物理化学-电化学4
物理化学电化学知识点总结

物理化学电化学知识点总结一、原电池的原理1.构成原电池的四个条件(以铜锌原电池为例)①活拨性不同的两个电极②电解质溶液③自发的氧化还原反应④形成闭合回路2.原电池正负极的确定①活拨性较强的金属作负极,活拨性弱的金属或非金属作正极。
②负极发生失电子的氧化反应,正极发生得电子的还原反应③外电路由金属等导电。
在外电路中电子由负极流入正极④内电路由电解液导电。
在内电路中阳离子移向正极,阴离子会移向负极区。
Cu-Zn原电池:负极: Zn-2e=Zn2+ 正极:2H+ +2e=H2↑总反应:Zn +2H+=Zn2+ +H2↑氢氧燃料电池,分别以OH和H2SO4作电解质的电极反应如下:碱作电解质:负极:H2—2e-+2OH-=2 H2O 正极:O2+4e-+2 H2O=4OH-酸作电解质:负极:H2—2e-=2H+ 正极:O2+4e-+4H+=2 H2O总反应都是:2H2+ O2=2 H2O二、电解池的原理1.构成电解池的四个条件(以NaCl的电解为例)①构成闭合回路②电解质溶液③两个电极④直流电源2.电解池阴阳极的确定①与电源负极相连的一极为阴极,与电源正极相连的一极为阳极②电子由电源负极→导线→电解池的阴极→电解液中的(被还原),电解池中阴离子(被氧化)→电解池的阳极→导线→电源正极③阳离子向负极移动;阴离子向阳极移动④阴极上发生阳离子得电子的还原反应,阳极上发生阴离子失电子的氧化反应。
注意:在惰性电极上,各种离子的放电顺序三.原电池与电解池的比较原电池电解池(1)定义化学能转变成电能的装置电能转变成化学能的装置(2)形成条件合适的电极、合适的电解质溶液、形成回路电极、电解质溶液(或熔融的电解质)、外接电源、形成回路(3)电极名称负极正极阳极阴极(4)反应类型氧化还原氧化还原(5)外电路电子流向负极流出、正极流入阳极流出、阴极流入四、在惰性电极上,各种离子的放电顺序:1、放电顺序:如果阳极是惰性电极(Pt、Au、石墨),则应是电解质溶液中的离子放电,应根据离子的放电顺序进行书写书写电极反应式。
物理化学的知识点总结

物理化学的知识点总结一、热力学1. 热力学基本概念热力学是研究能量转化和传递规律的科学。
热力学的基本概念包括系统、环境、热、功、内能、焓、熵等。
2. 热力学第一定律热力学第一定律描述了能量守恒的原理,即能量可以从一个系统转移到另一个系统,但总能量量不变。
3. 热力学第二定律热力学第二定律描述了能量转化的方向性,熵的增加是自然界中不可逆过程的一个重要特征。
4. 热力学第三定律热力学第三定律表明在绝对零度下熵接近零。
此定律是热力学的一个基本原理,也说明了热力学的某些现象在低温下会呈现出独特的特性。
5. 热力学函数热力学函数是描述系统状态和性质的函数,包括内能、焓、自由能、吉布斯自由能等。
二、化学热力学1. 热力学平衡和热力学过程热力学平衡是指系统各个部分之间没有宏观可观察的能量传输,热力学过程是系统状态发生变化的过程。
2. 能量转化和热力学函数能量转化是热力学过程中的一个重要概念,热力学函数则是描述系统各种状态和性质的函数。
3. 热力学理想气体理想气体是热力学研究中的一个重要模型,它通过状态方程和理想气体定律来描述气体的性质和行为。
4. 热力学方程热力学方程是描述系统热力学性质和行为的方程,包括焓-熵图、温度-熵图、压力-体积图等。
5. 反应焓和反应熵反应焓和反应熵是化学热力学研究中的重要参数,可以用来描述化学反应的热力学过程。
三、物质平衡和相平衡1. 物质平衡物质平衡是研究物质在化学反应和物理过程中的转化和分配规律的一个重要概念。
2. 相平衡相平衡是研究不同相之间的平衡状态和转化规律的一个重要概念,包括固相、液相、气相以及其之间的平衡状态。
3. 物质平衡和相平衡的研究方法物质平衡和相平衡的研究方法包括热力学分析、相平衡曲线的绘制和分析、相平衡图的绘制等。
四、电化学1. 电解质和电解电解质是能在水溶液中发生电离的化合物,电解是将电能转化为化学能或反之的过程。
2. 电化学反应和电势电化学反应是在电化学过程中发生的化学反应,电势是描述电化学系统状态的一个重要参数。
电化学和四大化学的关系

电化学和四大化学的关系电化学是研究电能与化学变化之间关系的一门学科,四大化学则是有机化学、物理化学、无机化学和分析化学这四个分支的总称。
这两个学科的关系是密不可分的。
一、电化学与物理化学的关系电化学和物理化学在很多方面有密切的联系。
在物理化学中,通常会研究物质的结构以及各种反应的热力学和动力学。
而在电化学中,研究的是化学反应与电能的相互关系。
因此,电化学可以作为物理化学的补充,帮助科学家更好地理解和研究化学反应和动力学。
二、电化学与有机化学的关系有机化学是研究有机物质的合成、结构、性质及其变化的一门学科。
在有机化学中,电化学也扮演着重要的角色。
例如,通过电化学的方法可以获得高纯度的金属或半导体材料;电解质也被广泛应用于有机合成反应中;电解质甚至可以用来改变分子的形状和构象。
三、电化学与无机化学的关系无机化学则是研究无机物质的合成、结构、性质及其变化的一门学科。
无机化学中研究的离子和配位化合物的制备,往往都需要电化学的帮助。
电化学方法还可以用来检测和测量化学反应中离子和电子的化学反应。
例如,通过电解法可以制备氢氧化铜、氯化铜等化合物,在无机化学中是无法获得的。
四、电化学与分析化学的关系分析化学是研究物质各种成分、结构及性质的一门学科,用来检测和测量物质各种性质,并从中推断出物质的化学组成、结构和质量等。
因此,电化学被广泛应用于分析化学领域。
例如,电化学计量法、电化学分析法和电化学光谱法等都是分析化学的常用方法。
这些技术可以用来分析物质的组成、结构以及国内外的组成等信息。
综上所述,电化学是多个领域之间密不可分的学科,它与四大化学分支之间存在着广泛而深刻的联系。
通过学习和掌握这些关系,科研人员可以更好地理解化学反应、反应机制和动力学等问题,并在各自的领域中做出更好的贡献。
物理化学中的电化学反应

物理化学中的电化学反应电化学反应是指在化学反应中涉及到电子转移和离子转移的反应。
它是化学领域重要的分支之一,涉及到的知识面较广,其中包括电化学反应的机理、电化学反应的动力学以及电化学反应的应用等多个方面。
电化学反应的机理电化学反应的机理通常包括离子迁移、电子转移和化学反应等三个方面。
其中离子迁移发生在电解过程中,它是指正、负离子在电场作用下在电解质溶液中移动的过程。
电解质溶液中溶解的化合物在电极的作用下发生电离,形成正离子和负离子。
当电场加到电解质溶液中时,正离子向负极移动,负离子向阳极移动,最后在电极上发生反应。
电子转移通常发生在电池中,它是指金属离子获得电子后变成原子形态的过程。
在电池中,负电极为阴极,接受电子,金属离子还原成金属原子;正电极为阳极,释放电子,金属原子被氧化成金属离子。
化学反应则是指在离子迁移和电子转移过程中形成化学反应产物的过程。
电化学反应的动力学电化学反应的动力学主要涉及到反应速率和电化学反应的热力学。
反应速率是指反应中物质的转化速度和反应物浓度之间的关系。
电化学反应的热力学则是指反应中能量的变化和熵的变化,其中最重要的是标准电动势和电池电势。
标准电动势是指1mol化学反应产生的电动势,它是衡量反应对电能转化的能力的重要指标。
电池电势是指电池内离子在沿电势梯度迁移过程中产生的电位差。
制备、性能测试与模拟计算过程为电池的几个基本步骤。
理论计算结果为实验组在新型电池领域实现更好的性能提供了重要的参考值。
电化学反应的应用电化学反应的应用涵盖了各个领域,它广泛地应用于化学、材料、物理等多个领域。
其中最重要的应用之一是电池技术,在移动电源领域有重要的应用。
电池可以将化学能转化为电能,而反应物和产物以及证明整个反应过程,所涉及到的机理和动力学。
电化学反应也应用于腐蚀控制、电解析、电电压计等多个方面。
总体来说,电化学反应是化学领域中极为重要的分支之一,涉及到的知识面较广,丰富多样。
在今后的学习和研究中,我们需要深入了解电化学反应的机理、动力学以及应用,以便更好地实现电化学反应的应用和发展。
物理化学-第七章-电化学

通入的总电量:Q I t 0.23060 360库仑
电极上起化学反应物质的量:
n Q 360 0 00373mol zF 196500
析出Ag的质量: m=n×MAg=0.00373×107.88=0.403g
二、电导、电导率和摩尔电导率
体积与浓度的关系如何呢?
c n V
(mol·m-3)
若n为1mol
Vm
1 c
m
Vm
c
S·m2·mol-1
注意:c的单位:mol﹒m-3
3.电导、电导率和摩尔电导率之间的关系
G 1 R
K l A
G K
m
Vm
c
例: 298K时,将0.02mol·dm-3的KCl溶液放入 电导池,测其电阻为82.4Ω,若用同一电导池充 0.0025mol.dm-3的K2SO4溶液,测其电阻为 326Ω,已知298K时,0.02mol·dm-3的KCl溶液 的电导率为0.2768S.m-1 (1)求电导池常数; (2)0.0025mol.dm-3的K2SO4溶液的电率; (3)0.0025mol.dm-3的K2SO4溶液的摩尔电 导率。
★电池 汽车、宇宙飞船、照明、通讯、 生化和医学等方面都要用不同类型的化学 电源。
★ ⒊电分析 ★ ⒋生物电化学
§7-1 电解质溶液的导电性质 一、电解质溶液的导电机理
1.导体: 能够导电的物体叫导体。
第一类: 靠导体内部自由电子的定向运动而导电的物体
如 金属导体
石墨
性质:
A.自由电子作定向移动而导电
F:法拉第常数,即反应1mol电荷物质所需电量 1F=96500库仑/摩尔
物理化学中的电化学反应机理

物理化学中的电化学反应机理电化学反应是物理化学中的一个重要分支,它研究电子、离子、分子之间的相互作用及其在化学反应中所起的作用。
其中,电化学反应机理是电化学研究的核心。
本文将从电化学反应的基本概念、电化学反应的类型、电化学反应机理及其应用等方面进行探讨。
一、电化学反应的基本概念电化学反应是由电子、离子或电场引起的化学反应,它是化学与物理之间的交叉领域。
在电解质溶液中,若在两个半导体金属板之间加上外电势,在电势作用下离子将沉积于电极上,或由电极上脱离,并在电子、离子之间形成化学反应,这种反应即称为电化学反应。
电化学反应需要电极,电极是将电化学反应中参与反应的物质,将它们与反应的溶液分开的一个界面。
正极是引发还原反应的电极,负极则促进氧化反应。
电化学反应受到电极电位、离子活度等因素的影响。
二、电化学反应的类型电化学反应类型通常分两类。
一类称为电解反应,它是通过电能转化成化学能的过程。
电解质溶液中的阳、阴离子在电解时,分别向阴、阳极靠拢,产生电化学反应,电解反应称为电解质阳、阴离子填充或消耗的过程,同时也是化学还原剂、氧化剂生成或失活的过程。
另一类称为电池反应,电池反应是利用化学能转化成电能的过程。
它是在两个半电池之间建立起外电路,半电池中的物质发生氧化还原反应,由于电子转移,电子产生电流的流动,完成了把化学能转化为电能的过程。
三、电化学反应机理电化学反应机理是指电化学反应发生时,离子与电子之间的相互作用过程。
电极反应的发生需要在电极表面建立一层相应的离子界面和电荷界面,而反应速率则受到界面电荷的影响。
电化学反应机理是用来描述电化学反应过程的,通过研究机理,可以更好地理解电化学反应及其规律。
以阴极还原反应为例,当电化学反应发生在阴极上,阴极表面的金属得到电子,从而转化为离子。
因此,在阴极上,反应物接受电子,得出固态产物,并且触发电子传输过程。
电子传输的能力越强,则阴极还原反应越容易发生。
四、电化学反应的应用电化学反应机理已经在很多方面得到了应用,包括电化学合成、电化学储能、电化学分析等领域。
物理化学—电化学练习题及参考答案

电化学B一、选择题1. p∃和298 K下,把Pb和Cu(Ac)2溶液发生的反应安排为电池,当获得可逆电功为91.84 kJ时,电池同时吸热213.6 kJ,因此该过程有:()(A) ∆r U>0, ∆r S>0 (B) ∆r U<0, ∆r S>0(C) ∆r U>0, ∆r S<0 (D) ∆r U<0, ∆r S<02. 在应用电位计测定电动势的实验中,通常必须用到:()(A) 标准电池(B) 标准氢电极(C) 甘汞电极(D) 活度为1的电解质溶液3. 下列电池中液接电势不能被忽略的是:( )(A) Pt, H2(p1)│HCl(m1)│H2(p2), Pt(B) Pt, H2(p)│HCl(m1)‖HCl(m2)│H2(p), Pt(C) Pt, H2(p)│HCl(m1)┆HCl(m2)│H2(p), Pt(D) Pt, H2(p)│HCl(m1)│AgCl,Ag-Ag,AgCl│HCl(m1)│H2(p), Pt4. 某电池反应为:Hg2Cl2(s)+H2(p∃)─→2 Hg(l)+2 H+(a=1)+2 Cl-(a=1)已知:E∃=0.268 V, (∂E/∂T)p=-3.2×10-4 V·K-1, 则∆r S m为:( )(A) -61.76 J·K-1·mol-1(B) -30.88 J·K-1·mol-1(C) 62.028 J·K-1·mol-1(D) -0.268 J·K-1·mol-15. 电池中使用盐桥的作用是:()(A) 使电池变成无液体接界的可逆电池(B) 基本消除电池中的液体接界电势(C) 消除电池中存在的扩散现象(D) 使液体接界电势为零6. 用对消法测定电池电动势,若实验中发现检流计始终偏向一边,则可能原因是:()(A) 被测定电池温度不均匀(B) 被测定电池的两极接反了(C) 搅拌不充分使浓度不均匀(D) 检流计灵敏度差7. 将一铂丝两端分别浸入含0.1 mol·dm-3 Sn2+和0.01 mol·dm-3 Sn4+的溶液中,这时的电位差为:()(A) E(Sn4+|Sn2+)+0.059/2 (B) E(Sn4+|Sn2+)+0.059(C) E(Sn4+|Sn2+) - 0.059 (D) E(Sn4+|Sn2+) - 0.059/28. 测定电池电动势时,标准电池的作用是:()(A) 提供标准电极电势(B) 提供标准电流(C) 提供标准电位差(D) 提供稳定的电压9. 当电池的电动势E=0时,表示:()(A) 电池反应中,反应物的活度与产物活度相等(B) 电池中各物质都处于标准态(C) 正极与负极的电极电势相等(D) 电池反应的平衡常数K a=110. 下列电池中,电动势与氯离子活度无关的电池是:(A) Zn│ZnCl2(aq)‖KCl(aq)│AgCl│Ag(B) Pt│H2│HCl(aq)│Cl2│Pt(C) Ag│AgCl(s)│KCl(aq)│Cl2│Pt(D) Hg│Hg2Cl2(s)│KCl(aq)‖AgNO3(aq)│Ag二、填空题11. 电池Hg│Hg2Cl2│HCl(a)│Cl2(p∃)│(Pt)在25℃, a = 0.1 时, E = 1.135 Va = 0.01 时, E = ______12. 将反应H2(g) + PbSO4(s) → Pb(s) + H2SO4(aq)设计成电池的表示式为:_______________________________________________________。
物理化学第7章 电化学

放置含有1 mol电解质的溶液,这时溶液所具有的
电导称为摩尔电导率 Λ m
Λ m
def
kVm
=
k c
Vm是含有1 mol电解质的溶液
的体积,单位为 m3 mol1,c 是电解
质溶液的浓度,单位为 mol m3 。
摩尔电导率的单位 S m2 mol1
注意:
Λ 在 后面要注明所取的基本单元。 m
b、强电解质: 弱电解质:
强电解质的Λ m
与
c
的关系
随着浓度下降,Λ 升高,通 m
常当浓度降至 0.001mol dm3 以下
时,Λ 与 m
c 之间呈线性关系。德
国科学家Kohlrausch总结的经验
式为:
Λ m
=Λm (1
c)
是与电解质性质有关的常数
将直线外推至 c 0
得到无限稀释摩尔电导率Λm
-
- 电源 +
e-
+
e-
阴
阳
极
极
CuCl2
电解池
阳极上发生氧化作用
2Cl aq Cl2(g) 2e
阴极上发生还原作用
Cu2 aq 2e Cu(s)
三、法拉第定律
Faraday 归纳了多次实验结果,于1833年总结出该定律
1、内容:当电流通过电解质溶液时,通过电极 的电荷量与发生电极反应的物质的量成正比;
作电解池 阴极: Zn2 2e Zn(s)
阳极 2Ag(s) 2Cl 2AgCl(s) 2e
净反应: 2Ag(s) ZnCl2 Zn(s) 2AgCl(s)
2.能量变化可逆。要求通过的电流无限小。
二、可逆电极的种类
1、第一类电极
物理化学 电化学

能导电的物质称为导电体,通常分为两类: 第一类导体又称电子导体,如金属、石墨等 第一类导体的特点是: A. 自由电子作定向移动而导电 B. 导电过程中导体本身不发生变化 C. 温度升高,电阻也升高
D. 导电总量全部由电子承担
第二类导体又称离子导体,如电解质溶液、熔 融电解质等 第二类导体的特点是: A. 正、负离子作反向移动而导电 B. 导电过程中有化学反应发生 C. 温度升高,电阻下降
阳极上发生氧化作用
2 H 2 O l O 2 (g ) 4 H 4 e
-
电源 +
-
Pt
e
e
+
-
阴极上发生还原作用
2H
Pt
aq 2 e H 2 (g )
N a 2S O 4
电解池
电极上的反应次序由 离子的活泼性决定
在电解池中, 都用铜作电极
阳极上发生氧化作用
发生氧化作用的极称为阳极。 在原电池中,阳极是负极;在 电解池中,阳极是正极。 发生还原作用的极称为阴极。
阴极:
在原电池中,阴极是正极;在 (Cathode) 电解池中,阴极是负极。
在原电池中
负载电阻
阳离子迁向阴极
正 极 -
负 极
在阴极上发生还原的是
Cu
2
Zn
e
-
Cu
2+
e
aq 2e
l A
1
面 积 =A
单位长方体
m
1
电导率
电导率也就是电阻率的倒数:
R k 1
(a )
电导率的定义
电导率与电解质性质、浓度、溶液浓度有关。
物理化学电化学课件

重金属离子去除。
物理化学电化学的发展历程
早期发展
物理化学电化学的早期发展可以追溯到18世纪,当时科学家开始研究电解现象和电池的 原理。
现代发展
20世纪以来,随着电子学和材料科学的快速发展,物理化学电化学在能源转换和储存、 工业应用以及环境监测与治理等领域取得了重要突破。
未来展望
随着可再生能源和环保意识的不断提高,物理化学电化学在未来将发挥更加重要的作用。 未来研究方向包括新型电池和燃料电池技术的开发、高效能量转换与储存材料的探索以及 环境友好型电化学过程的开发等。
恒温水浴
用于控制实验温度,保证实验 结果的准确性和可靠性。
电化学实验操作与安全
实验前应仔细阅读相关 操作规程和注意事项, 确保实验安全。
在实验过程中,应佩戴 防护眼镜、实验服和化 学防护手套等个人防护 用品。
避免使用易燃、易爆、 有毒或有腐蚀性的试剂 ,并确保实验室有良好 的通风 系统。
在实验结束后,应按照 实验室规定正确处理废 弃物,并确保实验室安 全卫生。
要点二
详细描述
物理化学电化学在生物医学领域的应用广泛,如生物传感 器、药物输送等。生物传感器可用于检测生物体内的物质 浓度,为疾病的诊断和治疗提供依据。药物输送方面,利 用物理化学电化学方法可将药物精准地输送到病变部位, 提高药物的疗效并降低副作用。此外,物理化学电化学还 可用于基因治疗、组织工程等领域的研究和应用。
电感的感抗
电感是衡量线圈产生自感电动 势能力的物理量,定义为线圈 的自感电动势与通过线圈的电 流的比值。
电容与电感的应用
电容和电感在电子电路中有着 广泛的应用,如滤波器、振荡 器、变压器等。
电解与电镀
电解的概念
电解是将电能转化为化学能的化 学反应过程,通过电解可实现金 属的提取和精炼、电解反应的合
物理化学习题答案-电化学部分

物理化学-电化学部分习题答案4. 在18 o C 时,已知0.01 mol/dm 3 KCl 溶液的电导率为0.12205 S m -1,用同一电导池测出0.01 mol/dm 3 KCl 和0.001 mol/dm 3 K 2SO 4的电阻分别为145.00 Ω和712.2 Ω。
试求算(1)电导池常数;(2)0.001 mol/dm 3 K 2SO 4溶液的摩尔电导率。
解. (1)用标准KCl 溶液求电导池常数:170.1700.14512205.0-=⨯===m R GK cell κκ(2)K 2SO 4溶液的摩尔电导率:12302485.02.71210001.071.17-⋅⋅=⨯⨯====Λmol m S cR K c G K ccell cell m κ8. 在25 o C 时,一电导池充以0.01 mol/dm 3 KCl 和0.1 mol/dm 3 NH 3·H 2O 溶液,测出两溶液的电阻分别为525 Ω和2030 Ω,试计算此时NH 3·H 2O 溶液的解离度。
已知25 o C 时0.01 mol/dm 3 KCl 的电导率为0.1409 S m -1,()()121240198.0,00734.0--∞-+∞⋅⋅=⋅⋅=mol m S OH mol m S NH m m λλ 解. 用标准KCl 溶液求电导池常数:()()()()KCl R KCl KCl G KCl K cell κκ==0.1 mol/dm 3 NH 3·H 2O 溶液的电导率为:()()()()()123232303643.020305251409.0-⋅=⨯=⋅=⋅=⋅m S O H NH R KCl R KCl O H NH G K O H NH cell κκ0.1 mol/dm 3 NH 3·H 2O 溶液的摩尔电导率为:()()()124323232310643.3101.003643.0--⋅⋅⨯=⨯=⋅⋅=⋅Λmol m S O H NH c O H NH O H NH m κ ()()()1242302714.00198.000734.0--∞+∞∞⋅⋅=+=+=⋅Λmol m S OHNH O H NH m m m λλ NH 3·H 2O 溶液的解离度:()()0134.002714.010643.342323=⨯=⋅Λ⋅Λ=-∞O H NH O H NH m m α12. 在18 o C 时,测得CaF 2饱和水溶液及配制该溶液的纯水的电导率分别为3.83×10-3 和1.5×10-4 S m -1。
物理化学 第七章-4

ZnSO4
CuSO4
§ 7.8 电极的种类
1. 第一类电极
将某金属或吸附了某种气体的惰性金属置于含有该元素 离子的溶液中构成的。包括金属电极、氢电极、氧电极和卤 素电极。 (1)金属电极和卤素电极: 如: Zn2+|Zn: Zn2++2e-Zn Cl– | Cl2|Pt: Cl2(g)+2e– 2Cl– (2)氢电极: 结构:将镀有铂黑的铂片浸入含有 H+或OH–的溶液中,并不断通H2(g) 就构成了酸性或碱性氢电极。
RT νB 电 极 E电 极 E 电 极 l n aB 电 极 zF B 电 极
7.7.1
2. 液体接界电势及其消除
定义:在两种不同溶液的界面上存在的电势差称为液体接界 电势或扩散电势。 它是由溶液中离子扩散速度不同引起的。
+ H+ 运动速度快
–
Cl–运动速度慢
甘 汞 电 极
银-氯化银电极
甘汞电极:金属为Hg,难溶盐为Hg2Cl2(s),易溶盐溶液为KCl 溶液。
电极表示:Cl- | Hg2Cl2(s) | Hg 电极反应:电极反应可认为分两步进行: Hg2Cl2(s) Hg22+ + 2ClHg22+ + 2e 2Hg Hg2Cl2(s) +2e-2Hg +2Cl-
2
2
碱性氧电极:
H2O ,OH– | O2(g) |Pt
电极反应:O2(g) + 2H2O + 4e– 4OH– 标准电极电势:E O 2 (g) H 2O, OH 0.401 V
2. 第二类电极
包括金属-难溶盐电极和金属-难溶氧化物电极。 (1)金属-难溶盐电极:在金属上覆盖一层该金属的难溶盐, 然后将它浸入含有与该难溶盐具有相同负离子的溶液中而 构成的。最常用的有银-氯化银电极和甘汞电极。
电化学 物理化学知识

3、 n n n 通入电量的电子摩尔数
离子迁移数——某离子i 运载的电量与通入溶液的
总电量之比。
Qi Qi ti Q Qi
ti 1
如果溶液中只有一种电解质,则:
Q Q t Q Q Q
Q Q t Q Q Q
t t 1
通电前后阳极区、阴极区的 浓度变化→Δn+和Δn电量计→ Q→Δn(Farady Law)
串联的电量计用于测定电 极反应的物质的量。
ห้องสมุดไป่ตู้
通过测定通电前后阳极区或 阴极区溶液中电解质浓度的变化, 可计算出对应区域中电解质的物 质的量的变化。
希托夫法测定离子迁移数的装置
若两电极均为惰性,则两电 极区的电解质溶液浓度均有所下 降。否则要进行物料衡算。
离子的电迁移率(离子淌度) 离子在指定溶液中电场强度E =1V · -1时的运动速度 m
Define:
vB vB uB E dU dl
cB→0, uB∞为极大值,称为离子的极限电迁移 率或无限稀释电迁移率
ti与电迁移率u的关系 v u u t v u u u
v u u t v u u u
例 题二
在25℃时,已知Ba(OH)2, BaCl2, NH4Cl溶液
无限稀释摩尔电导率分别为 512.88×104Sm2 mol1,277.99×104S m2 mol1,149.75×104 S m2 mol1,试计算25℃时NH3· 2O溶液的无限稀释 H 摩尔电导率Λ 解:
阳极 原电池 电解池 + 阴极 + -
在电解池中正极为 阳极,负极为阴极; 在原电池中则相反
原电池和电解池的比较
物理化学_电化学

无论是原电池还是电解池,其共同的特点是, 无论是原电池还是电解池,其共同的特点是,当外 电路接通时: 电路接通时: 在电极与溶液的界面上有电子得失的反应发生; 在电极与溶液的界面上有电子得失的反应发生; 电子得失的反应发生 溶液内部有离子作定向迁移运动 离子作定向迁移运动。 溶液内部有离子作定向迁移运动。 极板与溶液界面上进行的化学反应电极反应 极板与溶液界面上进行的化学反应电极反应 两个电极反应之和为总的化学反应: 两个电极反应之和为总的化学反应: 原电池电池反应; 电解池 电解反应 原电池电池反应; 电解池电解反应 电池反应
AB Ex = EN AB′
9
§7.6 原电池热力学 1. 由E计算∆rGm 计算∆ 计算
例:Zn + CuSO4 === Cu + ZnSO4 恒温、恒压、可逆条件下: 恒温、恒压、可逆条件下: ∆ rGT , p = Wr′ 每摩尔电池反应所做的可逆电功为: 每摩尔电池反应所做的可逆电功为:
∆rGm
电池恒温可逆放电,吸热; 电池恒温可逆放电,吸热;
电池恒温可逆放电,放热。 电池恒温可逆放电,放热。
11
∆r H m = − ZFE + Qr
1) 可逆原电池
反应物
2) 电池外恒压反应
产物
过程(1): 过程
∆H=-ZFE+Qr +
过程(2): 过程 : ∆H=Qp
过程(1)、 是状态函数) 过程 、(2) ∆H 相等 (因H是状态函数 因 是状态函数 与过程有关) 但 Qr ≠ Qp (因Q与过程有关 因 与过程有关 测E 和(∂E/∂T)p 可得到 Qp ∂ ∂
$
RT E=E − ln 2 F aZn2+ ⋅ pH2 / p$ aZn RT ln =E − 2F aZn2+
物理化学总结-电化学-思维导图

3.德拜-休克尔极限公式
7.4 电解质溶液的活 度、活度因子及德 拜-休克尔极限公式
化学可逆性 热力学可逆ቤተ መጻሕፍቲ ባይዱ 电池的可逆含义
实际可逆性 电池的表示方法 1.可逆电池
电池电动势的定义 丹聂耳电池和韦斯顿标准电池
波根多夫对消法 2.电池电动势的测定
7.5 可逆电池及其电动势的测定
第七章 电化学
7.6 原电池热力学
2.原电池电动势的计算
3.液体接界电势及其消除 液接电势的计算
7.8 电极的种类
金属电极和卤素电极
1.第一类电极 氢电极
氧电极 酸性、碱性下氧电极反应
2.第二类电极
金属-难溶盐电极 金属-难溶氧化物电极
3.第三类电极 氧化还原电极
4.不同类型电极之间标准电极电势的 换算
7.9 原电池的设计
设计电池一般步骤(三步) 1.氧化还原反应 2.中和反应 3.沉淀反应 4.扩散过程——浓差电池 5.化学电源
柯尔劳施离子独立运动定律
4.离子独立运动 定律和离子的摩 尔电导率
计算弱电解质的解离度及解离常数
计算难溶盐的溶解度 5.电导测定的应用
电导滴定
7.3 电导、 电导率和 摩尔电导
平均离子活度 活度因子
1.平均离子活度和平均活度因子
定义:I=1/2∑(bB ZB^2 ) 求解
2.离子强度
内容lgγ±=—Az+|z-| 适用范围:强电解质稀溶液
7.2 离子 的迁移数
电导G:G=1/R,单位S
强电解质 弱电解质
电导率与 溶液浓度 的关系
电导率,G=1/R=κA/l
1.定义
摩尔电导率Λm:在相距为单位长度的两平 行电极之间,放置有1 电解质溶液时的电导
物理化学电化学总结

物理化学电化学总结1. 引言物理化学电化学是研究化学过程中涉及电子转移的科学。
随着电子技术的发展,电化学的研究在科学和工程中扮演着重要的角色。
本文将总结物理化学电化学的基本概念、原理和应用。
2. 电化学基础电化学是研究电子转移和化学反应之间相互关系的学科。
它的基础是电解质溶液中的电离和电极上的电荷转移过程。
2.1 电解质溶液电解质溶液是指在溶解过程中离解成离子的化合物,如盐类、酸类和碱类。
在电解质溶液中,离子之间发生相互作用,并形成离子云。
这些离子可以通过电荷转移参与化学反应。
2.2 电极电极是电解质溶液中电子转移的场所。
根据电极上产生和接收电子的能力,可以将电极分为氧化剂和还原剂。
•氧化剂:具有高电子亲和性的物质,可接受电子,将其本身还原。
•还原剂:具有低电子亲和性的物质,可提供电子,将其本身氧化。
2.3 电池电池是利用化学能产生电能的装置。
它由正极、负极和电解质溶液组成。
电池中的化学反应将化学能转化为电能。
•正极:发生氧化反应的电极。
•负极:发生还原反应的电极。
3. 电化学过程电化学过程涉及到两个重要的过程:氧化和还原。
3.1 氧化反应氧化反应指物质失去电子而增加氧化态的过程。
氧化反应在正极发生,是电池中电荷转移的起点。
例如,铜(Cu)在溶液中氧化为二价铜离子(Cu2+)的反应方程式为:Cu -> Cu2+ + 2e-3.2 还原反应还原反应指物质获得电子而减少氧化态的过程。
还原反应在负极发生。
例如,二价铜离子(Cu2+)在负极还原成纯铜(Cu)的反应方程式为:Cu2+ + 2e- -> Cu3.3 电解电解是指通过外加电势将化合物分解成离子。
电解可以是非自发的,需要外加电势才能进行。
例如,将氯化钠溶液通过电解分解成氯离子和钠离子的反应方程式为:2NaCl -> 2Na+ + 2Cl-4. 应用电化学在许多领域都有广泛的应用,包括电池、腐蚀、电镀和电分析等。
4.1 电池电池是电化学最常见的应用之一。
物理化学-电化学

通常情况下,同一电解质溶液中正离子、负离子所迁 移的电量不相等,因为两种离子运动速度不相等。
电解质溶液的导电行为,可以用离子的迁移速率、离 子的电迁移数以及电导、电导率、摩尔电导率和离子 摩尔电导率等物理量来定量的描述。
一、离子迁移数
电迁移:离子在电场作用下而产生的运动,阳离子向阴 极迁移,阴离子向阳极迁移的现象称为电迁移。
在电迁移的同时,阴、阳离子(正、负)离子分别在两 个电极上发生电极反应,从而两个电极附近区域,离子浓 度发生变化。
假定使用惰性电极点解1-1价型的电解质溶液,设想在 两个惰性电极之间有假想的界面,将溶液分为阳极区、中 间区及阴极区三个部分。假定未通电前,每个区均含有正、 负离子各5 mol,用+、-号代替。
阴极区 中间区 阳极区
-
+
++++ + ++++ + ++++ +
- ---- ----- -----
a .通电前
设离子都是一价的,当通入3F的电量时,阳极上有3 mol 负离子氧化,阴极上有3 mol正离子还原。
两电极间正、负离子共同承担3F电量的运输任务 若离子都是一价的,则离子运输电荷的数量只取决于离 子迁移的速度。
Cu电极: Cu2+ + 2e →Cu 还原反应,阴极 正极
Fe电极: Fe - 2e → Fe2+ 氧化反应,阳极 负极
电池反应: Cu2+ + Fe → Cu + Fe2+
物理化学电化学(新)PPT课件

波根多夫对消法
检流计中无电流通过时:
E E AC x N AC
.
38
§7.6 原电池热力学
根据热力学第二定律:
dGT,p = δW’r
又
W’=-EIt=-EQ,
δW’r = - Ed(zFξ) = dGT,p 则单位反应进度的反应:
ΔrGmG T,p zFE
标准态下进行的反应:ΔrGmӨ = - zFEӨ
3Δ )rG m zF ;Δ r E S m z F E T p Q rm , T Δ rS m
.
43
§7.7 电极电势和液体接界电势
1. 电极电势 选氢电极作为参考标准,定义其在标准态
下的电极电势为0,以此电极为负极与欲测电 极组成电池,测得此电池的电动势即为欲测电 极的电极电势,也称为还原电极电势。
之间的关系:
QzF
Q --通过电极的电量;
z -- 电极反应的电荷数(即转移电子数)
ξ--电极反应的反应进度;
F -- 法拉第常数, ≈96500 C·mol-1.
.
7
例题
0.20 A的电流通过 CuCl2溶液2 h,在 阴极上析出了Cu和H2,析出Cu的质量为 0.3745 g,求析出H2标准状况下的体积, Cu的相对原子质量为63.33。
17
5. 应用举例
(1)柯尔劳施公式可以求算弱电解质的极限摩尔电
导率。
例题
已知25℃HCl、CH3COONa和NaCl极限摩 尔电导率分别是426.16×10-4、91.01×10-4和
126.45 S·m2·mol-1, 求CH3COOH 的极限摩尔电 导率。
.
18
(2)计算弱电解质的解离度及解离常数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两极附近的溶液中各滴加数滴石蕊试液,观察 在电解过程中两极区溶液颜色有何变化?为什 么? • 9、为了防止铁生锈,分别电镀上一层锌和一层 锡,两者防腐效果是否一样? • 10、新下水的海轮底部涂的桔黄色涂层是为了 防腐吗 • 11、心脏起博器里应该用什么样的化学电源?
练习
• 25℃时,Na+的迁移数τ(Na+)=0.385,计算Na+和 SO42-离子的无限稀释时的摩尔电导率。
• 解:Na2SO4在水中发生如下电离:
•
t+∞ = ν+ Λm,+∞ /Λm∞
•∴
•
t-∞ = ν- Λm,-∞ /Λm∞
• (教材310页7.3.7)
练习
ti t t 1
练习
• 习题二、已知25℃时0.05mol×dm3CH3COOH溶液的电导率为3.68×10-2S·m-1。 计算CH3COOH的解离度a及解离常数K。所需 离子摩尔电导率的数据见教材311页表7.3.2 25℃无限稀释溶液中离子的摩尔电导率。
第七章 问答题
• 12、在氯碱工业中电解NaCl水溶液,获得氢气、 氯气和氢氧化钠等化工原料。为什么电解时用石 墨作阳极?
• 13、为什么含有铁杂质的粗锌在相同浓度的硫 酸中比纯锌反应快?
• 14、如何防止在海洋里的用钢铁制成的船只被 腐蚀?
• 15、如何用可逆电池的电动势和电动势的温度系 数,计算热力学函数的变化值?
• 2、在电解质溶液中,如果有i种离子存在,则溶液的电
导用那个式子计算?
• 3、在中性的盐溶液中,电解水的反应,阳极反 应应该怎样写?是H2O氧化放出氧气,还是氢氧 根氧化放出氧气?电极电势是否一样?
• 解: • CH3COOH=CH3COO- +H+
练习
m
CH
3COOH
m
(
H
)
m
(CH
3COO
)
m
HCl
m
CH
3COONa
m
NaCl
390.72104 S • m2 • mol1
•Λm = к/c
c k m
c
k
m
c c
m m
a
m CH3COOH m CH3COOH
3.68102 /1000 390.72 104
0.05
0.01884
练习
• 习题三: 电池反应
的△rHm=5435J·mol-1,各物质的规定熵Sm/J·mol1·K-1分别为:Ag(s),42.55;AgCl(s),96.2;
Hg(l),77.4;Hg2Cl2(s),195.8。试计算25℃时电池 的电动势及电动势的温度系数。
练习
• 解:该电池反应的各热力学函数变化为 • △rSm=Sm(Hg,l)+Sm(AgCl,s)-Sm(Ag,s)-Sm(Hg2Cl2,s)/2 • =77.4+96.2-42.55-195.8/2=33.15J·mol-1·K-1 • △rGm=△rHm-T△rSm=5435-298.15×33.15=-4449 J·mol-1
E rGm 4449 0.04611V zF 1 96485.309
练习
Δr Sm
zF
E T
p
E Δr Sm T p zF
33.15 /1 96485.309 3.436 104V • K 1
练习
• 习题四 教材357页 • 解:设硝酸亚汞的存在形式为Hg22+,则电池
第七章 问答题
• 16、为什么标准电极电势的值有正有负? • 17、什么是离子独立移动定律?离子独立运
动定律 • 18、什么是德拜-休克尔极限定律?德拜-休
克尔极限公式
• 19、对消法测电动势的原理是什么? • 对消法
小测验
• 1、在温度、浓度和电场梯度都相同的情况下, • 氯化氢、氯化钾、氯化钠三种溶液中,氯离 • 子的运动速度是否相同?氯离子的迁移数是否相同?
反应为
练习
所以硝酸亚汞的存在形式为Hg22+
第七章 问答题
• 1、在电镀工业上一般都用钾盐,而不 用钠盐,为什么?
• 2、什么是电导水?如何制备? • 3、什么是氢电极?氢电极 • 什么是甘汞电极?甘汞电极 • 4、什么是丹尼尔电池可逆电池、韦斯
顿标准电池? • 5、什么是液接电势? 液接电势
第七章 问答题