锐角三角函数专题训练

合集下载

专题28.17 锐角三角函数(中考常考考点专题)(基础篇)(专项练习)-2022-2023学年九年级

专题28.17 锐角三角函数(中考常考考点专题)(基础篇)(专项练习)-2022-2023学年九年级

专题28.17 锐角三角函数(中考常考考点专题)(基础篇)(专项练习)一、单选题【类型一】锐角三角函数【考点一】(正弦✮✮余弦✮✮正切)概念➽➸辨析1.(2022·吉林长春·中考真题)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A .sin AB BC α= B .sin BC AB α= C .sin AB AC α=D .sin AC AB α= 2.(2022·湖北湖北·模拟预测)如图,在Rt ABC △中,BD 是斜边AC 上的高,AB BC ≠,则下列比值中等于sin A 的是( ).A .AD AB B .BD ADC .BD BC D .DC BC【考点二】角➽➸(正弦✮✮余弦✮✮正切)函数值3.(2022·浙江宁波·三模)如图,将ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tan A 的值是( )A B C .2 D .124.(2022·福建省厦门第二中学模拟预测)如图,在Rt ABC 中,90,2C BC AC ∠=︒=,则sin B =( )A .12 B .2 C D 【考点三】(正弦✮✮余弦✮✮正切)函数值➽➸求边长5.(2020·四川雅安·中考真题)如图,在Rt ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为( )A .8B .12C .D .6.(2022·吉林·长春市赫行实验学校一模)如图要测量小河两岸相对的两点P 、A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得50PC =米,44PCA ∠=︒,则小河宽PA 为( )米A .50sin44︒B .50cos44︒C .50tan 44︒D .50tan46︒【类型二】特殊锐角三角函数【考点一】特殊锐角➽➸函数值7.(2016·江苏无锡·中考真题)sin30°的值为( )A .12 B C .2 D 8.(2021·广东深圳·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1【考点二】函数值➽➸特殊锐角9.(2022·河南焦作·()101α+︒=,则锐角α的度数为( )A .40°B .30°C .20°D .10°10.(2021·江苏无锡·一模)已知cos A A =∠是锐角,则A ∠的度数为( ) A .30︒ B .45︒ C .60︒ D .90︒【考点三】混合运算➽➸特殊锐角✮✮二次根式11.(2021·山东泰安·模拟预测)计算:202122sin 60|1(1)2-︒----的结果是( )A .74B .4C .14D .1412.(2021·山东省日照市实验中学二模)计算(tan30°)﹣1﹣2|)0的结果是( )A .6B .12C .2D .2+【考点四】特殊锐角值➽➸判断三角形形状13.(2021·贵州黔西·模拟预测)在ABC 中,若A ∠,B ∠都是锐角,且1sin 2A =,1cos 2B =,则ABC 的形状是( ) A .钝角三角形 B .等腰三角形C .锐角三角形D .直角三角形14.(2020·山东德州·二模)如果△ABC 中,sin A =cos B 2,则下列最确切的结论是( ) A .△ABC 是直角三角形B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形D .△ABC 是锐角三角形【类型三】解直角三角形【考点一】解直角三角形➽➸直接解直角三角形15.(2022·陕西·中考真题)如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A .B .C .D .16.(2022·四川广元·中考真题)如图,在△ABC 中,BC =6,AC =8,△C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .52B .3C .D .103【考点二】解非直角三角形➽➸转化为直角三角形并解之17.(2019·河北石家庄·二模)在东西方向的海岸线上有A ,B 两个港口,甲货船从A 港沿东北方向以5海里/时的速度出发,同时乙货船从B 港口沿北偏西60︒方向出发,2h 后相遇在点P 处,如图所示.问A 港与B 港相距( )海里.A.B . C .10+D .2018.(2019·重庆·一模)缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D 处水平向前走14米到A 点处,再沿着坡度为0.75的斜坡AB 走一段距离到达B 点,此时回望观景塔,更显气势宏伟,在B 点观察到观景塔顶端的仰角为45︒再往前沿水平方向走27米到C 处,观察到观景塔顶端的仰角是22︒,则观景塔的高度DE 为( )(tan22°≈0.4)A .21米B .24米C .36米D .45米【考点三】解不规则图形➽➸构造直角三角形并解之19.(2019·重庆九龙坡·模拟预测)如图是重庆轻轨10号线龙头寺公园站入口扶梯建设示意图.起初工程师计划修建一段坡度为3:2的扶梯AB ,扶梯总长为度大陡,扶梯太长容易引发安全事故.工程师修改方案:修建AC 、DE 两段扶梯,并减缓各扶梯的坡度,其中扶梯AC 和平台CD 形成的ACD ∠为135°,从E 点看D 点的仰角为36.5°,AC 段扶梯长则DE 段扶梯长度约为( )米(参考数据:3sin 36.55︒≈,4cos36.55︒≈,3tan 36.54︒≈)A .43B .45C .47D .4920.(2018·河北·模拟预测)如图(1)是一个六角星的纸板,其中六个锐角都为60°,六个钝角都为120°,每条边都相等,现将该纸板按图(2)切割,并无缝隙无重叠地拼成矩形ABCD .若六角星纸板的面积为2,则矩形ABCD 的周长为( )A .18cmB .C .()cmD .()cm【类型四】解直角三角形的应用【考点一】解直角三角形➽➸仰角✮✮俯角21.(2022·广西贵港·中考真题)如图,某数学兴趣小组测量一棵树CD 的高度,在点A 处测得树顶C 的仰角为45︒,在点B 处测得树顶C 的仰角为60︒,且A ,B ,D 三点在同一直线上,若16m AB =,则这棵树CD 的高度是( )A .8(3B .8(3+C .6(3D .6(3+22.(2021·山东济南·中考真题)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m 的A 处测得试验田右侧出界N 处俯角为43︒,无人机垂直下降40m 至B 处,又测得试验田左侧边界M 处俯角为35︒,则M ,N 之间的距离为(参考数据:tan 430.9︒≈,sin 430.7︒≈,cos350.8︒≈,tan350.7︒≈,结果保留整数)( )A .188mB .269mC .286mD .312m【考点二】解直角三角形➽➸方位角23.(2022·河北·模拟预测)从观测点A 测得海岛B 在其北偏东60°方向上,测得海岛C 在其北偏东80°方向上,若一艘小船从海岛B 出发沿南偏西40°方向以每小时40海里的速度,行驶2小时到C 海岛,则C 海岛到观测点A 的距离是( )A.20海里B.40海里C.60海里D.80海里24.(2022·山东·济南市市中区泉秀学校一模)如图,一艘测量船在A处测得灯塔S在它的南偏东60°方向,测量船继续向正东航行30海里后到达B处,这时测得灯塔S在它的南偏西75°方向,则灯塔S离观测点A的距离是()B.(15)海里A.C.()海里D.【考点三】解直角三角形➽➸坡度坡比25.(2022·贵州毕节·中考真题)如图,某地修建一座高5mBC=的天桥,已知天桥斜面AB的坡度为AB的长度为()A.10m B.C.5m D.26.(2021·湖南衡阳·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为︒≈︒≈︒≈)().(sin370.6,cos370.8,tan370.75A .7.5米B .8米C .9米D .10米【考点四】解直角三角形➽➸其他问题27.(2022·广西·中考真题)如图,某博物馆大厅电梯的截面图中,AB 的长为12米,AB 与AC 的夹角为α,则高BC 是( )A .12sin α米B .12cos α米C .12sin α米D .12cos α米 28.(2022·湖北十堰·中考真题)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB ,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC 长为m ,则大树AB 的高为( )A .()cos sin m αα-B .()sin cos m αα-C .()cos tan m αα-D .sin cos m m αα- 二、填空题 【类型一】锐角三角函数【考点一】(正弦✮✮余弦✮✮正切)概念➽➸辨析29.(2022·上海市青浦区教育局二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A 点测得古树顶的仰角为α,向前走了100米到B 点,测得古树顶的仰角为β,则古树的高度为________米.30.(2021·福建厦门·一模)在Rt△ABC中,△C=90°,AC=AB=10,则△B=_____.【考点二】角➽➸(正弦✮✮余弦✮✮正切)函数值31.(2021·四川乐山·三模)如图,在3×3的正方形网格中,A、B均为格点,以点A为圆心,AB长为半径画弧,图中的点C是该弧与网格线的交点.则sin△BAC的值等于_____.32.(2022·湖南益阳·中考真题)如图,在Rt△ABC中,△C=90°,若sin A=45,则cos B=_____.【考点三】(正弦✮✮余弦✮✮正切)函数值➽➸求边长33.(2022·广东深圳·二模)如图,直角ABC中,90C∠=︒,根据作图痕迹,若3cmCA=,3tan4B=,则DE=________cm.34.(2021·湖南邵阳·中考真题)如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.【类型二】特殊锐角三角函数【考点一】特殊锐角➽➸函数值35.(2021·西藏·中考真题)计算:(π﹣3)0+(﹣12)﹣2﹣4sin30°=___. 36.(2020·湖南湘潭·中考真题)计算:sin 45︒=________. 【考点二】函数值➽➸特殊锐角37.(2022·陕西·西安辅轮中学三模)若sin(α+15°)=1,则△α等于_____________度. 38.(2020·湖北·武汉二中广雅中学三模)若sin A =12,则tan A =_____. 【考点三】混合运算➽➸特殊锐角✮✮二次根式39.(2022·重庆·模拟预测)计算:sin45°+212-⎛⎫- ⎪⎝⎭=_____.40.(2022·湖北荆门·一模)计算:)02112sin 45()2-+-︒--=________. 【考点四】特殊锐角值➽➸判断三角形形状41.(2020·江苏淮安·三模)在ABC ∆中,若21 02sinA tanB -+⎛ ⎝⎭= ,则ABC ∆是_____三角形.42.(2019·四川自贡·一模)在△ABC 中,(cos A ﹣12)2+|tan B ﹣1|=0,则△C =_____. 【类型三】解直角三角形【考点一】解直角三角形➽➸直接解直角三角形43.(2019·辽宁大连·中考真题)如图,ABC ∆是等边三角形,延长BC 到点D ,使CD AC =,连接AD.若2AB=,则AD的长为_____.44.(2015·广西玉林·中考真题)如图,等腰直角△ABC中,AC=BC,△ACB=90°,点△BOC绕C点顺时针方向旋转到△AQC的位置,则O分斜边AB为BO:OA=1△AQC=___________.【考点二】解非直角三角形➽➸转化为直角三角形并解之45.(2021·湖北武汉·模拟预测)如图是某商场自动扶梯的示意图,自动扶梯AB的倾斜角是30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角是60°,则自动扶梯的垂直高度BD=___________m. 1.732,结果精确到0.1米)46.(2020·安徽阜阳·二模)如图,在一条东西方向笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A的北偏东60°方向、在码头B的北偏西45°方向,AC=4千米.那么码头A、B之间的距离等于_____千米.(结果保留根号)【考点三】解不规则图形➽➸构造直角三角形并解之47.(2021·湖北湖北·中考真题)如图,某活动小组利用无人机航拍校园,已知无人机的飞行速度为3m/s,从A处沿水平方向飞行至B处需10s,同时在地面C处分别测得A处的仰角为75︒,B处的仰角为30︒.则这架无人机的飞行高度大约是_______m 1.732≈,结果保留整数)48.(2019·辽宁辽阳·中考真题)某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车_____(填“超速”或“没有超速”) 1.732)【类型四】解直角三角形的应用【考点一】解直角三角形➽➸仰角✮✮俯角49.(2021·山东烟台·中考真题)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为______________米.(结果精确到1米, 1.41≈ 1.73)50.(2021·四川乐山·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30︒,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)【考点二】解直角三角形➽➸方位角51.(2022·四川·巴中市教育科学研究所中考真题)一艘轮船位于灯塔P 的南偏东60︒方向,距离灯塔30海里的A 处,它沿北偏东30︒方向航行一段时间后,到达位于灯塔P 的北偏东67︒方向上的B 处,此时与灯塔P 的距离约为________海里.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)52.(2022·辽宁沈阳·二模)如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30°方向.请问船继续航行______海里与钓鱼岛A 的距离最近.【考点三】解直角三角形➽➸坡度坡比53.(2022·广西柳州·中考真题)如图,某水库堤坝横断面迎水坡的坡角为α,sin α=35,堤坝高BC =30m ,则迎水坡面AB 的长度为 ____m .54.(2021·江苏无锡·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.【考点四】解直角三角形➽➸其他问题55.(2022·山东泰安·中考真题)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).56.(2021·广西梧州·中考真题)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A 到桥的距离是40米,测得△A =83°,则大桥BC 的长度是 ___米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)参考答案1.D【分析】根据正弦三角函数的定义判断即可.解:△BC△AC,△△ABC 是直角三角形, △△ABC =α, △sin ACABα=, 故选:D .【点拨】本题考查了正弦三角函数的定义.在直角三角形中任意锐角△A 的对边与斜边之比叫做△A 的正弦,记作sin△A .掌握正弦三角函数的定义是解答本题的关键.2.D【分析】由同角的余角相等求得△A =△DBC ,根据正弦三角函数的定义判断即可; 解:△△ABD +△A =90°,△ABD +△DBC =90°, △△A =△DBC , A .ADAB=cos A ,不符合题意; B .BDAD=tan A ,不符合题意; C .BDBC=cos△DBC =cos A ,不符合题意; D .DCBC=sin△DBC =sin A ,符合题意; 故选: D .【点拨】本题考查了三角函数的概念,掌握直角三角形中锐角的正弦为对边比斜边是解题关键.3.D【分析】首先构造以△A 为锐角的直角三角形,然后利用正切的定义即可求解. 解:连接BD ,如图所示:根据网格特点可知,BD AC ⊥, △90ADB ∠=︒,△BD AD =△在Rt△ABD 中,tan A =BD AD 12=,故D 正确. 故选:D .【点拨】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,构造直角三角形是本题的关键.4.C【分析】根据勾股定理,可得AB 与BC 的关系,根据正弦函数的定义,可得答案. 解:△△C =90°,2BC AC =,△AB ,sinAC B AB ==C 正确. 故选:C .【点拨】本题考查了锐角三角函数的定义,先利用勾股定理得出AB 与AC 的关系,再利用正弦函数的定义.5.C【分析】利用正弦的定义得出AB 的长,再用勾股定理求出BC. 解:△sinB=ACAB=0.5, △AB=2AC , △AC=6, △AB=12,故选C.【点拨】本题考查了正弦的定义,以及勾股定理,解题的关键是先求出AB 的长. 6.C【分析】在直角三角形APC 中根据△PCA 的正切函数可求小河宽P A 的长度. 解:△P A △PB , △△APC =90°,△PC =50米,△PCA =44°,△tan44°=PA PC,△小河宽P A=PCtan△PCA=50•tan44°米.故选:C.【点拨】本题考查了解直角三角形的应用,解直角三角形的一般过程是:△将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).△根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.7.A【分析】根据特殊角的三角函数值求解即可.解:sin30°=12故答案为:A.【点拨】本题考查了锐角三角函数的问题,掌握特殊角的三角函数值是解题的关键.8.C【分析】直接利用特殊角的三角函数值、绝对值的性质分别化简得出答案.解:|1tan60||11-︒==故选C.【点拨】此题主要考查了特殊角的三角函数值,绝对值的性质等知识,正确化简各数是解题关键.9.C【分析】根据特殊角的三角函数值求解即可.解:(α+10°)=1,△tan(α+10°)△α为锐角,△α+10°=30°,α=20°.故选C.【点拨】熟记特殊角的三角函数值是解答此题的关键.10.A【分析】根据特殊角的三角函数值以及三角函数的定义,即可得到答案.解:△cos A A =∠是锐角, △A ∠=30°, 故选A .【点拨】本题主要考查锐角三角函数,掌握特殊角三角函数值是解题的关键. 11.A【分析】原式利用特殊角的三角函数值,绝对值的代数意义,乘方的意义,以及负整数指数幂法则计算即可得到结果.解:原式121)(1)4=--- 1114=+-74=. 故选:A .【点拨】本题考查实数的运算,掌握运算顺序是解决为题的关键,先乘方、再乘除、最后加减,注意牢记特殊角的三角函数值.12.D【分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,绝对值的代数意义,以及立方根定义计算即可求出值.解:原式=1-⎝⎭﹣(2+3+1=. 故选:D .【点拨】本题考查实数的运算,掌握正确的运算顺序是解决问题的关键. 13.D【分析】根据特殊角的三角函数值可判断30A ∠=︒,=60B ∠︒,从而可求出90C ∠=︒,即证明ABC 的形状是直角三角形.解:△A ∠,B ∠都是锐角,且1sin 2A =,1cos 2B =, △30A ∠=︒,=60B ∠︒,△180180306090C A B ∠=︒-∠-∠=︒-︒-︒=︒,△ABC 的形状是直角三角形. 故选D .【点拨】本题考查由特殊角的三角函数值判断三角形形状,三角形内角和定理.熟记特殊角的三角函数值是解题关键.14.C解:△sin A =cos B , △△A =△B =45°,△△ABC 是等腰直角三角形. 故选:C . 15.D【分析】先解直角ABC 求出AD ,再在直角ABD △中应用勾股定理即可求出AB . 解:△26BD CD ==, △3CD =,△直角ADC 中,tan 2C ∠=, △tan 326AD CD C =⋅∠=⨯=,△直角ABD △中,由勾股定理可得,AB = 故选D .【点拨】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.16.A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.解:由题意得:MN 垂直平分AD ,6BD BC ==, △1,902AF AD AFE =∠=︒, △BC =6,AC =8,△C =90°,△10AB =,△AD =4,AF =2,4cos 5AC AF A AB AE ∠===, △5cos 2AF AE A ==∠; 故选A .【点拨】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.17.B【分析】先作PC AB ⊥于点C ,根据甲货船从A 港沿东北的方向以5海里/小时的速度出发,求出PAC ∠和AP ,从而得出PC 的值,得出BC 的值,即可求出答案.解:作PC AB ⊥于点C ,甲货船从A 港沿东北的方向以5海里/小时的速度出发,45PAC ∴∠=︒,5210AP =⨯=,PC AC ∴==乙货船从B 港沿西北方向出发,60PBC ∴∠=︒,BC ∴=AB AC BC ∴=+=,答:A 港与B 港相距海里,故选:B .【点拨】本题考查了解直角三角形的应用-方向角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识求解.本题要注意关键词:在东西方向的海岸线上有A ,B 两个港口.18.A【分析】作BN DA ⊥交DA 的延长线于N ,延长CB 交DE 于M ,则四边形DMBN 是矩形,根据AB 的坡度,设3,4,BN k AN k ==表示出144,3,MB DN k DM BN k ==+==414,CM k =+在Rt EBM 中,144,EM BM k ==+ 在Rt ECM 中, 根据tan 0.4,EM C CM == 列出式子,求出k 的值,即可求解.解:如图,作BN DA ⊥交DA 的延长线于N ,延长CB 交DE 于M ,则四边形DMBN 是矩形,:3:4,BN AN =可以假设3,4,BN k AN k ==则,144,3,MB DN k DM BN k ==+== 414,CM k =+在Rt EBM 中, 90,45,EMB EBM ∠=∠=144,EM BM k ∴==+在Rt ECM 中, tan 0.4,EM C CM== 1440.4,414k k +∴=+ 解得:1,k =3,18,DM EM ∴==21.DE DM EM =+=答:观景塔的高度DE 为21米.故选A.【点拨】考查解直角三角形,坡度问题,熟练掌握锐角三角函数是解题的关键.19.B【分析】首先构建直角三角形,然后利用三角函数值得出DG ,即可得解.解:作AH△EB 于H ,延长DC 交AH 于N ,作DG△EB 于G ,如图所示:△△ACD=135°△△ACN=45°在Rt△ACN 中,AC=△ACN=45°△AN=CN=18在Rt△ABH 中,AB=AH :BH=3:2,设3,2AH k BH k ==△()()(22232k k +=解得15k =或15k =-(不符合题意,舍去)△AH=45△HN=AH -AN=45-18=27△四边形DGHN 是矩形△DG=HN=27在Rt△DEG 中,sin sin 36.5DG DEB DE ︒==∠ △274535DE ≈≈故选:B.【点拨】此题主要考查锐角三角函数的实际应用,熟练掌握,即可解题.20.D【分析】过点E 作EF△AB 于点F ,设AE=x cm ,则AD=3x ,则=AB ,然后利用AB•AD=x 的值,即可得到AD,AB 的长度,则周长可求.解:如图,过点E 作EF△AB 于点F ,△六个锐角都为60°,六个钝角都为120°,△设AE=x cm ,则AD=3x ,△△AEB=120°,△△EAB=30°,△AB=2AF=2cos30x︒,△六角星纸板的面积为2,△AB•AD=3393x x=解得x△AD=AB=3,△矩形ABCD的周长=3)26)⨯=cm.故选:D.【点拨】本题主要考查解直角三角形和一元二次方程的应用,掌握特殊角的三角函数值,利用方程的思想是解题的关键.21.A【分析】设CD=x,在Rt△ADC中,△A=45°,可得CD=AD=x,BD=16-x,在Rt△BCD 中,用△B的正切函数值即可求解.解:设CD=x,在Rt△ADC中,△A=45°,△CD=AD=x,△BD=16-x,在Rt△BCD中,△B=60°,△tanCDBBD =,即:16xx= -解得8(3x=,故选A.【点拨】本题考查三角函数,根据直角三角形的边的关系,建立三角函数模型是解题的关键.22.C【分析】根据题意易得OA△MN,△N=43°,△M=35°,OA=135m,AB=40m,然后根据三角函数可进行求解.解:由题意得:OA△MN,△N=43°,△M=35°,OA=135m,AB=40m,△95mOB OA AB=-=,△135==150mtan0.9OAONN=∠,95=136mtan0.7OBOMM=≈∠,△286mMN OM ON=+=;故选C.【点拨】本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.23.D【分析】利用平行线性质得出:△ABD=△EAB=60°,进而得出△ABC=△BAC=20°,得出BC=AC,进而得出答案.解:由题意可得出:△EAC=80°,△EAB=60°,△DBC=40°,BC=40×2=80(海里),△△BAC=80°-60°=20°,△BCA=60°,△AE△BD,△△ABD=△EAB=60°,△△DBC=40°,△△ABC=60°-40°=20°,△△ABC=△BAC=20°,△BC=AC=80(海里).△C海岛到观测点A的距离是80海里.故选D.【点拨】本题主要考查了解直角三角形的应用,利用方向角得出BC=AC是解题的关键.24.B【分析】题中利用特殊角度,做辅助线过S作SC△AB于C,在AB上截取CD=AC,设CS=x+2x=AB,可得:x,可知AS=(15)海里.解:过S作SC△AB于C,在AB上截取CD=AC,△AS =DS ,△△CDS =△CAS =30°,△△ABS =15°,△△DSB =15°,△SD =BD ,设CS =x 海里,在Rt △ASC 中,△CAS =30°,△AC(海里),AS =DS =BD =2x (海里),△AB =30海里,+2x =30,解得:x △AS =(15)海里.故选:B .【点拨】本题主要考查方位角问题,熟练运用特殊角三角函数是解题的关键.25.A【分析】直接利用坡度的定义得出AC 的长,再利用勾股定理得出AB 的长.解:△i =5BC m =, △5BC AC AC ==解得:AC =,则10AB m =.故选:A .【点拨】本题考查解直角三角形和勾股定理的实际应用.由坡度的定义得出AC 的长是解答本题的关键. 26.D【分析】结合题意,根据三角函数的性质计算,即可得到答案.解:根据题意,得:sin 370.6BC AB ︒=≈ △6BC =米 △6100.60.6BC AB ===米 故选:D .【点拨】本题考查了三角函数的知识;解题的关键是熟练掌握三角函数的性质,从而完成求解.27.A【分析】在Rt △ACB 中,利用正弦定义,sin α=BC AB ,代入AB 值即可求解. 解:在Rt △ACB 中,△ACB =90°,△sin α=BC AB, △BC = sin α⋅AB =12 sin α(米),故选:A .【点拨】本题考查解直角三角形的应用,熟练掌握直角三角形边角关系是解题的关键.28.A【分析】应充分利用所给的α和45°在树的位置构造直角三角形,进而利用三角函数求解.解:如图,过点C 作水平线与AB 的延长线交于点D ,则AD △CD ,△△BCD =α,△ACD =45°.在Rt △CDB 中,CD =m cos α,BD =m sin α,在Rt △CDA 中,AD =CD ×tan45°=m ×cos α×tan45°=m cos α,△AB =AD -BD=(m cos α-m sin α)=m (cosα-sin α).故选:A .【点拨】本题考查锐角三角函数的应用.需注意构造直角三角形是常用的辅助线方法,另外,利用三角函数时要注意各边相对.29.100tan tan tan tan αββα- 【分析】由正切的定义分别确定tan ,tan αβ的表达式,进而联立成方程组,求解方程组即可得到答案.解:如图,CD 为树高,点C 为树顶,则,CAD CBD αβ∠=∠=,BD =AD -100△依题意,有tan tan 100CD AD CD AD αβ⎧=⎪⎪⎨⎪=⎪-⎩①② 由△得tan CDAD α=③将△代入△,解得100tan tan =tan tan CD αββα- 故答案为:100tan tan tan tan αββα-. 【点拨】本题考查正切的定义,二元一次方程组得应用,能依题意根据正切的定义列出方程组是解题的关键.30.60°【分析】利用正弦定义计算即可.解:如图,△sinB =AC AB == △△B =60°,故答案为:60°.【点拨】此题主要考查了解直角三角形,关键是掌握正弦定义.31.23【分析】利用CD ∥AB ,得到△BAC =△DCA ,根据同圆的半径相等,AC =AB =3,可得sin△ACD =AD AC =23,从而可得答案. 解:如图:△CD ∥AB ,△△BAC =△DCA .△同圆的半径相等,△AC =AB =3.在Rt ACD △中,sin△ACD =23AD AC . △sin△BAC =sin△ACD =23.故答案为:23.【点拨】此题考查了解直角三角形的应用,解题的关键是利用图形的性质进行角的等量代换.32.45【分析】根据三角函数的定义即可得到cos B =sin A =45. 解:在Rt△ABC 中,△C =90°,△sin A =BC AB =45, △cos B =BC AB =45. 故答案为:45. 【点拨】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若△A +△B =90°,则sin A =cos B ,cos A =sin B .熟知相关定义是解题关键.33.158【分析】先解直角三角形ABC 求出BC 的长,从而求出AB 的长,再由作图方法可知DE 是线段AB 的垂直平分线,即可得到BE 的长,再解直角△BED 即可得到答案.解:△△C =90°,AC =3cm ,3tan =4B , △3tan ==4AC B BC , △BC =4cm ,△AB ,由作图方法可知DE 是线段AB 的垂直平分线,△DE △AB ,522AB AE BE cm ===, △3tan =4DE B BE =, △31548DE BE cm ==, 故答案为:158. 【点拨】本题主要考查了锐角三角函数,勾股定理,线段垂直平分线的性质,线段垂直平分线的尺规作图,正确理解DE 是线段AB 的垂直平分线是解题的关键.34.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==165AE ∴=125DE ∴=== DE AC ⊥90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD ∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠== 534CD DE ∴=⋅= 在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.35.3【分析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式=1+4﹣4×12=1+4﹣2=3.故答案为:3.【点拨】此题主要考查了负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质,正确化简各数是解题关键.36【分析】根据特殊角的三角函数值直接书写即可.解:sin 45︒=. 【点拨】本题考查了特殊角的三角函数值,牢固记忆是解题的关键.【分析】直接利用特殊角的三角函数值即可求解.解:△sin (α+15°)=1,△α+15°=90°,△α=75°,故答案为:75.【点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.38 【分析】先根据特殊角的三角函数值求出△A 的度数,然后求出tanA 的值.解:△sinA =12,△△A =30°,则tanA【点拨】本题考查了对特殊角的三角函数值的应用,解题的关键是检查学生能否熟练地运用进行计算.394##42+ 【分析】根据特殊角的三角函数值和负整数指数幂的运算法则进行计算即可.解:sin45°+2142-⎛⎫-= ⎪⎝⎭,+4.【点拨】本题考查了特殊角的三角函数值和负整数指数幂,相关公式有:sin 452=°,()10p pa a a -=≠. 403【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负指数幂的性质即可求解.解:原式124=-14=3=.3.【点拨】本题主要考查了绝对值的性质、零指数幂的性质、特殊角的三角函数值、负指数幂的性质.41.等腰【分析】根据绝对值和平方的非负性求出sinA和tanB的值,再根据锐角三角函数的特殊值求出△A和△B的角度,即可得出答案.解:△210 2sinA tanB-+⎛⎝⎭=△12sinA=,tanB=△△A=30°,△B=30°△△ABC是等腰三角形故答案为等腰.【点拨】本题考查的是特殊三角函数值,比较简单,需要牢记特殊三角函数值. 42.75°.【分析】先根据非负数的性质确定cosA=12,tanB=1,再根据特殊角的三角函数解答.解:△(cos A﹣12)2+|tan B﹣1|=0,△cos A﹣12=0,tan B﹣1=0,则cos A=12,tan B=1,△△A=60°,△B=45°,△△C=180°﹣60°﹣45°=75°.故答案为75°.【点拨】熟记特殊角的三角函数值是解题的关键,同时还考查了三角形内角和定理43.【分析】AB=AC=BC=CD,即可求出△BAD=90°,△D=30°,解直角三角形即可求得.解:△ABC∆是等边三角形,△60B BAC ACB︒∠=∠=∠=,△CD AC=,。

锐角三角函数专项练习题

锐角三角函数专项练习题

锐角三角函数专项练习题一. 选择题1. 在锐角三角形ABC中,已知∠A=30°,∠B=60°,则∠C 等于:a) 30°b) 60°c) 90°d) 120°2. 在锐角三角形ABC中,已知a=3,b=4,则∠C等于:a) 30°b) 45°c) 60°d) 90°3. 已知在锐角三角形ABC中,a=5,c=13,则∠C等于:a) 30°b) 45°c) 60°d) 90°4. 在锐角三角形ABC中,已知a=8,b=15,则sinC等于:a) 8/17b) 15/17c) 17/8d) 17/155. 在锐角三角形ABC中,已知a=7,b=24,则cosC等于:a) 7/24b) 24/7c) 7/25d) 24/25二. 填空题1. 在锐角三角形ABC中,已知a=4,b=5,则c=____。

2. 在锐角三角形ABC中,已知a=7,c=10,则b=____。

3. 在锐角三角形ABC中,已知b=9,c=15,则a=____。

4. 已知sinA=3/5,∠A为锐角,则cosA=____。

5. 已知cosA=4/5,∠A为锐角,则sinA=____。

三. 计算题1. 在锐角三角形ABC中,已知a=6,b=8,求c。

解:利用勾股定理,c=sqrt(a^2+b^2)c=sqrt(6^2+8^2)=sqrt(36+64)=sqrt(100)=102. 在锐角三角形ABC中,已知a=5,c=13,求∠A。

解:利用余弦定理,cosA=(b^2+c^2-a^2)/(2bc)cosA=(5^2+13^2-5^2)/(2*5*13)= (25+169-25)/(130)=169/130然后,∠A=arccos(169/130)=22.62°3. 在锐角三角形ABC中,已知b=7,c=10,求∠B。

2024年人教版九年级数学中考专题训练:锐角三角函数(含解析)

2024年人教版九年级数学中考专题训练:锐角三角函数(含解析)

2024年人教版九年级数学中考专题训练:锐角三角函数1.如图,在数学综合实践活动课上,两名同学要测量小河对岸大树BC 的高度,甲同学在点A 测得大树顶端B 的仰角为45°,乙同学从A 点出发沿斜坡走米到达斜坡上点D ,在此处测得树顶端点B 的仰角为26.7°,且斜坡AF 的坡度为1:2.(1)求乙同学从点A 到点D 的过程中上升的高度;(2)依据他们测量的数据求出大树BC 的高度.(参考数据:sin26.7°≈0.45,cos26.7°≈0.89,tan26.7°≈0.50)2.如图,在中,D 是上一点,,以为直径的经过点C ,交于点E ,过点E 作的切线交于点F.(1)求证:.(2)若,,求的长.3.如图1,在△ABC 中,AD ⊥BC 于点D ,正方形PQMN 的边QM 在BC 上,顶点P ,N 分别在AB ,AC 上,BC=a ,AD=h .(1)求正方形PQMN 的边长(用a 和h 的代数式表示);ABC BC BD AD =AD O AB O BD EF BC ⊥5CD =2tan 3B =DF(2)如图2,在△ABC 中,在AB 上任取一点P',画正方形P'Q'M'N',使Q',M'在BC 边上,N'在△ABC 内,连接BN 并延长交AC 于点N ,画NM BC 于点M ,画NP ⊥NM 交AB 于点P ,再画PQ ⊥BC 于点Q ,得到四边形PQMN ,证明四边形PQMN 是正方形;(3)在(2)中的线段BN 该线上截取NE=NM 连接EQ ,EM (如图3),当∠QEM=90°时,求线段BN 的长(用a ,h 表示)4.如图,在直角坐标系中有,O 为坐标原点,,,将此三角形绕原点O 顺时针旋转,得到,二次函数的图象刚好经过A ,B ,C 三点.(1)求二次函数的解析式及顶点P 的坐标;(2)过定点Q 的直线与二次函数图象相交于M ,N 两点.①若,求k 的值;②证明:无论k 为何值,恒为直角三角形.5.如图,四边形ABCD 内接于,的半径为4,,对角线AC 、BD 相交于点P.过点P 分别作于点E ,于点F.(1)求证:四边形为正方形;(2)若,求正方形的边长;(3)设PC 的长为x ,图中阴影部分的面积为y ,求y 与x 之间的函数关系式,并写出y 的最大值.6.如图,已知一次函数的图象经过,两点,且与轴交于点,二次函数的图象经过点,,连接.Rt AOB ()03A ,()10B -,90︒Rt COD 2y ax bx c =++3l y kx k =-+:2PMN S = PMN O O 90ADC AB BC ∠=︒=,PE AD ⊥PF CD ⊥DEPF 2AD CD=DEPF 1y kx m =+()15A --,()04B -,x C 224y ax bx =++A C OA(1)求一次函数和二次函数的解析式.(2)求的正弦值.(3)在点右侧的轴上是否存在一点,使得与相似?若存在,求出点的坐标;若不存在,请说明理由.7.如图1,在四边形ABCD 中,AC 交BD 于点E ,△ADE 为等边三角形.(1)若点E 为BD 的中点,AD =4,CD =5,求△BCE 的面积;(2)如图2,若BC =CD ,点F 为CD 的中点,求证:AB =2AF ;(3)如图3,若AB ∥CD ,∠BAD =90°,点P 为四边形ABCD 内一点,且∠APD =90°,连接BP ,取BP 的中点Q ,连接CQ.当AB =,AD =,tan ∠ABC =2时,求CQ 的最小值.8.如图1,在矩形中,,.P ,Q 分别是,上的动点,且满足,E 是射线上一点,,设,.OAB ∠C x D BCD OAB D ABCD 4AB =30ACB ∠=︒AC CD 35DQ CP =AD AP EP =DQ x =AP y =(1)求y 关于x 的函数表达式.(2)当中有一条边与垂直时,求的长.(3)如图2,当点Q 运动到点C 时,点P 运动到点F.连结,以,为边作.①当所在直线经过点D 时,求的面积;②当点G 在的内部(不含边界)时,直接写出x 的取值范围.9.等边中,是中线,一个以点D 为顶点的30°角绕点D 旋转,使角的两边分别与,的延长线相交于点E ,F .交于点M ,交于点N .(1)如图①,若,求证:.(2)如图②,在绕点D 旋转的过程中:①探究三条线段,,之间的数量关系,并说明理由;②若,,求的长.10. 在平面直角坐标系中,对于和点不与点重合给出如下定义:若边,上分别存在点,点,使得点与点关于直线对称,则称点为的“翻折点”.(1)已知,若点与点重合,点与点重合,直接写出的“翻折点”的坐标;是线段上一动点,当是的“翻折点”时,求长的取值范围;PQE AC DQ FQ FQ PQ PQFG GF PQFG ABC ABC CD AC BC DF AC DE BC CE CF =DE DF =EDF ∠CD CE CF 6CE =2CF =DM xOy OAB (P O )OA OB M N O P MN P OAB ()30A,(0.B ①M A N B OAB P ②AB P OAB AP(2)直线与轴,轴分别交于,两点,若存在以直线为对称轴,且斜边长为的等腰直角三角形,使得该三角形边上任意一点都为的“翻折点”,直接写出的取值范围.11. 如图,在中,边绕点顺时针旋转得到线段,边绕点逆时针旋转得到线段,连接,点是的中点.(1)以点为对称中心,作点关于点的对称点,连接,.依题意补全图形,并证明;求证:;(2)若,且于,直接写出用等式表示的与的数量关系.12.如图1,菱形的边长为,,,分别在边,上,,,点从点出发,沿折线以的速度向点匀速运动不与点 C 重合 ;的外接圆与相交于点,连接交于点设点的运动时间为ts.(1) ;(2)若与相切,判断与的位置关系;求的长;(3)如图3,当点在上运动时,求的最大值,并判断此时与的位置关系; (4)若点在的内部,直接写出的取值范围.13.如图,已知菱形ABCD , E 为对角线AC 上一点.3(0)4y x b b =-+>x y A B AB 2OAB b ABC AB B α(0α180)︒<<︒BD AC C 180α︒-CE DE F DE F C F G BG DG ①AC DG =②DGB ACB ∠=∠α60=︒FH BC ⊥H FH BC ABCD 12cm B 60∠=︒M N AB CD.AM 3cm =DN 4cm =P M MB BC -1cm /s C ()APC O CD E PE AC F.P APE ∠=︒O AD ①O CD ② APCP BC CF PE AC N O t(1)[建立模型]如图1,连结BE,DE.求证:∠EBC=∠EDC.(2)[模型应用]如图2,F是DE延长线上一点,∠EBF=∠ABC,EF交AB于点G.①判断△FBG的形状,并说明理由.②若G为AB的中点,且AB=4,∠ABC=60°,求AF的长.(3)[模型迁移]F是DE延长线上一点,∠EBF=∠ABC,EF交射线AB于点G,且sin∠BAC=,BF//AC.求的值. 14.小明家住在某小区一楼,购房时开发商赠送了一个露天活动场所,现小明在活动场所正对的墙上安装了一个遮阳棚,经测量,安装遮阳棚的那面墙高,安装的遮阳棚展开后可以使正午时刻房前能有宽的阴影处以供纳凉.已知正午时刻太阳光与水平地面的夹角为,安装好的遮阳篷与水平面的夹角为,如下右图为侧面示意图.(参考数据:,,,,,)(1)据研究,当一个人从遮阳棚进出时,如果遮阳棚外端(即图中点C)到地面的距离小于时,则人进出时总会觉得没有安全感,就会不自觉的低下头或者用手护着头,请你通过计算,判断此遮阳棚是否使得人进出时具有安全感?(2)请计算此遮阳棚延展后的长度(即的长度).(结果精确到)15.数学兴趣小组在探究圆中图形的性质时,用到了半径是6的若干圆形纸片.45ABBG BC AB3m2m()AD63.4︒BC10︒100.17sin︒≈100.98cos︒≈100.18tan︒≈63.40.89sin︒≈63.40.45cos︒≈63.4 2.00tan︒≈2.3mBC0.1m(1)如图1,一张圆形纸片,圆心为O ,圆上有一点A ,折叠圆形纸片使得A 点落在圆心O 上,折痕交于B 、C 两点,求的度数.(2)把一张圆形纸片对折再对折后得到如图扇形,点M 是弧上一动点.①如图2,当点M 是弧中点时,在线段、上各找一点E 、F ,使得是等边三角形.试用尺规作出,不证明,但简要说明作法,保留作图痕迹.②在①的条件下,取的内心N ,则 .③如图3,当M 在弧上三等分点S 、T 之间(包括S 、T 两点)运动时,经过兴趣小组探究都可以作出一个是等边三角形,取的内心N ,请问的长度是否变化.如变化,请说明理由;如不变,请求出的长度.16.已知二次函数的图像与轴交于点,且经过点和点.(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为.①求的最大值;②若中有一个内角是的两倍,求点的横坐标.17.如图1,在平面直角坐标系中,Rt △OAB 的直角边OA 在y 轴的正半轴上,且OA =6,斜边OB =10,点P 为线段AB 上一动点.O BAC ∠PQ PQ OP OQ EFM EFM EFM ON =PQ EFM EFM ONON )2y x bx c =++yA (4B(C -b c BC y DE )2y x bx c =++AB E AB F EF AEF ABC ∠E(1)请直接写出点B 的坐标;(2)若动点P 满足∠POB =45°,求此时点P 的坐标;(3)如图2,若点E 为线段OB 的中点,连接PE ,以PE 为折痕,在平面内将△APE 折叠,点A 的对应点为A′,当PA′⊥OB 时,求此时点P 的坐标;18.如图,在菱形中,对角线相交于点O ,,.动点P 从点A 出发,沿方向匀速运动,速度为;同时,动点Q 从点A 出发,沿方向匀速运动,速度为.以为邻边的平行四边形的边与交于点E .设运动时间为,解答下列问题:(1)当点M 在上时,求t 的值;(2)连接.设的面积为,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在的平分线上?若存在,求出t 的值;若不存在,请说明理由.19.在矩形中,点E 为射线上一动点,连接.ABCD AC BD ,10cm AB=BD =AB 1cm /s AD 2cm /s AP AQ ,APMQ PM AC ()()s 05t t <≤BD BE PEB ()2cm S PEC ∠ABCD BC AE(1)当点E 在边上时,将沿翻折,使点B 恰好落在对角线上点F 处,交于点G .①如图1,若,求的度数;②如图2,当,且时,求的长.(2)在②所得矩形中,将矩形沿进行翻折,点C 的对应点为C ′,当点E ,C ′,D 三点共线时,求的长.20.如图,在矩形ABCD 中,AB=2,BC=4,点E 在直线AB 上,连结DE ,过点A 作AF ⊥DE 交直线BC 于点F ,以AE 、AF 为邻边作平行四边形AEGF.直线DG 交直线AB 于点H.(1)当点E 在线段AB 上时,求证:△ABF ∽△DAE.(2)当AE=2时,求EH 的长.(3)在点E 的运动过程中,是否存在某一位置,使得△EGH 为等腰三角形.若存在,求AE 的长.21.如图1,等边三角形纸片中,,点D 在边上(不与点B 、C 重合),,点E 在边上,将沿折叠得到(其中点C ′是点C 的对应点).BC ABE AE BD AEBD BC =AFD ∠=4AB EF EC =BC ABCD ABCD AE BE ABC 12AB =BC 4CD =AC CDE DE 'C DE(1)当点C ′落在上时,依题意补全图2,并指出C ′D 与的位置关系;(2)如图3,当点C ′落到的平分线上时,判断四边形CDC ′E 的形状并说明理由;(3)当点C ′到的距离最小时,求的长;(4)当A ,C ′,D 三点共线时,直接写出∠AEC ′的余弦值.22.如图,四边形是菱形,其中,点E 在对角线上,点F 在射线上运动,连接,作,交直线于点G.(1)在线段上取一点T ,使,①求证:;②求证:;(2)图中,.①点F 在线段上,求周长的最大值和最小值;②记点F 关于直线的轴对称点为点N.若点N 落在的内部(不含边界),求的取值范围.AC AB ACB ∠AB CE ABCD 60ABC ∠=︒AC CB EF 60FEG ∠=︒DC BC CE CT =FET GEC ∠=∠FT CG =7AB =1AE =BC EFG AB EDC ∠CF答案解析部分1.【答案】(1)解:作DH ⊥AE 于H ,如图所示:在Rt △ADH中,∵,∴AH =2DH ,∵AH 2+DH2=AD 2,∴(2DH )2+DH 2=()2,∴DH =6(米).答:乙同学从点A 到点D 的过程中,他上升的高度为6米;(2)解:如图所示:过点D 作DG ⊥BC 于点G ,设BC =x 米,在Rt △ABC 中,∠BAC =45°,∴AC =BC =x ,由(1)得AH =2DH =12,在矩形DGCH 中,DH =CG =6,DG =CH =AH+AC =x+12,在Rt △BDG 中,BG =BC-CG =BC-DH =x-6,∵tan ∠BDG =,∴,解得:x≈24,12DH AH =BG DG626.70.512x tan x -=︒≈+答:大树的高度约为24米.【解析】【分析】(1)作DH ⊥AE 于H ,利用勾股定理可得AH 2+DH 2=AD 2,再结合AH =2DH ,可得(2DH )2+DH 2=(2,最后求出DH=6即可;(2)过点D 作DG ⊥BC 于点G ,设BC =x 米,则DH =CG =6,DG =CH =AH+AC =x+12,BG =BC-CG =BC-DH =x-6,再结合tan ∠BDG =, 可得,最后求出x 的值即可。

专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)(题型专练)(解析版)

专题01 锐角三角函数和特殊角的三角函数(六大类型)【题型1锐角三角函数的概念】【题型2 锐角三角函数的增减性】【题型3特殊角三角函数值】【题型4 同角三角函数的关系】【题型5 互余两角三角函数的关系】【题型6 三角函数的计算】【题型1锐角三角函数的概念】1.(2022秋•道县期末)在Rt△ABC中,∠C=90°,AC=5,BC=12,则tan A 的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,∠C=90°,AC=5,BC=12,∴tan A=.故选:B.2.(2023•南岗区校级开学)在Rt△ABC中,∠C=90°,AB=2BC,则tan B 等于( )A.B.C.D.【答案】D【解答】解:∵∠C=90°,AB=2BC,∴AC===BC,∴tan B===.故选:D.3.(2022秋•路北区校级期末)在Rt△ABC中,∠C=90°,AB=10,AC=8,则cos B的值等于( )A.B.C.D.【答案】A【解答】解:∵∠C=90°,AB=10,AC=8,∴BC==6,∴cos B===.故选:A.4.(2023•新华区校级模拟)在Rt△ABC中,∠C=90°,若c为斜边,a、b 为直角边,且a=5,b=12,则sin A的值为( )A.B.C.D.【答案】B【解答】解:在Rt△ABC中,c===13,sin A=.故选:B.5.(2023•陈仓区模拟)如图,在Rt△ABC中,∠A=90°,AB=8,BC=10,则sin B的值是( )A.B.C.D.【答案】C【解答】解:∵在Rt△ABC中,∠A=90°,AB=8,BC=10,∴AC=,∴sin B===,故选:C .6.(2023•虹口区一模)如图,在Rt △ABC 中,∠C =90°,AC =1,BC =2,那么cos A 的值为( )A .B .2C .D .【答案】C【解答】解:在Rt △ABC 中,∠C =90°,AC =1,BC =2,由勾股定理,得AB ==.由锐角的余弦,得cos A ===.故选:C .7.(2023•金山区一模)在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则∠B 的正切值等于( )A .B .C .D .【答案】A【解答】解:∵∠ACB =90°,AC =4,BC =3,∴tan B ==.故选:A .8.(2023•长宁区一模)在△ABC 中,∠C =90°,已知AC =3,AB =5,那么∠A 的余弦值为( )A .B .C .D .【答案】C【解答】解:在Rt △ABC 中,AC =3,AB =5,故选:C.【题型2 锐角三角函数的增减性】9.(2023•未央区校级三模)若tan A=2,则∠A的度数估计在( )A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间【答案】D【解答】解:∵tan45°=1,tan60°=,而tan A=2,∴tan A>tan60°,∴60°<∠A<90°.故选:D.10.(2022秋•惠山区校级期中)已知∠A为锐角,且tan A=3,则∠A的取值范围是( )A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°【答案】D【解答】解:tan30°=,tan45°=1,tan60°=,∵tan A=3,∴3,又∵一个锐角的正切值随锐角度数的增大而增大,∴60°<∠A<90°,故选:D.11.(2021秋•淮北月考)已知角α为△ABC的内角,且cosα=,则α的取值范围是( )A.0°<α<30°B.30°<α<45°C.45°<α<60°D.60°<α<90°【答案】C【解答】解:∵cos60°=,cos45°=,∴cos60°<cosα<cos45°,∴45°<α<60°,故选:C.【题型3特殊角三角函数值】12.(2022秋•嵊州市期末)已知tan A=,∠A是锐角,则∠A的度数为( )A.30°B.45°C.60°D.90°【答案】A【解答】解:∵,且∠A是锐角,∴∠A=30°,故选:A.13.(2023•河西区模拟)计算2cos30°的结果为( )A.B.1C.D.【答案】C【解答】解:∵cos30°=,∴2cos30°=2×=.故选:C.14.(2023•肃州区三模)sin60°的相反数( )A.B.C.D.【答案】C【解答】解:∵sin60°=,∴sin60°的相反数是﹣.故选:C.15.(2023•高州市一模)在Rt△ABC中,∠C=90°,若cos A=,则∠A的大小是( )A.30°B.45°C.60°D.75°【答案】C【解答】解:∵在Rt△ABC中,∠C=90°,∴∠A为锐角,∵cos A=,∴∠A=60°,故选:C.16.(2023•南开区二模)下列三角函数中,结果为的是( )A.cos30°B.tan30°C.sin60°D.cos60°【答案】D【解答】解:A.cos30°=,不符合题意;B.tan30°=,不符合题意;C.sin60°=,不符合题意;D.cos60°=sin30°=,符合题意.故选:D.17.(2023•河西区一模)cos60°的值等于( )A.B.C.D.【答案】D【解答】解:cos60°=,故选:D.18.(2023•东莞市校级一模)已知∠A为锐角且tan A=,则∠A=( )A.30°B.45°C.60°D.不能确定【答案】C【解答】解:∵∠A为锐角,tan A=,∴∠A=60°.故选:C.19.(2023•迎泽区校级二模)在Rt△ABC中,∠C=90°,BC=1,AC=,那么∠B的度数是( )A.15°B.45°C.30°D.60°【答案】D【解答】解:在Rt△ABC中,∠C=90°,∵tan B===,∴∠B=60°,故选:D.【题型4 同角三角函数的关系】20.(2023•泉港区模拟)已知∠A是锐角△ABC的内角,,则cos A的值是( )A.B.C.D.【答案】C【解答】解:由勾股定理可得sin2A+cos2A=1,∵,∴()2+cos2A=1,∴cos2A=,∴cos A=或cos A=﹣(舍去),故选:C.21.(2022秋•日照期末)若α为锐角,且sinα=,则tanα为( )A.B.C.D.【答案】D【解答】解:由α为锐角,且sinα=,得cosα===,tanα===,故选:D.22.(2022秋•桐柏县期末)已知在Rt△ABC中,∠C=90°.若sin A=,则cos A等于( )A.B.C.D.1【答案】A【解答】解:∵sin2A+cos2A=1,sin A=,∴+cos2A=1,∵∠A为锐角,∴cos A=.故选:A.23.(2022秋•滦州市期中)在Rt△ABC中,∠C=90°,,则cos A=( )A.B.C.D.【答案】C【解答】解:在Rt△ABC中,∠C=90°,=,可设BC=4k,则AB=5k,由勾股定理得,AC==3k,∴cos A==,故选:C.24.(2023•钟楼区校级模拟)在Rt△ABC中,∠C=90°,tan A=,则cos A 等于( )A.B.C.D.【答案】D【解答】解:如图:设BC=5x,∵tan A=,∴AC=12x,AB==13x,∴cos A===.故选:D.25.(2023秋•二道区校级月考)在Rt△ABC中,∠C=90°,若cos A=,则sin A的值为 .【答案】.【解答】解:∵sin2A+cos2A=1,又∵,∴,∴sin A=或(舍去),故答案为:.【题型5 互余两角三角函数的关系】26.(2023秋•肇源县校级月考)已知在Rt△ABC中,∠C=90°,sin A=,则tan B的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∵∠C=90°,,∴,设BC=12x,则AB=13x,,∴,故选:D.27.(2023•二道区校级模拟)在Rt△ABC中,AC≠BC,∠C=90°,则下列式子成立的是( )A.sin A=sin B B.sin A=cos B C.tan A=tan B D.cos A=tan B 【答案】B【解答】解:A、sin A=,sin B=,sin A≠sin B,故不符合题意;B、sin A=,cos B=,sin A=cos B,故B符合题意;C、tan A=,tan B=,tan A≠tan B,故不符合题意;D、cos A=,tan B=,则cos A≠tan B,故不符合题意;故选:B.28.(2023秋•东阿县校级月考)在Rt△ABC中,∠C=90°,sin A=,则cos B 的值为( )A.B.C.D.【答案】B【解答】解:∵cos B=,sin A==,∴cos B=.故选:B.29.(2022秋•双牌县期末)已知在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为( )A.B.C.D.【答案】D【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=4a,AB=5a,∴AC===3a,∴tan B==,故选:D.30.(2023•新邵县校级一模)已知△ABC中,∠A=90°,tan B=,则sin C= .【答案】.【解答】解:如图.∵∠A=90°,tan B=,∴设AC=x,则AB=2x.∴BC==.∴sin C=.故答案为:.31.(2023•未央区校级二模)在Rt△ABC中,∠C=90°,sin A=,则tan B 的值为 .【答案】.【解答】解:在Rt△ABC中,∠C=90°,sin A=,∴sin A==,∴设BC=3a,AB=5a,∴AC===4a,∴tan B===.故答案为:.【题型6 三角函数的计算】32.(2023春•江岸区校级月考)计算:.【答案】1.【解答】解:==2﹣1=1.33.(2022秋•蜀山区校级期末)计算:sin245°+tan60°•cos30°.【答案】2.【解答】解:原式=()2+×=+=2.34.(2023春•朝阳区校级期末)计算:.【答案】见试题解答内容【解答】解:=2×﹣+1﹣×=﹣+1﹣=.35.(2022秋•武功县期末)计算:sin45°+2cos30°﹣tan60°.【答案】见试题解答内容【解答】解:原式=+2×﹣=+﹣=.36.(2022秋•南通期末)计算:tan45°﹣2sin30°+4cos230°.【答案】3.【解答】解:原式==1﹣1+3=3.37.(2022秋•辛集市期末)计算:sin60°•tan30°+.【答案】1.【解答】解:原式==+=1.。

锐角三角函数练习题及答案

锐角三角函数练习题及答案

锐角三角函数(一)1.把Rt△ABC各边的长度都扩大3倍得Rt△A′B′C′,那么锐角A,A′的余弦值的关系为()A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定2.如图1,已知P是射线OB上的任意一点,PM⊥OA于M,且PM:OM=3:4,则cosα的值等于()A.34 B.43 C.45 D .35图 1 图 2 图3 图4图53.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,b,c,则下列各项中正确的是()A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确4.在Rt△ABC中,∠C=90°,cosA=23,则tanB等于()A.35 B.53 C.255 D.525.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA=______,cosA=______,•tanA=_______.6.如图2,在△ABC中,∠C=90°,BC:AC=1:2,则sinA=_______,cosA=______,tanB=______.7.如图3,在Rt△ABC中,∠C=90°,b=20,c=202,则∠B的度数为_______.8.如图4,在△CDE中,∠E=90°,DE=6,CD=10,求∠D的三个三角函数值.9.已知:α是锐角,tanα=724,则sinα=_____,cosα=_______.10.在Rt△ABC中,两边的长分别为3和4,求最小角的正弦值为10.如图5,角α的顶点在直角坐标系的原点,一边在x轴上,•另一边经过点P(2,23),求角α的三个三角函数值.12.如图,在△ABC中,∠ABC=90°,BD⊥AC于D,∠CBD=α,AB=3,•BC=4,•求sinα,cosα,tanα的值.解直角三角形一、填空题1. 已知cosA=23,且∠B=900-∠A ,则sinB=__________.2. 在Rt △ABC 中,∠C 为直角,cot(900-A)=1.524,则tan(900-B)=_________.3. ∠A 为锐角,已知sinA=135,那么cos (900-A)=___________.4. 已知sinA=21(∠A 为锐角),则∠A=_________,cosA_______,tanA=__________.5. 用不等号连结右面的式子:cos400_______cos200,sin370_______sin420.6. 若cot α=0.3027,cot β=0.3206,则锐角α、β的大小关系是______________. 7. 计算: 2sin450-3tan600=____________. 8. 计算: (sin300+tan450)·cos600=______________.9. 计算: tan450·sin450-4sin300·cos450+6cot600=__________.10. 计算: tan 2300+2sin600-tan450·sin900-tan600+cos 2300=____________. 二、选择题:1. 在Rt △ABC 中,∠C 为直角,AC=4,BC=3,则sinA=( )A . 43;B . 34;C .53;D . 54.2. 在Rt △ABC 中,∠C 为直角,sinA=22,则cosB 的值是( )A .21;B .23;C .1;D .223. 在Rt △ABC 中,∠C 为直角,∠A=300,则sinA+sinB=( )A .1;B .231+;C .221+;D .414. 当锐角A>450时,sinA 的值( )A .小于22; B .大于22; C .小于23; D .大于235. 若∠A 是锐角,且sinA=43,则( )A .00<∠A<300; B .300<∠A<450;C .450<∠A<600;D . 600<∠A<9006. 当∠A 为锐角,且tanA 的值大于33时, ∠A( )A .小于300; B .大于300; C .小于600; D .大于6007. 如图,在Rt △ABC 中,∠C 为直角,CD ⊥AB 于D ,已知AC=3,AB=5,则tan ∠BCD 等于( )A .43;B .34;C .53;D .548. Rt △ABC 中,∠C 为直角,AC=5,BC=12,那么下列∠A 的四个三角函数中正确的是( )A . sinA=135; B .cosA=1312; C . tanA=1213;D . cotA=1259. 已知α为锐角,且21<cos α<22,则α的取值范围是( )A .00<α<300;B .600<α<900;C .450<α<600;D .300<α<450.三、解答题1、 在△ABC 中,∠C 为直角,已知AB=23,BC=3,求∠B 和AC .2、在△ABC 中,∠C 为直角,直角边a=3cm ,b=4cm ,求sinA+sinB+sinC 的值.3、在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知b=3, c=14. 求∠A 的四个三角函数.4、在△ABC 中,∠C 为直角,不查表解下列问题: (1)已知a=5,∠B=600.求b ; (2)已知a=52,b=56,求∠A .5、在△ABC 中,∠C 为直角, ∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,已知a=25,b=215,求c 、∠A 、∠B .6、在Rt △ABC 中,∠C =90°,由下列条件解直角三角形: (1) 已知a =156, b =56,求c; (2) 已知a =20, c =220,求∠B ; (3) 已知c =30, ∠A =60°,求a ;(4) 已知b =15, ∠A =30°,求a .7、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.8、已知:如图,在山脚的C 处测得山顶A 的仰角为︒45,沿着坡度为︒30︒=∠30DCB ,400=CD 米),测得A 的仰角为︒60,求山的高度DCAB9、会堂里竖直挂一条幅AB,如图5,小刚从与B成水平的C点观察,视角∠C=30°,当他沿CB方向前进2米到达到D时,视角∠ADB=45°,求条幅AB的长度。

数学锐角三角函数的专项培优练习题(含答案)及答案

数学锐角三角函数的专项培优练习题(含答案)及答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3=⨯=米,6392∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m).备用数据:,【答案】(1)∠BPQ=30°;(2)该电线杆PQ的高度约为9m.【解析】试题分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;(2)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.试题解析:延长PQ交直线AB于点E,(1)∠BPQ=90°-60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,33米,∵AB=AE-BE=6米,则x-33x=6,解得:3则BE=(3)米.在直角△BEQ中,QE=33BE=33(3+3)=(3)米.∴3(3)3(米).答:电线杆PQ的高度约9米.考点:解直角三角形的应用-仰角俯角问题.3.问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.【答案】解:(1)22.(2)如图,在斜边AC上截取AB′=AB,连接BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称.过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.则线段B′F的长即为所求 (点到直线的距离最短) .在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,∴.∴BE+EF的最小值为【解析】试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,根据垂径定理得弧BD=弧DE.∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°.∴∠C′AE=45°.又AC为圆的直径,∴∠AEC′=90°.∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=22.∴AP+BP的最小值是22.(2)首先在斜边AC上截取AB′=AB,连接BB′,再过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE,则线段B′F的长即为所求.4.如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.【答案】(1)tan∠DBC=;(2)P(﹣,).【解析】试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=;(2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,).试题解析:(1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0,解得 x1=﹣1,x2=4.∴A(﹣1,0),B(4,0).当x=3时,y=﹣32+3×3+4=4,∴D(3,4).如图,连接CD,过点D作DE⊥BC于点E.∵C(0,4),∴CD//AB,∴∠BCD=∠ABC=45°.在直角△OBC中,∵OC=OB=4,∴BC=4.在直角△CDE中,CD=3.∴CE=ED=,∴BE=BC﹣DE=.∴tan∠DBC=;(2)过点P作PF⊥x轴于点F.∵∠CBF=∠DBP=45°,∴∠PBF=∠DBC,∴tan∠PBF=.设P(x,﹣x2+3x+4),则=,解得 x1=﹣,x2=4(舍去),∴P(﹣,).考点:1、二次函数;2、勾股定理;3、三角函数5.如图,在△ABC中,∠A=90°,∠ABC=30°,AC=3,动点D从点A出发,在AB边上以每秒1个单位的速度向点B运动,连结CD,作点A关于直线CD的对称点E,设点D运动时间为t(s).(1)若△BDE是以BE为底的等腰三角形,求t的值;(2)若△BDE为直角三角形,求t的值;(3)当S△BCE≤92时,所有满足条件的t的取值范围(所有数据请保留准确值,参考数据:tan15°=23【答案】(1)332;(23秒或3秒;(3)6﹣3【解析】【分析】(1)如图1,先由勾股定理求得AB的长,根据点A、E关于直线CD的对称,得CD垂直平分AE,根据线段垂直平分线的性质得:AD=DE,所以AD=DE=BD,由3,可得t 的值;(2)分两种情况:①当∠DEB=90°时,如图2,连接AE,根据3t的值;②当∠EDB=90°时,如图3,根据△AGC≌△EGD,得AC=DE,由AC∥ED,得四边形CAED 是平行四边形,所以AD=CE=3,即t=3;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,②当△BCE在BC的上方时,分别计算当高为3时对应的t的值即可得结论.【详解】解:(1)如图1,连接AE,由题意得:AD=t,∵∠CAB=90°,∠CBA=30°,∴BC=2AC=6,∴22633∵点A、E关于直线CD的对称,∴CD垂直平分AE,∴AD=DE,∵△BDE是以BE为底的等腰三角形,∴DE=BD,∴AD=BD,∴;(2)△BDE为直角三角形时,分两种情况:①当∠DEB=90°时,如图2,连接AE,∵CD垂直平分AE,∴AD=DE=t,∵∠B=30°,∴BD=2DE=2t,∴∴②当∠EDB=90°时,如图3,连接CE,∵CD垂直平分AE,∴CE=CA=3,∵∠CAD=∠EDB=90°,∴AC∥ED,∴∠CAG=∠GED,∵AG=EG,∠CGA=∠EGD,∴△AGC≌△EGD,∴AC=DE,∵AC∥ED,∴四边形CAED是平行四边形,∴AD=CE=3,即t=3;综上所述,△BDE为直角三角形时,t3秒;(3)△BCE中,由对称得:AC=CE=3,所以点D在运动过程中,CE的长不变,所以△BCE 面积的变化取决于以CE作底边时,对应高的大小变化,①当△BCE在BC的下方时,过B作BH⊥CE,交CE的延长线于H,如图4,当AC=BH=3时,此时S△BCE=12AE•BH=12×3×3=92,易得△ACG≌△HBG,∴CG=BG,∴∠ABC=∠BCG=30°,∴∠ACE=60°﹣30°=30°,∵AC=CE,AD=DE,DC=DC,∴△ACD≌△ECD,∴∠ACD=∠DCE=15°,tan∠ACD=tan15°=t3=2﹣3,∴t=6﹣33,由图形可知:0<t<6﹣33时,△BCE的BH越来越小,则面积越来越小,②当△BCE在BC的上方时,如图3,CE=ED=3,且CE⊥ED,此时S△BCE=12CE•DE=12×3×3=92,此时t=3,综上所述,当S△BCE≤92时,t的取值范围是6﹣33≤t≤3.【点睛】本题考查三角形综合题、平行四边形的判定和性质、直角三角形的性质、三角形的面积问题、轴对称等知识,解题的关键是灵活运用所学知识,学会用分类讨论的思想思考问题,学会寻找特殊点解决问题,属于中考压轴题.6.抛物线y=ax²+bx+4(a≠0)过点A(1, ﹣1),B(5, ﹣1),与y轴交于点C.(1)求抛物线表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC下方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,①求点P坐标;②过此二点的直线交y轴于F, 此直线上一动点G,当2最小时,求点G坐标.(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值【答案】(1)y=x²﹣6x+4(2)①P(2, -4)或P(3, -5) ②G(0, -2)(3)313【解析】【分析】(1)把点A(1,-1),B(5,-1)代入抛物线y=ax2+bx+4解析式,即可得出抛物线的表达式;(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,可求得直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),因为▱CBPQ的面积为30,所以S△PBC=1 2×(−t+4−t2+6t−4)×5=15,解得t的值,即可得出点P的坐标;②当点P为(2,-4)时,求得直线QP的解析式为:y=-x-2,得F(0,-2),∠GOR=45°,因为GB+2 2GF=GB+GR,所以当G于F重合时,GB+GR最小,即可得出点G的坐标;当点P为(3,-5)时,同理可求;(3)先用面积法求出sin∠ACB=1313,tan∠ACB=23,在Rt△ABE中,求得圆的直径,因为MB⊥NB,可得∠N=∠AEB=∠ACB,因为tanN=MBBN=23,所以BN=32MB,当MB为直径时,BN的长度最大.【详解】(1) 解:(1)∵抛物线y=ax2+bx+4(a≠0)过点A(1,-1),B(5,-1),∴1412554a ba b-++⎧⎨-++⎩=,=解得16ab⎧⎨-⎩=,=∴抛物线表达式为y=x²﹣6x+4.(2)①如图,连接PC,过点P作y轴的平行线交直线BC于R,设直线BC的解析式为y=kx+m,∵B(5,-1),C(0,4),∴154k mm-+⎧⎨⎩==,解得14km=,=-⎧⎨⎩∴直线BC的解析式为:y=-x+4,设点P(t,t2-6t+4),R(t,-t+4),∵▱CBPQ的面积为30,∴S△PBC=12×(−t+4−t2+6t−4)×5=15,解得t=2或t=3,当t=2时,y=-4当t=3时,y=-5,∴点P坐标为(2,-4)或(3,-5);②当点P为(2,-4)时,∵直线BC解析式为:y=-x+4, QP∥BC,设直线QP的解析式为:y=-x+n,将点P代入,得-4=-2+n,n=-2,∴直线QP的解析式为:y=-x-2,∴F(0,-2),∠GOR=45°,∴GB+22GF=GB+GR当G于F重合时,GB+GR最小,此时点G的坐标为(0,-2),同理,当点P为(3,-5)时,直线QP的解析式为:y=-x-2,同理可得点G的坐标为(0,-2),(3) )∵A(1,-1),B(5,-1)C(0,4),∴26,2,∵S△ABC=12AC×BCsin∠ACB=12AB×5,∴sin∠ACB=1313,tan∠ACB=23,∵AE为直径,AB=4,∴∠ABE=90°,∵sin∠AEB=sin∠ACB=213=4AE,∴AE=213,∵MB⊥NB,∠NMB=∠EAB,∴∠N=∠AEB=∠ACB,∴tanN=MBBN =23,∴BN=32MB,当MB为直径时,BN的长度最大,为313.【点睛】题考查用到待定系数法求二次函数解析式和一次函数解析式,圆周角定理,锐角三角函数定义,平行四边形性质.解决(3)问的关键是找到BN与BM之间的数量关系.7.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A =30°,只要证明△CDB 是等边三角形即可;②根据全等三角形的判定推出△DCP ≌△DBF ,根据全等的性质得出CP =BF ,(2)求出DC =DB =AD ,DE ∥AC ,求出∠FDB =∠CDP =2α+∠PDB ,DP =DF ,根据全等三角形的判定得出△DCP ≌△DBF ,求出CP =BF ,推出BF ﹣BP =BC ,解直角三角形求出CE =DEtanα即可.【详解】(1)①∵∠A =30°,∠ACB =90°,∴∠B =60°,∵AD =DB ,∴CD =AD =DB ,∴△CDB 是等边三角形,∴∠DCB =60°.②如图1,结论:CP =BF .理由如下:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠DCB =60°,∴△CDB 为等边三角形.∴∠CDB =60°∵线段DP 绕点D 逆时针旋转60°得到线段DF ,∵∠PDF =60°,DP =DF ,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.8.如图,正方形ABCD 的边长为2+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.【答案】(1)证明见解析;(2)tan ∠EAB 2﹣1;(3)PE+PF 的最小值为22+【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH ⊥AC 于H .首先证明BE=EH=HC ,设BE=EH=HC=x ,构建方程求出x 即可解决问题;(3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小,最小值为线段EH 的长;【详解】(1)证明:∵四边形ABCD 是正方形,∴∠ACE =∠ABF =∠CAB =45°,∵AE 平分∠CAB ,∴∠EAC =∠BAF =22.5°,∴△ABF ∽△ACE .(2)解:如图1中,作EH ⊥AC 于H .∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB ,∴BE =EB ,∵∠HCE =45°,∠CHE =90°,∴∠HCE =∠HEC =45°,∴HC =EH ,∴BE =EH =HC ,设BE =HE =HC =x ,则EC 2,∵BC 2+1,∴x+x 2+1,∴x =1,在Rt △ABE 中,∵∠ABE =90°,∴tan ∠EAB =221BE AB == 1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =2, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =22+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =22+ •(2﹣1)=2, ∴HM =OH+OM =222+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】 本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.9.如图,在航线l 的两侧分别有观测点A 和B ,点B 到航线l 的距离BD 为4km ,点A 位于点B 北偏西60°方向且与B 相距20km 处.现有一艘轮船从位于点A 南偏东74°方向的C 处,沿该航线自东向西航行至观测点A 的正南方向E 处.求这艘轮船的航行路程CE 的长度.(结果精确到0.1km )(参考数据:3≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)【答案】20.9km【解析】分析:根据题意,构造直角三角和相似三角形的数学模型,利用相似三角形的判定与性质和解直角三角形即可.详解:如图,在Rt △BDF 中,∵∠DBF=60°,BD=4km ,∴BF=cos 60BD =8km , ∵AB=20km ,∴AF=12km , ∵∠AEB=∠BDF ,∠AFE=∠BFD ,∴△AEF ∽△BDF ,∴AE BD AF BF, ∴AE=6km , 在Rt △AEF 中,CE=AE•tan74°≈20.9km .故这艘轮船的航行路程CE 的长度是20.9km .点睛:本题考查相似三角形,掌握相似三角形的概念,会根据条件判断两个三角形相似.10.如图以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点F.(1)求证:DF ⊥AC ;(2)若∠ABC=30°,求tan ∠BCO 的值.【答案】(1)证明见解析; (2) tan ∠3 【解析】试题分析:(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)过O 作OF ⊥BD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解.试题解析:证明:连接OD∵DE 为⊙O 的切线, ∴OD ⊥DE∵O 为AB 中点, D 为BC 的中点∴OD‖AC∴DE ⊥AC(2)过O作OF⊥BD,则BF=FD 在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=2∵BD=DC, BF=FD,∴FC=3BF=2OB在Rt△OFC中,tan∠BCO=1OBOFFC==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,,OB是解题关键.。

锐角三角函数专题训练

锐角三角函数专题训练

333 锐角三角函数与特殊角专题训练 计算:(1)已知a 为锐角①若sina=3/5,求cosa 、tana 的值。

②若tana=3/4,求sina 、cosa 的值。

(1) ③若tana=2,求(3sina+cosa )/(4cosa-5sina )(2)在△ABC 中,角A, 角B,角C 的对边分别为a 、b 、c ,且a :b :c=9:40:41,求tanA,1/tanA 的值.(3)求下列各式的锐角。

①2sina=1,②,2tana ·cosa= ,③ tan 2a+(1+ )tana+ =0(4)在△ABC 中AB=15,BC=14,S △ABC=84.求tanc ,sina 的值。

(5)等腰三角形的面积为2,腰长为根号5,底角为a ,求tana 。

(6)锐角a 满足cosa=3/4,则∠a 较确切的取值范围( )A.0°<a <45°B. 45°<a <90°C. 45°<a <60°D. C. 30°<a <45° (7)计算:020*********sin 88sin 3sin 2sin 1sin +++++一、填空题:1. =︒+︒30sin 30cos ___________,2.sin 21= cos = 。

3.若21sin =θ,且︒<<︒900θ,则θ=_______,已知23sin =α,则锐角α=__________。

4.在_________cos ,,60,90,==∠=∠B A C ABC Rt 则中∆ 5.在ABC ∆,_________cos ,5,3,90====∠B AB AC C 则6._________sin ,5,3,90,====∠A AB BC C ABC Rt 则中∆7.在ABC ∆Rt 中,︒=∠90C ,b a 33=,则A ∠=_________,A sin =_________8.在ABC ∆Rt 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )9.在ABC ∆中,若0cos 2322sin 2=⎪⎪⎭⎫⎝⎛-+-B A ,A ∠,B ∠都是锐角,则C ∠的度数是( )10.(1) 如果α是锐角,且154sin sin 22=+ α,那么α的度数为( )(2).如果α是锐角,且54cos =α,那么)90cos(α-的值是( ) 11. 将︒21cos ,︒37cos ,︒41sin ,︒46cos 的值,按由小到大的顺序排列是_____________________12.在ABC ∆中,︒=∠90C ,若51cos =B ,则B 2sin =________ 13. 30cos 30sin 22+的值为__________, ________18sin 72sin 22=+14.一个直角三角形的两条边长为3、4,则较小锐角的正切值是( ) 15.计算22)31(45tan 60sin ---⋅,结果正确的是( ) 16.在_________,1,2tan ,,===∠=∠∆b a B Rt C ABC Rt 则若中17.等腰梯形腰长为6,底角的正切为42,下底长为212,则上底长为 ,高为 。

锐角三角函数 专题训练

锐角三角函数 专题训练

锐角三角函数 专题训练一、选择题1.4sin tan 5ααα=若为锐角,且,则为 ( ) 933425543A B C D . . . . 2.在Rt △ABC 中,∠C = 90°,下列式子不一定成立的是( )A .sinA = sinB B .cosA=sinBC .sinA=cosBD .∠A+∠B=90° 3.直角三角形的两边长分别是6,8,则第三边的长为( )A .10B ..10或.无法确定4.在Rt △ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是( ) A .c =sin a A B .c =cos a A C .c = a ·tanA D .c = tan a A5、45cos 45sin +的值等于( )A.2B.213+ C.3D. 16.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( ) A. 3 B. 300 C. 503 D. 157.当锐角α>30°时,则cos α的值是( )A .大于12 B .小于12 C 8.小明沿着坡角为30°的坡面向下走了2米,那么他下降( )A .1米BC .D 9.计算6tan45°-2cos60°的结果是( )A .4 3B .4C .5D .5 3 10.如图28-1,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,则下列结论正确的是( )A .sin A =32B .tan A =12C .cos B =32D .tan B = 311.测得某坡面垂直高度为2 m ,水平宽度为4 m ,则坡度为( )A .1∶52B .1∶ 5C .2∶1D .1∶2图28-1 图28-212.如图28-2,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )A.6sin52°米B.6tan52°米 C .6cos52°米 D.6cos52°米 13.在△ABC 中,(tan A -3)2+⎪⎪⎪⎪22-cos B =0,则∠C 的度数为( )A .30°B .45°C .60°D .75° 14.如图28-3,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A.23 B.32 C.2 1313 D.3 1313图28-3 图28-415.在Rt △ABC 中,∠C =90°,若sin A =513,则cos A 的值为( )A.512B.813C.23D.121316.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,如果a 2+b 2=c 2,那么下列结论正确的是( )A .c sin A =aB .b cos B =cC .a tan A =bD .c tan B =b17.在Rt △ABC 中,∠C=90°,tan A=3,AC 等于10,则S △ABC 等于( ) A. 3 B. 300 C.503D. 15 18.如图28-4,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若AC =2 3,AB =4 2,则tan ∠BCD 的值为( )A. 2B.153C.155D.3319.如图28-5,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30°,再往大树的方向前进4 m ,测得仰角为60°,已知小敏同学身高(AB )为1.6 m ,则这棵树的高度为( )(结果精确到0.1m ,3≈1.73).图28-5A .3.5 mB .3.6 mC .4.3 mD .5.1 m二、填空题(本大题共6小题,每小题4分,共24分)1.已知在Rt △ABC 中,∠C =90°,tan A =3,则cos B =________. 2.在Rt △ABC 中,∠C =90°,a =5 2,b =5 6,则∠A =________.3.如图28-6,已知Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC =________.图28-6 图28-74.如图28-7,C 岛在A 岛的北偏东50°方向,C 岛在B 岛的北偏西40°方向,则从C岛看A ,B 两岛的视角∠ACB =________.5.若方程x 2-4x +3=0的两根分别是Rt △ABC 的两条边,若△ABC 最小的角为A ,那么tan A =______.6.某坡面的坡度为1_______度.7.锐角A 满足2sin (A -150)=3 则∠A = .三、解答题(一)(本大题共3小题,每小题6分,共18分)1.计算:4+⎝ ⎛⎭⎪⎫12-1-2cos60°+(2-π)0. 2、 100245sin 251-+⋅-+-3.计算:12+2sin60° 4、计算2sin30°+2cos60°+3tan45°5、sin 230°+cos 245°°·tan45° 6、22cos 30cos 60tan 60tan 30︒+︒︒⨯︒+ sin45°7、计算(8分):(1)tan30°sin60°+cos 230°-si n 245°tan45°8、50cos 40sin 0cos 45tan 30cos 330sin 145tan 41222-+-+.9、(8分)△ABC 中,∠C =90°.(1)已知:c = 83,∠A =60°,求∠B 、a 、b .(2) 已知:a =36, ∠A =30°,求∠B 、b 、c.10.由下列条件解直角三角形:在Rt △ABC 中,∠C=90°:(1)已知a=4,b=8, (2)已知b=10,∠B=60°.(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°11.在△ABC 中,∠C =90°,AB =10cm ,sinA =54,则BC 的长为12.已知Rt △ABC 中,∠C=90°,tanA=43,BC=8,则AC 等于13.已知:如图,△ABC 中,AC =10,,31sin ,54sin ==B C 求AB .。

《锐角三角函数》习题(含答案)

《锐角三角函数》习题(含答案)

《锐⾓三⾓函数》习题(含答案)《锐⾓三⾓函数》⼀、选择题1. 4sin tan 5ααα=若为锐⾓,且,则为 ( )933425543A B C D ....2.在Rt△ABC 中,∠C = 90°,下列式⼦不⼀定成⽴的是()A .sinA = sinB B .cosA=sinBC .sinA=cosBD .∠A+∠B=90°3.直⾓三⾓形的两边长分别是6,8,则第三边的长为()A .10B .C .10或D .⽆法确定4.在Rt△ABC 中,∠C=90°,当已知∠A 和a 时,求c ,应选择的关系式是()A .c =B .c =C .c = a·tanAD .c = sin a A cos a A tan a A 5、的值等于()o o 45cos 45sin +A. B. C. D. 12213+36.在Rt△ABC 中,∠C=90°,tan A=3,AC 等于10,则S△ABC 等于( )A. 3B. 300C.D. 155037.当锐⾓α>30°时,则cosα的值是()A .⼤于B .⼩于CD 12128.⼩明沿着坡⾓为30°的坡⾯向下⾛了2⽶,那么他下降()A .1⽶B ⽶C .9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,则AB=()(A )4 (B )5 (C )(D10.已知Rt△ABC 中,∠C=90°,tanA=,BC=8,则AC 等于()43 A .6 B . C .10 D .12323⼆、填空题11.计算2sin30°+2cos60°+3tan45°=_______.12.若sin28°=cosα,则α=________.13.已知△ABC 中,∠C=90°,AB=13,AC=5,则tanA=______.14.某坡⾯的坡度为1,则坡⾓是_______度.15.在△ABC 中,∠C =90°,AB =10cm ,sinA =,则BC 的长为_______cm .5416.如图,在⾼楼前点测得楼顶的仰⾓为,向⾼楼前进60⽶到点,⼜测得仰⾓为,则该⾼楼的D 30?C 45?⾼度⼤约为A.82⽶B.163⽶C.52⽶D.70⽶17.如图,⼩鸣将测倾器安放在与旗杆AB 底部相距6m 的C 处,量出测倾器的⾼度CD =1m ,测得旗杆顶端B 的仰⾓=60°,则旗杆AB 的⾼度为.(计算结果保留根号)α(16题)三、解答题18.由下列条件解直⾓三⾓形:在Rt△ABC 中,∠C=90°:(1)已知a=4,b=8,(2)已知b=10,∠B=60°.(3)已知c=20,∠A=60°. (4) (2)已知a=5,∠B=35°19.计算下列各题.(1)s in 230°+cos 2sin60°·tan45°;(2)+ sin45°22cos 30cos 60tan 60tan 30?+四、解下列各题20.如图所⽰,平地上⼀棵树⾼为5⽶,两次观察地⾯上的影⼦,第⼀次是当阳光与地⾯成45°时,第⼆次是阳光与地⾯成30°时,第⼆次观察到的影⼦⽐第⼀次长多少⽶?(第21.如图,AB 是江北岸滨江路⼀段,长为3千⽶,C 为南岸⼀渡⼝,为了解决两岸交通困难,拟在渡⼝C 处架桥.经测量得A 在C 北偏西30°⽅向,B 在C 的东北⽅向,从C 处连接两岸的最短的桥长多少?(精确到0.1)22. 如图,点A 是⼀个半径为300⽶的圆形森林公园的中⼼,在森林公园附近有B 、C 两个村庄,现要在B 、C 两村庄之间修⼀条长为1000⽶的笔直公路将两村连通,经测得∠ABC=45o ,∠ACB=30o ,问此公路是否会穿过该森林公园?请通过计算进⾏说明。

中考数学专项复习《锐角三角函数》练习题(附答案)

中考数学专项复习《锐角三角函数》练习题(附答案)

中考数学专项复习《锐角三角函数》练习题(附答案)一、单选题1.如图,在△ABC中CA=CB=4,cosC=14,则sinB的值为()A.√102B.√153C.√64D.√1042.在Rt△ABC中,△C=90°,cosA=35,那么tanB=()A.35B.45C.43D.34 3.如图,在Rt△ABC中∠ACB=90°,BC=1,AB=2则下列结论正确的是()A.sinA=√32B.tanA=12C.cosB=√32 D.tanB=√34.如图,已知△ABC内接于△O,△BAC=120°,AB=AC,BD为△O的直径,AD=6,则BC的长为()A.2√3B.6C.2√6D.3√3 5.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里C.2cos55°海里D.2tan55°海里6.在矩形ABCD中AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F设∠AGE=α(0°<α<90°),下列四个结论:①AE= CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=1cos2α,正确的个数是()A.1B.2C.3D.4 7.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得△PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.11−sinαB.11+sinαC.11−cosαD.11+cosα8.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,下列结论:①△ABC的形状是等腰三角形;②△ABC的周长是2√10+√2;③点C到AB边的距离是38√10;④tan∠ACB的值为2,正确的个数为()A .0个B .1个C .2个D .3个9.在Rt△ABC 中△ACB=90°,BC=1,AB=2,则下列结论正确的是( )A .sinA=√32B .cosA=√32C .tanA=12D .cotA=√3310.已知:如图,正方形网格中∠AOB 如图放置,则cos∠AOB 的值为( )A .2√55B .2C .12D .√5511.如图,菱形ABCD 的周长为20cm ,DE△AB ,垂足为E ,cosA=45,则下列结论中正确的个数为( )①DE=3cm ;②EB=1cm ;③S 菱形ABCD =15cm 2A .3个B .2个C .1个D .0个12.如图,在Rt △ABC 中 ∠ABC =90°,以其三边为边向外作正方形,连接EH ,交AC 于点P ,过点P 作PR ⊥FG 于点R.若tan∠AHE =12,EH =8√5,则PR 的值为( )A.10B.11C.4√5D.5√5二、填空题13.如图,在RtΔABC中∠B=90°,AB=3 ,BC=4 ,点M、N分别在AC、AB两边上,将ΔAMN沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当ΔDCM是直角三角形时,则tan∠AMN的值为.14.如图,在△ABC中∠ABC=60°,AB=6,BC=10将△ABC绕点B顺时针旋转得到△A1BC1(点A的对应点是点A1,点C的对应点是点C1,A1落在边BC上,连接AC1,则AC1的长为.15.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C 的仰角为45°,点P到建筑物的距离为PD=20米,则BC=米.16.如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.17.如图,某高为60米的大楼AB旁边的山坡上有一个“5G”基站DE,从大楼顶端A 测得基站顶端E的俯角为45°,山坡坡长CD=10米,坡度i=1:√3,大楼底端B 到山坡底端C的距离BC=30米,则该基站的高度DE=米.18.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1,2号楼进行测高实践,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,则2号楼的高度为(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)三、综合题19.(1)已知Rt△ABC中△C=90°,△A=30°,BC= √3,解直角三角形.(2)已知△ABC中△A=45°,AB=4,BC=3,求AC的长.20.如图1,已知∠PAQ=60°.请阅读下列作图过程,并解答所提出的问题.△如图2,以点A为圆心,任意长为半径画弧,分别与AP,AQ交于B,C两点;△如图3,分别以B,C两点为圆心,以大于12BC的长为半径画弧,两弧交于点D;△如图4,作射线AD,连接BC,与AD交于点E.问题:(1)∠ABC的度数为.(2)若AB=4,求AE的长.21.如图,在△ABC中△C=60°,△O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是△O的切线;(2)若AB=2 √3,求图中阴影部分的面积.(结果保留π和根号)22.如图,物理教师为同学们演示单摆运动,单摆左右摆动中在OA的位置时俯角△EOA=30°,在OB的位置时俯角△FOB=60°,若OC△EF,点A比点B高7cm.求:(1)单摆的长度(√3≈1.7);(2)从点A摆动到点B经过的路径长(π≈3.1).23.已知:如图,AB是△O的直径,C是△O上一点,OD△BC于点D,过点C作△O 的切线,交OD的延长线于点E,连接BE.(1)求证:BE与△O相切;(2)连接AD并延长交BE于点F,若OB=9,sin△ABC= 23,求BF的长.24.如图,AB是△O的直径,OE垂直于弦BC,垂足为F,OE交△O于点D,且△CBE=2△C.(1)求证:BE与△O相切;(2)若DF=9,tanC= 34,求直径AB的长.参考答案1.【答案】D2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】A7.【答案】A8.【答案】C9.【答案】B10.【答案】D11.【答案】A12.【答案】B13.【答案】1或214.【答案】1415.【答案】(20√3−20)16.【答案】√31817.【答案】(25﹣5 √3)18.【答案】45.8米19.【答案】(1)解:在Rt△ABC中△C=90°,△A=30°∴△B=90°-△A=60°,AB=2BC=2 √3∴AC= √AB2−BC2=√(2√3)2−(√3)2=3;(2)解:如图,过点B作BD△AC于D∵△A=45°∴△ABD=△A=45°∴AD=BD∵AB=4,AD2+BD2=AB2∴AD=BD= 2√2在Rt△BCD中BC=3∴CD=√BC2−BD2=1∴AC=AD+CD= 2√2+1.20.【答案】(1)60°(2)由作图可知AB=AC,AD平分∠PAQ∴AE⊥BC.∵∠PAQ=60°∴∠BAE=30°.在Rt△ABC中AE=AB⋅cos30°=4×√32=2√3.答:AE的长为2√3.21.【答案】(1)解:如图,连接OA;∵△C=60°∴△AOB=120°;而OA=OB∴△OAB=△OBA=30°;而AB=AP∴△P=△ABO=30°;∵△AOB=△OAP+△P∴△OAP=120°﹣30°=90°∴PA是△O的切线.(2)解:如图,过点O作OM△AB,则AM=BM= √3∵tan30°= OMAM sin30°=OMAO∴OM=1,OA=2;∴S△AOB=12·AB·OM= 12× 2√3×1= √3S扇形OAB =120π⋅22360= 4π3∴图中阴影部分的面积= 4π3−√3.22.【答案】(1)解:如图,过点A作AP△OC于点P,过点B作BQ△OC于点Q∵△EOA=30°、△FOB=60°,且OC△EF∴△AOP=60°、△BOQ=30°设OA=OB=x则在Rt△AOP中OP=OAcos△AOP= 1 2x在Rt△BOQ中OQ=OBcos△BOQ= √32x由PQ=OQ﹣OP可得√32x﹣12x=7解得:x=7+7 √3≈18.9(cm)答:单摆的长度约为18.9cm(2)解:由(1)知,△AOP=60°、△BOQ=30°,且OA=OB=7+7 √3∴△AOB=90°则从点A摆动到点B经过的路径长为90⋅π⋅(7+7√3)180≈29.295答:从点A摆动到点B经过的路径长为29.295cm 23.【答案】(1)证明:连接OC∵OD△BC∴△COE=△BOE在△OCE和△OBE中∵{OC=OB∠COE=∠BOEOE=OE∴△OCE△△OBE∴△OBE=△OCE=90°,即OB△BE∵OB 是△O 半径∴BE 与△O 相切.(2)解:过点D 作DH△AB ,连接AD 并延长交BE 于点F∵△DOH=△BOD ,△DHO=△BDO=90°∴△ODH△△OBD∴OD OB =OH OD =DH BD又∵sin△ABC= 23,OB=9 ∴OD=6易得△ABC=△ODH∴sin△ODH= 23 ,即 OH OD = 23∴OH=4∴DH= √OD 2−OH 2 =2 √5又∵△ADH△△AFB∴AH AB = DH FB 1318 = 2√5FB∴FB= 36√51324.【答案】(1)证明:∵OE 垂直于弦BC∴△BOE+△OBF=90°∵△CBE=2△C , △BOE=2△C∴△CBE=△BOE∴△CBE+△OBF=90°∴△OBE=90°∴BE 与△O 相切;(2)解:∵OE 垂直于弦BC∴△CFD=△BFO=90°,CF=BF.∵DF=9,tanC= 34∴CF=BF=12.设半径长是x,则OF=x-9在Rt△BOF中∵x2=(x-9)2+122∴x= 25 2∴直径AB=25.。

专题01 锐角的三角函数重难点题型专训(7大题型)(原卷版)

专题01 锐角的三角函数重难点题型专训(7大题型)(原卷版)

【题型目录】题型一题型二【经典例题一1.(22·235.(2021秋·河北石家庄5AB=,3AC=.(1)求AD的长;(2)求sin DABÐ的值.【经典例题二求角的正弦值1.(22·23下·沈阳·开学考试)如图,6BD=,则sin ACDÐ的值是(A.34B.32.(22·23上·青岛·期末)如图,值为( )A.5B.3.(21·22下·哈尔滨·阶段练习)在5.(2023·浙江温州<),连接(AE EC(1)求证:四边形DEBF为菱形.(2)记菱形ABCD的面积为1S,菱形长.【经典例题三1.(22·23D,若A.22.(22·23下·深圳·阶段练习)如图,的距离是( )A.556B.6553.(22·23下·绵阳·阶段练习)如图,在上,1BAE ABCÐ=Ð,点F4.(22·23下·合肥·三模)在Rt上,将BDE△沿直线DE翻折,使得点(1)求证:CE是Oe的切线;(2)若2sin,53E AC==,求DF 【经典例题四求角的余弦值A.11 152.(2022春·福建福州格点.已知菱形的一个角为A.13B.123.(2023秋·全国·九年级专题练习)如图,在AC于点D、E,且13AB AC==,4.(2023·黑龙江齐齐哈尔的两边长分别是2和3,则5.(2022秋·黑龙江大庆·八年级校考期末)沿着过点B的某条直线折叠,使点(1)求点A、B、C、D的坐标;(2)求ABCÐ的余弦值.【经典例题五已知余弦值求边长】1.(2023·广西北海·统考模拟预测)如图,在直角梯形3 BD=,2cos3CDBÐ=,则下底AB的长是(A.212B.92.(2023春·四川南充·九年级校考阶段练习)如图,A.94B.1253.(2023·山东聊城·统考三模)在Rt ABC△5.(2023秋·山东聊城·九年级校考阶段练习)于点E .(1)求证;BEA ADC V V ∽(2)求证:··CD AD AC BE =(3)若2AD =5,cos ABE Ð【经典例题六1.(2023点F 在边A .272.(2023秋·重庆沙坪坝90BAC EAD Ð=Ð=°的值为( )A .13B 3.(2023秋·江苏常州·九年级统考期末)如图,连接BD ,将BCD △沿BD4.(2022春·湖北武汉AB AC =,CD AB ^的值是.5.(2022春·黑龙江绥化等腰Rt CEF △的直角顶点与正方形线FE 与AD 交于点P ,与(1)求证:CDE CBF △△≌;(2)求CF 的长;【经典例题七1.(2022落在边A .53B .22.(2023·广东深圳·深圳市高级中学校考二模)如图,平行四边形4tan 3BAD Ð=,点O 为对角线A .4033B .33403.(2023秋·全国·九年级专题练习)如图,在1tan 3ABG Ð=,那么BC 的长等于4.(2022秋·黑龙江哈尔滨5OP =,点M ,(1)求证:四边形BCEF^于点G,连结(2)BG CE①求CG的长.②求平行四边形BCEF【重难点训练】1.(21·22A.42.(23·24上·长春上,且90Ð=°AEFA.273.(22·23下·江门·期中)在A.247B.4.(22·23下·株洲·自主招生)的值为()A.3 35.(21·22下·深圳·模拟预测)如图,已知平行四边形A.12B.136.(23·24上·黄浦·期中)如图已知在7.(21·22·武汉·模拟预测)如图,E为AB边上一动点,DEFV为等边三角形,则线段8.(22·23下·深圳·模拟预测)如图,在1tan 2A =,8BC =,CF AB ∥9.(21·22·武汉·模拟预测)如图,在矩形GBE V ,BG 的延长线交则cos DEC Ð的值为10.(23·24上·专题练习)如图,在四边形点M 、N 分别在AB11.(21·22·哈尔滨·模拟预测)如图,在小正方形的边长均为方形的顶点上.(1)在图1中画一个以线段AB 为一边的平行四边形ABCD 的面积为8;(2)在图2中画一个钝角三角形ABE ,点E 在小正方形顶点上,直接写出AE 的长.13.(21·22下·宜昌·模拟预测)如图,已知平行四边形(1)如图当点E 在边AD 上时.①求证AEF BGF V V ∽.②当4DCE BFG S S =V V 时,求:AE ED 的值.(2)当点E 在边AD 的延长线上时,是否存在这样的点E 使AEF △与五、作图题14.(23·24上·哈尔滨·期中)如图,在边长为1的小正方形网格中,ABC V 的三个顶点均在格点上,坐标分别为()2,4A ,()1,2B ,()5,3C . 请解答下列问题:(1)画出ABC V 关于y 轴的对称图形111A B C △.(2)将ABC V 绕点O 顺时针旋转90°得到222A B C △,画出222A B C △.(3)连接1B B 、12B C ,写出12BB C Ð的正切值.六、证明题15.(23·24上·齐齐哈尔·期中)已知,四边形ABCD 是正方形,DEF V 绕点D 旋转()DE AB <,90,EDF DE DF Ð=°=,连接AE ,CF ;直线AE 与CF 相交于点G 、交CD 于点P .(1)如图1,猜想AE 与CF 的关系,并证明:(2)如图2,BM AG ^于点M ,^BN CF 于点N ,则四边形BMGN 是________形;(3)如图3,连接BG ,若4,2AB DE ==,直接写出在DEF V 旋转的过程中,①当点E 在正方形ABCD 的内部,且EF CD ^时BG =_________;②线段BG 长度的最小值__________;。

九年级数学锐角三角函数的专项培优练习题含答案

九年级数学锐角三角函数的专项培优练习题含答案

九年级数学锐角三角函数的专项培优练习题含答案一、锐角三角函数1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号).【答案】.【解析】试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案.试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==,∴BC=.故该船与B港口之间的距离CB的长为海里.考点:解直角三角形的应用-方向角问题.2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.(1)求证:△MED∽△BCA;(2)求证:△AMD≌△CMD;(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=175S1时,求cos∠ABC的值.【答案】(1)证明见解析;(2)证明见解析;(3)cos∠ABC=5 7 .【解析】【分析】(1)易证∠DME=∠CBA,∠ACB=∠MED=90°,从而可证明△MED∽△BCA;(2)由∠ACB=90°,点M是斜边AB的中点,可知MB=MC=AM,从而可证明∠AMD=∠CMD,从而可利用全等三角形的判定证明△AMD≌△CMD;(3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBDS ME S EB =V ,从而可知52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案. 【详解】(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,MD MD AMD CMD AM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,由(1)可知:△MED ∽△BCA , ∴2114ACB S MD S AB ⎛⎫== ⎪⎝⎭V ,∴S △ACB =4S 1, ∵CM 是△ACB 的中线, ∴S △MCB =12S △ACB =2S 1, ∴S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,∵1EBDS MES EB=V ,∴1125S MEEB S =,∴52ME EB =, 设ME=5x ,EB=2x , ∴MB=7x , ∴AB=2MB=14x ,∵12MD ME AB BC ==, ∴BC=10x ,∴cos ∠ABC=105147BC x AB x ==. 【点睛】本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.4.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4cos 5AOC ∠=.设OP x =,CPF ∆的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ∆是直角三角形时,求线段OP 的长.【答案】(1)证明见解析;(2)236030050(10)13x x y x x -+=<<;(3)8OP =【解析】【分析】(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻找已知对应边的夹角,即POA QDO ∠=∠即可;(2)根据PFC ∆∽PAO ∆,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4cos 5AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠, ∴POA QDO ∠=∠. 在AOP ∆和ODQ ∆中,{OP DQPOA QDO OA DO=∠=∠=, ∴AOP ∆≌ODQ ∆, ∴AP OQ =;(2)作PH OA ⊥,交OA 于H , ∵4cos 5AOC ∠=, ∴4455OH OP x ==,35PH x =, ∴132AOP S AO PH x ∆=⋅=. ∵//CD AB , ∴PFC ∆∽PAO ∆, ∴2210()()AOPy CP x S OP x∆-==, ∴2360300x x y x-+=,当F 与点D 重合时,∵42cos 210165CD OC OCD =⋅∠=⨯⨯=, ∴101016x x =-,解得5013x =,∴2360300x x y x-+=50(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4cos 1085OP OA AOC =⋅∠=⨯=; ②当90POE ∠=o 时,1010254cos cos 25OC CQ QCO AOC ====∠∠,∴252OP DQ CD CQ CD ==-=-2571622=-=, ∵501013OP <<, ∴72OP =(舍去); ③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ∆≌ODQ ∆, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.5.如图以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点F.(1)求证:DF ⊥AC ;(2)若∠ABC=30°,求tan ∠BCO 的值. 【答案】(1)证明见解析; (2) tan ∠3 【解析】试题分析:(1)连接OD ,根据三角形的中位线定理可求出OD ∥AC ,根据切线的性质可证明DE ⊥OD ,进而得证.(2)过O 作OF ⊥BD ,根据等腰三角形的性质及三角函数的定义用OB 表示出OF 、CF 的长,根据三角函数的定义求解. 试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE ∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=3OB∵BD=DC, BF=FD,∴FC=3BF=33OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,BF=3OB,FC=3BF=33OB是解题关键.6.如图,MN为一电视塔,AB是坡角为30°的小山坡(电视塔的底部N与山坡的坡脚A在同一水平线上,被一个人工湖隔开),某数学兴趣小组准备测量这座电视塔的高度.在坡脚A处测得塔顶M的仰角为45°;沿着山坡向上行走40m到达C处,此时测得塔顶M的仰角为30°,请求出电视塔MN的高度.(参考数据:2≈1.41,3≈1.73,结果保留整数)【答案】95m【解析】【分析】过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,求AE=3m,在RT△MFC中,设MN=x m,则AN=xm.FC3xm,可得x+33 ( x-20),解方程可得答案..【详解】解:过点C作CE⊥AN于点E, CF⊥MN于点F.在△ACE中,AC=40m,∠CAE=30°∴CE=FN=20m,AE=3设MN=x m,则AN=xm.FC=3xm,在RT△MFC中MF=MN-FN=MN-CE=x-20FC=NE=NA+AE=x+203∵∠MCF=30°∴FC=3MF,即x+203=3 ( x-20)解得:x=403 31=60+203≈95m答:电视塔MN的高度约为95m.【点睛】本题考核知识点:解直角三角形.解题关键点:熟记解直角三角形相关知识,包括含特殊角的直角三角形性质.7.如图,在矩形ABCD中,AB=6cm,AD=8cm,连接BD,将△ABD绕B点作顺时针方向旋转得到△A′B′D′(B′与B重合),且点D′刚好落在BC的延长上,A′D′与CD相交于点E.(1)求矩形ABCD与△A′B′D′重叠部分(如图1中阴影部分A′B′CE)的面积;(2)将△A′B′D′以每秒2cm的速度沿直线BC向右平移,如图2,当B′移动到C点时停止移动.设矩形ABCD与△A′B′D′重叠部分的面积为y,移动的时间为x,请你直接写出y关于x 的函数关系式,并指出自变量x的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x,使得△AA′B′成为等腰三角形?若存在,请你直接写出对应的x的值,若不存在,请你说明理由.【答案】(1)452;(2)详见解析;(3)使得△AA′B′成为等腰三角形的x的值有:0秒、32 秒、95- . 【解析】 【分析】(1)根据旋转的性质可知B ′D ′=BD =10,CD ′=B ′D ′﹣BC =2,由tan ∠B ′D ′A ′='''''=A B CEA D CD 可求出CE ,即可计算△CED ′的面积,S ABCE =S ABD ′﹣S CED ′; (2)分类讨论,当0≤x ≤115时和当115<x ≤4时,分别列出函数表达式; (3)分类讨论,当AB ′=A ′B ′时;当AA ′=A ′B ′时;当AB ′=AA ′时,根据勾股定理列方程即可. 【详解】解:(1)∵AB =6cm ,AD =8cm , ∴BD =10cm ,根据旋转的性质可知B ′D ′=BD =10cm ,CD ′=B ′D ′﹣BC =2cm , ∵tan ∠B ′D ′A ′='''''=A B CE A D CD ∴682=CE ∴CE =32cm ,∴S ABCE =S ABD ′﹣S CED ′=8634522222⨯-⨯÷=(cm 2); (2)①当0≤x <115时,CD ′=2x +2,CE =32(x +1), ∴S △CD ′E =32x 2+3x +32, ∴y =12×6×8﹣32x 2﹣3x ﹣32=﹣32x 2﹣3x +452; ②当115≤x ≤4时,B ′C =8﹣2x ,CE =43(8﹣2x ) ∴()214y 8223x =⨯-=83x 2﹣643x +1283. (3)①如图1,当AB ′=A ′B ′时,x =0秒;②如图2,当AA ′=A ′B ′时,A ′N =BM =BB ′+B ′M =2x +185,A ′M =NB =245, ∵AN 2+A ′N 2=36, ∴(6﹣245)2+(2x +185)2=36,解得:x=6695-,x=6695--(舍去);③如图2,当AB′=AA′时,A′N=BM=BB′+B′M=2x+185,A′M=NB=245,∵AB2+BB′2=AN2+A′N2∴36+4x2=(6﹣245)2+(2x+185)2解得:x=32.综上所述,使得△AA′B′成为等腰三角形的x的值有:0秒、32秒、6695-.【点睛】本题主要考查了图形的平移变换和旋转变换,能够数形结合,运用分类讨论的思想方法全面的分析问题,思考问题是解决问题的关键.8.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且CF AE=,连接DE,DF,EF. FH平分EFB∠交BD于点H.(1)求证:DE DF⊥;(2)求证:DH DF=:(3)过点H作HM EF⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠, 得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得222BD AB AD AB =+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以22sin 45HN BH HN HM ===︒. 由22cos 45DF EF DF DH ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数与特殊角专题训练【基础知识精讲】一、 正弦与余弦:1、 在ABC ∆中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin ,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边的邻边斜边的对边A A A A ∠=⋅∠=cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c ,则c a A =sin ,cb A =cos 。

2、当A ∠为锐角时, 1sin 0<<A ,1cos 0<<A (A ∠为锐角)。

二、 特殊角的正弦值与余弦值:2130sin =ο, 2245sin =ο, 2360sin =ο. 2330cos =ο, 2245cos =ο, 2160cos =ο. 三、 增减性:当00900<<α时,sin α随角度α的增大而增大;cos α随角度α的增大而减小。

四、正切概念:(1) 在ABC Rt ∆中,A ∠的对边与邻边的比叫做A ∠的正切,记作A tan 。

即 的邻边的对边A A A ∠∠=tan (或ba A =tan ) 五、特殊角的正弦值与余弦值:3330tan =ο; 145tan =ο; 360tan =ο 六、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.)90sin(cos ),90cos(sin A A A A -︒=-︒=.七、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

即 ()A A -=ο90cot tan , ()A A -=ο90tan cot .八、同角三角函数之间的关系:⑴、平方关系:1cos sin 22=+A A ⑵商的关系A A A cos sin tan = A AA sin cos cot = ⑶倒数关系tana ·cota=1【典型例题】【1】 已知a 为锐角①若sina=3/5,求cosa 、tana 的值。

②若tana=3/4,求sina 、cosa 的值。

③若tana=2,求(3sina+cosa )/(4cosa-5sina )【2】 在△ABC 中,角A, 角B,角C 的对边分别为a 、b 、c ,且a :b :c=9:40:41,求tanA,1/tanA 的值.【3】 求下列各式的锐角。

①2sina=1,②,2tana ·cosa=根号3,③ tan 2a+(1+根号3)tana+根号3=0【4】 在△ABC 中AB=15,BC=14,S △ABC=84.求tanc ,sina 的值。

【5】 等腰三角形的面积为2,腰长为根号5,底角为a ,求tana 。

【6】 锐角a 满足cosa=3/4,则∠a 较确切的取值范围()A.0°<a <45°B. 45°<a <90°C. 45°<a <60°D. C. 30°<a <45°【7】计算:020*********sin 88sin 3sin 2sin 1sin +++++Λ【基础练习】一、填空题:1. =︒+︒30sin 30cos ___________,2. sin 21= cos = 。

3.若21sin =θ,且︒<<︒900θ,则θ=_______,已知23sin =α,则锐角α=__________。

4.在_________cos ,,60,90,==∠=∠B A C ABC Rt 则中οο∆ 5.在ABC ∆,_________cos ,5,3,90====∠B AB AC C 则ο6._________sin ,5,3,90,====∠A AB BC C ABC Rt 则中ο∆7.在ABC ∆Rt 中,︒=∠90C ,b a 33=,则A ∠=_________,A sin =_________8.在ABC ∆Rt 中,如果各边长度都扩大2倍,则锐角A 的正弦值和余弦值( )9.在ABC ∆中,若0cos 2322sin 2=⎪⎪⎭⎫ ⎝⎛-+-B A ,A ∠,B ∠都是锐角,则C ∠的度数是( )10.(1) 如果α是锐角,且154sin sin 22=+οα,那么α的度数为( )(2).如果α是锐角,且54cos =α,那么)90cos(α-ο的值是( ) 11. 将︒21cos ,︒37cos ,︒41sin ,︒46cos 的值,按由小到大的顺序排列是_____________________12.在ABC ∆中,︒=∠90C ,若51cos =B ,则B 2sin =________ 13.οο30cos 30sin 22+的值为__________, ________18sin 72sin 22=+οο14.一个直角三角形的两条边长为3、4,则较小锐角的正切值是( )15.计算22)31(45tan 60sin ---⋅οο,结果正确的是( ) 16.在_________,1,2tan ,,===∠=∠∆b a B Rt C ABC Rt 则若中17.等腰梯形腰长为6,底角的正切为42,下底长为212,则上底长为 ,高为 。

18.在ABC ∆Rt 中,︒=∠90C ,3cot =A ,则2tan sin cot C B A ++的值为____________。

19.比较大小(用>、<、=号连接):(其中︒=+90B A ) A A tan _____sin , B A cos ______sin , A A A tan _____cos sin20.在Rt ABC ∆中,︒=∠90C ,则B A tan tan ⋅等于( )二、【计算】21.︒⋅︒+︒⋅︒45sin 30cos 45cos 30sin 22.︒⋅︒+︒+︒30cos 30sin 45sin 2260sin 21。

23.)45cos 60)(sin 45sin 30)(cos 45sin 230sin 2(︒-︒︒+︒︒+︒24. 25. 21+12--)(+2sin60°—︒60tan 1—【能力提升】1、如图,在AB CD Rt ACB ABC Rt ⊥∠=∠,,中∆于点D ,AD =4,,54sin =∠ACD CD 求、BC 的值。

2、比较大小:sin23°______sin33°;cos67.5°_________cos76.5°。

3、若30°<α<β<90°,化简αβαβcos 123cos )cos (cos 2-+---4、已知1sin 40sin 22=+︒α,则锐角α=_________。

5、在54sin ,51cos ,90-===∠n B A C ABC Rt ο中,∆那么n 的值是___________。

6、已知,cos sin ,cos sin n m ==+αααα 则m 、n 的关系是( )A .n m =B .12+=n nC .122+=n mD .n m 212-=7、如图,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBA =,则AD 的长为( )A.2 B. C. D.18、如图,矩形ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB , DM ⊥AN 于点M ,CN ⊥AN 于点N .则DM +CN 的值为(用含a 的代数式表示)( ) A .a B . C . D . 9、已知AD 是等腰△ABC 底边上的高,且tan ∠B=, AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是( )10、如图,在菱形ABCD 中,已知AE ⊥BC 于E ,BC=1,cosB=135,求这个菱形的面积。

5132a 54a 22a 234311、(北京市中考试题) 在中ABC ∆Rt ,︒=∠90C ,斜边5=c ,两直角边的长b a 、是关于x 的一元二次方程0222=-+-m mx x 的两个根,求ABC ∆Rt 较小锐角的正弦值.12、(2010 武侯中考模拟)如图ΔABC 中,AD 是BC 边上的高,tan ∠B=cos ∠DAC 。

(1)求证:AC=BD(2)若sin ∠C=1312,BC=12,求AD 的长. 12、在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先在A 处安置测倾器,测得塔顶C 的仰角∠CFE =21°,然后往塔的方向前行50米到达B 处,此时测得仰角∠CGE =37°,已知测倾器高1.5米.请你根据以上数据计算出古塔CD 的高度. (参考数据:3sin375≈o ,3tan 374≈o ,9sin 2125≈o ,3tan 218≈o )13、如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ). (参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)14、已知:如图,在BC D B ACB ABC Rt 是中,,53sin ,90==∠ο∆边上一点,且︒=∠45ADC ,DC = 6 。

求.的正切值BAD ∠。

15、如图,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)16、小明家准备建造长为28米的蔬菜大棚,示意图如图(1)。

它的横截面为如图(2)所示的四边形ABCD ,已知3AB =米,6BC =米,45BCD =︒∠,AB BC ⊥,D 到BC 的距离DE 为1米。

矩形棚顶ADD A ''及矩形DCC D ''由钢架及塑料薄膜制作,造价为每平方米120元,其它部分(保温墙体等)造价共9250元,则这个大棚的总造价为多少元?(精确到1元) 1.73 2.24 5.39 5.83===)[思维拓展训练]1、已知a为锐角,且sin(a-10°)=/2,则a=( )。

相关文档
最新文档