全景图像拼接算法2_1
全景图像拼接算法的研究与实现的开题报告

全景图像拼接算法的研究与实现的开题报告一、选题背景与意义全景图像拼接技术是近年来计算机视觉领域的研究热点之一。
全景图像拼接是指将多个单幅图像拼接成一个完整的全景图像。
在实际应用中,全景图像拼接技术已经被广泛应用于航拍、地图制作、虚拟现实等领域,为人们的工作和生活带来了巨大的便利。
全景图像拼接的主要难点在于如何准确地识别并匹配图像中的关键点,并将多个图像进行精准拼接,以实现衔接自然、无缝衔接、清晰高清的全景图像的创建。
因此,该选题的研究和实现对于推动计算机视觉技术的发展和广泛应用具有重要的意义和应用价值。
二、主要研究内容和技术路线本选题主要研究和实现如下内容:1. 了解和掌握全景图像拼接相关的基本理论和算法,包括图像特征提取、关键点匹配、图像变换、图像融合等。
2. 分析和比较国内外常见的全景图像拼接算法,探索算法的优缺点以及适用场景。
3. 针对实际情况,进一步优化和改进算法,提升全景图像拼接的精度和效率。
4. 实现和验证算法,并通过实验和评估验证算法的正确性和性能。
技术路线如下:1. 对全景图像拼接技术和相关理论进行深入学习和分析,梳理各种拼接算法的主要思路和优缺点。
2. 实现针对不同场景的全景图像拼接算法,并使用统一的评估指标进行实验和比较。
3. 对算法进行优化和改进,并进行实验对比。
4. 编写论文,撰写实验和算法实现的细节部分,并将论文中的理论和实验结果进行分析和总结。
三、预期成果1. 掌握全景图像拼接相关的基本理论和算法,包括图像特征提取、关键点匹配、图像变换、图像融合等。
2. 深刻理解国内外常见的全景图像拼接算法的优缺点和适用场景,并能在实际工作中针对不同场景选择合适的算法进行应用。
3. 实现和比较多种全景图像拼接算法,并掌握其实现细节和对各种因素的敏感性。
4. 对算法进行优化和改进,提升拼接效果和效率。
5. 发表相关论文,并在计算机视觉领域获得一定的学术成就和影响力。
四、可行性分析与计划进度本选题的可行性主要表现在以下几个方面:1. 实践基础扎实,具备计算机视觉、图像处理等方面的相关基础。
全景图像拼接技术综述与改进

全景图像拼接技术综述与改进概述:全景图像拼接技术是指将多张相互有重叠区域的图像通过某种算法的处理,合成为一张无缝衔接的全景图像的过程。
全景图像拼接技术在虚拟现实、摄影、地理信息系统等领域具有广泛应用。
本文将对全景图像拼接技术的原理、算法以及当前的改进方法进行综述。
一、全景图像拼接技术的原理全景图像拼接技术的实现主要包含以下几个步骤:1. 特征提取与匹配:通过检测图像中的特征点,并计算特征描述子,从而实现不同图像之间的特征匹配。
2. 图像对齐:通过特征点匹配结果,确定图像之间的相对位置关系,并进行图像的配准,使得其能够对齐。
3. 图像融合:将对齐后的图像进行融合,消除拼接边缘的不连续性,实现无缝衔接的全景图像输出。
二、当前的全景图像拼接算法1. 基于特征点的算法:例如SIFT(尺度不变特征变换)和SURF(加速稳健特征)算法,通过提取图像的局部特征点,并进行匹配。
这种算法能够识别出旋转、尺度和视角变化,但对于大尺度图像的拼接效果有限。
2. 基于全局变换的算法:例如全景图像的球面投影映射(Spherical Projection Mapping)算法和全景图像的柱面投影映射(Cylindrical Projection Mapping)算法。
这些算法通过将图像映射为球面或柱面,并进行参数化变换来实现图像的拼接,能够处理大尺度图像,但在局部区域的拼接上可能存在一定的失真。
3. 基于深度学习的算法:近年来,深度学习技术在图像处理领域取得了重大突破。
通过使用深度卷积神经网络,如Pix2Pix和CycleGAN等模型,能够将拼接任务转化为图像到图像的转换问题,取得了较好的拼接效果。
三、全景图像拼接技术的改进方法1. 自动拼接线选取算法:采用自适应拼接线选取算法,根据特征点的分布和拼接图像的几何结构,自动选择合适的拼接线,减少拼接过程中的人工干预,提高拼接效率和准确性。
2. 拼接失真校正算法:解决基于全局变换的算法中局部区域存在的失真问题。
图像的拼接----RANSAC算法

图像的拼接----RANSAC算法⼀、全景拼接的原理1.RANSAC算法介绍RANSAC算法的基本假设是样本中包含正确数据(inliers,可以被模型描述的数据),也包含异常数据(outliers,偏离正常范围很远、⽆法适应数学模型的数据),即数据集中含有噪声。
这些异常数据可能是由于错误的测量、错误的假设、错误的计算等产⽣的。
同时RANSAC也假设,给定⼀组正确的数据,存在可以计算出符合这些数据的模型参数的⽅法。
2.使⽤RANSAC算法来求解单应性矩阵在进⾏图像拼接时,我们⾸先要解决的是找到图像之间的匹配的对应点。
通常我们采⽤SIFT算法来实现特征点的⾃动匹配,SIFT算法的具体内容参照我的上⼀篇博客。
SIFT是具有很强稳健性的描述⼦,⽐起图像块相关的Harris⾓点,它能产⽣更少的错误的匹配,但仍然还是存在错误的对应点。
所以需要⽤RANSAC算法,对SIFT算法产⽣的128维特征描述符进⾏剔除误匹配点。
由直线的知识点可知,两点可以确定⼀条直线,所以可以随机的在数据点集中选择两点,从⽽确定⼀条直线。
然后通过设置给定的阈值,计算在直线两旁的符合阈值范围的点,统计点的个数inliers。
inliers最多的点集所在的直线,就是我们要选取的最佳直线。
RANSAC算法就是在⼀原理的基础上,进⾏的改进,从⽽根据阈值,剔除错误的匹配点。
⾸先,从已求得的匹配点对中抽取⼏对匹配点,计算变换矩阵。
然后对所有匹配点,计算映射误差。
接着根据误差阈值,确定inliers。
最后针对最⼤inliers集合,重新计算单应矩阵H。
3.基本思想描述:①考虑⼀个最⼩抽样集的势为n的模型(n为初始化模型参数所需的最⼩样本数)和⼀个样本集P,集合P的样本数#(P)>n,从P中随机抽取包含n 个样本的P的⼦集S初始化模型M;②余集SC=P\S中与模型M的误差⼩于某⼀设定阈值t的样本集以及S构成S*。
S*认为是内点集,它们构成S的⼀致集(Consensus Set);③若#(S*)≥N,认为得到正确的模型参数,并利⽤集S*(内点inliers)采⽤最⼩⼆乘等⽅法重新计算新的模型M*;重新随机抽取新的S,重复以上过程。
全景图像拼接技术研究及应用

全景图像拼接技术研究及应用近几年,全景图像(Panorama)的应用越来越广泛,如旅游景点展示、地图制作、VR(虚拟现实)和AR(增强现实)等应用。
全景图像拼接技术是实现全景图像的关键技术,其主要目标是将多幅重叠的图像拼接为无缝的全景图像。
本文将着重探讨全景图像拼接技术的研究现状和应用。
一、全景图像拼接技术的研究现状1. 传统方法传统的全景图像拼接方法主要包括两种:基于特征点法和基于区域分割法。
前者是将所有图像的特征点匹配,并基于配对点拼接成全景图像;后者则是通过图像的最大重叠区域来进行拼接,适用于图像没有重大的形变或视角变化等情况。
这两种方法的缺点都是易受噪声和遮挡等问题的影响,导致拼接的效果不理想。
2. 基于深度学习的方法近年来,深度学习技术的崛起对于全景图像拼接技术的提升也起到了重要的作用。
通过使用卷积神经网络(Convolutional Neural Networks, CNN),可以提高全景图像拼接的效率和准确性。
2016年,百度提出了一种名为“DeepPano”的深度学习全景图像拼接算法,该方法利用神经网络从大量单张图像中学习特征和相机参数。
与传统方法相比,DeepPano算法具有更高的拼接速度和更好的拼接质量。
3. 基于视频的方法基于视频的全景图像拼接技术最近也引起了广泛的关注。
与多张照片的拼接不同,视频是连续的图像序列,具有更多的信息和上下文。
基于视频的全景图像拼接方法可以通过视频的连续性进一步提高拼接效果。
二、全景图像拼接技术的应用1. 地图制作全景图像拼接技术在地图制作上有广泛的应用。
通过利用卫星遥感图像、无人机摄影图像等数据源,可以快速生成高质量的地图制品,研究人员还利用全景图像拼接技术在地图中嵌入了VR功能,以帮助用户更好地了解地理信息。
2. 旅游景点展示全景图像拼接技术在旅游景点展示上也有广泛的应用。
通过拍摄景区周围的多张照片,将其拼接成一张完整的全景图像,游客可以更好地了解景区的地形、景观等信息。
航空照相机的全景图像拼接技术

航空照相机的全景图像拼接技术随着无人机技术的快速发展,航空照相机作为无人机上的重要组成部分,越来越被广泛应用于航空摄影、地理测绘、农业科学等领域。
而其中一项关键技术——航空照相机的全景图像拼接技术,则成为了许多专业摄影师和测绘工作者所关注和探索的重点。
全景图像拼接技术是指将多幅局部重叠的照片通过计算机算法进行自动拼接,生成一幅无缝衔接的大尺寸全景图像的过程。
这项技术的发展,使得我们可以更好地捕捉和保存大范围的景观,更准确地记录和表达真实世界的细节和信息。
航空照相机的全景图像拼接技术的关键在于如何实现照片之间的准确定位和重叠区域的自动识别。
在航空摄影中,由于无人机在拍摄过程中会发生姿态变化和高度变化,这就造成了照片之间的尺度差异和视角变化,在进行图像拼接时增加了一定的难度。
为了解决这一问题,研究人员提出了多种算法和方法。
其中,图像特征点匹配是一种常用的方法。
该方法通过寻找图像中的关键点,并计算关键点的描述子,然后通过匹配关键点和描述子来找到对应的点,从而实现图像的对齐和融合。
此外,还可以利用传感器数据、GPS信息和惯性导航系统等,提高航空照相机姿态、位姿的估计精度,进一步优化图像拼接的结果。
除了关键点匹配,多图像融合算法也是实现航空照相机全景图像拼接的重要手段之一。
该算法通过对多幅图像进行颜色、亮度、对比度等方面的调整,使得图像在拼接后具有一致的外观。
同时,还可以采用多重融合方法,将不同的图像特征和信息进行优化和融合,从而得到更准确的全景图像。
除了技术点的研究,航空照相机全景图像拼接技术的发展还需要考虑到实际应用中的需求和使用场景。
例如,对于航空摄影来说,拼接后的全景图像对于地理测绘、城市规划、农业科学等领域的应用至关重要。
因此,算法的稳定性、拼接效果的准确性和高效性等方面都需要进行综合考虑。
此外,在航空照相机全景图像拼接技术的研究和应用过程中,还需要关注数据的存储和处理。
航空照片的体积通常很大,因此如何高效地存储、传输和处理这些数据,也是一个需要解决的问题。
一种全景图像拼接算法的实现

WANG h n - u , DI Z o gx n NG n , DI Ti g NG a - a , CE W e - i Xi o d n N i d
( h s tt o S i c dT c n l yfr t- l t nc noma o f a ti ie i , a ti h n o g2 4 0 , hn ) T e n tue f ce e n eh oo o e r i If r t no Y na Unv r t Y na S a d n 6 0 5 C ia Ii n a g o Op E c o i sy
宽视 角 的图像 ,但 广 角镜 头 的边缘 会 产生难 以避 免 的扭 曲变形 。随着 计算 机和 图像 处 理技术 的发
展 ,图像 拼接 技术 为 得到 全景 图提 供 了很好 的解
决 方案 。它将 一 系列有 重 叠边 界 的普通 图像 进行 无 缝拼 接而 得 到全景 图 。 1
( 台大学光 电信 息科 学技术 学院, 山东 烟 台 2 4 0 ) 烟 605
摘
要 :图像拼接在制作全景图的过程 中具有重要作用 。 多幅图像进行特定模式 对
投 影后 , 约束 的相位 相 关度 法求取 水 平垂 直偏移 量 , 用 然后 寻找 最佳 缝合 线 ,实现 图像 拼接 ,
最后采用多分辨率算法对全图进行拼接处理去除曝光差异和鬼影。 整个过程用 Vsac + i l + 加 u 以 实现 ,实验 结 果验证 了算法 的有 效性 。 关 键 词:计算机应用;全景图;图像拼接 ;曝光差异;鬼影;相位相 关度法;多分
辨率拼 接 中图分类 号 :T 9 P3 l
文献标 识 码 :A
文 章 编 号 :1 0 - 1 82 0 )20 -5 0 30 5 (0 60 - 120 1
了解计算机视觉技术中的图像拼接与全景图生成算法

了解计算机视觉技术中的图像拼接与全景图生成算法计算机视觉技术在现代社会中扮演着重要的角色,其中图像拼接与全景图生成算法是其重要的应用之一。
本文将介绍图像拼接与全景图生成算法的基本原理、常见方法以及应用领域。
图像拼接是指将多张部分重叠的图像组合成一张完整的图像的过程。
它在许多领域有广泛的应用,如摄影、遥感、虚拟现实等。
图像拼接算法的核心任务是找到合适的图像拼接变换,并将图像融合在一起,使得拼接后的图像具有自然的过渡效果。
图像拼接算法通常包含以下几个步骤:1. 特征提取与匹配:首先,从每张输入图像中提取特征点。
这些特征点可以是角点、边缘点或区域特征。
然后,通过匹配这些特征点,确定图像之间的相对位置关系。
2. 配准与变换:在特征匹配的基础上,需要计算图像之间的几何变换关系,包括平移、旋转、缩放和仿射变换等。
通过这些变换,将输入图像对齐到一个参考坐标系中,以便进行后续的融合操作。
3. 图像融合:在经过配准和变换后,需要将输入图像进行融合,使得拼接后的图像具有自然的过渡效果。
常见的融合方法包括像素级融合、图像块级融合和多重分辨率融合等。
4. 修复与优化:在完成图像拼接后,可能会存在一些拼接不完整或不连续的区域。
为了解决这些问题,需要进行图像修复和优化操作。
修复方法可以利用图像修补或图像重建算法,补全缺失的区域,使得拼接后的图像更加完整和平滑。
全景图生成算法是图像拼接的一个特例,其目标是将多个图像无缝拼接成一个具有广角视角的全景图像。
全景图的生成过程与图像拼接类似,但更加复杂。
全景图生成算法通常包括以下几个步骤:1. 图像对齐与配准:首先,将输入的多个图像进行对齐和配准。
这一步骤的目标是估计每幅图像之间的几何变换关系,以便在后续的拼接过程中保持图像的连续性和一致性。
2. 图像拼接:对于全景图生成来说,图像拼接是最关键的一步。
通常采用多图像融合的方式,将多个图像按照一定的顺序进行融合,在保持图像连续性的同时,尽量减少拼接痕迹的出现。
基于模板匹配的全景图像拼接

2008年第4期福建电脑基于模板匹配的全景图像拼接王诚1,李琳2(1.湖北美术学院公共课部湖北武汉4300612.武汉科技大学计算机学院湖北武汉430061)【摘要】:图像拼接在制作全景图中具有重要的作用。
本文提出了一种很健壮的区域模板,它采用Moravec算子定位出特征物体区域,并在次区域上构建基准模板,有效地提高了匹配的可靠性。
在模板匹配中采用加权相似性度量的方法,该方法提高了相似性度量的可靠性。
另外,通过采用一种融合的拼接算法,得到了较平滑的全景图像。
试验结果证实了算法的有效性。
【关键词】:全景图;图像拼接;Moravec算子;特征模板1.引言相邻图像的配准及拼接是全景图生成技术的关键,有关图像配准技术的研究至今已有很长的历史,其主要的方法有以下两种:基于两幅图像的亮度差最小的方法和基于特征的方法。
本文采用基于特征模板匹配特征点的拼接方法。
该方法允许待拼接的图像有一定的倾斜和变形,克服了获取图像时轴心必须一致的问题,同时允许相邻图像之间有一定色差。
试验证明采用该方法进行全景图拼接有较好的效果。
全景图的拼接主要包括以下4个步骤[1]:图像的预拼接,即确定两幅相邻图像重合的较精确位置,为特征点的搜索奠定基础。
特征点的提取,即在基本重合位置确定后,找到待匹配的特征点。
图像矩阵变换及拼接,即根据匹配点建立图像的变换矩阵并实现图像的拼接。
最后是图像的平滑处理。
2.基于特征模板匹配的图像拼接2.1基本原理对于待拼接的两幅图像,在第二幅图像的左侧选取一定大小的模板矩阵(一般为5×5到21×21个像素),在第一幅图的右侧搜索找到与其相关性最大的模板矩阵,然后计算出两幅图像重叠的位置。
通过坐标映射,最终实现拼接。
2.2Moravec选取特征模板采用Moravec算子进行特征区域提取的依据是对于一个模板窗口计算其X方向、Y方向及正负45度方向的最小灰度方差值,并与预先设定的阈值进行比较。
对于彩色图像可以采用将图像转化为灰度图来处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m0 x + m1 y + m2 x = m6 x + m7 y + 1
'
m3 x + m4 y + m5 y = m6 x + m7 y + 1
'
L-M 非线性最小二乘算法(cont.)
(b)计算误差梯度
∂e ∂I ∂x ∂I ∂y = ' + ' ∂mk ∂x ∂mk ∂y ∂mk
' ' ' '
图像拼接简介 传统全景图(panorama)
是由在一个固定位置上以不同角度拍摄到的一 系列图像拼接而成的大视场图像。 特点:没有或只有轻微的运动视差
多重投影拼接图(multi-perspective mosaic)
是由在一些不同位置上拍摄到的一系列图像拼 接而成的大视场图像。 特点:存在较大的运动视差(motion parallax)
图像拼接简介
图像拼接简介
图像拼接中的几个主要问题:
使用图像数据和摄像机模型对几何失真 进行校正。 使用图像数据及摄像机模型进行图像对 齐。 消除拼接图像中的接缝。
摄像机运动模型
在拍摄过程中由于摄像机镜头的运动,使得拍摄到的相邻 两幅图像中的景物会出现几何形变。 通过寻找能够恰当地将一幅图像与另一幅图像对准的几何 变换来将两幅图像对齐。这些变换被称为对应 (homography)。换句话说,这些几何变换是一种映射, 两幅有重叠区域的图像,其中一幅图像重叠区域中的一个 点经过这种几何变换将被映射到另外一幅图像重叠区域中 的某个点上。这样这两个点形成了对应关系。 在固定位置拍摄的条件下,我们通常使用8-参数运动模型 以及其简化形式来概括或计算这些几何变换。
当引进尺度参数W后,就得到了8-参数模型:
X ' a11 Y ' = a21 W a 31 a12 a22 a32 a13 x a23 y 1 1
8-参数运动模型 平移、刚体、仿射以及透视变换对应的变 换矩阵M的形式:
T
cosθ M = s sin θ
1 M = a 1 M = 0 0 1 a 1
− sin θ cosθ
尺度和旋转 垂直切变 水平切变
8-参数运动模型
仿射变换在统一坐标系下可以用一个矩阵相乘的 形式来表示:
X ' a11 Y ' = a21 1 0 a12 a22 0 a13 x a23 y 1 1
拼接实验(1)
2.5
x 10
7
2
intensity error
1.5
1
0.5
0
0
5
10
15 iterative number
20
25
30
后续工作 改进图像对齐算法:使用全局对齐算法以 减少累计误差,并最终实现自动对齐而无 续人工干预。 图像合成部分可以通过直方图均衡化或者 平滑函数等方法来对图像拼接后的出现的 接缝进行处理。
对齐算法流程
投影到统一坐标系
初始变换矩阵M 初始变换矩阵
非线性最小 二乘法进行 优化
图像合成
最终变换矩阵M 最终变换矩阵
初始变换矩阵的获取 初始变换矩阵M可以通过提取特征点或者在 频域上计算两幅图像的相位相关等方法来 得到。 MATLAB中内建有cpselect函数,该函数允 许用户在将要拼接的两幅图像的重叠区域 中手工选取一定数量的匹配特征点对然后 自动给出两幅图像之间的初始变换矩阵。
m0 = m3 m 6
m1 m4 m7
m2 m5 1
图像对齐
图像对齐
找出两幅图像之间最优的空间位置和色彩之间的变换关系,使一 幅图像中的点最优地映射到另一幅图像中。它是图像拼接过程中 的主要任务。
图像对齐方法
所使用的图像特征
特征点 频域 灰度值
优化算法
非线性最小二乘 傅立叶变换 小波变换 动态规划 遗传算法
内容提要 图像拼接简介 图像拼接的主要步骤 摄像机运动的投影模型(projective model) 图像的对齐(registration) 图像的合成(blending) 图像拼接试验
图像拼接简介
什么是图像拼接?
将多幅在不同时刻、从不同视 角或者由不同传感器获得的图像 经过对齐然后无缝地融合在一起, 从而得到一幅大视场、高分辨率 图像的处理过程。该图像被称为 全景图。
(c)计算Hessian矩阵A和加权梯度向量b,其中
∂ei ∂ei akl = ∑ ∂mk ∂ml ∂ei bk = −∑ ei ∂mk
L-M 非线性最小二乘算法(cont.)
2.求解方程 ( A + λI )∆m = b (t +1) = m ( t ) + ∆m 并且更新变换矩阵 m 3.检查误差E的变化,如果增大,则适当地增加λ,重新计 算一个△m,然后重复步骤2;如果减小,则适当地减小λ, 重新计算△m ,然后重复步骤2。 4.不断进行迭代计算直到强度差E低于某一门限或执行完一 定的次数为止。
优化目标函数
假设I‘(x’,y‘)和I(x,y)是两幅需要对齐的图像。 这种方法就是要使I(x,y)和I‘(x’,y‘)的重叠区域中所 有相应象素i的强度值之差的平方和最小,即:
ቤተ መጻሕፍቲ ባይዱ
E = ∑ e = ∑ I x , y − I ( x, y )
2 ' ' '
[(
)
]
2
L-M 非线性最小二乘算法
1.对于未对齐图像中(x,y)处的象素点 , (a)计算它在基准图像中的位置
1 0 tx = 0 1 ty 0 0 1
m0 = m3 0 m1 m4 0 m2 m5 1
M 平移
M 刚体
cosθ = sin θ 0
− sin θ cosθ
0
tx ty 1
M 仿射
M 投影
摄像机运动模型
homography
摄像机的8-参数运动模型
常见的几种几何变换:
平移 (translation)
旋转 (rotation)
水平切变 (horizontal shear)
投影 (projection)
8-参数运动模型
假设 p ' ( x' , y ' )T 和 p = ( x, y ) 分别是一个象素点的新旧坐 标,一个二维仿射变换可以写为: p ' = Mp + t 或是 x' = a11 a12 x + t x y' a a22 y t y 21