全景图像拼接算法2_1.

合集下载

全景图像拼接算法的研究与实现的开题报告

全景图像拼接算法的研究与实现的开题报告

全景图像拼接算法的研究与实现的开题报告一、选题背景与意义全景图像拼接技术是近年来计算机视觉领域的研究热点之一。

全景图像拼接是指将多个单幅图像拼接成一个完整的全景图像。

在实际应用中,全景图像拼接技术已经被广泛应用于航拍、地图制作、虚拟现实等领域,为人们的工作和生活带来了巨大的便利。

全景图像拼接的主要难点在于如何准确地识别并匹配图像中的关键点,并将多个图像进行精准拼接,以实现衔接自然、无缝衔接、清晰高清的全景图像的创建。

因此,该选题的研究和实现对于推动计算机视觉技术的发展和广泛应用具有重要的意义和应用价值。

二、主要研究内容和技术路线本选题主要研究和实现如下内容:1. 了解和掌握全景图像拼接相关的基本理论和算法,包括图像特征提取、关键点匹配、图像变换、图像融合等。

2. 分析和比较国内外常见的全景图像拼接算法,探索算法的优缺点以及适用场景。

3. 针对实际情况,进一步优化和改进算法,提升全景图像拼接的精度和效率。

4. 实现和验证算法,并通过实验和评估验证算法的正确性和性能。

技术路线如下:1. 对全景图像拼接技术和相关理论进行深入学习和分析,梳理各种拼接算法的主要思路和优缺点。

2. 实现针对不同场景的全景图像拼接算法,并使用统一的评估指标进行实验和比较。

3. 对算法进行优化和改进,并进行实验对比。

4. 编写论文,撰写实验和算法实现的细节部分,并将论文中的理论和实验结果进行分析和总结。

三、预期成果1. 掌握全景图像拼接相关的基本理论和算法,包括图像特征提取、关键点匹配、图像变换、图像融合等。

2. 深刻理解国内外常见的全景图像拼接算法的优缺点和适用场景,并能在实际工作中针对不同场景选择合适的算法进行应用。

3. 实现和比较多种全景图像拼接算法,并掌握其实现细节和对各种因素的敏感性。

4. 对算法进行优化和改进,提升拼接效果和效率。

5. 发表相关论文,并在计算机视觉领域获得一定的学术成就和影响力。

四、可行性分析与计划进度本选题的可行性主要表现在以下几个方面:1. 实践基础扎实,具备计算机视觉、图像处理等方面的相关基础。

图像的拼接----RANSAC算法

图像的拼接----RANSAC算法

图像的拼接----RANSAC算法⼀、全景拼接的原理1.RANSAC算法介绍RANSAC算法的基本假设是样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(outliers,偏离正常范围很远、⽆法适应数学模型的数据),即数据集中含有噪声。

这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产⽣的。

同时RANSAC也假设,给定⼀组正确的数据,存在可以计算出符合这些数据的模型参数的⽅法。

2.使⽤RANSAC算法来求解单应性矩阵在进⾏图像拼接时,我们⾸先要解决的是找到图像之间的匹配的对应点。

通常我们采⽤SIFT算法来实现特征点的⾃动匹配,SIFT算法的具体内容参照我的上⼀篇博客。

SIFT是具有很强稳健性的描述⼦,⽐起图像块相关的Harris⾓点,它能产⽣更少的错误的匹配,但仍然还是存在错误的对应点。

所以需要⽤RANSAC算法,对SIFT算法产⽣的128维特征描述符进⾏剔除误匹配点。

由直线的知识点可知,两点可以确定⼀条直线,所以可以随机的在数据点集中选择两点,从⽽确定⼀条直线。

然后通过设置给定的阈值,计算在直线两旁的符合阈值范围的点,统计点的个数inliers。

inliers最多的点集所在的直线,就是我们要选取的最佳直线。

RANSAC算法就是在⼀原理的基础上,进⾏的改进,从⽽根据阈值,剔除错误的匹配点。

⾸先,从已求得的匹配点对中抽取⼏对匹配点,计算变换矩阵。

然后对所有匹配点,计算映射误差。

接着根据误差阈值,确定inliers。

最后针对最⼤inliers集合,重新计算单应矩阵H。

3.基本思想描述:①考虑⼀个最⼩抽样集的势为n的模型(n为初始化模型参数所需的最⼩样本数)和⼀个样本集P,集合P的样本数#(P)>n,从P中随机抽取包含n 个样本的P的⼦集S初始化模型M;②余集SC=P\S中与模型M的误差⼩于某⼀设定阈值t的样本集以及S构成S*。

S*认为是内点集,它们构成S的⼀致集(Consensus Set);③若#(S*)≥N,认为得到正确的模型参数,并利⽤集S*(内点inliers)采⽤最⼩⼆乘等⽅法重新计算新的模型M*;重新随机抽取新的S,重复以上过程。

全景图像拼接技术研究及应用

全景图像拼接技术研究及应用

全景图像拼接技术研究及应用近几年,全景图像(Panorama)的应用越来越广泛,如旅游景点展示、地图制作、VR(虚拟现实)和AR(增强现实)等应用。

全景图像拼接技术是实现全景图像的关键技术,其主要目标是将多幅重叠的图像拼接为无缝的全景图像。

本文将着重探讨全景图像拼接技术的研究现状和应用。

一、全景图像拼接技术的研究现状1. 传统方法传统的全景图像拼接方法主要包括两种:基于特征点法和基于区域分割法。

前者是将所有图像的特征点匹配,并基于配对点拼接成全景图像;后者则是通过图像的最大重叠区域来进行拼接,适用于图像没有重大的形变或视角变化等情况。

这两种方法的缺点都是易受噪声和遮挡等问题的影响,导致拼接的效果不理想。

2. 基于深度学习的方法近年来,深度学习技术的崛起对于全景图像拼接技术的提升也起到了重要的作用。

通过使用卷积神经网络(Convolutional Neural Networks, CNN),可以提高全景图像拼接的效率和准确性。

2016年,百度提出了一种名为“DeepPano”的深度学习全景图像拼接算法,该方法利用神经网络从大量单张图像中学习特征和相机参数。

与传统方法相比,DeepPano算法具有更高的拼接速度和更好的拼接质量。

3. 基于视频的方法基于视频的全景图像拼接技术最近也引起了广泛的关注。

与多张照片的拼接不同,视频是连续的图像序列,具有更多的信息和上下文。

基于视频的全景图像拼接方法可以通过视频的连续性进一步提高拼接效果。

二、全景图像拼接技术的应用1. 地图制作全景图像拼接技术在地图制作上有广泛的应用。

通过利用卫星遥感图像、无人机摄影图像等数据源,可以快速生成高质量的地图制品,研究人员还利用全景图像拼接技术在地图中嵌入了VR功能,以帮助用户更好地了解地理信息。

2. 旅游景点展示全景图像拼接技术在旅游景点展示上也有广泛的应用。

通过拍摄景区周围的多张照片,将其拼接成一张完整的全景图像,游客可以更好地了解景区的地形、景观等信息。

图像拼接算法及实现(一).

图像拼接算法及实现(一).

图像拼接算法及实现(一)论文关键词:图像拼接图像配准图像融合全景图论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。

图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。

一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。

本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。

在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。

首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。

然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。

最后用正确的特征点匹配对实现图像的配准。

本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。

Abstract:Image mosaic is a technology that carries on thespatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。

Python实现图像全景拼接

Python实现图像全景拼接

Python 实现图像全景拼接⽬标:将数张有重叠部分的图像通过特征点检测,匹配,图像变换拼成⼀幅⽆缝的全景图或⾼分辨率图像在图像拼接中⾸先利⽤SIFT 算法提取图像特征进⽽进⾏特征匹配,继⽽使⽤RANSAC 算法对特征匹配的结果进⾏优化,接着利⽤图像变换结构进⾏图像映射,最终进⾏图像融合。

在图像拼接过程中,运⽤SIFT 局部描述算⼦检测图像中的关键点和特征,SIFT 特征是基于物体上的⼀些局部外观的兴趣点⽽与影像的⼤⼩和旋转⽆关。

对于光线、噪声、些微视⾓改变的容忍度也相当⾼,所以⽤来检测要拼接图像的特征及关键点就很有优势。

⽽接下来即步骤三是找到重叠的图⽚部分,连接所有图⽚之后就可以形成⼀个基本的全景图了。

匹配图⽚最常⽤的⽅式是采⽤RANSAC (RANdom SAmple Consensus, 随机抽样⼀致),⽤此排除掉不符合⼤部分⼏何变换的匹配。

之后利⽤这些匹配的点来估算单应矩阵”(Homography Estimation ),也就是将其中⼀张图像通过关联性和另⼀张匹配。

使⽤的算法:1. 利⽤SIFT ⽅法检测特征点2. 将检测到的特征点进⾏匹配def detectAndDescribe(image):# 将彩⾊图⽚转换成灰度图gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 建⽴SIFT ⽣成器descriptor = cv2.xfeatures2d.SIFT_create()# 检测SIFT 特征点,并计算描述⼦(kps, features) = descriptor.detectAndCompute(image, None)# 将结果转换成NumPy 数组kps = np.float32([kp.pt for kp in kps])# 返回特征点集,及对应的描述特征return (kps, features)def matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):# 建⽴暴⼒匹配器matcher = cv2.BFMatcher()# 使⽤KNN 检测来⾃A 、B 图的SIFT 特征匹配对,K=2rawMatches = matcher.knnMatch(featuresA, featuresB, 2)3.将匹配的特征点可视化4. 图像拼接matches = []for m in rawMatches:# 当最近距离跟次近距离的⽐值⼩于ratio 值时,保留此匹配对if len(m) == 2 and m[0].distance < m[1].distance * ratio:# 存储两个点在featuresA, featuresB 中的索引值matches.append((m[0].trainIdx, m[0].queryIdx))# 当筛选后的匹配对⼤于4时,计算视⾓变换矩阵if len(matches) > 4:# 获取匹配对的点坐标ptsA = np.float32([kpsA[i] for (_, i) in matches])ptsB = np.float32([kpsB[i] for (i, _) in matches])# 计算视⾓变换矩阵(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)# 返回结果return (matches, H, status)# 如果匹配对⼩于4时,返回Nonereturn Nonedef drawMatches(imageA, imageB, kpsA, kpsB, matches, status):# 初始化可视化图⽚,将A 、B 图左右连接到⼀起(hA, wA) = imageA.shape[:2](hB, wB) = imageB.shape[:2]vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")vis[0:hA, 0:wA] = imageAvis[0:hB, wA:] = imageB# 联合遍历,画出匹配对for ((trainIdx, queryIdx), s) in zip(matches, status):# 当点对匹配成功时,画到可视化图上if s == 1:# 画出匹配对ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))cv2.line(vis, ptA, ptB, (0, 255, 0), 1)# 返回可视化结果return visdef stitch(images, ratio=0.75, reprojThresh=4.0,showMatches=False):#获取输⼊图⽚(imageB, imageA) = images#检测A 、B 图⽚的SIFT 关键特征点,并计算特征描述⼦(kpsA, featuresA) = detectAndDescribe(imageA)(kpsB, featuresB) = detectAndDescribe(imageB)# 匹配两张图⽚的所有特征点,返回匹配结果M = matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)# 如果返回结果为空,没有匹配成功的特征点,退出算法if M is None:return None# 否则,提取匹配结果# H是3x3视⾓变换矩阵(matches, H, status) = M# 将图⽚A进⾏视⾓变换,result是变换后图⽚result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0])) cv_show('result', result)# 将图⽚B传⼊result图⽚最左端result[0:imageB.shape[0], 0:imageB.shape[1]] = imageBcv_show('result', result)# 检测是否需要显⽰图⽚匹配if showMatches:# ⽣成匹配图⽚vis = drawMatches(imageA, imageB, kpsA, kpsB, matches, status)# 返回结果return (result, vis)# 返回匹配结果return result。

海思 全景拼接 流程及原理

海思 全景拼接 流程及原理

海思全景拼接流程及原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!海思全景拼接流程及原理全景拼接技术是一种将多幅部分重叠的图像拼接成一幅全景图像的技术。

一种全景图像拼接算法的实现

一种全景图像拼接算法的实现

WANG h n - u , DI Z o gx n NG n , DI Ti g NG a - a , CE W e - i Xi o d n N i d
( h s tt o S i c dT c n l yfr t- l t nc noma o f a ti ie i , a ti h n o g2 4 0 , hn ) T e n tue f ce e n eh oo o e r i If r t no Y na Unv r t Y na S a d n 6 0 5 C ia Ii n a g o Op E c o i sy
宽视 角 的图像 ,但 广 角镜 头 的边缘 会 产生难 以避 免 的扭 曲变形 。随着 计算 机和 图像 处 理技术 的发
展 ,图像 拼接 技术 为 得到 全景 图提 供 了很好 的解
决 方案 。它将 一 系列有 重 叠边 界 的普通 图像 进行 无 缝拼 接而 得 到全景 图 。 1
( 台大学光 电信 息科 学技术 学院, 山东 烟 台 2 4 0 ) 烟 605

要 :图像拼接在制作全景图的过程 中具有重要作用 。 多幅图像进行特定模式 对
投 影后 , 约束 的相位 相 关度 法求取 水 平垂 直偏移 量 , 用 然后 寻找 最佳 缝合 线 ,实现 图像 拼接 ,
最后采用多分辨率算法对全图进行拼接处理去除曝光差异和鬼影。 整个过程用 Vsac + i l + 加 u 以 实现 ,实验 结 果验证 了算法 的有 效性 。 关 键 词:计算机应用;全景图;图像拼接 ;曝光差异;鬼影;相位相 关度法;多分
辨率拼 接 中图分类 号 :T 9 P3 l
文献标 识 码 :A
文 章 编 号 :1 0 - 1 82 0 )20 -5 0 30 5 (0 60 - 120 1

了解计算机视觉技术中的图像拼接与全景图生成算法

了解计算机视觉技术中的图像拼接与全景图生成算法

了解计算机视觉技术中的图像拼接与全景图生成算法计算机视觉技术在现代社会中扮演着重要的角色,其中图像拼接与全景图生成算法是其重要的应用之一。

本文将介绍图像拼接与全景图生成算法的基本原理、常见方法以及应用领域。

图像拼接是指将多张部分重叠的图像组合成一张完整的图像的过程。

它在许多领域有广泛的应用,如摄影、遥感、虚拟现实等。

图像拼接算法的核心任务是找到合适的图像拼接变换,并将图像融合在一起,使得拼接后的图像具有自然的过渡效果。

图像拼接算法通常包含以下几个步骤:1. 特征提取与匹配:首先,从每张输入图像中提取特征点。

这些特征点可以是角点、边缘点或区域特征。

然后,通过匹配这些特征点,确定图像之间的相对位置关系。

2. 配准与变换:在特征匹配的基础上,需要计算图像之间的几何变换关系,包括平移、旋转、缩放和仿射变换等。

通过这些变换,将输入图像对齐到一个参考坐标系中,以便进行后续的融合操作。

3. 图像融合:在经过配准和变换后,需要将输入图像进行融合,使得拼接后的图像具有自然的过渡效果。

常见的融合方法包括像素级融合、图像块级融合和多重分辨率融合等。

4. 修复与优化:在完成图像拼接后,可能会存在一些拼接不完整或不连续的区域。

为了解决这些问题,需要进行图像修复和优化操作。

修复方法可以利用图像修补或图像重建算法,补全缺失的区域,使得拼接后的图像更加完整和平滑。

全景图生成算法是图像拼接的一个特例,其目标是将多个图像无缝拼接成一个具有广角视角的全景图像。

全景图的生成过程与图像拼接类似,但更加复杂。

全景图生成算法通常包括以下几个步骤:1. 图像对齐与配准:首先,将输入的多个图像进行对齐和配准。

这一步骤的目标是估计每幅图像之间的几何变换关系,以便在后续的拼接过程中保持图像的连续性和一致性。

2. 图像拼接:对于全景图生成来说,图像拼接是最关键的一步。

通常采用多图像融合的方式,将多个图像按照一定的顺序进行融合,在保持图像连续性的同时,尽量减少拼接痕迹的出现。

基于模板匹配的全景图像拼接

基于模板匹配的全景图像拼接

2008年第4期福建电脑基于模板匹配的全景图像拼接王诚1,李琳2(1.湖北美术学院公共课部湖北武汉4300612.武汉科技大学计算机学院湖北武汉430061)【摘要】:图像拼接在制作全景图中具有重要的作用。

本文提出了一种很健壮的区域模板,它采用Moravec算子定位出特征物体区域,并在次区域上构建基准模板,有效地提高了匹配的可靠性。

在模板匹配中采用加权相似性度量的方法,该方法提高了相似性度量的可靠性。

另外,通过采用一种融合的拼接算法,得到了较平滑的全景图像。

试验结果证实了算法的有效性。

【关键词】:全景图;图像拼接;Moravec算子;特征模板1.引言相邻图像的配准及拼接是全景图生成技术的关键,有关图像配准技术的研究至今已有很长的历史,其主要的方法有以下两种:基于两幅图像的亮度差最小的方法和基于特征的方法。

本文采用基于特征模板匹配特征点的拼接方法。

该方法允许待拼接的图像有一定的倾斜和变形,克服了获取图像时轴心必须一致的问题,同时允许相邻图像之间有一定色差。

试验证明采用该方法进行全景图拼接有较好的效果。

全景图的拼接主要包括以下4个步骤[1]:图像的预拼接,即确定两幅相邻图像重合的较精确位置,为特征点的搜索奠定基础。

特征点的提取,即在基本重合位置确定后,找到待匹配的特征点。

图像矩阵变换及拼接,即根据匹配点建立图像的变换矩阵并实现图像的拼接。

最后是图像的平滑处理。

2.基于特征模板匹配的图像拼接2.1基本原理对于待拼接的两幅图像,在第二幅图像的左侧选取一定大小的模板矩阵(一般为5×5到21×21个像素),在第一幅图的右侧搜索找到与其相关性最大的模板矩阵,然后计算出两幅图像重叠的位置。

通过坐标映射,最终实现拼接。

2.2Moravec选取特征模板采用Moravec算子进行特征区域提取的依据是对于一个模板窗口计算其X方向、Y方向及正负45度方向的最小灰度方差值,并与预先设定的阈值进行比较。

对于彩色图像可以采用将图像转化为灰度图来处理。

全景图像拼接技术研究

全景图像拼接技术研究

全景图像拼接技术研究摘要:随着VR/AR技术的逐渐普及,全景图像呈现出了广泛的应用前景,本文介绍了全景图像拼接技术的实现方式、优缺点,同时对相关算法进行了分析和评估,并对未来的发展方向进行了展望。

第一章:绪论VR/AR技术的普及使得全景图像具备了非常广泛的应用前景,在游戏、旅游等领域得到了广泛的使用,同时也受到了科学家们的广泛关注,为了实现高质量的全景图像呈现有时需要进行多张图像的拼接,为此我们需要一种高效、准确的全景图像拼接技术。

第二章:全景图像拼接技术实现1.传统拼接方法传统的全景图像拼接方法主要是基于图像对接,并在对接时消除拼接位置的重叠部分。

这种方法需要针对拼接位置的交叉部分进行大量的处理,需要进行复杂的图像变换、像素的重新分配等操作,因此对计算资源有较高的需求,同时也会导致一定的误差。

2.基于特征点匹配的拼接方法基于特征点匹配的拼接方法主要是利用图像中的特征点来做匹配,并得出拼接后图像的变换矩阵,然而使用这种方法需要针对图像提前进行特征提取,同时在匹配阶段还需要进行特征点的匹配和筛选,这意味着这种方法会带来更多的计算开销,且针对具体的图像需要选择不同的特征点提取算法。

3.基于深度学习的拼接方法近年来,随着深度学习技术的发展,越来越多的学者开始尝试将其应用到全景图像拼接领域中,这种方法主要是根据大量的训练数据,使用卷积神经网络进行特征提取和图像匹配,这种方法能够克服传统拼接方法的缺陷,大幅度减小计算开销,并且还能够有效避免图像的失配问题。

第三章:全景图像拼接技术优缺点分析1.传统拼接方法优点:传统拼接方法较为简单易懂,可以在不需要大量计算资源和训练数据的情况下进行拼接。

缺点:算法难以消除图像拼接时产生的重叠区域,同时也难以保证拼接后的图像的准确性。

2.基于特征点匹配的拼接方法优点:在图像识别和匹配方面有较高的准确率,能够有效提高拼接图像的质量和准确性。

缺点:特征点的提取和匹配需要耗费大量计算资源,同时对于不同的图像场景需要选择不同的特征点提取算法。

基于特征匹配的全景图像拼接

基于特征匹配的全景图像拼接
基于特征匹配的全景图像拼接
研究内容与论文结构
1 研究意义
2
图像拼接理论及算法研究
3
全景图生成实现及实验结果分析 未来工作展望
一、研究意义
图1.1 日常拍照
图1.2 航拍
图像拼接技术可以将普通相机拍摄的若干幅具有一 定重叠区域的小视域图片进行拼接,得到高清晰度的宽 视角图片,并且看不出拼接痕迹。
研究意义
图像 输入 建立 金字 塔 提取 局部 极值 计算 特征 点方 向 提取 特征 矢量 特 征 输 出
SURF特征提取原理图
SURF特征提取效果图
2.2 基于SURF特征的图像配准原理
利用最近邻搜索法进行特征粗匹配
SURF特征粗匹配效果图
2.2 基于SURF特征的图像配准原理
3、匹配对提纯及变换参数估计
图1.3 指纹识别
图1.4 医学图像分析
图1.5 军事监控
从上述在各个领域图像拼接技术所起的重要作用,我们可 以看出它的发展前景是很可观的,因此,对它的研究有着很重 要的现实意义。
二、图像拼接理论及算法研究
1 图像拼接基本原理 基于SURF特征的图像配准 图像融合原理及实现
2
3
2.1 图像拼接基本原理
3.1全景图生成流程
本文实现图像拼接的具体流程如下所示:
输入图像 估 算 变 换 参 数 焦距 是否存 是 估计 在有效 和图 匹配图 片排 像 序 否 剔除干扰图片
. . .
输入图像
特 征 提 取
特 征 匹 配
柱 面 投 影
图 像 融 合
图 像 拼 接
全景图生成流程图
3.2 全景图合成实验及结果分析
拉普拉斯金字塔原理
高斯塔顶层 Reduce 高斯塔2层 Reduce 高斯塔1层 Reduce 高斯塔底层 Expand + 拉氏塔顶层

全景拼接算法简介

全景拼接算法简介

全景拼接算法简介罗海风2014.12.11目录1.概述 (1)2.主要步骤 (2)2.1. 图像获取 (2)2.2鱼眼图像矫正 (2)2.3图片匹配 (2)2.4 图片拼接 (2)2.5 图像融合 (2)2.6全景图像投射 (2)3.算法技术点介绍 (3)3.1图像获取 (3)3.2鱼眼图像矫正 (4)3.3图片匹配 (4)3.3.1与特征无关的匹配方式 (4)3.3.2根据特征进行匹配的方式 (5)3.4图片拼接 (5)3.5图像融合 (6)3.5.1 平均叠加法 (6)3.5.2 线性法 (7)3.5.3 加权函数法 (7)3.5.4 多段融合法(多分辨率样条) (7)3.6全景图像投射 (7)3.6.1 柱面全景图 (7)3.6.2 球面全景图 (7)3.6.3 多面体全景图 (8)4.开源图像算法库OPENCV拼接模块 (8)4.1 STITCHING_DETAIL程序运行流程 (8)4.2 STITCHING_DETAIL程序接口介绍 (9)4.3测试效果 (10)5.小结 (10)参考资料 (10)1.概述全景视图是指在一个固定的观察点,能够提供水平方向上方位角360度,垂直方向上180度的自由浏览(简化的全景只能提供水平方向360度的浏览)。

目前市场中的全景摄像机主要分为两种:鱼眼全景摄像机和多镜头全景摄像机。

鱼眼全景摄像机是由单传感器配套特殊的超广角鱼眼镜头,并依赖图像校正技术还原图像的鱼眼全景摄像机。

鱼眼全景摄像机最终生成的全景图像即使经过校正也依然存在一定程度的失真和不自然。

多镜头全景摄像机可以避免鱼眼镜头图像失真的缺点,但是或多或少也会存在融合边缘效果不真实、角度有偏差或分割融合后有"附加"感的缺撼。

本文档中根据目前所查找到的资料,对多镜头全景视图拼接算法原理进行简要的介绍。

2.主要步骤2.1. 图像获取通过相机取得图像。

通常需要根据失真较大的鱼眼镜头和失真较小的窄视角镜头决定算法处理方式。

图像融合拼接方法

图像融合拼接方法

图像融合拼接方法图像融合拼接是指将多幅图像进行合并处理,形成一幅新的图像。

它在计算机视觉、图像处理领域具有重要应用,可以用于拼接全景图、生成虚拟实境等。

本文将介绍几种常见的图像融合拼接方法。

一、传统图像融合拼接方法1.1 直观图像融合拼接方法直观图像融合拼接方法是最简单的一种方法,它直接将两幅图像进行叠加。

例如,在拼接两张风景照片时,可以将两个图像的像素值相加或取平均值,从而合并成一幅新的图像。

这种方法的优点是操作简单,但缺点是容易导致拼接处的边缘不连续,不够自然。

1.2 重叠区域混合融合拼接方法重叠区域混合融合拼接方法通过将两幅图像在重叠区域内进行像素值的平滑过渡,实现更自然的融合效果。

常用的方法有线性混合、高斯混合等。

线性混合是指在重叠区域内,按照一定的权重将两幅图像的像素值进行逐点插值,从而形成新的图像。

而高斯混合则是通过使用高斯模糊滤波器,降低重叠区域内图像的对比度,实现平滑过渡。

1.3 多尺度图像融合拼接方法多尺度图像融合拼接方法是一种层次化的拼接方法。

它首先将两幅图像进行金字塔分解,分别得到不同尺度的图像金字塔。

然后,在每一层金字塔上进行拼接处理,得到对应尺度的融合结果。

最后将各层结果合并,得到最终的融合图像。

这种方法能够有效处理图像的尺度变化,并保持较高的拼接质量。

二、深度学习图像融合拼接方法随着深度学习技术的发展,越来越多的研究者开始将其应用于图像融合拼接中,取得了很好的效果。

深度学习图像融合拼接方法主要包括基于生成对抗网络(GAN)的方法、基于卷积神经网络(CNN)的方法等。

2.1 基于生成对抗网络的图像融合拼接方法基于生成对抗网络的图像融合拼接方法是将两幅图像作为输入,通过生成器和判别器的协同训练,使生成器能够生成与真实图像相似的图像。

这种方法可以有效地学习到图像的分布特征,从而生成更自然的融合结果。

2.2 基于卷积神经网络的图像融合拼接方法基于卷积神经网络的图像融合拼接方法主要通过卷积层、池化层和全连接层等结构,对输入图像进行特征提取和融合操作。

数字图像无缝拼接技术

数字图像无缝拼接技术
(x,y)tan1 L L((x x, y1 ,y 1)) L L((x x, y1 ,y 1))
3.4特征描述符生成
❖ 首先,特征点描述符向量要被标准化为单位长度。 当图像对比度改变时,每个像素值会被乘以一个 常量,同时梯度值也被乘以相同的常量,因此对 比度改变产生的影响就会通过向量的标准化而被 取消掉。当亮度改变时,每个像素都会被加上一 个常量但不会影响梯度值,因为梯度是通过像素 值的差计算得到。可见特征点描述符不受图像光 线仿射变化的任何影响。然而非线性的光线变化 也可能发生,这通常是由
b)记像素点(x,y)的灰度为f(x,y),图像的每个像素点(x,y)
移动(u,v)的灰度强度变化表示为:
E u v x y W u v fx u y v ( x y 2 W u v [ x X y Y ( x 2 y 2 ) ] 2
u v
u v
其 中 Wuv 是 高 斯 窗 口 位 置 ( u, v ) 处 的 系 统 ,
3.3图像配准流程
4.精炼变换 矩阵
5.引导匹配
重复4、5步
1.计算特征点
3.计算变换矩阵 2.特征点匹配
h0 h1 h2
H
h
3
h4
h
5
h6 h7 1
3.4图像融合
Pixel_L Pixel_R
图像1
图像2
拼接图像
Pixel=k × Pixel-L + (1-k) ×Pixel-R
3.5实验结果
O
数字图像的无缝拼接 技术研究
1
绪论
2
全景图像拼接理论
3 基于特征点的图像拼接技术的研究
4
结论与展望
❖ 图像拼接就是把有重叠部分的多张图像合成一张 大的宽视角的图像。

全景接片 接缝处理方法

全景接片 接缝处理方法

全景接片接缝处理方法在拍摄全景照片时,由于相机的旋转、移动或镜头失真等原因,可能会导致图像之间存在明显的接缝。

为了获得更好的全景效果,需要进行接缝处理。

以下是一些全景接片接缝处理的方法:1. 调整图像曝光在拍摄全景照片时,相机的曝光设置可能会影响图像的接缝。

如果图像的曝光不同,会导致图像之间出现明显的色差和明暗变化。

因此,在进行接缝处理之前,需要先调整图像的曝光。

可以使用图像编辑软件对图像的曝光进行精细调整,例如使用Photoshop的“曲线”或“亮度/对比度”等工具。

2. 对齐图像边缘在进行接缝处理之前,需要将图像的边缘对齐。

如果图像的边缘没有对齐,会导致接缝处出现明显的错位和不连续。

可以使用图像编辑软件中的“裁剪”工具来对齐图像边缘。

在裁剪图像时,可以选择自动对齐工具或手动调整工具条来进行对齐操作。

3. 拼接处平滑过渡在进行接缝处理时,需要注意拼接处的平滑过渡。

如果拼接处不平滑,会导致接缝处出现明显的凸起和凹陷。

可以使用图像编辑软件中的“平滑”工具来进行过渡处理。

在平滑处理时,可以选择不同的过渡方式和参数来进行调整。

4. 色彩平衡调整在进行接缝处理时,需要注意色彩平衡的调整。

如果图像的色彩不平衡,会导致接缝处出现明显的色差和不一致。

可以使用图像编辑软件中的“色彩平衡”工具来进行调整。

在色彩平衡调整时,可以选择不同的色彩空间和参数来进行调整。

5. 去除拼接线痕迹在进行接缝处理时,需要注意拼接线痕迹的去除。

如果拼接线痕迹过重或明显,会导致接缝处出现明显的线条和不自然。

可以使用图像编辑软件中的“修复”工具来进行去除操作。

在修复时,可以选择自动修复或手动修复工具来进行处理。

6. 进行图像修复在进行接缝处理时,需要对图像进行修复操作。

如果图像中存在明显的瑕疵、噪点和失真等问题,需要进行修复处理。

可以使用图像编辑软件中的“修复”工具来进行修复操作。

在修复时,可以选择自动修复或手动修复工具来进行处理。

7. 增强图像细节在进行接缝处理时,需要对图像细节进行增强操作。

全景图像拼接技术

全景图像拼接技术

第6章全景图像的拼接技术全景图像(全景图)的拼接是指利用摄像机的平移或旋转得到的部分重叠的图像样本,生成一个较大的甚至360°的全方位图像的场景绘制方法。

换句话说,就是给定某个真实场景的一组局部图像,然后对这一组图像进行拼接,生成包含这组局部图像的新视图。

目前全景图像基本可分为柱面、球面、立方体等形式,以柱面和球面全景图最易实现而普遍采用。

本节主要介绍柱面和球面全景图像的拼接算法。

全景图的拼接一般有以下几个步骤。

(1)将从真实世界中拍摄的一组照片以一定方式投影到统一的空间面上,如立方体、圆柱体和球体表面等,这样这组照片就具有统一的参数空间坐标。

(2)在这个统一的空间对相邻图像进行比较,以确定可匹配的区域位置。

(3)将图像重叠区域进行融合处理,拼接成全景图。

在全景图的拼接中,一般都是根据图像序列中相邻两幅图像的重叠区域的相似性来实现的,有基于特征的方法和直接方法等。

本章将主要从基于特征的方法和直接方法两方面介绍柱面和球面全景图像的拼接算法技术。

6.1 柱面全景图像拼接技术本节分为两部分:第一部分是基于特征的拼接算法,这种算法主要从两幅图像中选择一系列特征,然后根据相似性原则进行图像间的特征匹配,这一部分介绍了基于特征点和特征块匹配的全景图像拼接算法;第二部分是基于相位相关拼接算法,这种方法是直接从图像的重叠区域对应像素灰度值出发考虑,利用所有可利用的数据实现很精准的匹配。

6.1.1基于特征的拼接算法1.基于特征点的拼接算法本节提出一种基于特征点匹配的柱面全景图像拼接算法。

首先将360°环绕拍摄的序列图像投影到柱面坐标系下:然后提取各图像的尺寸不变特征变换(Scale Invariant Feature Transform, SIFT)特征点,通过特征点匹配完成两幅图像的配准;再根据配准结果计算出图像间的变换参数;最后采用加权平均的融合方法对两幅图像进行无缝拼接。

1)柱面投影变换在进行柱面全景图的拼接过程中,为了保持实际场景中的空间约束关系和实际场景的视觉图6.1.1 柱面投影变换示意图一致性,需将拍摄得到的反映各自投影平面的重叠图像序列映射到一个标准的柱面坐标空间上,即柱面投影,得到柱面图像序列,再进行拼接得到柱面全景图。

图像拼接算法

图像拼接算法

图像拼接算法1. 简介图像拼接是将多幅图像拼接成一幅大图的过程。

在计算机视觉和图像处理领域中,图像拼接广泛应用于全景图像拼接、卫星图像拼接、医学图像拼接等诸多领域。

图像拼接算法基于特征点匹配和图像变换等技术,能够将多幅图像的内容无缝地拼接在一起,形成一幅完整的图像。

2. 图像拼接算法的基本原理图像拼接算法的基本原理主要包括以下几个步骤:2.1 特征点提取与匹配在图像拼接过程中,首先需要提取每幅图像的特征点,常用的特征点提取算法有SIFT、SURF、ORB等。

然后通过特征点的描述子,使用匹配算法(如FLANN、KNN等)来找到多幅图像之间的特征点对应关系,从而实现匹配。

2.2 图像变换在特征点匹配的基础上,需要进行图像变换,将多幅图像对齐。

常用的图像变换方法包括仿射变换、透视变换等。

通过计算变换矩阵,可以将特征点在不同图像中的位置转换到同一个坐标系下,实现图像对齐。

2.3 图像融合图像对齐后,还需要进行图像融合,将多幅图像拼接在一起形成一幅完整的图像。

常用的图像融合方法有重叠区域平均法、无缝融合法等。

通过合理地选择图像融合方法,可以使得拼接后的图像在视觉上看起来更加自然、连贯。

3. 常见的图像拼接算法3.1 SIFT算法SIFT(Scale-invariant Feature Transform)算法是一种高效的特征点提取算法,它能够提取出物体的尺度不变特征,并且对旋转、尺度、亮度的变换具有一定的鲁棒性。

SIFT算法在图像拼接过程中被广泛应用,在特征点的匹配和图像变换中发挥着重要作用。

3.2 RANSAC算法RANSAC(Random Sample Consensus)算法是一种鲁棒性较好的参数估计算法,它能够通过采样和迭代的方式,从一组可能含有外点的数据中估计出最优参数。

在图像拼接中,RANSAC算法常用来估计图像间的几何变换关系,从而实现图像对齐。

3.3 多频段融合算法多频段融合算法是一种基于图像金字塔的融合方法,它将图像分解为不同尺度的图像金字塔,然后通过逐层融合的方式将图像进行拼接。

全景图像拼接算法2_1.

全景图像拼接算法2_1.

M


1 a
10
M


1 0
1a
sin cos

尺度和旋转 垂直切变 水平切变
8-参数运动模型
仿射变换在统一坐标系下可以用一个矩阵相乘的 形式来表示:
X ' a11 a12 a13 x Y ' a21 a22 a23 y 1 0 0 1 1
m6 m7 1
图像对齐
图像对齐
找出两幅图像之间最优的空间位置和色彩之间的变换关系,使一 幅图像中的点最优地映射到另一幅图像中。它是图像拼接过程中 的主要任务。
图像对齐方法
所使用的图像特征
特征点 频域 灰度值
优化算法
非线性最小二乘 傅立叶变换 小波变换 动态规划 遗传算法
1 0 tx M 平移 0 1 ty
0 0 1
m0 m1 m2 M 仿射 m3 m4 m5
0 0 1
cos sin tx
M刚体 sin cos ty
0
0 1
m0 m1 m2 M 投影 m3 m4 m5
4.不断进行迭代计算直到强度差E低于某一门限或执行完一 定的次数为止。
拼接实验(1)
后续工作
改进图像对齐算法:使用全局对齐算法以 减少累计误差,并最终实现自动对齐而无 续人工干预。
图像合成部分可以通过直方图均衡化或者 平滑函数等方法来对图像拼接后的出现的 接缝进行处理。
当引进尺度参数W后,就得到了8-参数模型:
X ' a11 a12 a13 x Y ' a21 a22 a23 y W a31 a32 1 1

全景拼合算法

全景拼合算法

全景拼合算法全景拼合算法是一种将多张部分重叠的图像拼接成一张完整的全景图的技术。

它在计算机视觉和图像处理领域有着广泛的应用,例如在虚拟现实、地图制作、旅游景点展示等方面都有着重要的作用。

全景拼合算法的实现主要包括以下几个步骤:1. 特征提取与匹配:首先需要对输入的多张图像进行特征提取,常用的特征包括SIFT、SURF等。

提取到的特征点可以描述图像中的局部信息。

然后通过匹配算法找到不同图像中对应的特征点。

2. 相机姿态估计:根据特征点的匹配关系,可以估计出相机在不同图像中的位置和姿态。

常用的方法有RANSAC、最小二乘等。

3. 图像配准:在估计出相机姿态后,需要将图像进行配准,即将不同图像中的重叠区域进行对齐。

常用的配准方法有相位相关、互信息等。

4. 图像融合:在完成图像配准后,需要将不同图像中的像素进行融合,以得到一张完整的全景图。

常用的融合方法有加权平均、多重分辨率融合等。

5. 图像修复:由于在图像拼接过程中可能会出现拼接缝隙、图像畸变等问题,需要进行图像修复,以提高全景图的质量。

常用的修复方法有泊松重建、图像修补等。

全景拼合算法的核心是特征提取和匹配,通过对图像中的特征点进行匹配,可以准确地估计出相机在不同图像中的位置和姿态。

然后通过配准和融合等步骤,将图像拼接成一张完整的全景图。

在实际应用中,全景拼合算法还会面临一些挑战,例如光照变化、运动物体、镜头畸变等问题。

为了解决这些问题,研究者们提出了许多改进的方法,比如多视角几何、图像融合技术、镜头校正等。

全景拼合算法是一项复杂而有趣的技术,它可以将多张图像拼接成一张完整的全景图,为我们提供了更加广阔的视野。

随着计算机视觉和图像处理技术的不断发展,相信全景拼合算法将会在更多领域中得到应用,并给我们带来更多的惊喜和便利。

图像处理中图像拼接算法的使用技巧

图像处理中图像拼接算法的使用技巧

图像处理中图像拼接算法的使用技巧图像拼接是一种常见的图像处理技术,它可以将多张小图像拼接在一起,形成一张大图像。

在许多领域中,如计算机视觉、遥感图像分析和医学图像处理等,图像拼接技术都被广泛应用。

本文将介绍图像拼接算法的使用技巧,帮助读者更好地理解和应用该技术。

一、图像拼接算法概述图像拼接算法的目标是将多张重叠的小图像拼接成一张大图像。

一般来说,图像拼接算法的主要步骤包括特征提取、特征匹配、图像配准和图像融合。

特征提取是图像拼接的第一步,其目的是提取图像中的显著特征,如角点、边缘等。

常用的特征提取算法有SIFT、SURF和ORB等。

特征匹配是图像拼接的关键步骤,其目的是在不同图像中匹配相似的特征。

常用的特征匹配算法有基于距离的匹配算法,如最近邻匹配和最佳匹配等。

图像配准是图像拼接的核心步骤,其目的是将匹配到的特征点对准。

常用的图像配准算法有仿射变换和透视变换等。

图像融合是图像拼接的最后一步,其目的是将拼接后的图像进行平滑过渡,使整体效果更加自然。

常用的图像融合算法有图像重叠区域的加权平均法、多幅图像的平均法和泊松融合等。

二、图像拼接算法的使用技巧1.选择适当的特征提取算法在图像拼接中,特征提取算法起到了至关重要的作用。

选择适合具体任务的特征提取算法可以提高拼接效果。

例如,对于包含大面积纹理的图像,SURF算法在提取特征时更具优势;而对于具有尺度变换的图像,SIFT算法更适合。

2.优化特征匹配算法特征匹配是图像拼接过程中的关键步骤。

设计优化的特征匹配算法可以提高匹配的准确性和鲁棒性。

对于基于距离的匹配算法,可以通过采用剔除异常值、使用自适应阈值或基于机器学习的方法来提高匹配结果的质量。

3.精确的图像配准图像配准是确保拼接效果准确的关键步骤。

对于平面图像,可以使用仿射变换进行配准;而对于具有透视变换的图像,应使用透视变换进行配准。

在图像配准过程中,可以通过调整变换参数、增加匹配点对数和使用非线性优化方法等技巧来提高拼接效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当引进尺度参数W后,就得到了8-参数模型:
X ' a11 a12 a13 x Y ' a21 a22 a23 y W a31 a32 1 1
8-参数运动模型
平移、刚体、仿射以及透视变换对应的变 换矩阵M的形式:
图像拼接简介
传统全景图(panorama)
是由在一个固定位置上以不同角度拍摄到的一 系列图像拼接而成的大视场图像。
特点:没有或只有轻微的运动视差
多重投影拼接图(multi-perspective mosaic)
是由在一些不同位置上拍摄到的一系列图像拼 接而成的大视场图像。
特点:存在较大的运动视差(motion parallax)
优化目标函数
假设I‘(x’,y‘)和I(x,y)是两幅需要对齐的图像。 这种方法就是要使I(x,y)和I‘(x’,y‘)的重叠区域中所 有相应象素i的强度值之差的平方和最小,即:
E e2 I ' x', y' Ix, y 2
L-M 非线性最小二乘算法
1.对于未对齐图像中(x,y)处的象素点 , (a)计算它在基准图像中的位置
对齐算法流程
投影到统一坐标系 初始变换矩阵M
非线性最小 二乘法进行
优化
图像合成
最终变换矩阵M
初始变换矩阵的获取
初始变换矩阵M可以通过提取特征点或者在 频域上计算两幅图像的相位相关等方法来 得到。
MATLAB中内建有cpselect函数,该函数允 许用户在将要拼接的两幅图像的重叠区域 中手工选取一定数量的匹配特征点对然后 自动给出两幅图像之间的初始变换矩阵。
1 0 tx M 平移 0 1 ty
0 0 1
m0 m1 m2 M 仿射 m3 m4 m5
0 0 1
cos sin tx
M刚体 sin cos ty
0
0 1
m0 m1 m2 Biblioteka M 投影 m3 m4 m5
akl
ei ei mk ml
bk
ei mk
ei
L-M 非线性最小二乘算法(cont.)
2.求解方程 A I m b
并且更新变换矩阵 mt1 mt m
3.检查误差E的变化,如果增大,则适当地增加λ,重新计 算一个△m,然后重复步骤2;如果减小,则适当地减小λ, 重新计算△m ,然后重复步骤2。
8-参数运动模型
假设 p'(x', y')T 和 p (x, y)T 分别是一个象素点的新旧坐 标,一个二维仿射变换可以写为:
p' Mp t 或是

xy''


a11 a21
a12 a22

x y



t t
x y

M

s
cos sin
x' m0 x m1 y m2 m6 x m7 y 1
y' m3x m4 y m5 m6 x m7 y 1
L-M 非线性最小二乘算法(cont.)
(b)计算误差梯度
e I ' x' I ' y' mk x' mk y' mk
(c)计算Hessian矩阵A和加权梯度向量b,其中
M


1 a
10
M


1 0
1a
sin cos

尺度和旋转 垂直切变 水平切变
8-参数运动模型
仿射变换在统一坐标系下可以用一个矩阵相乘的 形式来表示:
X ' a11 a12 a13 x Y ' a21 a22 a23 y 1 0 0 1 1
图像拼接简介
图像拼接简介
图像拼接中的几个主要问题:
使用图像数据和摄像机模型对几何失真 进行校正。
使用图像数据及摄像机模型进行图像对 齐。
消除拼接图像中的接缝。
摄像机运动模型
在拍摄过程中由于摄像机镜头的运动,使得拍摄到的相邻 两幅图像中的景物会出现几何形变。
通过寻找能够恰当地将一幅图像与另一幅图像对准的几何 变换来将两幅图像对齐。这些变换被称为对应 (homography)。换句话说,这些几何变换是一种映射, 两幅有重叠区域的图像,其中一幅图像重叠区域中的一个 点经过这种几何变换将被映射到另外一幅图像重叠区域中 的某个点上。这样这两个点形成了对应关系。
4.不断进行迭代计算直到强度差E低于某一门限或执行完一 定的次数为止。
拼接实验(1)
后续工作
改进图像对齐算法:使用全局对齐算法以 减少累计误差,并最终实现自动对齐而无 续人工干预。
图像合成部分可以通过直方图均衡化或者 平滑函数等方法来对图像拼接后的出现的 接缝进行处理。
内容提要
图像拼接简介 图像拼接的主要步骤 摄像机运动的投影模型(projective
model) 图像的对齐(registration) 图像的合成(blending) 图像拼接试验
图像拼接简介
什么是图像拼接?
将多幅在不同时刻、从不同视 角或者由不同传感器获得的图像 经过对齐然后无缝地融合在一起, 从而得到一幅大视场、高分辨率 图像的处理过程。该图像被称为 全景图。
在固定位置拍摄的条件下,我们通常使用8-参数运动模型 以及其简化形式来概括或计算这些几何变换。
摄像机运动模型
homography
摄像机的8-参数运动模型
常见的几种几何变换:
平移 (translation)
水平切变 (horizontal
shear)
旋转 (rotation)
投影 (projection)
m6 m7 1
图像对齐
图像对齐
找出两幅图像之间最优的空间位置和色彩之间的变换关系,使一 幅图像中的点最优地映射到另一幅图像中。它是图像拼接过程中 的主要任务。
图像对齐方法
所使用的图像特征
特征点 频域 灰度值
优化算法
非线性最小二乘 傅立叶变换 小波变换 动态规划 遗传算法
相关文档
最新文档