠A+∠B=90°(三角形内角和)
(3)边角之间的关系:(锐角三角函数)
知识点4:直击中考——解直角三角形的实际应用:测距、测高、测长等
例1、如图,直升飞机在跨河大桥AB的上方点P处,此时飞机离地面的高度PO=450m,且A,B,O三点在一条直线上,测得∠=30°,∠=45°,求大桥AB的长(结果保留根号).
【分析】P
第一步:确定相关直角三角形RtΔADP、RtΔBCP
第二步:分别在直角三角形中列出已知角的锐角
三角函数值
第三步:代入已知条件求值,并简答
【解答】
由题意得:ΔADP、ΔBOP均为直角三角形,
∠PBC=∠=45°,∠PAD=∠=30°,BC=AD=60m,AB=CD
在RtΔADP中,tan∠PAD=PD/AD
在RtΔACD中,tan∠ADC=AC/AD
代入数值计算得,AD=AB=3m,AC= AD=3 m
故BC=AC-AB=(3 -3)m
【真题演练】
1、在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.
(1)试通过计算,比较风筝A与风筝B谁离地面更高?
(2)求风筝A与风筝B的水平距离.
(精确到0.01m;参考数据:sin45°≈0.707,cos45°≈0.707,
tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)
【分析】
第一步:确定相关直角三角形
本题中∠、∠分别在RtΔAOP、RtΔBOP中(由平行线内错角相等转化已知角)
第二步:分别在直角三角形中列出已知角的锐角三角函数值
第三步:代入已知条件求值,并简答
【答案】
由题意得,ΔAOP、ΔBOP均为直角三角形,
∠PAO=∠=30°,∠PBO=∠=45°,PO=450m
在RtΔBOP中,tan∠PBC=PC/BC
代入数值,计算得
tan∠PAD=PD/AD=tan∠= 所以PD= AD
tan∠PBC=PC/BC=tan∠=1所以PC=BC
AB=CD=PC-PD=(1- )BC=(1- )×60m=(60-20 )m
答:AB长为(60-20 )m
【技巧点拨】(1)此类题型解答步骤:
√1、 、
cosα
分母都是2,分子分别是
、 、√1
tanα
1
分母都是 ,分子分别是
、1、3
【新课知识讲解】
知识点3:解直角三角形
1、解直角三角形的概念
在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
2、解直角三角形的理论依据
③切——垂直的意思,只与直角边有关
④正切——分子是正对的边
⑤余——剩余的意思
余弦——分子是剩下的直角边(即邻边)
余切——分子是剩下的直角边(即邻边)
简记为:正弦——对比斜(或正比斜) 正切——对比邻 余弦——邻比斜
知识点2:常见的锐角三角函数值
三角函数
30°
45°60°技Fra bibliotek点拨sinα
分母都是2,分子分别是
第二步:分别在RtΔABD、RtΔACD中,列出已知角∠ADB、∠ADC的正切值
tan∠ADB=AB/AD tan∠ADC=AC/AD
第三步:代入数值计算并作答
【解】由题意得:ΔABD、ΔACD均为直角三角形,且∠ADB=45°,∠ADC=60°
AB=3m
在RtΔABD中,tan∠ADB=AB/AD
在RtΔAOP中,tan∠PAO=PO/AO
在RtΔBOP中,tan∠PBO=PO/BO
代入数值,计算得
tan∠PAO=PO/AO=tan∠= 所以AO= PO
tan∠PBO=PO/BO=tan∠=1所以BO=PO
AB=AO-BO=( -1)PO=450( -1)m
答:AB长为450( -1)m
例2、如图,已知两座高度相等的建筑物AB、CD的水平距离BC=60米,在建筑物CD上有一铁塔PD,在塔顶P处观察建筑物的底部B和顶部A,分别测行俯角 ,求建筑物AB的高。(计算过程和结果一律不取近似值)
第一步:围绕题目中给出的已知角度、线段长度,构建合适的直角三角形,一
般需要确定两个直角三角形
注意:合适的直角三角形指的是包含已知角和已知线段的直角三角形,或者是先利用平行线性质、角度互余关系将已知角转化为其同位角、内错角或余角,包含这些转化后的角的直角三角形)
第二步:分别在两个直角三角形中利用已知角和已知线段(边)列出已知角的
中考数学专题复习——锐角三角函数的实际应用
———————————————————————————————— 作者:
———————————————————————————————— 日期:
课题:锐角三角函数的实际应用
【基础知识回顾】
知识点1:锐角三角函数的概念(正弦、余弦、正切、余切)
技巧点拨:
①弦——分母都是斜边②正弦——分子是正对的边(谐音“正邪”)
锐角三角函数
第三步:代入数值计算,注意题目对计算结果的要求,并简要作答。
(2)常见数学模型总结:
模型①
P已知角∠POA、∠POB
已知线段AB,求线段PO
或已知线段PO,求线段AB
——对应例1
点拨:利用RtΔAOP、RtΔBOP
OBA
模型②
P已知角∠PAC、线段AB和BD,
求线段PC
点拨:利用RtΔACP、RtΔBDP
点拨:利用RtΔAPO、RtΔABO
OA
【课堂练习】
为了缓解酒泉市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°.求路况显示牌BC的高度.(提示:参照模型⑤)
【分析】
第一步:确定RtΔABD、RtΔACD
CA
DB
模型③
P已知∠PAC、∠PBD,线段AB和BD,
求线段PC或PD
——对应例2
CA点拨:利用RtΔACP、RtΔBDP
DB
模型④
PQ已知∠APQ和∠BPQ,线段AB,
求线段PO
点拨;利用RtΔAPQ、RtΔBPQ
A
OB
模型⑤
P
已知∠PAO和∠BAO,
已知线段AO,求线段PB
B或已知线段PB,求线段OA