电力系统规划及发电厂电气部分设计备课讲稿
《电气一次部分》课程设计报告---发电厂设计

《电气一次部分》课程设计报告摘要随着我国经济发展,对电的需求也越来越大。
电作为我国经济发展最重要的一种能源,主要是可以方便、高效地转换成其它能源形式。
电力工业作为一种先进的生产力,是国民经济发展中最重要的基础能源产业。
而火力发电是电力工业发展中的主力军,截止2006年底,火电发电量达到48405万千瓦,越占总容量77.82%。
由此可见,火力电能在我国这个发展中国家的国民经济中的重要性。
该设计主要从理论上在电气主接线设计、短路电流计算、电气设备的选择、配电装置的布局、防雷设计、发电机、变压器和母线的继电保护等方面做详尽的论述,并与火力发电厂现行运行情况比较,同时,在保证设计可靠性的前提下,还要兼顾经济性和灵活性,通过计算论证火电厂实际设计的合理性与经济性。
采用软件绘制了大量电气图和查阅相关书籍,进一步完善了设计。
关键词:发电机变压器断路器主接线目录荆楚理工学院课程设计任务书........................................................................ 错误!未定义书签。
1本设计的主要内容 (3)1.1 原始资料分析 (3)1.2对原始资料分析 (4)2 电气主接线设计 (4)2.1 电气主接线的基本要求 (4)2.2 电气主接线的分析 (5)2.3 主接线的方案选择 (7)3厂用电的设计 (9)3.1厂用负荷分类 (9)3.2厂用电的电压等级 (10)3.3对厂用电接线的基本要求 (10)3.4 火力发电厂厂用电接线的设计 (11)4发电机和变压器的选择 (12)4.1概述 (12)4.2发电机型号的确定 (12)4.3主变压器容量和形式的选择 (12)4.4联络变压器的选择 (16)4.5 厂用变压器的选择 (16)5 短路电流的计算 (18)5.1短路计算的基本假定和计算方法 (18)5.2 短路等值电抗电路及其参数计算 (20)6电气设备的选择 (25)6.1电气设备选择的一般原则 (25)6.2电气设备选择的一般条件 (25)6.3高压断路器的选择(QF) (26)6.4高压隔离开关的选择(QS) (28)6.5电流互感器的选择(TA) (30)6.6 电压互感器的选择(TV) (32)6.7 避雷器的选择 (33)7主接线详图 (35)结束语 (36)1本设计的主要内容1.1 原始资料分析(1)发电厂建设规模和型号;类型:凝汽式火力发电厂;装机容量:装机2台,容量分别为300MW*2;年利用小时数为6000h/a ;(2)所选发电机组的型号与参数;根据设计书的要求选用的发电机容量为300MW ,选择发出的电压为18KV ,所以选择发电机型号为QFSN-300-2。
发电厂变电所电气部分课程设计 (2)

发电厂变电所电气部分课程设计1. 引言本文档旨在对发电厂变电所电气部分课程设计进行详细介绍和说明。
本课程设计旨在培养学生对发电厂变电所电气部分的了解与掌握,为学生将来的工作打下坚实的基础。
2. 设计目标本课程设计的目标是:通过对发电厂变电所电气系统的详细了解,掌握变电站的运行、维护、故障排除等实际操作技能,培养专业电气工程技术人才。
3. 设计具体内容3.1 课程设置本课程的设置应包括课程开设的时间、地点、方案、教学目标、教学形式、学习方法等方面。
应该考虑到学生的特点和实际需要,制定科学、合理的课程设计方案。
3.2 课程教学计划本课程的教学计划应该明确教学目标和内容,安排教学时间和教学方法,合理安排实验和实践环节。
同时,也应该考虑到学生的学习特点和实际情况,避免过于繁琐和枯燥。
3.3 实践环节的设计本课程设计必须包括实践环节的设计和实践教学计划。
应该安排一定的时间进行实践训练,让学生能够通过实践操作来掌握电气知识和技能。
3.4 课程评估方式本课程的评估方式应该考虑到学生的实际情况,采取多种形式进行评估,如考试、实验报告、作业等方式,以全面了解学生的学习情况。
4. 教学方法通过多种教学方法,如理论教学、案例教学、实验教学、模拟教学等来进行教学。
应着重注重讲解实际应用中的知识和技能,使学生更好的掌握发电厂变电所电气系统的实际运行情况。
5. 课程总结本课程设计旨在培养学生对发电厂变电所电气部分的了解和掌握,为学生将来走向职场的道路打下坚实的基础。
教师要注重理论知识和实际应用的结合,提高学生的综合素质和实际操作技能。
6. 参考文献•《电气工程基础》张广泰等著,电力出版社,2008年版•《模拟与数字电路》朱鹏,电子工业出版社,2004年版•《电气工程基础实验》张广泰等著,电力出版社,2010年版。
发电厂电气部分课程设计

发电厂电气部分课程设计 Prepared on 24 November 2020《发电厂电气部分》课程设计报告110kV降压变电站电气主接线设计姓名:谭飞翔班级:0314405学号:引言课程设计是在完成专业课学习后实现培养目标的一个重要教学环节,也是对我们所学知识综合运用的一次测试。
通过课程设计初步提高自身综合素质和工程实践能力,使所学的知识得到进一步巩固和升华。
同时也对培养我们的敬业品德、独立工作、独立思考、理论联系实际作风具有深远的影响。
根据设计任务书的要求,本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。
该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。
110KV电压等级采用双母分段线接线,35KV电压等级采用双母接线,10KV电压等级采用单母线分段接线。
本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线、熔断器等)、各电压等级配电装置设计。
本设计以《35~110kV变电所设计规范》、《供配电系统设计规范》、《35~110kV高压配电装置设计规范》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。
目录1 电气主接线方案设计 (1)电气主接线方案设计原则及要求 (1)电气主接线方案设计原则 (1)电气主接线的基本要求 (1) (1) (2) (2)主接线方案设计 (2)各电压等级主接线方案选择与论证 (2)接线图示例和总接线图 (4) (4) (5)2 主变压器的选择 (6)主变压器的选择 (6)主变压器的台数及容量的确定原则 (6)主变压器台数及容量的确定 (6)台数的确定 (6)容量的确定 (6)主变压器型号的确定 (7)3 短路电流的计算 (8)短路计算的意义、规定与步骤 (8)短路计算的意义 (8)短路计算的规定 (8)短路计算的步骤 (8)短路点的选择及计算 (9)短路点的选择 (9)等值网络图 (9)计算各元件电抗值 (9)短路计算 (11)4 电气设备的选择 (15)电气设备的选择原则 (15)断路器 (15)断路器选择原则 (15)断路器的选择 (16)隔离开关 (16)隔离开关选择原则 (16)隔离开关的选择 (16)母线选择 (17)母线材料选择 (17)母线截面积的选择 (17)按长期发热允许电流选择 (17)总结体会 (19)参考文献 (20)1 电气主接线方案设计电气主接线方案设计原则及要求电气主接线方案设计原则(1)考虑变电站在电力系统的地位和作用变电站在电力系统中的地位和作用是决定主接线的主要因素。
发电厂电气部分课程设计

课程设计报告专业班级姓名学号指导教师目录一、原始资料分析 (1)1.1设计原始资料 (1)1.2设计任务 (1)1.3设计资料分析 (1)二、主接线设计 (2)2.1主接线设计原则 (2)2.2备选主接线方案 (4)2.3 技术经济指标对比 (5)2.4 拟定主接线 (6)三、厂用电设计 (7)3.1厂用负荷分类及容量统计 (7)3.2厂用电压等级设定 (8)3.3厂用电主接线设计 (8)3.3.1中性点接地方式 (8)3.3.2厂用母线分段 (9)3.3.3厂用电源的引接方式 (9)四、短路电流计算 (11)4.1机组(或变压器)选型 (11)4.1.1发电机组选型 (11)4.1.2发电厂主变压器选定 (11)4.2电路元件参数计算 (13)4.2.1发电机电抗 (13)4.2.2变压器电抗 (13)4.3网络变换 (14)4.4短路点选择 (15)4.5短路电流计算 (15)4.5.1 K1短路时 (15)4.5.2 K2短路时 (17)4.6计算成果汇总 (19)五、电气设备选型 (20)5.1电气设备选型的技术要求 (20)5.1.1一般原则 (20)5.1.2技术条件 (20)5.1.3环境条件 (21)5.2高压断路器选型 (22)5.2.1主变220kV侧及其出线断路器的选择 (23)5.2.2主变110kV侧及其出线断路器的选择 (24)5.3高压隔离开关选型 (25)5.3.1主变220kV侧及其分段隔离开关 (25)5.3.2主变110kV侧及其分段隔离开关 (26)5.4互感器选型 (27)5.4.1电流互感器选型 (27)5.4.2电压互感器选型 (29)5.5母线导体的选型 (30)5.5.1选择要求 (30)5.5.2母线选择 (32)六、附录 (34)一、原始资料分析1.1设计原始资料1、发电厂情况(1)、类型:火电厂(2)、发电厂容量与台数 23002200MW ⨯+⨯,发电机电压15.75kV ,cos 0.85ϕ=。
长沙理工大学《发电厂电气部分》课程设计

目录摘要.............................................................................................. - 2 -引言.............................................................................................. - 4 -第一篇设计说明书 .................................................................. - 5 - 第一节变电站主接线选定方案................................................ - 5 - 第二节变压器选定方案......................................................... - 7 - 第三节断路器与隔离开关选定方案 .................................... - 7 - 第四节母线选定方案............................................................. - 9 -第二篇设计计算书.............................................................. - 9 - 第一节电气主接线 .................................................................. - 9 - 第二节主变压器选择............................................................. - 19 - 第三节设备型号选择............................................................. - 21 - 断路器与隔离开关的选择 ................................................. - 24 -母线的选择........................................................................ - 29 - 设计心得体会........................................................................... - 32 -摘要由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
发电厂电气部分课程设计

第一章概述 ___________________________________________________________11.1课程设计目的 ____________________________________________________________ 11.2设计原始资料 ____________________________________________________________ 11.3设计原则________________________________________________________________ 1 第二章方案设计________________________________________________________32.1原始资料分析 ____________________________________________________________ 32.2发电厂接线方案比较_______________________________________________________ 32.2.1 主接线方案拟定 ______________________________________________________ 32.2.2各方案比较___________________________________________________________ 62.3主变的选择______________________________________________________________ 82.3.1相数的选择___________________________________________________________ 82.3.2 绕组数量的选择 ______________________________________________________ 82.3.3连接方式的选择_______________________________________________________ 82.3.4普通型和自耦型选择___________________________________________________ 82.3.5调压方式的选择_______________________________________________________ 82.4各级电压中性点运行方式选择 _______________________________________________ 9 第三章短路电流的计算__________________________________________________ 103.1短路形成的原因 _________________________________________________________ 103.2短路的危害 _____________________________________________________________ 103.3短路的类型______________________________________________________________ 103.4短路电流计算的目的______________________________________________________ 103.5短路电流的计算方法以及短路点的选取 ______________________________________ 11 第四章厂用电设计 _____________________________________________________ 234.1厂用电负荷 _____________________________________________________________ 234.2厂用电电压等级________________________________________________________ 234.3厂用变压器的选择_______________________________________________________ 234.3.1相数的选择__________________________________________________________ 234.3.2绕组数量的选择______________________________________________________ 234.3.3联结组别的选择______________________________________________________ 234.3.4厂用变容量的计算____________________________________________________ 244.4厂用电源及接线方式______________________________________________________ 244.4.1 工作电源___________________________________________________________ 244.4.2 备用电源和启动电源__________________________________________________ 244.4.3 事故保安电源 _______________________________________________________ 244.5厂用电接线方式_________________________________________________________ 244.6厂用电短路计算_________________________________________________________ 254.7厂用电动机的自启动校验__________________________________________________ 304.7.1电动机的自启动的概念和必要性_________________________________________ 304.7.2电动机自启动时母线电压的校验_________________________________________ 31 第五章导体、电气设备选择及校验 _________________________________________ 325.1选择电气一次设备遵循的条件 ______________________________________________ 325.2导线的选择及校验________________________________________________________ 325.2.1发电机侧导体选择____________________________________________________ 325.2.2主变到系统导体选择__________________________________________________ 345.3断路器的选择与校验______________________________________________________ 365.3.1主变到系统侧断路器选择 ______________________________________________ 365.3.2发电机到母线汇流点的断路器选择_______________________________________ 375.3.3厂用变高压侧到母线汇流点的断路器的选择_______________________________ 385.3.4 厂用变压器低压侧到厂用母线的断路器选择_______________________________ 395.3.5厂用负荷到厂用母线断路器的选择_______________________________________ 405.4隔离开关的选择与校验____________________________________________________ 415.4.1主变到系统侧隔离开关选择 ____________________________________________ 425.4.2发电机到母线汇流点的隔离开关选择_____________________________________ 425.4.3厂用变高压侧到母线汇流点的隔离开关选择_______________________________ 435.4.4 厂用变压器低压侧到厂用母线隔离开关选择_______________________________ 445.4.5厂用负荷到厂用母线的隔离开关选择_____________________________________ 455.5互感器的选择与校验______________________________________________________ 465.5.1 电压互感器的选择 ___________________________________________________ 465.5.2电流互感器的选择与校验 ______________________________________________ 465.6绝缘子串和套管的选择____________________________________________________ 485.6.1 穿墙套管的选择 _____________________________________________________ 485.6.2 支柱绝缘子的选择 ___________________________________________________ 485.6.3 悬式绝缘子的选择 ___________________________________________________ 485.7熔断器的选择 ___________________________________________________________ 49 第六章发电厂配电装置设计 ______________________________________________ 496.1布置原则 _______________________________________________________________ 496.2布置型式 _______________________________________________________________ 506.3配电装置的选择和校验____________________________________________________ 51 第七章过压保护和接地__________________________________________________ 527.1电气设备绝缘配合原则____________________________________________________ 527.2过电压保护方式__________________________________________________________ 537.2.1过电压 _____________________________________________________________ 537.2.2 避雷针、避雷线、避雷针的选择________________________________________ 537.3接地系统 _______________________________________________________________ 54 第八章继保配置规划 ___________________________________________________ 558.1继电保护配置 ___________________________________________________________ 558.2电站综合自动化 _________________________________________________________ 558.3测量系统_______________________________________________________________ 578.4同期装置_______________________________________________________________ 578.5信号系统设置 ___________________________________________________________ 578.6直流系统设置 ___________________________________________________________ 58 第九章课程设计总结与心得体会 ___________________________________________ 59附录 _______________________________________________________________ 60 参考文献____________________________________________________________ 61摘要:电力系统是由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。
发电厂电气部分设计

三、发电厂电缆线路设计
三、发电厂电缆线路设计
电缆线路是发电厂电能输送的重要通道,其设计应满足安全、可靠、经济和 环保的要求。在电缆线路的设计过程中,需要考虑以下几个方面:
三、发电厂电缆线路设计
1、电缆型号选择:电缆型号的选择应考虑电力系统的电压等级、电流容量、 敷设环境等因素,以确保电缆能够安全可靠地运行。
一、发电厂主接线设计
一、发电厂主接线设计
主接线是发电厂的重要组成部分,用于实现电能的生产、变换和输送。主接 线的设计应满足可靠性高、灵活性强、易于操作和维修、经济性好的要求。在主 接线的设计过程中,需要考虑以下几个方面:
一、发电厂主接线设计
1、可靠性:主接线的设计应确保电力系统的稳定运行,避免因设备故障导致 的大规模停电事故。为此,可以采用分段接线和桥型接线等方式,提高主接线的 可靠性。
一、发电厂主接线设计
4、经济性:主接线的设计应在满足可靠性和灵活性的前提下,尽量降低建设 成本和维护成本。例如,可以采用低损耗设备、优化线路布局等方式,降低能耗 和维护成本。
二、发电厂防雷设计
二、发电厂防雷设计
防雷设计是发电厂电气部分设计的关键环节之一,其目的是在雷击情况下保 护设备和建筑物不受损坏。发电厂的防雷设计应包括以下几个方面:
内容摘要
总之,本次演示通过详细阐述4200MW发电厂电气一次部分设计的原则、流程、 要求及成果,为我们成功地完成这一复杂而关键的设计工作提供了有力的支持。 通过这一设计工作,我们不仅提高了发电厂的效率和性能,还推动了电力行业的 技术进步和发展。
引言
引言
随着电力工业的不断发展,发电厂的规模不断扩大,设备日益复杂,对发电 厂的运营和管理提出了更高的要求。为了提高发电厂的运营效率和管理水平,电 气综合自动化系统的应用越来越受到。本次演示将对发电厂电气综合自动化系统 的发展和应用进行探讨。
发电厂电气部分课程设计

1 设计原始题目1.1 具体题目某400MW发电机组采用全连式离相封闭母线。
发电机额定功率400MW,额定电压25kV,cos=0.85ϕ,额定电流10200A。
全连式离相封闭母线尺寸:导体外径为W 500Dφ=mm,导体厚度为W 12δ=mm,外壳外径为s 1000Dφ=mm,外壳内径为s 984dφ=mm,外壳厚度为s 8δ=mm,相间距离为a=1.4m。
封闭母线铝导体最热点温度为W 90t=°C,铝外壳最热点温度为s 70t=°C,周围环境温度为s 38t=°C。
当封闭母线额定电流取12500A,试计算该封闭母线的发热量和散热量,并做热平衡校验。
1.2 要完成的内容母线是电力系统内部的电力线路,它连接着各种电机和电器以传输电流和功率,并通过配电装置分配电能。
在发电厂和变电站中,母线大多采用硬铝或铝锰、铝镁合金做成。
无论正常情况下通过工作电流,或短路时通过短路电流,母线都要发热。
为使母线发热温度不超过最高允许温度,需要分析发热过程并进行计算。
2 分析要设计的课题内容2.1 计算的意义导体的发热计算是根据能量守恒原理,即导体产生的热量与耗散的热量应相等来进行计算的。
导体的发热来自导体电阻损耗的热量。
热量的耗散有对流、辐射和导热三种形式。
封闭母线的发热由母线导体发热和外壳发热两部分组成。
散热是以辐射和对流形式将热量从母线导体传至外壳(介质),再从外壳(介质)传到周围空气中去。
针对本题的全连式离相封闭母线,首先要校验导体的热平衡,然后校验外壳的热平衡,最后校验封闭母线的总发热量和总散热量,根据其比值确定发热与散热是否符合要求。
对封闭母线热平衡进行校验可以用于设备的选型,防止设备烧坏,为系统设计,新建站设备选型,运行方式制定,继电保护整定等环节提供依据。
若封闭母线的热平衡不能满足要求,则对设备和电站都会造成安全隐患,所以对母线热平衡进行校验是十分重要的。
2.2 热平衡校验2.2.1 导体的发热、散热与热平衡(1)导体的发热 ①集肤效应系数[][]3.75w w w w wfw 10.0016(75)10.0016(75)10.03 1.0510K D θδθδ⎧⎧⎫⎫----⎪⎪=+⨯=⎨⎬⎨⎬⎪⎪⎭⎭⎩⎩②90℃时单位长度导体电阻620w w wfw w w[10.004(20)]2.15510(/m)π()R K D ρθδδ-+-==⨯Ω-③当通过电流w 12500A I =时,导体发热损耗量 22wR s s w s 336.719(W/m)Q I R I R ===式中 w R —母线导体的电阻; wf K —导体集肤效应系数; w θ—导体最高运行温度; w D —圆管导体外径; w δ—圆管导体壁厚; 20ρ—导体电阻系数。
发电厂的电气部分-PPT演示文稿

(4)亚临界压力发电厂,其蒸汽压力一般为16.77MPa、温度为540 /540℃ 的发电厂,单机功率为300MW直至1000MW不等;
发电厂电气部分
(5)超临界压力发电厂,其蒸汽压力大于22.11MPa、温度为550/550℃的 发电厂,机组功率为600MW、800MW及以上;
发电厂电气部分
燃烧系统包括如下子系统:
(1)运煤系统。 (2)磨煤系统。 (3)燃烧系统。
(4)风烟系统。 (5)灰渣系统。
2. 汽水系统
火电厂的汽水系统由锅炉、汽轮机、凝汽器、除氧器、加热器等设备及管道构成 ,包括给水系统、循环水系统和补充给水系统,如图1-3所示。
发电厂电气部分
图1-3 火电厂汽水系统流程示意图
发电厂电气部分
从1882年7月上海第一台发电机组发电开始到1949年新中国成立,在60多年中经历 了辛亥革命、土地革命、抗日战争和解放战争,这时期电力工业发展迟缓,全国发电 设备的总装机容量184.86万kW(当时占世界第21位),年发电量仅43.1亿kW·h(当时 占世界第25位),人均年占有发电量不足10kW·h。
发电厂电气部分
目录
第一章 概述 第二章 载流导体的发热和电动力 第三章 灭弧原理及主要开关电器 第四章 电气主接线及设计 第五章 厂用电接线及设计 第六章 导体和电气设备的原理与选择 第七章 配电装置
5~71 72~126 127~215 216~357 358~470 471~576 577~627
1972年建成了我国第一条超高压330kV输电线路,由甘肃刘家峡水电厂到陕西关 中地区。 2005年9月,我国第一个超高压750kV输变电工程(官厅至兰州东)正式投入 运行,这是我国电力工业发展史上一个新的里程碑。 2006年8月19日,我国特高压试 验示范工程1000kV晋东南—南阳—荆门工程正式奠基。
发电厂电气部分教案

发电厂电气部分教案章节一:电力系统概述教学目标:1. 了解电力系统的定义、功能和分类。
2. 掌握电力系统的组成和各部分的作用。
3. 了解电力系统的运行方式和特点。
教学内容:1. 电力系统的定义和功能。
2. 电力系统的分类。
3. 电力系统的组成:发电机、变压器、输电线路、配电线路、电力用户等。
4. 电力系统的运行方式:单相交流、三相交流、直流输电等。
5. 电力系统的特点:高压、大电流、远距离传输等。
教学方法:1. 讲授法:讲解电力系统的定义、功能、分类和运行方式。
2. 案例分析法:分析实际电力系统的组成和特点。
章节二:发电厂电气设备教学目标:1. 了解火力发电厂和核电站的电气设备组成。
2. 掌握各类电气设备的工作原理和性能。
3. 了解电气设备的分类和特点。
教学内容:1. 火力发电厂电气设备:发电机、变压器、母线、断路器等。
2. 核电站电气设备:发电机、变压器、核岛设备、常规岛设备等。
3. 电气设备的工作原理和性能:电磁感应、绝缘、断路等。
4. 电气设备的分类:一次设备、二次设备、辅助设备等。
5. 电气设备的特点:高压、高温、大电流等。
教学方法:1. 讲授法:讲解火力发电厂和核电站的电气设备组成。
2. 实验法:观察和分析电气设备的工作原理和性能。
章节三:电力系统保护教学目标:1. 了解电力系统保护的定义和作用。
2. 掌握电力系统保护的分类和原理。
3. 了解常见保护装置的结构和功能。
教学内容:1. 电力系统保护的定义和作用:防止电力系统故障和事故扩大,保障电力系统安全运行。
2. 电力系统保护的分类:继电保护、差动保护、接地保护等。
3. 保护原理:电气量保护、非电气量保护、综合保护等。
4. 常见保护装置:断路器、继电器、保护继电器等。
5. 保护装置的配置和整定:根据电力系统的要求进行保护装置的选择和参数设置。
教学方法:1. 讲授法:讲解电力系统保护的定义、分类和原理。
2. 实验法:观察和分析保护装置的结构和功能。
发电厂电气部分课程设计

发电厂电气部分课程设计TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-目录摘要……………………………………………......................第1章设计任务…………………………….....................第2章电气主接线图………………………........................电气主接线的叙述……………………………..电气主接线方案的拟定.....................................电气主接线的评定..................................................第3章短路电流计算……………………….....................概述............................................................. .....系统电气设备电抗标要值的计算.................短路电流计算..................................................第4章电气设备选择……………………….....................电气设备选择的一般规则……………………….电气选择的技术条件…………………………….按正常情况选择电器……………………….......按短路情况校验……………………………........电气设备的选择………………………………….断路器的选择……………………………….隔离开关的选择…………………………….第5章设计体会及以后改进意见…………........................参考文献……………………………………….......................摘要由发电、变电、输电、和用电等环节组成的电能生产与消费系统,他的功能是将自然界的一次能源通过发电动力装置转化为电能,再经过输、变电系统及配电系统将电能供应到个负荷中心。
发电厂电气部分课程设计

❏发电厂容量的确定与国家经济发展规划、电力负 荷增长速度、系统规模和电网结构以及备用容量等 因素有关。发电厂装机容量标志着发电厂的规模和 在电力系统中的地位和作用。在设计时,对发展中 的电力系统,可优先选用较为大型的机组。但是, 最大单机容量不宜大于系统总容量的10%,以保证 在该机检修或事故情况下系统的供电可靠性。
三、主变压器容量的确定原则
29
2.具有发电机电压母线接线的主变压器
容台容数确定原则:量数 ②③为当接在发电压机发对电在保接若确当
机电母电母电压
线压电上有负的2接线母压
台最荷及大供以上电一可主变压器时,或修检组机的台者当靠其供容于最大热发量接中性因负母线退出限需故而动荷运制行
不应,主少时他应其力不器出压厂变本行于2台压器。应器其能应总能输容从送量电除母满剩统述几功点的率送倒余上系足线力7要0求%,
❏方案比较常用的方法有最小费用法、净现值法、 内部收益率法、抵偿年限法。
❏在课程设计中,主要采用抵偿年限法。
四、主接线方案的经济比较
如:发电机容量容50量MW确,定功原率则因:数
量0压.8为负,荷厂最用小电15率MW 1投①有负率在母压主剩系在电最扣后应电剩0,%当入统发荷。发线母要余满压小除能压余,则,发运。电 和主电和线 作功足供负厂将母有主主发电行机剩变机升之用率发电荷用发线功变变电机时电余连电高间是送电的负电上和压,压机全,压功接压电将入,机日荷机的无器并器电部容 功容量送人系
❏主变压器和发电机中性点接地方式是一个综合性 问题。它与电压等级、单相接地短路电流、过电压 水平、保护配置等有关,直接影响电网的绝缘水平、 系统供电的可靠性和连续性、主变压器和发电机的 运行安全以及对通信线路的干扰等。
一、对原始资料分析
发电厂电气部分课设-课程设计(精编文档).doc

【最新整理,下载后即可编辑】《发电厂电气部分》课程设计目录第1章概述 5 1.1 设计的依据. 5 1.2 电力系统概述 5 1.3 110kV变电所各级电压负荷情况分析. 61.4 110kV变电所的自然条件 6第2章电气主接线7 2.1 电气主接线设计的基本要求7 2.2 主变压器台数、容量、型式的选择72.3 电气主接线设计方案的技术经济比较与确定92.4 110kV变电所主接线图15第3章所用电接线设计163.1 所用电设计的要求及原则.163.2 所用变的确定及所用变接线的选择16第4章短路电流计算194.1 短路电流计算的条件194.2 短路电流计算方法和步骤194.3 三相短路电流计算20第5章电气设备选择255.1 电气设备选择的一般条件255.2 10kV配电装置电气设备选择25.5.3 110kV配电装置电气设备的选型33参考文献41第1章概述1.1设计的依据1.1.1依据根据设计任务书下达的任务和原始数据设计。
1.1.2设计内容为了满足该县负荷发展及电网电力交换的需要,优化该县的电网结构,拟在县城后山设计建设一座110/10的降压变电所,简称110kV 变电所。
1.2电力系统概述1.2.1本变电所与电力系统联系12连。
由于原始数据未提供电力系统XX、S及110kV变电所接线路长度j取为100MVA;按供电半径不大于5kM要L。
这里将XX取为0.0451, Sj求,110kV线路长度定为4.8kM。
1.2.2 110kV变电所在电力系统中的地位和作用1、根据110kV变电所与系统联系的情况,该变电站属于终端变电所。
2、110kV变电所主要供电给本地区用户,用电负荷属于Ⅱ类负荷。
1.3 110kV变电所各级电压负荷情况分析1.3.1供电方式110kV侧:共有两回进线,由系统连接双回线路对110kV变电所供电。
10kV侧:本期出线6回,由110kV变电所降压后供电。
1.3.2负荷数据1、全区用电负荷本期为27MW,共6回出线,每回按4.5MW计;远期50MW,14回路,每回按3.572MW设计;最小负荷按70%计算,供电距离不大于5kM。
电力系统规划及发电厂电气部分设计

电力系统规划及发电厂电气部分设计x x(东北电力大学电气工程学院电气工程及其自动化专业12届毕业生,吉林,吉林132012)摘要:本设计主要研究电力系统综合设计及发电厂电气部分专题设计。
整个设计的过程包括设计任务的分析,电力系统的规划与计算,以及对对设计结果的分析与探讨。
首先是电力系统的综合设计部分。
第一步是电源规划,依据系统的负荷容量、备用容量、和调峰容量,确定电厂的装机容量和台数。
初步拟选电力网络接线,制定发电厂、变电所的主接线方式并选择系统的主变压器,进而通过经济方案的比较,确定电力网络接线。
然后,简化系统网络图,进行短路电流计算,根据计算结果,选择系统高压侧的断路器、隔离开关、电流互感器、电压互感器等电气设备。
最后,是计算系统在各种运行方式下的潮流分布并检测在各运行方式下电压是否满足要求,采取调压措施使系统运行在安全运行范围内。
在厂用电设计中,主要内容有厂用电的接线方式和厂用变压器的选择、配电装置设计以及防雷接地规划。
此外,还需对发电机、变压器、输电线路的保护设计,确保(1)保证可靠持续供电;(2)保证良好的电能质量;(3)保证系统运行的经济性。
使电力系统安全可靠地运行。
关键词:电力系统主变压器短路电流潮流分布厂用电中图分类号:TM 713 文献标识码:A1 引言电力是国国民经济的基础,对国民经济发展的发展起到非常重要的作用。
电力系统规划是一项具有战略意义的工作,是电力工业实现快速、稳定、持续发展的重要保障。
规划的效益是最大的效益,规划的节约是最大的节约。
全面、长远的电力发展规划和电力系统规划设计,不仅直接影响到国民经济各行业的发展及其经济性,还关系到电力工业本身投资使用的合理性与能源资源利用的经济性,是电网安全可靠和经济运行的重要保证,是电力行业可持续发展的前提。
本设计包括的知识比较广泛,因此对于我们专业理论知识的复习和巩固有很大帮助,同时也是基于工程研究探索的实践基础上的应用和延伸,对应用已学知识的灵活性具有重要意义。
发电厂电气部分课程设计 (5)

发电厂电气部分课程设计概述本文档旨在为发电厂电气部分课程设计提供一个综合性的指导。
课程设计的目标是帮助学生理解发电厂的电气系统,以及如何设计和优化这些系统的运行。
本文档将介绍课程设计的背景、目标、内容和评估标准。
背景发电厂是能源产业的重要组成部分,负责生产电力以满足人们的需求。
电气部分是发电厂中至关重要的一部分,包括发电机、变压器、开关设备、配电系统等。
学生通过参与电气部分课程设计,可以深入了解发电厂的电气系统的工作原理和运行要求。
目标本课程设计的目标如下:1.理解发电厂电气系统的基本原理和组成要素。
2.掌握发电机、变压器、开关设备和配电系统的设计和优化方法。
3.学会使用相关软件工具模拟和分析电气系统的效果。
4.培养学生团队合作和创新思维能力。
内容本课程设计的内容涵盖了以下几个方面:1. 发电机设计•发电机的工作原理和分类;•发电机的主要参数和特性;•发电机的计算和建模方法;•常见问题及解决方案。
2. 变压器设计•变压器的工作原理和分类;•变压器的主要参数和特性;•变压器的计算和建模方法;•变压器保护和维护。
3. 开关设备设计•不同类型的开关设备及其功能;•开关设备的选择和布置;•开关设备的保护和维护。
4. 配电系统设计•配电系统的基本结构和原理;•配电系统的设计和布置;•配电系统的保护和运行优化。
教学方法本课程设计采用以下教学方法:1.理论讲授:通过教师的讲授,介绍电气系统的基本原理和设计方法。
2.实践操作:学生将学到的理论知识应用到实际问题中,进行电气系统的设计和模拟。
3.团队合作:学生以小组为单位,共同完成课程设计任务,培养团队合作和协作能力。
评估标准本课程设计的评估标准如下:1.设计报告:学生需提交完整的课程设计报告,包括理论分析、设计结果和模拟数据等。
2.实践操作:学生需完成一定数量的实际操作,如使用软件工具进行电气系统模拟和优化。
3.学生评估:学生需参与对其他小组课程设计报告的评估,给予评价和反馈。
发电厂电气部分课程设计

发电厂电气部分课程设计1. 引言本文档是针对发电厂电气部分的课程设计,旨在帮助学生深入理解发电厂的电气系统运行原理和设计方法。
本设计主要包括发电厂电气系统的结构和原理、主要设备的选型和布置、电气系统的保护与控制等内容。
2. 发电厂电气系统结构与原理2.1 发电厂电气系统结构发电厂的电气系统由发电机、变压器、开关设备、电力电子设备和配电系统等组成。
本节将详细介绍电气系统中各个部分的结构和功能。
2.2 发电机结构与原理发电机是发电厂的核心设备,负责将机械能转化为电能。
本节将详细介绍发电机的结构、工作原理以及选取与设计。
2.3 变压器结构与原理变压器是发电厂电气系统中的重要设备,负责将发电机产生的电能进行变压、升压或降压。
本节将对变压器的结构和原理进行详细讲解。
2.4 开关设备与电力电子设备开关设备和电力电子设备在发电厂的电气系统中起着重要的作用,负责控制电能的传输和分配。
本节将介绍开关设备和电力电子设备的作用和应用。
3.1 发电机选型与布置发电机的选型与布置是发电厂电气系统设计中的重要环节。
本节将介绍如何选择适当的发电机类型和参数,并进行合理布置。
3.2 变压器选型与布置变压器的选型与布置是发电厂电气系统设计中的关键步骤。
本节将详细介绍变压器的选型原则和布置方法。
3.3 开关设备与电力电子设备的选择选择合适的开关设备和电力电子设备对于发电厂电气系统的正常运行至关重要。
本节将介绍如何选择适用的开关设备和电力电子设备。
4.1 电气系统保护电气系统的保护是保证发电厂电气设备安全运行的重要环节。
本节将介绍常见的电气系统保护设备和保护原理。
4.2 电气系统控制电气系统的控制是发电厂电气设备运行的核心环节。
本节将介绍电气系统的控制原理和常用控制策略。
5. 总结通过本课程设计,学生将能够深入了解发电厂电气系统的结构与原理,掌握发电机、变压器、开关设备和电力电子设备的选型与布置方法,以及电气系统的保护与控制技术。
这将为学生今后在发电厂电气工程领域的实际工作提供有力支持。
发电厂电气部分课程设计

《发电厂电气部分课程设计》教学大纲Course Design of Electric Parts of Power Plants课程代码:21200620 课程性质:设计(论文)(必修)适用专业:电力 开课学期:6总学时数:2周 总学分数:2.0修订年月:2006年6月 执 笔:彭显刚一、课程设计的性质和目的本课程是电气工程及其自动化专业(电力系统自动化方向)必修课程。
主要通过对某3~5台50~100MW机组的火力发电厂(或变电所)电气一次部分进行设计,使学生掌握发电厂电气设计的基本方法,深化学生对发电厂电气设备、高压配电装置的理解,培养学生分析、解决问题的能力和工程应用能力。
二、课程设计内容及学时分配1、电气主接线的设计;2、短路电流实用计算方法;3、电气设备选择方法;4、配电装置设计规划及选择;5、发电厂总平面布置。
6、电气工程图绘制7、撰写课程设计说明书。
具体分配参见下表:序号 课程内容 理论学时1 电气主接线设计计算 1.5个工作日2 短路电流计算 2个工作日3 电气设备选型 2个工作日4 配电装置设计 0.5个工作日5 总平面布置设计 0.5个工作日6 绘制工程图 1.5个工作日7 撰写设计说明书 2个工作日8 考核答辩三、课程设计教学基本要求1、 对某3~5台50~100MW机组的火力发电厂(或变电所)电气一次部分进行设计,掌握设计的基本方法与步骤。
2、要求会利用工程软件应用于设计中。
四、课程设计选题1、某110~220kV降压变电所电气一次部分设计。
2、某300MW凝汽式火力发电厂电气一次部分设计。
五、本课程设计与其它课程的联系与分工先修课程:电力系统分析、发电厂电气部分、电力系统继电保护后续课程:六、成绩评定从以下三个方面考核,采取五级评分制。
1、现场考核:考察学生分析问题的能力和熟练程度。
2、书面考核:考察课程设计报告的质量。
3、纪律考核:考察学生的组织纪律、出勤情况和工作态度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统规划及发电厂电气部分设计电力系统规划及发电厂电气部分设计摘要:本设计通过对原始资料的分析,对电力系统进行电源规划、电网规划、电器主接线的设计、主变压器的选取,并进行了相应的短路计算,选取合理的断路器、隔离开关、限流电抗器。
最后,对所选的最优方案进行了潮流计算,对不合理的电压采取了相应的无功补偿和调压措施。
最终又选取了火电厂的厂用变压器设计了厂用电的接线形式。
关键词:电力系统规划;电气主接线;短路计算;潮流计算;电网规划Power system planning and power plant electrical partdesignAbstract:This design through the analysis of original data, power supply to power system planning and power grid planning, the main electrical wiring design, selection of the main transformer, and the corresponding short circuit calculation, selecting reasonable circuit breaker, isolating switch, current limiting reactor. Finally, selected the optimal solution for the flow calculation, to adopt the corresponding unreasonable voltage reactive power compensation and voltage regulation measures. Eventually they pick the coal-fired power plant factory with the transformer design of auxiliary power wiring forms.Key words:Power system planning;The main electrical wiring;Short circuit calculation;Power flow calculation;Power grid planning.0 引言随着社会的不断发展,电力工业在国家建设和国民经济发展中占据的地位越来越大。
要满足国民经济发展的要求,电力必须超前发展,这是世界电力工业发展的规律。
因此,做好电网规划,加强电网建设,极为重要。
本次研究课题为电力系统规划及发电厂电气部分设计,其主要内容包括:电源规划、网络方案的确定、电气主接线的确定、电气设备的选择、潮流计算及调压、厂用电设计及防雷保护。
原始资料分析:有一个火电厂,一个水电厂,四个变电所和原系统。
其中,各变电所均有重要负荷,所以要求系统接线必须保证每个变电所均为双电源供电。
在正常运行时,可靠满足变电所最大负荷的要求;故障时应保障重要负荷的要求。
1 电源规划根据给定的负荷资料确定火电厂新增装机容量。
火电厂新增装机容量为:4台100MW机组和1台50MW机组。
1.1 电力负荷分析电力负荷分析主要是考虑用电负荷、供电负荷及发电负荷。
(1)系统的用电负荷:各变电所的最大负荷、水平年发电机机压母线最大负荷、水电厂近区负荷及系统从新区吸收的最大功率之和。
()()11m ax m ax 2m ax 1k P P P P P P P sl n y ⨯++++++=近区机压其中,1k 为同时系数。
(2)系统的供电负荷:用电负荷和网络损耗功率之和。
yg P k P 211-= (2)其中, 2k 为网损率。
(3)系统的发电负荷:供电负荷加厂用电功率。
()z g f P P k P +-=311 (3)其中,z P 为发电机电压直配负荷3k 为厂用电率。
1.2 系统的备用容量系统备用容量一般考虑负荷备用(负荷和国民经济备用)、事故备用、国民经济备用和检修备用[1]。
负荷备用:通常取最大发电负荷的2%~5%,低值用于大系统,高值用于小系统;事故备用:取最大发电负荷的10%左右,但应大于最大一台发电机容量;检修备用:通常取最大发电负荷的8%~15%左右。
火电厂安排在夏季检修,周期为一年,时长为为30天;水电厂安排在冬季检修,周期为2年,时长为20天。
1.3 负荷的增长本设计中认为水平年末的负荷比年初增加10%,年中负荷比年初减少3%。
2 网络方案的确定2.1 电压等级的确定电压等级的确定应根据输送距离、输送容量及周围电力网的额定电压确定[2]。
为了避免发电厂、变电所的设备接线复杂,所以系统中电压等级不宜过多,一般设2~3中电压等级。
下表展示了我国各级电压输送容量和传输距离的范围。
表2.1 我国各级电压输送能力统计输电电压(kv ) 输送容量(MW ) 传输距离(km ) 110 10~50 50~150 220 100~150 100~300 原始资料中的系统新区接口电压为220kv ,由以上可知,本次设计中输电线路电压等级为220kv 。
2.2 网络方案的确定 2.2.1 方案的初选依据经验,初步设计18种系统接线形式,依据可靠性、经济性、灵活性的原则选择2种接线形式作为初图1 方案一1图2 方案二2.2.2 方案的细选(1)导线截面积的选择按经济电流密度选择导线截面积,根据电晕条件、电压损失、导线长期允许载流量以及机械强度校验导线截面积[3]。
本设计中,初选出的两种方案导线均选LGJ-240/40。
(2)经济技术比较在经济技术比较中,投资费用和年运行费用最小的方案优先选用。
若投资而年运行费用小,则可采用抵偿年限进行比较,具体方法如下:若投资21z z >,而年运行费用21μμ<,则令1221μμ--=z z N 。
目前,我国采用标准的抵偿年限发为5~8年,当N 小于5~8时,选用投资费用大的方案;否则选用难免运行费用大的方案。
本设计中,最终选择方案一。
3 电气主接线的确定3.1 主变压器的选择主变压器的选择,主要包括变压器型式、台数和容量的选择。
对于220Kv 电压等级为大电流接地系统,其主变压器型式应为三相双绕组变压器,且采取YN 的联结方式。
由于火电厂有机压重要负荷,为保证可靠供电,所以机压母线侧选取两台主变压器,其余发电机组采取扩大单元接线;由于四个变电所均有重要负荷,所以各个变电所均应有两台变压器;由于水电厂采取扩大单元接线,所以水电厂应有两台主变压器。
根据发电机、单元接线及变电所主变压器容量选取原则,计算每台主变压器的容量。
3.2 发电厂及变电所主接线的确定确定发电厂变电所主接线的基本原则为:可靠性、经济性、灵活性[4]。
依据接线准则,火电厂220kv 侧有9回进线,10回出线,应采用双母线四分段的接线方式,其中6台100MW 和1台50MW 发电机采用单元接线直接接到220kv 母线上,另2台50MW 机组经10kv 机压母线、主变压器接到220kv 母线上;火电厂10kv 机压母线侧采用双母线三分段的接线形式。
水电厂有4台机组,采用扩大单元接线、四角形接线,经升压变压器接到变电所1母线上。
变电所2、3、4均有2回进线,且无穿越功率,故均采用内桥接线;变电所1有4回进线,故采用双母线接线形式。
最终,本设计中主变压器的选择结果如下表,接线形式 台数 主变压器型号 50MW 机组 单元接线 6 SFP7-150000/220 100MW 机组 双母线三分段 3SFP7-120000/220水电厂扩大单元接线 2 SFP7-90000/220变电所1 双母线接线 2 SFP7-120000/220 变电所2 内桥 2 SFP7-90000/220 变电所3 内桥 2 SFP7-63000/220 变电所4内桥2SFP7-50000/2204 电气设备的选择电气设备的选取原则为:按正常运行条件下选取额定电压和额定电流;按短路运行条件下校验热稳定和动稳定。
主要选取高压断路器、隔离开关、电流互感器、电压互感器[5]。
4.1 短路计算短路电流计算的目的[6]:(1)选取电气设备;(2)为继电保护的设计和整定值提供依据。
短路计算的一般步骤(1)绘制等值网络;(2)进行网络变换,计算等值发电机到短路点的转移电抗fi x;(3)计算各发电机到短路点的计算电抗jsx;(4)查运算曲线,求出0s、2s、4s的短路电流标幺值;(5)计算短路电流有名值。
4.2 电气设备的选择依据电气设备选取原则,本设计电气设备选择结果如下:断路器隔离开关电流互感器电压互感器火厂220k v侧LW1-220/2000GW4-220/630LCLWD3-220-4⨯300/5TYD220/√3-0.0075火电厂机压母线侧SN4-10G/4000GN-10T/5000-300LMC-10-4000/5JDZ-10水电厂侧LW1-220/2000GW4-220/630LCLWD3-220-4⨯300/5TYD220/√3-0.0075变电所1 LW1-220/2000GW4-220/630LCLWD3-220-4⨯300/5TYD220/√3-0.0075变电所2 LW1-220/2000GW4-220/630LCLWD3-220-4⨯300/5TYD220/√3-0.0075变电所3 LW1-220/2000GW4-220/630LCLWD3-220-4⨯300/5TYD220/√3-0.0075变电所4 LW1-220/2000GW4-220/630LCLWD3-220-4⨯300/5TYD220/√3-0.00755 潮流计算及调压5.1手算潮流本设计需进行冬季最大运行方式下的潮流,计算时,将火电厂设为平衡节点,系统、水电厂及各变电所均设为PQ节点。
手算潮流基本步骤[7]:(1)计算各电气元件的基本参数;(2)画出网络等值图,并进行简化;(3)计算各支路首末端的功率;(4)计算各节点电压。
5.2 计算机算潮流计算机计算潮流时,将火电厂设为平衡节点,系统和水电厂设为PV 节点,各个变电所设为PQ节点[8]。
采用牛顿拉弗逊法,用MATLAB编程计算。
冬季最大运行方式下,各个变电所负荷为原来最大负荷的1.1倍;冬季最小运行方式下,各个变电所负荷为冬季最大运行方式下负荷的0.7倍;夏季最大运行方式下,各个变电所负荷为原来最大负荷的0.97倍;夏季最小运行方式下,各个变电所负荷为夏季最大运行方式下负荷的0.7倍。
5.3 调压措施在潮流计算中,各个变电所允许电压波动范围为%5220±kv,否则视为不合理,此时需采用调压措施。