(完整版)高中物理电磁学优质习题整理
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)
[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。
()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。
()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。
2023高中物理电磁学复习 题集附答案
2023高中物理电磁学复习题集附答案本文为2023高中物理电磁学复习题集,附带答案。
以下是一些常见的物理电磁学习题,希望能够帮助你巩固相关知识点。
1. 第一题:一个电荷为+5μC的粒子静止在坐标原点上,它周围的电场强度是多少?答案:+5μC电荷在原点产生的电场强度为0。
2. 第二题:一个电子静止在坐标轴上的点A,电子自A点开始沿x轴正方向移动2m,求此过程中的电势变化。
答案:电子受到电场力的作用,沿着电场力方向移动,即x轴正方向,因此电势变化为正。
根据公式ΔV = -Ed,其中ΔV为电势变化量,E为电场强度,d为位移。
根据题目给出的信息,可知电场强度E与电子电量q的比值恒定,即E = kq/r²,其中k为电场常量,q为电子电量,r为距电子的距离。
由于电场力的方向与电场强度的方向相反,所以ΔV = E × d = -kd。
3. 第三题:一个有限长直导线,导线均匀带有电荷密度λ,求解导线上某一点P的电场强度。
答案:根据导线的电荷分布,可以将线密度λ看作一个线元,电元dE对点P的电场强度为dE = kdλ/r,其中r为点P到线元的距离。
将所有的线元叠加起来,可以得到整个导线上点P的电场强度为E = ∫dE =∫kdλ/r。
4. 第四题:一半径为R的均匀充电球,带电量为Q,求球外面的电场强度。
答案:球外点P与球心O连线与球面相交,沿着球面上的一小段圆周弧元的电场强度相等,符合位矢叠加原理。
设球面元的电荷量为dQ,球面元上的电场强度为dE,由于球面元带电体均匀,因此整个球面上的电场强度大小相等,方向指向球心。
球外一点的电场强度可以看作是球面上所有电场强度的叠加,因此球外点的电场强度为E = kQ/r²,其中k为电场常量,Q为球的总电量,r为球心到点P的距离。
5. 第五题:一个电子从电势为V1的地方沿着电场力线方向到电势为V2的地方,求电子所受的电场力做功。
答案:根据题意,电子从电势为V1的地方到电势为V2的地方,说明在此过程中电势降低,因为电势差ΔV = V2 - V1 < 0。
2023高考物理电磁学复习 题集附答案
2023高考物理电磁学复习题集附答案1. 计算题(1) 题目:一根长直导线与一均匀磁场垂直。
当导线上通过电流I时,该导线受到的磁力为F。
若电流增加到2I,导线受到的磁力变为几倍?答案:根据洛伦兹力公式 F = BIL,磁力与电流I成正比。
当电流增加到2I时,磁力也变为原来的两倍。
(2) 题目:一根长直导线和一个圆形线圈位于同一平面内。
导线与线圈无电流通过时,导线上的电流为I1时,线圈不受任何力的作用。
若导线上的电流变为I2(I2 > I1),线圈受到的磁力的方向如何?答案:根据安培环路定理,通过圆形线圈的磁感应强度与线圈内的电流方向相同。
由于导线和线圈位于同一平面内且导线上电流方向为I1,所以线圈受到的磁力方向与导线相反。
2. 简答题题目:什么是电磁感应?请举一个与电磁感应相关的实例,并说明原理。
答案:电磁感应是指导体中的电荷在磁场的作用下产生电流的现象。
一个与电磁感应相关的实例是发电机的工作原理。
发电机通过旋转导线圈在磁场中产生感应电动势,从而将机械能转化为电能。
发电机工作的原理如下:当导线圈旋转时,由于导线移动时与磁力线斜交,导线内部的自由电子受到洛伦兹力的作用,从而在导线中产生电流。
这时,导线两端的电势差就会推动工作电荷的流动,形成一个电流回路。
由于导线圈在旋转时可以保持与磁场的相对运动,因此电流的产生是连续不断的,实现了电能的转换。
3. 应用题题目:一个带电粒子以速度v进入一个垂直磁场,受到的洛伦兹力为F。
如果将该带电粒子的速度翻倍,磁场保持不变,受到的洛伦兹力将会如何变化?答案:根据洛伦兹力的公式 F = qvB,洛伦兹力与粒子速度v成正比。
当将带电粒子的速度翻倍时,其受到的洛伦兹力也会翻倍。
4. 计算题题目:一根长度为L的导线,电流I以时间t的速率匀速地变化。
在导线附近的某点处,磁感应强度B随时间的变化率为d|B|/dt = k,其中k为常数。
求在这个点的感应电场强度E。
答案:根据法拉第电磁感应定律,感应电场强度E与磁感应强度的变化率成正比。
高考物理电磁学大题练习20题Word版含答案及解析
高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。
金属棒的质量为m,棒的左端与导轨相接,右端自由。
设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。
2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。
答案】(1) v=B1d/2m。
I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。
ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。
金属棒始终与导轨相互垂直并接触良好。
问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。
解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。
根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。
因此,我们需要求出这段时间内的电流强度。
根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。
高中物理电磁学基础练习题及答案
高中物理电磁学基础练习题及答案练习题一:电场1. 电荷的基本单位是什么?答案:库仑(C)2. 两个等量的正电荷相距1米,它们之间的电力是多少?答案:9 × 10^9 N3. 电场强度的定义是什么?答案:单位正电荷所受到的电力4. 空间某点的电场强度为10 N/C,某个电荷在此点所受的电力是5 N,求该电荷的电量。
答案:0.5 C练习题二:磁场1. 磁力线的方向与什么方向垂直?答案:磁力线的方向与磁场的方向垂直。
2. 磁力的大小与什么有关?答案:磁力的大小与电流强度、导线长度以及磁场强度有关。
3. 磁感应强度的单位是什么?答案:特斯拉(T)4. 在垂直磁场中,一根导线受到的力大小与什么有关?答案:导线长度、电流强度以及磁场强度有关。
练习题三:电磁感应1. 什么是电磁感应?答案:电磁感应是指导体在磁场的作用下产生感应电动势的现象。
2. 什么是法拉第电磁感应定律?答案:法拉第电磁感应定律指出,当导体回路中的磁通量变化时,导体回路中会产生感应电动势。
3. 一根长度为1 m的导体以2 m/s的速度与磁感应强度为0.5 T 的磁场垂直运动,求导体两端的感应电动势大小。
答案:1 V4. 一根长度为3 m的导线以2 m/s的速度穿过磁感应强度为0.5 T的磁场,若导线两端的电压为6 V,求导线的电阻大小。
答案:1 Ω练习题四:电磁波1. 什么是电磁波?答案:电磁波是由电场和磁场相互作用产生的波动现象。
2. 电磁波的传播速度是多少?答案:光速,约为3 × 10^8 m/s。
3. 可见光属于电磁波的哪个频段?答案:可见光属于电磁波的红外线和紫外线之间的频段。
4. 无线电波属于电磁波的哪个频段?答案:无线电波属于电磁波的低频段。
练习题五:电磁学综合练习1. 一个电荷在垂直磁场中受到的磁力大小为5 N,该电荷的电量是2 C,求该磁场的磁感应强度。
答案:2.5 T2. 一段长度为2 m的导线以8 m/s的速度进入磁感应强度为0.2 T的磁场中,导线所受的感应电动势大小为4 V,求导线两端的电阻大小。
高中物理电磁学常考题总结(带答案解析)
高中物理电磁学常考题总结(带答案解析)姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、综合题(共60题;共0分)1.如图所示,厚度不计的圆环套在粗细均匀、长度为0.8m的圆柱顶端。
圆环可在园柱上滑动,同时从静止释放,经0.4s圆柱与地相碰,圆柱与地相碰后速度瞬间变为0,且不会倾倒。
(1)求静止释放瞬间,圆柱下端离地的高度(2)若最终圆环离地的距离为0.6m,则圆环与圆柱间的滞动摩擦力是圆环重力的几倍?(3)若圆环速度减为0时,恰好到达地面,则从静止释放时圆环离地的高度为多少?2.如图所示,ABCD是游乐场中的滑道,它位于竖直平面内,由两个半径分别为R1=10m和R2=2m的1/4光滑田弧,以及长L=10m、动摩擦因数=0.1的水平滑连组成,所有滑道平滑连接,D点恰好在水面上。
游客(可视为质点)可由AB弧的任意位置从静止开始下滑,游客的质量为m=50kg。
(1)若到达AB弧的末端时速度为5m/s,此时游客对滑道的压力多大?(2)若要保证游客能滑入水中,开始下滑点与B点间网弧所对应的圆心角要足什么条件。
(可用三角函数表示)(3)若游客在C点脱离滑道,求其落水点到D点的距离范围。
3.如图1所示是某质谱仪的模型简化图,P点为质子源,初速度不计的质子经电压加速后从O点垂直磁场边界射入,在边界OS的上方有足够大的垂直纸面的匀强磁场区域,B=0.2T。
a、b间放有一个宽度为L ab =0.1cm的粒子接收器S,oa长度为2m。
质子的比荷,质子经电场、磁场后正好打在接收器上。
(1)磁场的方向是垂直纸面向里还是向外?(2)质子进入磁场的角度范围如图2所示,向左向右最大偏角,所有的质子要打在接收板上,求加速电压的范围(结果保留三位有效数字,取cos80=0.99, )。
(3)将质子源P换成气态的碳I2与碳14原子单体,气体在P点电离后均帯一个单位正电(初速度不计),碳12的比荷C/kg,碳14的比荷保持磁感应强度不变,从O 点入射的角度范围不变,加速电压可以在足够大的范围内改变。
高中物理电磁感应练习题及答案
高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。
2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。
下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。
二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。
答案:相反;相同。
31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。
如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。
答案:增大;减小。
三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。
答案:A.将回路绕原路转过90°。
法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。
这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。
在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。
高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。
高三物理电磁学练习题及答案
高三物理电磁学练习题及答案一、选择题1. 带电粒子在磁场中受力的大小与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 粒子所受磁场的大小D. 粒子所受磁场的方向2. 一个导线以匀速矩形轨道绕一个垂直于轨道面的固定轴旋转。
导线的两端接有电源,通过导线的电流大小和方向在转过一个周期后是:A. 大小不变,方向也不变B. 大小不变,方向相反C. 大小相反,方向不变D. 大小相反,方向相反3. 两个平行的长直导线之间通过电流会发生什么现象?A. 两导线之间会产生吸引力B. 两导线之间会产生斥力C. 两导线之间会发生磁场D. 两导线之间电流大小会发生变化4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。
通过导线的总电流为I,导线所在的平面与磁场之间夹角为θ。
则导线所受力的大小为:A. IθB. Iθ/2C. Iθ^2D. Iθ^2/25. 在变化磁场中一个回路内的感应电动势的大小与以下哪个因素无关?A. 磁场的变化速率B. 回路面积的大小C. 回路的形状D. 磁场的方向二、填空题1. 两根平行导线之间的距离为0.2 m,通过第一根导线的电流为2 A,第二根导线与第一根导线的角度为30°,则在第二根导线上的磁感应强度为_____ T。
2. 一根长直导线通过电流3 A,产生的磁场的磁感应强度为____ T。
3. 一个圆形回路的半径为0.2 m,它所在的平面与一个磁场垂直,磁感应强度为0.5 T,磁场持续变化,则回路内感应电动势的大小为_____ V。
4. 一根导线形状为正方形,两边的两段导线与均匀磁场垂直并相等。
通过导线的总电流为4 A,导线所在的平面与磁场之间夹角为60°。
则导线所受力的大小为_____ N。
三、计算题1. 一条长直导线通过电流I,产生的磁场与另一根平行导线距离为d,并在两导线之间产生一个力作用。
当其中一根导线的电流大小为2I时,两导线之间的力变为原来的几倍?2. 一个包围面积为0.2 m^2的圆形回路,其平面与磁场成60°角,磁感应强度为0.4 T,磁场变化的速率为5 T/s,计算回路中感应电动势的大小。
高中物理电磁学经典例题
高中物理典型例题集锦(电磁学局部)25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板的中央各有小孔M、N。
今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好为零,然后按原路径返回。
假设保持两板间的电压不变,则:A.假设把A板向上平移一小段距离,质点自P点下落仍能返回。
B.假设把B板向下平移一小段距离,质点自P点下落仍能返回。
图22-1C.假设把A板向上平移一小段距离,质点自P点下落后将穿过N孔继续下落。
D.假设把B板向下平移一小段距离,质点自P点下落后将穿过N孔继续下落。
分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N运动时,要克制电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克制电场力做的功相等,即:mg2d=qU AB假设把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回,应选A。
假设把B板下移一小段距离,因U AB保持不变,质点克制电场力做功不变,而重力做功增加,所以它将一直下落,应选D。
由上述分析可知:选项A和D是正确的。
想一想:在上题中假设断开开关S后,再移动金属板,则问题又如何?(选A、B)。
26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。
现有一离子束,其中每个离子的质量为m,电量为q,从与两板等距处沿着与板平行的方向连续地射入两板间的电场中。
设离子通过平行板所需的时间恰为T(与电压图23-1图23-1(b)变化周期一样),且所有离子都能通过两板间的空间打在右端的荧光屏上。
试求:离子击中荧光屏上的位置的围。
(也就是与O‘点的最大距离与最小距离)。
重力忽略不计。
分析与解:各个离子在电场中运动时,其水平分运动都是匀速直线运动,而经过电场所需时间都是T ,但不同的离子进入电场的时刻不同,由于两极间电压变化,因此它们的侧向位移也会不同。
高考物理最新电磁学知识点之电磁感应技巧及练习题附答案
高考物理最新电磁学知识点之电磁感应技巧及练习题附答案一、选择题1.无线充电技术已经被应用于多个领域,其充电线圈内磁场与轴线平行,如图甲所示;磁感应强度随时间按正弦规律变化,如图乙所示。
则( )A .2T t =时,线圈产生的电动势最大B .2T t =时,线圈内的磁通量最大 C .0~4T 过程中,线圈产生的电动势增大 D .3~4T T 过程中,线圈内的磁通量增大 2.如图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.4m ,电阻不计。
导轨所在平面与磁感应强度B 为0.5T 的匀强磁场垂直。
质量m 为6.0×10-3kg 电阻为1Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触。
导轨两端分别接有滑动变阻器R 2和阻值为3.0Ω的电阻R 1。
当杆ab 达到稳定状态时以速率v 匀速下滑,整个电路消耗的电功率P 为0.27W 。
则( )A .ab 稳定状态时的速率v =0.4m/sB .ab 稳定状态时的速率v =0.6m/sC .滑动变阻器接入电路部分的阻值R 2=4.0ΩD .滑动变阻器接入电路部分的阻值R 2=6.0Ω3.两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。
边长为0.1m 、总电阻为0.005Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图甲所示。
已知导线框向右做匀速直线运动,cd 边于t =0时刻进入磁场。
导线框中感应电动势随时间变化的图线如图乙所示(规定感应电流的方向abcda 为正方向)。
下列说法正确的是( )A .磁感应强度的方向垂直纸面向内B .磁感应强度的大小为0.5TC .导线框运动速度的大小为0.05m/sD .在t =0.4s 至t =0.6s 这段时间内,导线框所受的安培力大小为0.04N4.如图所示两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。
高中物理竞赛电磁学专题练习20题(带答案详解)
高中物理竞赛电磁学专题练习20题(带答案详解)一、解答题1.如图所示,长直螺旋管中部套有一导线围成的圆环,圆环的轴与螺旋管的轴重合,圆环由电阻不同的两半圆环组成,其阻值1R 、2R 未知.在两半圆环的结合点A 、B 间接三个内阻均为纯电阻的伏特表,且导线0A V B --准确地沿圆环直径安放,而1A V B --、2A V B --分置螺旋管两边,长度不拘,螺旋管中通有交流电时发现,0V 、1V 的示数分别为5V 、10V ,问:1V 的示数为多少?螺旋管外的磁场及电路的电感均忽略不计2.图1、2、3所示无限长直载流导线中,如果电流I 随时间t 变化,周围空间磁场B 也将随t 变化,从而激发起感应电场E .在载流导线附近空间区域内,B 随t 的变化,乃至E 随t 的变化可近似处理为与I 随时间t 变化同步.距载流导线足够远的空间区域,B 、E 随t 的变化均会落后于I 随t 的变化.考虑到电磁场变化传播的速度即为光速,如果题图讨论的空间区域线度尽管很大,题图讨论的空间区域线度尽管很大,即模型化为图中即模型化为图中x 可趋向无穷,可趋向无穷,但这一距离造成的但这一距离造成的B 、E 随t 的变化滞后于I 随t 变化的效应事实上仍可略去.在此前提下,求解下述问题(1)系统如图1、2所示,设()I I t =①通过分析,判定图1的xOy 平面上P 处感应电场场强P E 的三个分量Px E 、Py E 、PzE中为零的分量中为零的分量②图2中12l l ⨯长方形框架的回路方向已经设定,试求回路电动势ε③将图1中的P 、Q 两处感应电场场强的大小分别记为P E 、Q E ,试求P Q -E E 值 (2)由两条无限长反向电流导线构成的系统如图3所示,仍设()I I t =,试求P 处感应电场场强P E 的方向和大小3.现构造如图1所示网络,该网络为无穷正方形网络,以A 为原点,B 的坐标为()1985,930.现在两个这样的网络C C A B 和L L A B ,其单位长度上所配置的电学元件分别为电容为C 的电容器及电感为L 的线圈,且网络中的电阻均忽略不计,并连接成如图2所示的电路S 为调频信号发生器,可发出频率()0,f Hz ∈+∞的电学正弦交流信号.即()0sin 2πS U U ft =,0U 为一已知定值,R 为一已知保护电阻为一已知保护电阻试求干路电流达到最大时,S 的频率m f 以及此时干路的峰值电流max I4.在空间中几个点依次放置几个点电荷1q ,2q ,3q ,4q ,…,n q ,对于点i ,其余1n -个点电荷在这一点上的电势和为i U ,若在这n 个点上换上另n 个点电荷1q ',2q ',3q ',…,n q ',同理定义()1,2,,i U i n '=L(1)证明:()112nni i i i i i qU q U n ==''=≥∑∑(2)利用(1)中结论,证明真空中一对导体电容器的电容值与这两个导体的带电量无关.(这对导体带等量异号电荷)(3)利用(1)中的结论,中的结论,求解如下问题:求解如下问题:求解如下问题:如图所示,如图所示,如图所示,正四面体正四面体ABCD各面均为导体,但又彼此绝缘.已知带电后四个面的静电势分别为1ϕ、2ϕ、3ϕ和4ϕ,求四面体中心O点的电势O ϕ5.有七片完全相同的金属片,有七片完全相同的金属片,面积为面积为S ,放置在真空中,放置在真空中,除除4和5两板间的间距为2d 外,其他相邻两板间距均为d ,且1和5、3和7用导线相连,试求:(1)4与6两板构成的电极的电容(2)若在4和6间加上电压U ,求各板的受力.6.如图所示,一电容器由一圆形平行金属板构成,金属板的半径为R ,间距为d ,现有一点P ,在两金属板的中位面(即平行于两板,且平分两极板所夹区域的平面)上,P 到两中心O 的距离为()0R r r +>R ,已知极板所带的面电荷密度为σ±,且R r d ??,试求P 点的场强大小P E7.在一环形铁芯上绕有N 匝外表绝缘的导线,导线两端接到电动势为ε的交流电源上,一电阻为R 、自感可略去不计的均匀细圆环套在这环形铁芯上,细圆环上a 、b 两点间的环长(劣弧)为细圆环长度的1n.将电阻为r 的交流电流计G 接在a 、b 两点,有两种接法,分别如图1、图2所示,试分别求这两种接法时通过G 的电流8.有一个平面正方形无限带电网络,每个格子边长均为r ,线电荷密度为()0λλ>,有一带电电量为()0Q Q >、质量为m 的粒子恰好处于一个格子的中心,若给它某个方向的微扰,使其位移d ,d r =.试求它受到电场力的大小,并描述它以后的运动.(提示:可能用到的公式2222π11116234=++++L )9.(1)一维电磁驻波()()sin x E x A k x =在x 方向限制在0x =和x a =之间.在两个端点处驻波消失,求x k 的可能值.的可能值.(2)弦理论认为物理空间多于三维,多出的隐藏维空间像细圆柱的表面一样卷了起来,如图中y 坐标所示,设圆柱的半径为()b a =,在圆柱面上电磁波的形式为()()(),sin cos x y E x y A k x k y =,其中y 是绕圆柱的折叠空间的坐标.求y k 的可能值.的可能值.(3)光子能量222πx yhc W k k =+,其中()1239hc eV nm =⨯,eV 表示1电子伏特,1nm 等于910m -.目前人类能产生的最高能量的光子大约为121.010eV ⨯.如果该能量能够产生一个折叠空间的光子,b 的值满足什么条件?10.在图1所示的二极管电路中,所示的二极管电路中,从从A 端输入图2所示波形的电压,所示波形的电压,若各电容器最初都若各电容器最初都没有充电,试画出B 、D 两点在三个周期内的电压变化.将三极管当作理想开关,B 点电压的极限是多少?电压的极限是多少?11.理想的非门可以视为一个受控电压源:理想的非门可以视为一个受控电压源:当输入端电压小于当输入端电压小于6C U V =时,输出端相当于和地线之间有一个理想电压源,电源电压012U V =;当输入端电压大于C U 时,输出端相当于和地线之间短路.出端相当于和地线之间短路.等效电路图如图等效电路图如图1所示.不同非门中接地点可以视为是同一个点,我们利用非门、电容和电阻能够做成一个输出方波信号的多谐振荡器.给出图2电路中02U 随着时间的变换关系.提示:如图3的RC 电路,从刚接通电路开始,电容上的电压随时间变化规律为()()01t RC U t U e -=- 12.如图所示,在圆形区域中(足够大),有垂直于纸面向内随时间均匀增加的磁场B kt∆=∆.在与圆心O 距离为d 的位置P 处有一个钉子,钉住了一根长度为l ,质量为m 的均匀绝缘棒的中心,绝缘棒能在平面内自由无摩擦地自由转动.绝缘棒能在平面内自由无摩擦地自由转动.绝缘棒上半截均匀带绝缘棒上半截均匀带正电,电量为Q ,下半截均匀带负电,电量为Q -.初始时刻绝缘棒垂直于OP(1)计算在P 点处钉子受到的压力(2)若绝缘棒受到微小扰动,在平面内来回转动起来(速度很小,洛仑兹力可以忽略),求证此运动是简谐振动,并计算周期.(绝缘棒绕质心的转动惯量为2112I ml =)13.如图1所示的电阻网络中,图中各段电阻的阻值均为r(1)试求AB R 、AC R(2)现将该网络接入电路中,如图2所示.AC 间接电感L ,A 、B 间接一交流电源,其角频率为ω,现为提高系统的动率因数,在A 、B 间接一电容C ,试求使功率因数为1的电容C ,已知rL αω=14.两个分别绕有1N 和2N 匝的圆线圈,半径分别为1r ,2r 且21r r =,设大圆的电阻为R ,试求:(1)两线圈在同轴共面位置的互惑系数(2)在小线圈中通以稳恒电流I ,并使之沿轴线以速度v 匀速运动.始终保持二者共轴,求两线圈中心相距为x 时,大线圈中的感生电动势(3)若把小线圈从共面移到很远处,求大线圈中通过的感生电量.(忽略所有自感) 15.如图所示为一两端无限延伸的电阻网络,设每小段电阻丝电阻均为1Ω,试问:A 、B 间等效电阻AB R 为多少?(结果保留三位有效数字)为多少?(结果保留三位有效数字)16.如图a 所示,电阻101k R R ==Ω,电动势6V E =,两个相同的二极管D 串联在电路中,二极管D 的D D I U -特性曲线如图b 所示.试求: (1)通过二极管D 的电流;的电流; (2)电阻1R 消耗的功率.17.如图甲所示,两台发电机并联运行,共同供电给负载,负载电阻24R =Ω.由于某种原因,两台发电机的电动势发生差异,1130V ε=、11r =Ω、2117V ε=、20.6r =Ω.求每台发电机中的电流和它们各自发出的功率.18.如图1所示的无限旋转内接正方形金属丝网络由一种粗细一致、所示的无限旋转内接正方形金属丝网络由一种粗细一致、材料相同的金属丝材料相同的金属丝构成,其中每一个内接正方形的顶点都在外侧正方形四边中点上.其中每一个内接正方形的顶点都在外侧正方形四边中点上.已知与最外侧正方形已知与最外侧正方形边长相同的同种金属丝A B ''的电阻为0R ,求网络中 (1)A 、C 两端间等效电阻AC R ; (2)E 、G 两端间等效电阻EC R .19.正四面体框架形电阻网络如图所示,其中每一小段的电阻均为R,试求:(1)AB两点间的电阻;(2)CD两点间的电阻.20.在如图所示的网络中,仅知道部分支路上的电流值及其方向、某些元件参数和支路交点的电势值(有关数值及参数已标在图甲上),请你利用所给的有关数值及参数求出含有电阻x R的支路上的电流值x I及其方向.参考答案1.220V U V =或0. 【解析】【解析】 【详解】因螺旋管中通有交流电,故回路中产生的电动势也是交变的,但可以仅限于某确定时刻的感生电动势、电压和电流的瞬时值,这是因为在无电感、电容的情况下,各量有效值的关系与瞬时值的关系相同.(1)当12R R <,取A B U U >时,回路中的电流如图所示,则时,回路中的电流如图所示,则0001102V I R I R ε+-=,0100102V V I R I R ε'+-=,2202V I R I R ε-+=,0200202V V I R I R ε'-+=.整理可得0120001202V V V V I R I R I R I R ε''=+=-.所以,2201201220V V V V U I R I R I R V ''==+=(2)当12R R >,取A B U U <时,0I 反向,其他不变,则1020010202V V V V I R I R I R I R ε''=-=+所以,221021020V V V V U I R I R I R ''==-=(此时20R =,即2R 段为超导体,10R ≠) 综上所述,220V U V =或02.(1)①0PzE =②012d ln2πd l x l l t x με+⎛⎫= ⎪⎝⎭ ③02d ln 2πd P Q x l I E E t x μ+⎛⎫-= ⎪⎝⎭(2)()0d ln 2πd P I d x E x t x μ-⎛⎫= ⎪⎝⎭,基准方向取为与y 轴反向轴反向 【解析】 【详解】(1)①若0Pz E ≠,则在过P 点且与xOy 坐标面平行的平面上,取一个以x 为半径,以y 轴为中央轴的圆,设定回路方向如题解图所示.由系统的轴对称性,回路各处感应电场E 的角向分量与图中Pz E 方向一致地沿回路方向,且大小相同,由E 的回路积分所得的感应电动势0ε≠.另一方面,电流I 的磁场B 在该回路所包围面上磁通量恒为零,磁通量变化也为零,据法拉第电磁感应定律应有0ε=.两者矛盾,故必定是0Pz E =.若0Py E ≠,由系统的轴对称性,在题解图1的圆柱面上各处场强E 的y 方向分量方向、大小与图中Py E 方向、大小相同.若取一系列不同半径x 的同轴圆柱面,每个圆柱面上场强E 的y 方向分量方向相同、方向分量方向相同、大小也相同,但大小应随大小也相同,但大小应随x 增大而减小.这将使得题文图2中的矩形回路感生感应电动势0ε≠,与法拉第电磁感应定律相符,因此允许0Py E ≠若0Px E ≠,由轴对称性,题解图1的圆柱面上各处场强E E 的径向分量方向与Px E 对应的径向方向一致,两者大小也相同.将题解图1中的圆柱面上、下封顶,成为一个圆筒形高斯面,上、下两个端面d ⋅E S 通量积分之和为零,侧面d ⋅E S 通量积分不为零,这与麦克斯韦假设所得1d d 0se sV V ρε⋅==⎰⎰⎰⎰⎰ÒE S矛盾,故必定是0Px E =②据法拉第定律,参考题文图2,有()21d d d x l xB x l x t ε+=--⎰,其中()02πI B x x μ= 所以,001221d d ln ln d 2π2πd Il x l x l l l t x t x μμε++⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭③据麦克斯韦感应电场假设,结合(1.1)问解答,有)问解答,有 ()()121=d LE l E x l E x l l ε⋅=-+⎰Ñ结合①②问所得结果,有()()012121d ln 2πd l x l I E x l E x l l t x μ+⎛⎫-+= ⎪⎝⎭ ()()022d ln 2πd x l IE x E x l t xμ+⎛⎫-+= ⎪⎝⎭ 即得()()022d ln2πd P Q x l I E E E x E x l t x μ+⎛⎫-=-+=⎪⎝⎭ (2)从物理上考虑,远场应()220l E x l →∞+→代入上式,得()202d ln 2πd Pl x l I E E xt x μ→∞+⎛⎫==→∞⎪⎝⎭为行文方便,将P E 改述为()02d ln2πd z PP l x l IE E xt x μ→∞+⎛⎫→=→∞⎪⎝⎭()P E x 为发散量,系因模型造成,并非真实如图所示,由左侧变化电流贡献的()P x 左E 和右侧变化电流贡献的()P x 右E合成的()PE x ,基准方向取为与y 轴反向.轴反向.即有()()()P P P E x E x E x =-左右()()00d d ln ln 2πd 2πd P x d x lx l I I E x t x t x μμ∞+-++⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭左右()()()00d d ln ln 2πd 2πd P d x l d x x lI I E x t d x t d x μμ∞-+-++⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭右左 使得()()0d ln 2πd P I d x E x E x t xμ-⎛⎫== ⎪⎝⎭3.0maxU I R =,12π2πm f LCω== 【解析】【解析】 【详解】不妨设电感网络等效电感AB L L α=,则其阻抗L αω=Z j (j 为单位虚根)为单位虚根) 又由于C C A B 与L L A B 的结构相同,故在阻抗上形式具有相似性,故在阻抗上形式具有相似性,有有1C C αω=⋅Z j ,从而总阻抗11LCRR L RL C C αωααωωω⎛⎫⎛⎫=++=+-=+- ⎪ ⎪⎝⎭⎝⎭ZZZZj j j 又峰值0U I =Z ,所以,1222001I U R L C ααω-⎡⎤⎛⎫⎥=⋅+- ⎪⎢⎝⎭⎣⎦所以,当10L Cωω-=,即1LCω=时,0I 最大 此时,0maxU I R =,而12π2πm f LCω== 4.(1)证明见解析(2)证明见解析(3)12344Oϕϕϕϕϕ+++=【解析】 【详解】(1)设i 点对j 点所产生的电势为ij i a q ,同理易知j 点对i 点产生电势为ji j a q ,而对于此二点系统,我们有ij j ji i U q U q =,即ij i j ji j i a q q a q q = 所以,ij ji a a =,易知ij a 为只与位置有关的参量.又1231231n ni i i i i n ij j j U a q a q a q a q a q ==++++=∑L (令0ii a =)则1231231n nii i i i nij j j U a q a q a q a q a q =''''''=++++=∑L(ij a 只与位置有关)所以,111,1111nnn n n nn i i i ij j ij i j i ij j i i i i j i j i j i qU q a q a q q q a q q U =======⎛⎫⎛⎫'''''==== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑∑∑所以原式(格林互易定理)成立(2)分别设两导体前后所带静电分别为1Q ±,2Q ±,其对应的电容分别为1C 、2C则由(1)知,()121122121221ni i i qU QU QU Q U U ='=-=-∑(其中21U ,22U 为带2Q ±时两导体电势)同样()211212211121ni i i q U Q U Q U Q U U ='=-=-∑(其中11U ,12U 为带1Q ±时两导体电势)时两导体电势)由(1)知二者相等,则()()1212221112Q U U Q U U -=-所以,121211122122Q Q C C U U U U ===--即与导体带电量多少无关.即与导体带电量多少无关.(3)由题意,设四个面与中心O 的电荷量分别为1q 、2q 、3q 、4q 、0 同时,四个面与中心的电势分别为1ϕ、2ϕ、3ϕ、4ϕ、O ϕ.现将外面四个面接地,中心放一个电量为Q 的点电荷,中心电势为U ,而四个面产生的感应电荷都相等,为4Q-,则此时四个面与中心O 的电荷和电势分别为4Q -、4Q -、4Q -、4Q-、Q ;0、0、0、0、U由格林互易定理可得123404444O Q Q Q Q U ϕϕϕϕϕ⎛⎫⎛⎫⎛⎫⎛⎫⋅-+⋅-+⋅-+⋅-+⋅=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭即可得12344O ϕϕϕϕϕ+++=5.(1)04616161919S C C d ε==(2)24232361U S F d ε=,方向向上;25213722U S F dε=,方向向下;206216722U S F d ε=,方向向上;207281722U SF d ε=,方向向上【解析】 【详解】【详解】(1)由4与6两板构成的电极的电容结构可等效为图所示的电容网络,其中图101223345667SC C C C C C dε======,04522SC C dε==.由图可知,各电容器所带的电量满足342356Q Q Q =+,451267Q Q Q +=,2312Q Q =. 各支路的电压满足如下关系:各支路的电压满足如下关系:3456Q Q U C C +=,45672Q Q U C C +=,23566712Q Q Q Q C C C C+=-. 由上述各式解得1223119Q Q CU ==,341019Q CU =,45619Q CU =,56919Q CU =,67719Q CU =,则344504616161919Q Q S C C U dε+===.为求4、6端的电容,我们也可通过先求如图左所示的电阻网络的阻值,进而求得电容.将图中O ABC -的Y 形接法部分转化为△接法,得到图2右所示电路,其阻值如图所示,进而易得到进而易得到461916R R =. 直流电路的电阻、电压、电流之间有U I R=. 由电容组成的电路的电容、电压、电量之间有Q CU =. 类比有1C R~.且上述的电阻电路与电容电路匹配,所以,46461C R ~,即有04616161919S C C dε==.(2)由于各板的受力为系统中其他板上的电荷在该板处产生的电场对其板上电荷的作用力,故而通过高斯定理易求得各板处的场强,进而求得各板的受力为2121111202722U S Q F E Q Q dεε==⋅=,方向向下,在原系统中. (1E 求法:1板上侧面不带电,下侧面带电12Q ,正电,即011219USQ Q dε==,由电荷守恒知,27~板带电总量为1Q ,为负电,将27~视为整体,由高斯定理易得到1102Q E ε=)下面符号i Q 表示第i 块板所带的总电量.2220F E Q ==.(该板显然有20Q =)2456701233332009922722Q Q Q Q U S Q Q F E Q Q d εεε⎛⎫++++==-⋅= ⎪⎝⎭,方向向下.,方向向下.式中00033423109191919US US US Q Q Q d d d εεε=-+=-+=-,0434451619US Q Q Q d ε=+=, 054556319US Q Q Q d ε=-+=,656671619US Q Q Q d ε=--=-, 0767719USQ Q d ε=-=-.同理可得:24232361U S F d ε=,方向向上;,方向向上;205213722U SF d ε=,方向向下; 206216722U S F dε=,方向向上; 27281722U SF dε=,方向向上.6.02πP dE rσε=【解析】【解析】 【详解】我们用磁场来类比,引入假想的磁荷1m q 、2m q ,且定义,且定义123014πm m q q r μ==F r ,且1213014πm m q q r μ==F H r . 下面我们通过磁偶极子与环电流找到联系:下面我们通过磁偶极子与环电流找到联系:对于一1m ±q 的磁偶极子,磁矩m m q =p l ,而对于一个电流为I 的线圈,磁矩0m I μ'=p S ,当m m '=p p 时,有0m q I μ=l S .对于此题,我们认为上、下两极板带磁荷面密度为m σ±,则对于S ∆面积中的上、下磁荷,我们看作磁偶极子,则若用环电流代替,有0m Sd I S σμ∆=∆,所以,0m dI σμ=.于是,该两带电磁荷板可等效为许多小电流元的叠加,该两带电磁荷板可等效为许多小电流元的叠加,而这样的电流源会在内部抵消,而这样的电流源会在内部抵消,而这样的电流源会在内部抵消,最后最后只剩下最外层一大圆,且0mdI σμ=.在P 点处的磁场强度,由于R r,故可认为由一距P 距离为r 的无限长通电导线所产生,且其中的电流为I ,则002π2πm Pd B IH r r σμμ===. 由于电、磁场在引入磁荷后,在形式上完全一样,则02πP d E rσε=7.()21n N n R n r ε⎡⎤-+⎣⎦ 【解析】 【详解】【详解】解法(1):细圆环中的电动势为R Nεε=.细圆环上ab 段的电阻为段的电阻为劣弧ab R R n=. 优弧()1ab n R R n-'=.如题图1中接上G 后,G 的电阻r 与ab R 并联,然后再与ab R '串联,这时总电阻便为串联,这时总电阻便为()11ab ab abn RrR rRR R r R nr R n -'=+=+++.于是,总电流(通过优弧ab R '的电流)为()1111RI n R R NrR nr R nεε==⋅-++.(请读者自行推导此式)则通过G 的电流为()11121RR nn i I I Rnr R N n R n r rnε===+⎡⎤-+⎣⎦+.(请读者自行推导此式)解法(2):如题图2中接上G 后,G 的电阻r 与abR '并联,然后再与ab R 串联,这时总电阻便为()()211ab ab abn rRrR R R R nr n Rnr R '-=+=++-'+.于是,总电流(通过劣弧ab R 的电流)为()()22111RI n rR R N R nr n R n εε==⋅-++-,则通过G的电流为()()2211n n i N n R n r ε-=⎡⎤-+⎣⎦8.故对于一微扰位移为d 的粒子,有()20π02Q Q r λλε=->F d ,粒子做简谐振动,20π2Q r mλωε= 【解析】 【详解】引理:线电荷密度为()0λλ>的无限长带电线,其在距带电线r 处产生的场强大小为02πE r λε=,方向垂直于带电线向外.,方向垂直于带电线向外. 证明略.证明略.对于本题所给的模型,对于本题所给的模型,建立图示坐标.建立图示坐标.建立图示坐标.因粒子在因粒子在x 轴方向上的受力只与粒子x 方向上的微扰有关,在y 方向上的受力,也只与y 方向上的微扰有关,设粒子在x 方向上有微扰位移x d ,则110021212π2πd 22xi i x Q Q F i i d r x r λλεε∞∞==∆=---⎛⎫⎛⎫+-+⎪ ⎪⎝⎭⎝⎭∑∑. 又由于x d r =,则()()110022*********π2π22xxx i i d d Q Q F i r i r i r i r λλεε∞∞==⎡⎤⎡⎤∆≈--+⎢⎥⎢⎥--⎛⎫⎛⎫⎣⎦⎣⎦-- ⎪ ⎪⎝⎭⎝⎭∑∑()()22221100441ππ2121x xi i Q d Q d r i r i λλεε∞∞===-=---∑∑.又22222222221111111111113523456246⎛⎫⎛⎫+++=-++++++-+++ ⎪ ⎪⎝⎭⎝⎭LL L222222221111111111234564123⎛⎫⎛⎫=++++++-+++ ⎪ ⎪⎝⎭⎝⎭L L 223ππ468=⨯=,所以,2π2x x Q F d rλε∆=-.同理,20π2y y Q F d rλε∆=-. 故对于一微扰位移为d 的粒子,有()20π02Q Q rλλε=->F Fd , 故粒子做简谐振动,20π2Q r mλωε=9.(1)πx n k a =,1n =,2,3,… (2)y mk b=,1m =,2,3,…(3)12101239102102πb nm nm -->⨯≈⨯【解析】【解析】 【详解】(1)要使得电磁波在两端形成驻波,则长度应是半波长的整数倍,相位满足:πx k a n =,即πx nk a=,1n =,2,3,….(2)要使得电磁波在y 方向上的形式稳定为()()(),sin cos x y E x y A k x k y =,则圆柱的周长应为波长的整数倍,相位满足:2π2πy k b m =,即y mk b=,1m =,2,3,…. (3)由222πx yhc W k k =+得22121239π102πn m a b ⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭, 所以,121239102πm m b <,即12101239102102πb nm nm -->⨯≈⨯10.02U 【解析】【解析】 【详解】将过程分为三个阶段,记为α、β、γ.在第一个14周期内,A U 增加,0A D U U >>,因此二极管2D 截止;又因0DB U ≥,二极管1D 保持导通,等效电路如图1所示,在此阶段2D B A U U U ==,记为α然后A U 开始减小,但AD U 保持不变,最初D U 仍然大于零,因此,2D 依然截止.不过D U 正在逐渐减小,所以1D 截止.由于电容上的电荷无处可走,B U 保持不变,AD U 也保持不变.这个阶段一直持续到0D U =,这一过程等效电路如图2所示,记为β.不过,0D U <是不可能的,所以0D U =直至0A U U =-.这一过程等效电路如答图3所示,记为γ.下面A U 又从0U -开始增加,然后AD U 又保持在0U -不变(再次处于β阶段),而B D U U >停留在02U ,直到D U 升至B U .当D B U U =时β阶段结束.阶段结束. 而后新的α阶段又开始了.每个周期均按αβγβ---的次序通过各个阶段,但是电路并不是随时间周期变化的,这可以从图4中看出.B U 等比地趋近于02U ,即是说00322B U U U -→,034U ,038U ,0316U ,….这个电路称为电压倍增器 11.见解析.见解析 【解析】 【详解】将多谐振荡器电路等效为图示电路,可见电流只在0102U R C U ---回路中流动.假设系统存在稳态,则电容电量为常数,因而电阻上电流为0,则1G 输入电压等于输出电压,这显然矛盾,因而系统不存在稳态.不失一般性,电容初态电压为0,系统初态010U =,因而0212U V =,电路沿顺时针给电容充电(电阻上的电流I 从下向上为正,电容电量Q 右边记为正).从0C Q Q CU ==时起,图中i U 的大小开始小于6V ,门反转,将此后直到门再次反转的过程记为过程I :此时0112U V =,020U =,由于电容上电量不突变,所以,006iQ U V C=-=-.因而电路沿逆时针给电容反向充电,新充入电量为Q ∆.120Q Q V IR C +∆-=--,即18Q VIR C∆=--.i U 不断上升,到达6C U V =时,10C Q Q Q CU =+∆=-时,门反转,此后进入过程Ⅱ.设过程Ⅰ历时t Ⅰ,将18QV IR C ∆=--与题目中的RC 电路满足的0Q U IR C∆=+类比,过程Ⅰ满足的018U V =,()12Q U t V C∆==,则由电容上的电压随时间变化规律()()01t RCU t U e-=-可得:ln 3tRC =Ⅰ. 对于过程Ⅱ,此时010U =,0212UV =,由于电容上电量不突变,所以,11218i Q U V C=-=.因而电路沿顺时针给电容正向充电,新冲入电量为Q '.1012Q Q V IR C '+∆-=--,即18Q V IR C'∆=+. i U 不断上升,到达6C U V =时,210C Q Q Q CU Q '=+∆==,门再次反转,此后又进入过程Ⅰ.同理可得:1ln 3t RC =. 过程Ⅰ、Ⅱ循环进行.因此得方波的信号周期为2ln3T RC =. 12.(1)4klQ (2)2π2π3d m mlT K k Q== 【解析】 【详解】设由变化的磁场产生的涡旋电场大小为E ,则有22ππB E r r t∆⋅=∆,得到2rE k =⋅,方向垂直于与O 的连线.则杆上场强分量为2x k E y =-⋅,2y kE d =-⋅.(1)由于上下电量相反,y 方向的场强为定值,故钉子在y 方向不受力.在x 方向上,其所受电场力(考虑到上下对称)为202d 224l k Q klQ F y y l ⎛⎫=⨯-⋅⋅=⎪⎝⎭⎰. 故钉子压力为4klQ .(由于电场和y 坐标成正比,因而也可以使用平均电场计算电场力)坐标成正比,因而也可以使用平均电场计算电场力)(2)设绝缘棒转过一微小角度θ,此时,y 方向的电场力会提供回转力矩.(由于力臂是一阶小量,横坐标变化引起的电场力改变也是一阶小量,横坐标变化引起的电场力改变也是一阶小量,忽略二阶以上小量,忽略二阶以上小量,忽略二阶以上小量,因而不必计算电因而不必计算电场力改变量产生的力矩.由于电场几乎是均匀的,所以正电荷受力的合力力臂为4lθ⋅)244k l kdlQM d Q θθ=-⋅⋅⋅⋅=-,而M I θ=,则04kdlQ Iθθ+=.这是简谐方程,故绝缘棒的运动是简谐运动,其周期为2π2π3d m mlT K k Q==. 13.(1)12AB R r =,78AC R r =(2)241916C rααω=+【解析】 【分析】【分析】 【详解】(1)将题图1所示的电阻网络的A 、B 两点接入电路时,可以发现D 、E 等势点,于是DC 、DE 、CE 可去掉.所以,12AB R r =.将A 、C 接入电路时,将原电路进行等效变化,如图甲所示.接入电路时,将原电路进行等效变化,如图甲所示.11711283122AC R r r r r =+=+.(2)将题图1等效为图所示三端网络.等效为图所示三端网络.由(1)知1122AB R R r ==,1278AC R R R r +==,解得114R r =,258R r =.所以图所示虚线框内的等效阻抗为121211121324154496448i Z r r r i L αααω-⎛⎫ ⎪++=++= ⎪+ ⎪+⎝⎭.电路的总复导纳()()()()()22222222214964213244964111213216213216Y i C i C Z r r ααααωωαααα⎛⎫+++ ⎪=+=⋅+-⋅ ⎪++++⎝⎭为使功率因数为1,则复导纳虚部为0.所以,()()2222244964141916213216C r rαααωαωαα+=⋅=⋅+++14.(1) 201221211π2I N r I r μΦ= (2) ()2201212522213π2N N r r Ivx r xμε=+ (3) 201221π2N N r IQ r Rμ=【解析】【解析】 【详解】6.【解析.如图所示,半径为a 的线圈中通以I 的电流,则中轴线上距圆心x 处的磁感强度为()22π00322222022d d 4π2a a II l a B B a x a x a x μμ==⋅=+++⎰⎰P(1)两线圈在同轴共面位置时,1a r =,0x =,当大线圈中通有1I 的电流时,有010112I B N r μ=⋅因为21r r =,所以,212022πB N r Φ=⋅,则201221211π2I N r I r μΦ=(2)当两环中心相距x 时,有()220121211232221π2N N r r I r x μΦ=+,121M I Φ=,12MI Φ=,()22012122121522213πd d d d d d 2N N r r Ivxx t x tr x μεΦΦ=-=-⋅=+(3)d d q I t =220122012211ππ1d 1d d d d 0d 22N N r IN N r I Q q I t t t R R t R rr R μμε⎛⎫Φ⎛⎫====-⋅=-= ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰ 15.112310.465AB I R I I I '⨯==Ω'''++ 【解析】【解析】【分析】 【详解】将该网络压扁,如图1所示,除AB ,BC ,CD ,DA 间各边电阻为1Ω外,其余电阻为12Ω现在我们讨论MNPQ 的内部电阻我们将RSTL 的内部电阻等效为图2所示电路,其中a ,b 为待定值,由于RSTL 与MNPQ全等,则有如图所示的等价关系,此等价关系即1212MQ MQ MP MP R R R R =⎧⎪⎨=⎪⎩下标的1代表图3,2代表图4(1)MP R 的分析的分析①1MP R ,由对称性,去掉NS ,SL ,LQ 得1112112MP ab a b R ab a b ⎛⎫+⋅ ⎪+⎝⎭=⎛⎫++⎪+⎝⎭ ②2MP R ,由对称性,去掉NQ ,得2MP ab R a b=+,从而112112ab ab a b ab a b a b ⎛⎫+⋅ ⎪+⎝⎭=+⎛⎫++ ⎪+⎝⎭,解得312ab a b -=+ (2)MQ R 的分析的分析①1MQ R .如图5所示,取回路MNPQM ,MRLQM ,RSTLR ,RLTR ,QLTPQ 得()()13412255256452566225643301110222334001110222I I I I I I aI I I I I I aI a I I I bI I a I I I I I -+=⎧⎪⎪---=⎪⎪-++-=⎨⎪----=⎪⎪+----=⎪⎩解得1626364655166721162582482562376252222531332225b ab a b aI I a b a b a I I a b ab a b a I I a b a a I I a b b a I I a ⎧++++⎪=⎪+⎪+++⎪=⎪+⎪⎪⎪++++⎨=⎪+⎪⎪++⎪=⎪+⎪⎪++⎪=⎪+⎩ 故1122316167211626016246460MQ b ab a b I a R b I I I ab a b a++++==++++++ ②2MP R 如图6所示,由回路MNPQM ,MQPM 得()79878930I I I aaI bI aI⎧--=⎨--=⎩,解得7898322a bI Iaa bI Ia+⎧=⎪⎪⎨+⎪=⎪⎩,故()27789344MQa b aaIR I I I a b+==+++.于是有()166721163604416246460312bab a ba b a aba bab a baaba b⎧++++⎪+=⎪+⎪++++⎨⎪-⎪=⎪+⎩⑧⑨令1xa=,由,由⑨⑨得()131xb=--⑩由⑩代入代入⑧⑧化简有2210x x--=.则12x=±又0a>,则0x>,所以,21x=+,所以,()()2132ab⎧=-Ω⎪⎨=+Ω⎪⎩于是ABCD如图7所示,同上步骤可得:所示,同上步骤可得:1618.93I I ''=,2614.55I I ''=,367.19I I ''=,462.64I I ''=,5610.57I I ''=.则112310.465ABI R I I I '⨯==Ω'''++ 16.(1) 2mA D I = (2) 211116mW U P R ==【解析】 【详解】(1)设每只二极管两端的电压为D U ,通过二极管的电流为D I ,则有,则有1222D D DU U I R R ε⎛⎫=-+ ⎪⎝⎭ 代入题设数据得代入题设数据得()31.50.2510V DDU I =-⨯这是一个在图c 上横轴截距为1.5,纵轴截距为6,斜率为一4的直线方程,绘于c 图可获一直线一直线(称为二极管的负载线).因D U 、D I 还受二极管D 的伏安线限制,故二极管必然工作在负载线与伏安曲线的交点P 上,如图c 所示.此时二极管两端的电压和电流分别为1VDU =,2mA DI =.(2)电阻1R 上的电压124V D U U ε=-=.其功率211116mW U P R==.【点睛】对于非线元件的伏安特性曲线,一般无法用函数方式表述,用图解的方式确定其静态工作点应该是不二的选择.应该是不二的选择.物理问题中涉及非线性元件或过程时,物理问题中涉及非线性元件或过程时,物理问题中涉及非线性元件或过程时,通过图解法来确定其工作点,通过图解法来确定其工作点,通过图解法来确定其工作点,应应该是这类问题的通行做法.17.110A I =(方向为11I 的方向),25A I =(方向为21I 的方向);11200W P =,2600W P =-. 【解析】 【分析】 【详解】【详解】这个电路的结构,不能简单地等效为一个串联、并联电路.要计算这种较复杂的电路,可有多种解法.下面提供两种较为常用的方法.方法一:用基尔霍夫定律解.方法一:用基尔霍夫定律解.如图乙所示,设各支路的电流分别为1I 、2I 、3I . 对节点1:1230I I I --+=. ① 对回路1:112212I r I r εε-=-. ② 对回路2:2232I r I R ε+=.③解①②③式求得()2121122110A r R RI rrr R r R εε+-==++,()121212215A r R RI r r r R r Rεε+-==-++,2112312215A r r I r r r R r Rεε-==++.2I 为负值,说明实际电流方向与所设方向相反.为负值,说明实际电流方向与所设方向相反. 各发电机输出的功率分别为2111111200W PI I r ε=-=, 221111600W P I I r ε=-=-.这说明第二台发电机不仅没有输出功率,而且还要吸收第一台发电机的功率. 方法二:利用电源的独立作用原理求解.当只考虑发电机1ε的作用时,原电路等效为如图丙所示的电路,的作用时,原电路等效为如图丙所示的电路,由图可知()2111122182A r RI rrr R r R ε+==++,2111280A RI I r R==+. 当只考虑发电机2ε的作用时,原电路等效为如图丁所示的电路. 由图可知由图可知将()1222122175A r RI r r r R r Rε+==++122172A RI I r R ==+两次求得的电流叠加,可得到两台发电机的实际电流分别为两次求得的电流叠加,可得到两台发电机的实际电流分别为11112827210A I I I =-=-=(方向为11I 的方向),2212280755A I I I =-=-=(方向为21I 的方向).同理,可解得各发电机的输出功率同理,可解得各发电机的输出功率 11200W P =,2600W P =-.【点睛】(1)从本题计算结果看出,将两个电动势和内电阻都不同的电源并联向负载供电未必是好事,这样做会形成两电源并联部分的环路电流,使电源发热.(2)运用基尔霍夫定律解题时,对于一个复杂的含有电源的电路,如果有n 个节点、p 条支路所组成,我们可以对每一支路任意确定它的电流大小和方向,我们可以对每一支路任意确定它的电流大小和方向,最后解出值为正说明所设电流最后解出值为正说明所设电流方向与实际方向一致,所得值为负则说明所设电流方向与实际方向相反.这个电路中共有p 个待求电流强度.个待求电流强度.在n 个节点中任意选取其中()1n -个节点,根据基尔霍夫第一定律,列出节点电流方程组,再选择()1m p n =--个独立回路,根据基尔霍夫第二定律,列出回路电压方程组,个独立回路,根据基尔霍夫第二定律,列出回路电压方程组,从而得从而得到p 个方程即可求解.(3)处理复杂的电路的方法有很多,各种方法的优点与不足是在比较中领会的,对于某一道具体的试题,该用何种方法,取决于你的经验与临场的判断.事实上,这些方法也不存在优劣之分,只是在具体的过程中可能存在繁易的差别.18.(1) 00.659AC R R = (2)0321321EG R R -+++=【解析】【分析】【分析】【详解】(1)先考察B 、D 连线上的节点.由于这些节点都处于从A 到C 途径的中点上,在A 、C 两端接上电源时,这些节点必然处在一等势线上.因此可将这些节点“拆开”,将原网络等效成如图2所示网络.所示网络.。
高三物理电磁学练习题及答案2023
高三物理电磁学练习题及答案2023一、选择题1. 下列哪个选项最准确地描述了电磁感应的现象?A. 通过一个闭合线圈中的直流电流,可以产生磁场。
B. 一个导体在磁场中运动,会产生感应电动势。
C. 交流电经过变压器后,可以改变电压的大小。
D. 静止的导体不会受到磁场的作用力。
2. 两个相邻的导线,电流方向相同时,它们之间的相互作用力是:A. 引力B. 排斥力C. 无相互作用力D. 无法确定3. 一根导线在垂直于磁场方向以速度v匀速运动,切割磁感线的长度为L,则感应电动势的大小为:A. v/LB. v*LC. v+LD. v-L4. 在电路中,若磁感应强度减小,则感应电动势的方向是:A. 不变B. 没有感应电动势C. 与原来相反D. 无法确定5. 一台发电机将机械能转化为电能的过程属于:A. 电磁感应B. 电阻发热C. 机械运动D. 热传导二、填空题1. 在电磁感应现象中,当磁感应强度发生变化时,产生的电动势的方向满足________法则。
答案:楞次定律2. 单位时间内磁通量的变化率称为________。
答案:感应电动势3. 一台发电机的转子中有1000个磁针,转速为1800转/分,每个磁针的磁连量为0.002Wb。
该发电机输出的交流电频率为________Hz。
答案:60Hz4. 一根导线以速度v绕半径为r的圆周做匀速运动,如果磁感应强度的大小为B,则感应电动势的大小为________。
答案:B*v*r5. 电磁铁的磁感应强度为0.8T,长度为20cm,它在磁场中运动,切割磁感线的速度为10m/s,则感应电动势的大小为________。
答案:1.6V三、解答题1. 一根长直导线$AB$位于均匀磁场中,垂直于纸面向里,如图所示。
当导线以速度$v$向左运动时,求:(1) 导线$AB$之间的感应电动势大小。
(2) 感应电动势的方向。
(3) 当$v=10\ m/s$时,导线$AB$之间的感应电动势大小为0.02 V,请计算磁场的强度。
高考物理电磁学经典题36道
高三物理 电磁感应计算题集锦1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。
开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。
已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p,不计空气阻力及其它电阻。
求:(1)此时金属棒的速度多大?(2)这一过程中,R 所产生焦耳热Q R 多少?2.(17分)如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么? ⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。
3、(16分)t =0时,磁场在xOy 平面内的分布如图所示。
其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反。
每个同向磁场区域的宽度均为l 0。
整个磁场以速度v 沿x 轴正方向匀速运动。
⑴若在磁场所在区间,xOy 平面内放置一由n 匝线圈串联而成的矩形导线框abcd ,线框的bc 边平行于x 轴.bc =l B 、ab =L ,总电阻为R ,线框始终保持静止。
高中物理电磁学练习题(含解析)
高中物理电磁学练习题学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。
许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。
转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。
高一物理电磁学练习题及答案
高一物理电磁学练习题及答案一、选择题1. 下列哪个不是静电力的体现?A) 雷电 B) 磁力 C) 压电效应 D) 聚会球2. 电流的方向与下列哪个因素无关?A) 电动势的大小 B) 导线截面积 C) 电阻的大小 D) 连接电路的方式3. 带电粒子在电场中受到力的性质与下列哪个性质无关?A) 电荷大小 B) 电场强度 C) 电荷的正负 D) 粒子质量4. 电磁感应定律是由谁提出的?A) 奥斯特 B) 法拉第 C) 费尔马 D) 爱因斯坦5. 阻抗与哪个量的倒数成正比?A) 电感 B) 电容 C) 电阻 D) 功率二、填空题1. 一根导线的长度为0.5m,电阻为5Ω,则该导线的电阻率为______Ω·m。
2. 若两个点电荷之间的距离减小为原来的1/2,电场强度将增大为原来的______倍。
3. 按照右手定则,导线周围的磁场方向是______。
4. 一个电感为0.2H的线圈中,通过的电流变化率为0.5A/s,则在线圈中产生的感应电动势为______V。
5. 如果一台发电机的绕组中占主导地位的是电磁感应,那么它属于______发电机。
三、解答题1. 请解释电荷守恒定律。
(参考答案)电荷守恒定律是指在一个孤立系统中,电荷的总量是不变的。
即,电荷既不能被创建也不能被破坏,只能通过分配或转移来改变。
2. 什么是磁感线?(参考答案)磁感线是用于表示磁场的线。
它们是从磁南极到磁北极的有方向的曲线,其方向被定义为一个点磁针指向的方向。
磁感线的密度取决于磁场的强度,磁感线越密集,说明磁场越强。
3. 请解释毕奥-萨伐尔定律。
(参考答案)毕奥-萨伐尔定律是电磁学的基本定律之一,它描述了通过一条导线的电流产生的磁场的大小和方向。
该定律表明,当电流通过导线时,所产生的磁场的大小与电流的强度成正比,与导线到观察点的距离成反比;磁场的方向由右手螺旋定则决定。
四、综合题某电源的电动势为12V,电源内阻为2Ω。
一个负载电阻为4Ω的电路接在这个电源上,求电路中的电流大小。
高考物理专题电磁学12道精选题附答案
选择题:第一道电场中能的性质1.(2017·全国卷Ⅲ,21,6分)一匀强电场的方向平行于xOy平面,平面内a、b、c三点的位置如图5所示,三点的电势分别为10 V、17 V、26 V.下列说法正确的是()图5A.电场强度的大小为2.5 V/cmB.坐标原点处的电势为1 VC.电子在a点的电势能比在b点的低7 eVD.电子从b点运动到c点,电场力做功为9 eV2.(2017·全国卷Ⅰ,20,6分)在一静止点电荷的电场中,任一点的电势φ与该点到点电荷的距离r的关系如图4所示.电场中四个点a、b、c和d的电场强度大小分别为E a、E b、E c和E d.点a到点电荷的距离r a与点a的电势φa已在图中用坐标(r a,φa)标出,其余类推.现将一带正电的试探电荷由a点依次经b、c点移动到d点,在相邻两点间移动的过程中,电场力所做的功分别为W ab、W bc和W cd.下列选项正确的是()图4A.E a∶E b=4∶1 B.E c∶E d=2∶1C.W ab∶W bc=3∶1 D.W bc∶W cd=1∶33.(多选)(2019·全国Ⅱ卷·20)静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则()A.运动过程中,粒子的速度大小可能先增大后减小B.在M、N两点间,粒子的轨迹一定与某条电场线重合C.粒子在M点的电势能不低于其在N点的电势能D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行参考答案与解析1.【解析】 如图所示,设a 、c 之间的d 点电势与b 点电势相同,则ad dc =10-1717-26=79,所以d 点的坐标为(3.5 cm,6 cm),过c 点作等势线bd 的垂线,电场强度的方向由高电势指向低电势.由几何关系可得,cf的长度为3.6 cm ,电场强度的大小E =U d =(26-17) V 3.6 cm=2.5 V/cm ,故选项A 正确;因为Oacb 是矩形,所以有U ac =U Ob ,可知坐标原点O 处的电势为1 V ,故选项B 正确;a 点电势比b 点电势低7 V ,电子带负电,所以电子在a 点的电势能比在b 点的高7 eV ,故选项C 错误;b 点电势比c 点电势低9 V ,电子从b 点运动到c 点,电场力做功为9 eV ,故选项D 正确.2.【解析】 由图可知,a 、b 、c 、d 到点电荷的距离分别为1 m 、2 m 、3 m 、6 m ,根据点电荷的场强公式E =k Q r 2可知,E a E b =r 2b r 2a =41,E c E d =r 2d r 2c =41,故A 正确,B 错误;电场力做功W =qU ,a 与b 、b 与c 、c 与d 之间的电势差分别为3 V 、1 V 、1 V ,所以W ab W bc =31,W bc W cd =11,故C 正确,D 错误.3.答案 AC解析 在两个同种点电荷的电场中,一带同种电荷的粒子在两电荷的连线上自M 点(非两点电荷连线的中点)由静止开始运动,粒子的速度先增大后减小,选项A 正确;带电粒子仅在电场力作用下运动,若运动到N 点的动能为零,则带电粒子在N 、M 两点的电势能相等;仅在电场力作用下运动,带电粒子的动能和电势能之和保持不变,可知若粒子运动到N 点时动能不为零,则粒子在N 点的电势能小于在M 点的电势能,即粒子在M 点的电势能不低于其在N 点的电势能,选项C 正确;若静电场的电场线不是直线,带电粒子仅在电场力作用下的运动轨迹不会与电场线重合,选项B 错误;若粒子运动轨迹为曲线,根据粒子做曲线运动的条件,可知粒子在N 点所受电场力的方向一定不与粒子轨迹在该点的切线平行,选项D 错误.第二道 带电粒子在匀强磁场中的运动:半径和周期公式1.(2019·全国Ⅲ卷·18)如图1,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )图1A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB2.(2017·全国卷Ⅱ,18,6分)如图4,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点,大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场,若粒子射入速率为v 1,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为v 2,相应的出射点分布在三分之一圆周上,不计重力及带电粒子之间的相互作用,则v 2∶v 1 为( )图4A.3∶2B.2∶1C.3∶1 D .3∶ 2参考答案与解析1.答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力有q v B =m v 2R 、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.2.【解析】 当粒子在磁场中运动半个圆周时,打到圆形磁场边界的位置距P 点最远,则当粒子射入的速率为v 1,轨迹如图甲所示,设圆形磁场半径为R ,由几何知识可知,粒子运动的轨道半径为r 1=R cos 60°=12R ;若粒子射入的速率为v 2,轨迹如图乙所示,由几何知识可知,粒子运动的轨道半径为r 2=R cos 30°=32R ;根据轨道半径公式r =m v qB可知,v 2∶v 1=r 2∶r 1=3∶1,故选项C 正确.甲 乙第三道右手螺旋定则(磁场的叠加)和左手定则1.(2017·全国卷Ⅰ,19,6分)如图3,三根相互平行的固定长直导线L1、L2和L3两两等距,均通有电流I,L1中电流方向与L2中的相同,与L3中的相反.下列说法正确的是()图3A.L1所受磁场作用力的方向与L2、L3所在平面垂直B.L3所受磁场作用力的方向与L1、L2所在平面垂直C.L1、L2和L3单位长度所受的磁场作用力大小之比为1∶1∶ 3D.L1、L2和L3单位长度所受的磁场作用力大小之比为3∶3∶1参考答案与解析1.【解析】同向电流相互吸引,反向电流相互排斥.对L1受力分析,如图甲所示,可知L1所受磁场作用力的方向与L2、L3所在的平面平行,故A错误;对L3受力分析,如图乙所示,可知L3所受磁场作用力的方向与L1、L2所在的平面垂直,故B正确;设三根导线间两两之间的相互作用力的大小为F,则L1、L2受到的磁场作用力的合力大小均等于F,L3受到的磁场作用力的合力大小为3F,即L1、L2、L3单位长度所受的磁场作用力大小之比为1∶1∶3,故C正确,D错误.第四道带电粒子在复合场中的受力和运动1.(2017·全国卷Ⅰ,16,6分)如图1,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a、b、c电荷量相等,质量分别为m a、m b、m c,已知在该区域内,a在纸面内做匀速圆周运动,b在纸面内向右做匀速直线运动,c在纸面内向左做匀速直线运动.下列选项正确的是()图1A.m a>m b>m c B.m b>m a>m cC.m c>m a>m b D.m c>m b>m a参考答案与解析1.【解析】设三个微粒的电荷量均为q,a在纸面内做匀速圆周运动,说明洛伦兹力提供向心力,重力与电场力平衡,即m a g=qE①b在纸面内向右做匀速直线运动,三力平衡,则m b g=qE+q v B②c在纸面内向左做匀速直线运动,三力平衡,则m c g+q v B=qE③比较①②③式得:m b>m a>m c,选项B正确.第五道 法拉第电磁感应定律,电荷量Q=It1.(2018年全国1卷)如图1,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,QM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( )图1A.54B.32C.74 D .22.(交变电流有效值计算)(2018年全国3卷)一电阻接到方波交流电源上,在一个周期内产生的热量为Q 方;若该电阻接到正弦交流电源上,在一个周期内产生的热量为Q 正.该电阻上电压的峰值均为u 0,周期均为T ,如图1所示.则Q 方∶Q 正等于( )图1A .1∶ 2B.2∶1 C .1∶2 D .2∶1参考答案与解析1.答案 B解析 在过程Ⅰ中,根据法拉第电磁感应定律,有E 1=ΔΦ1Δt 1=B ⎝⎛⎭⎫12πr 2-14πr 2Δt 1根据闭合电路欧姆定律,有I 1=E 1R且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2Rq 2=I 2Δt 2又q 1=q 2,即B ⎝⎛⎭⎫12πr 2-14πr 2R =(B ′-B )12πr 2R所以B ′B =32. 2.答案 D解析 由有效值概念知,一个周期内产生热量Q 方=u 20R ·T 2+u 20R ·T 2=u 20R T ,Q 正=U 2有效R T =(u 02)2RT =12·u 20RT ,故知,Q 方∶Q 正=2∶1.第六道法拉第电磁感应定律,右手定则,左手定则1.(2017·全国卷Ⅱ,20,6分)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m、总电阻为0.005 Ω的正方形导线框abcd位于纸面内,cd边与磁场边界平行,如图6(a)所示.已知导线框一直向右做匀速直线运动,cd边于t=0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是()图6A.磁感应强度的大小为0.5 TB.导线框运动的速度的大小为0.5 m/sC.磁感应强度的方向垂直于纸面向外D.在t=0.4 s至t=0.6 s这段时间内,导线框所受的安培力大小为0.1 N2.电磁感应定律和动量守恒(多选)(2019·全国Ⅲ卷·19)如图1,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()图1参考答案与解析1.【解析】 由Et 图象可知,导线框经过0.2 s 全部进入磁场,则速度v =l t =0.10.2m /s =0.5 m/s ,选项B 正确;由图象可知,E =0.01 V ,根据E =Bl v 得,B =E l v =0.010.1×0.5T =0.2 T ,选项A 错误;根据右手定则及正方向的规定可知,磁感应强度的方向垂直于纸面向外,选项C 正确;在t =0.4 s 至t =0.6 s 这段时间内,导线框中的感应电流I =E R =0.010.005A =2 A, 所受的安培力大小为F =BIl =0.2×2×0.1 N =0.04 N ,选项D 错误.2.答案 AC解析 棒ab 以初速度v 0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab 受到与v 0方向相反的安培力的作用而做变减速运动,棒cd 受到与v 0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv =v 1-v 2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab 和棒cd 的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.实验题部分第七道测电阻伏安特性1.(2017·全国卷Ⅰ,23,10分)某同学研究小灯泡的伏安特性,所使用的器材有:小灯泡L(额定电压3.8 V,额定电流0.32 A);电压表(量程3 V,内阻3 kΩ);电流表(量程0.5 A,内阻0.5 Ω);固定电阻R0(阻值1 000 Ω);滑动变阻器R(阻值0~9.0 Ω);电源E(电动势5 V,内阻不计);开关S;导线若干.(1)实验要求能够实现在0~3.8 V的范围内对小灯泡的电压进行测量,画出实验电路原理图.(2)实验测得该小灯泡伏安特性曲线如图7(a)所示.图7由实验曲线可知,随着电流的增加小灯泡的电阻______(填“增大”“不变”或“减小”),灯丝的电阻率________(填“增大”“不变”或“减小”).(3)用另一电源E0(电动势4 V,内阻1.00 Ω)和题给器材连接成图(b)所示的电路,调节滑动变阻器R的阻值,可以改变小灯泡的实际功率.闭合开关S,在R的变化范围内,小灯泡的最小功率为________ W,最大功率为________ W.(结果均保留两位小数)2.二极管的伏安曲线(2019·全国Ⅱ卷·23)某小组利用图1(a)所示的电路,研究硅二极管在恒定电流条件下的正向电压U与温度t的关系,图中V1和V2为理想电压表;R为滑动变阻器,R0为定值电阻(阻值100 Ω);S为开关,E为电源.实验中二极管置于控温炉内,控温炉内的温度t由温度计(图中未画出)测出.图(b)是该小组在恒定电流为50.0 μA时得到的某硅二极管U-t关系曲线.回答下列问题:图1(1)实验中,为保证流过二极管的电流为50.0 μA ,应调节滑动变阻器R ,使电压表V 1的示数为U 1=________ mV ;根据图(b)可知,当控温炉内的温度t 升高时,硅二极管正向电阻________(填“变大”或“变小”),电压表V 1示数________(填“增大”或“减小”),此时应将R 的滑片向________(填“A ”或“B ”)端移动,以使V 1示数仍为U 1.(2)由图(b)可以看出U 与t 成线性关系.硅二极管可以作为测温传感器,该硅二极管的测温灵敏度为|ΔU Δt|=________×10-3 V/℃(保留2位有效数字).参考答案与解析1.【解析】(1)电压表量程为3 V,要求能够实现在0~3.8 V的范围内对小灯泡的电压进行测量,需要给电压表串联一个定值电阻扩大量程,题目中要求小灯泡两端电压从零开始,故滑动变阻器用分压式接法,小灯泡的电阻R L=UI=3.80.32Ω=11.875 Ω,因R LR A<R VR L,故电流表用外接法,实验电路原理图如图所示.(2)由IU图象知,图象中的点与坐标原点连线的斜率在减小,表示灯泡的电阻随电流的增大而增大,根据电阻定律R=ρlS知,灯丝的电阻率增大.(3)当滑动变阻器的阻值最大为9.0 Ω时,电路中的电流最小,灯泡实际功率最小,由E=U +I(R+r)得U=-10I+4,作出图线①如图所示.由交点坐标可得U1=1.78 V,I1=221 mA,P1=U1I1≈0.39 W;当滑动变阻器电阻值R=0时,灯泡消耗的功率最大,由E=U+I(R+r)得,I=-U+4,作出图线②如图所示.由交点坐标可得,U2=3.70 V,I2=315 mA,最大的功率为P2=U2I2≈1.17 W.2.答案(1)5.00变小增大B(2)2.8解析(1)实验中硅二极管与定值电阻R0串联,由欧姆定律可知,定值电阻两端电压U1=IR0=50.0 μA×100 Ω=5.00 mV;由题图(b)可知,当控温炉内温度升高时,硅二极管两端电压减小,又题图(b)对应的电流恒为50.0μA,可知硅二极管的正向电阻变小,定值电阻R0两端电压增大,即电压表V1示数增大,应增大滑动变阻器接入电路的阻值以减小电路中的电流,从而使电压表V 1示数保持不变,故应将R 的滑片向B 端移动.(2)由题图(b)可知⎪⎪⎪⎪ΔU Δt =0.44-0.3080-30V/℃=2.8×10-3 V/℃.第八道电表改装及校准1.(2019·全国Ⅰ卷·23)某同学要将一量程为250 μA的微安表改装为量程为20 mA的电流表.该同学测得微安表内阻为1 200 Ω,经计算后将一阻值为R的电阻与微安表连接,进行改装.然后利用一标准毫安表,根据图1(a)所示电路对改装后的电表进行检测(虚线框内是改装后的电表).图1(1)根据图(a)和题给条件,将图(b)中的实物连线.(2)当标准毫安表的示数为16.0 mA时,微安表的指针位置如图2所示,由此可以推测出改装的电表量程不是预期值,而是________.(填正确答案标号)图2A.18 mA B.21 mAC.25 mA D.28 mA(3)产生上述问题的原因可能是________.(填正确答案标号)A.微安表内阻测量错误,实际内阻大于1 200 ΩB.微安表内阻测量错误,实际内阻小于1 200 ΩC.R值计算错误,接入的电阻偏小D.R值计算错误,接入的电阻偏大(4)要达到预期目的,无论测得的内阻值是否正确,都不必重新测量,只需要将阻值为R的电阻换为一个阻值为kR的电阻即可,其中k=________.2.(2019·全国Ⅲ卷·23)某同学欲将内阻为98.5 Ω、量程为100 μA的电流表改装成欧姆表并进行刻度和校准,要求改装后欧姆表的15 kΩ刻度正好对应电流表表盘的50 μA刻度.可选用的器材还有:定值电阻R0(阻值14 kΩ),滑动变阻器R1(最大阻值1 500 Ω),滑动变阻器R2(最大阻值500 Ω),电阻箱(0~99 999.9 Ω),干电池(E=1.5 V,r=1.5 Ω),红、黑表笔和导线若干.图1(1)欧姆表设计将图1中的实物连线组成欧姆表.欧姆表改装好后,滑动变阻器R接入电路的电阻应为________ Ω;滑动变阻器选________(填“R1”或“R2”).(2)刻度欧姆表表盘通过计算,对整个表盘进行电阻刻度,如图2所示.表盘上a、b处的电流刻度分别为25和75,则a、b处的电阻刻度分别为________、________.图2(3)校准红、黑表笔短接,调节滑动变阻器,使欧姆表指针指向________ kΩ处;将红、黑表笔与电阻箱连接,记录多组电阻箱接入电路的电阻值及欧姆表上对应的测量值,完成校准数据测量.若校准某刻度时,电阻箱旋钮位置如图3所示,则电阻箱接入的阻值为________ Ω.图3参考答案与解析1.答案 (1)连线如图所示(2)C (3)AC (4)9979解析 (1)量程为250 μA 的微安表改装成量程为20 mA 的电流表,量程扩大了80倍,需要将定值电阻与微安表并联,然后根据题图(a)的原理图连线.(2)当标准毫安表示数为16.0 mA 时,对应的微安表读数为160 μA ,说明量程扩大了100倍,因此所改装的电表量程是25 mA ,选项C 正确.(3)根据I g R g =(I -I g )R 得:I =I g R g R+I g 出现该情况可能是微安表内阻测量错误,实际电阻大于1 200 Ω,或者并联的电阻R 计算错误,接入的电阻偏小,选项A 、C 正确.(4)设微安表的满偏电压为U ,则对并联的电阻R 有U =(25-0.25)×10-3RU =(20-0.25)×10-3kR解得k =9979. 2.答案 (1)如图所示 900 R 1(2)45 5 (3)0 35 000.0解析 (1)由题知当两表笔间接入15 kΩ的电阻时,电流表示数为50 μA ,由闭合电路欧姆定律有I g 2=E R g +r +R x +R 0+R,代入数据解得R =900 Ω,所以滑动变阻器选择R 1.(2)欧姆表的内阻R g ′=R g +r +R 0+R =15 kΩ,当电流为25 μA 时,有I g 4=ER g ′+R x ′可得R x ′=45 kΩ;当电流为75 μA 时,有3I g 4=ER g ′+R x ″可得R x ″=5 kΩ.(3)红、黑表笔短接,调节滑动变阻器,使欧姆表指针指向0 kΩ处.题图中电阻箱读数为35 000.0 Ω.第九题多用表的使用1.(2017·全国卷Ⅲ,23,9分)图7(a)为某同学组装完成的简易多用电表的电路图.图中E是电池;R1、R2、R3、R4和R5是固定电阻,R6是可变电阻;表头的满偏电流为250 μA,内阻为480 Ω.虚线方框内为换挡开关,A端和B端分别与两表笔相连.该多用电表有5个挡位,5个挡位为:直流电压1 V挡和5 V挡,直流电流1 mA挡和2.5 mA 挡,欧姆×100 Ω挡.图7(1)图(a)中的A端与________(填“红”或“黑”)色表笔相连接.(2)关于R6的使用,下列说法正确的是________(填正确【答案】标号).A.在使用多用电表之前,调整R6使电表指针指在表盘左端电流“0”位置B.使用欧姆挡时,先将两表笔短接,调整R6使电表指针指在表盘右端电阻“0”位置C.使用电流挡时,调整R6使电表指针尽可能指在表盘右端电流最大位置(3)根据题给条件可得R1+R2=________Ω,R4=________Ω.(4)某次测量时该多用电表指针位置如图(b)所示.若此时B端是与“1”相连的,则多用电表读数为__________;若此时B端是与“3”相连的,则读数为________;若此时B端是与“5”相连的,则读数为____________.(结果均保留3位有效数字)参考答案与解析1.【解析】(1)当B端与“3”连接时,内部电源与外部电路形成闭合回路,电流从A端流出,故A端与黑色表笔相连接.(2)在使用多用电表之前,调整表头螺丝使电表指针指在表盘左端电流“0”位置,选项A错误;使用欧姆挡时,先将两表笔短接,调整R6使电表指针指在表盘右端电阻“0”位置,选项B正确;使用电流挡时,电阻R6不在闭合电路中,调节无效,选项C错误.(3)根据题给条件可知,当B端与“2”连接时,表头与R1、R2组成的串联电路并联,此时为量程1 mA的电流挡,由并联电路两支路电流与电阻成反比知,R gR1+R2=1-0.250.25=31,解得R1+R2=160 Ω.当B端与“4”连接时,表头与R1、R2组成的串联电路并联后再与R4串联,此时为量程1 V 的电压挡,表头与R1、R2组成的串联电路并联后再与R4串联,此时为量程1 V的电压挡,表头与R1、R2组成的串联电路并联总电阻为120 Ω,两端电压为0.12 V,由串联电路中电压与电阻成正比知:R4两端电压为0.88 V,则R4电阻为880 Ω.(4)若此时B端是与“1”连接的,多用电表作为直流电流表使用,量程为2.5 mA,读数为1.47 mA.若此时B端是与“3”连接的,多用电表作为欧姆表使用,读数为11×100 Ω=1.10 kΩ.若此时B端是与“5”连接的,多用电表作为直流电压表使用,量程为5 V,读数为2.94 V.计算题部分第十道带电粒子在变化磁场中的匀速圆周运动1.(2017·全国卷Ⅲ,24,12分)如图8,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0 区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)图8(1)粒子运动的时间;(2)粒子与O点间的距离.2.(2019·全国Ⅰ卷·24)如图1,在直角三角形OPN区域内存在匀强磁场,磁感应强度大小为B、方向垂直于纸面向外.一带正电的粒子从静止开始经电压U加速后,沿平行于x轴的方向射入磁场;一段时间后,该粒子在OP边上某点以垂直于x轴的方向射出.已知O点为坐标原点,N点在y轴上,OP与x轴的夹角为30°,粒子进入磁场的入射点与离开磁场的出射点之间的距离为d,不计重力.求图1(1)带电粒子的比荷;(2)带电粒子从射入磁场到运动至x轴的时间.参考答案与解析1.【解析】 (1)在匀强磁场中,带电粒子做圆周运动.设在x ≥0区域,圆周半径为R 1;在x <0区域,圆周半径为R2.由洛伦兹力公式及牛顿运动定律得 qB 0v 0=m v 20R 1①qλB 0v 0=m v 20R 2②粒子速度方向转过180°时,所需时间t 1为 t 1=πR 1v 0③粒子再转过180°时,所需时间t 2为 t 2=πR 2v 0④联立①②③④式得,所求时间为 t =t 1+t 2=πm B 0q (1+1λ)⑤ (2)由几何关系及①②式得,所求距离为 d =2(R 1-R 2)=2m v 0B 0q (1-1λ)⑥2.答案 (1)4U B 2d 2 (2)Bd 24U ⎝⎛⎭⎫π2+33 解析 (1)设带电粒子的质量为m ,电荷量为q ,加速后的速度大小为v .由动能定理有qU =12m v 2①设粒子在磁场中做匀速圆周运动的半径为r ,由洛伦兹力公式和牛顿第二定律有q v B =m v 2r②由几何关系知d =2r ③ 联立①②③式得q m =4UB 2d2④(2)由几何关系知,带电粒子射入磁场后运动到x 轴所经过的路程为s =πr2+r tan 30°⑤带电粒子从射入磁场到运动至x 轴的时间为t =sv ⑥联立②④⑤⑥式得t =Bd 24U ⎝⎛⎭⎫π2+33⑦第十一道带电粒子在匀强电场的类平抛运动1.(2019·全国Ⅱ卷·24)如图1,两金属板P、Q水平放置,间距为d.两金属板正中间有一水平放置的金属网G,P、Q、G的尺寸相同.G接地,P、Q的电势均为φ(φ>0).质量为m,电荷量为q(q>0)的粒子自G的左端上方距离G为h的位置,以速度v0平行于纸面水平射入电场,重力忽略不计.图1(1)求粒子第一次穿过G时的动能,以及它从射入电场至此时在水平方向上的位移大小;(2)若粒子恰好从G的下方距离G也为h的位置离开电场,则金属板的长度最短应为多少?2.(2017·全国卷Ⅰ,25,20分)真空中存在电场强度大小为E1的匀强电场,一带电油滴在该电场中竖直向上做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变.持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点.重力加速度大小为g.(1)求油滴运动到B点时的速度大小;(2)求增大后的电场强度的大小;为保证后来的电场强度比原来的大,试给出相应的t1和v0应满足的条件.已知不存在电场时,油滴以初速度v0做竖直上抛运动的最大高度恰好等于B、A两点间距离的两倍.参考答案与解析1.答案 (1)12m v 02+2φd qh v 0mdhqφ(2)2v 0mdh qφ解析 (1)PG 、QG 间场强大小相等,均为E .粒子在PG 间所受电场力F 的方向竖直向下,设粒子的加速度大小为a ,有E =2φd ①F =qE =ma ②设粒子第一次到达G 时动能为E k ,由动能定理有 qEh =E k -12m v 02③设粒子第一次到达G 时所用的时间为t ,粒子在水平方向的位移为l ,则有h =12at 2④l =v 0t ⑤联立①②③④⑤式解得 E k =12m v 02+2φd qh ⑥l =v 0mdhqφ⑦ (2)若粒子穿过G 一次就从电场的右侧飞出,则金属板的长度最短.由对称性知,此时金属板的长度为L =2l =2v 0mdhqφ⑧ 2.【解析】 (1)设该油滴带正电,油滴质量和电荷量分别为m 和q ,油滴速度方向向上为正.油滴在电场强度大小为E 1的匀强电场中做匀速直线运动,故匀强电场方向向上.在t =0时,电场强度突然从E 1增加至E 2时,油滴做竖直向上的匀加速运动,加速度方向向上,大小a 1满足qE 2-mg =ma 1① 油滴在t 1时刻的速度为 v 1=v 0+a 1t 1②电场强度在t 1时刻突然反向,油滴做匀变速直线运动,加速度方向向下,大小a 2满足 qE 2+mg =ma 2③油滴在t 2=2t 1时刻的速度为 v 2=v 1-a 2t 1④由①②③④式得 v 2=v 0-2gt 1⑤(2)由题意,在t =0时刻前有 qE 1=mg ⑥油滴从t =0到t 1时刻的位移为 x 1=v 0t 1+12a 1t 21⑦油滴在从t 1时刻到t 2=2t 1时刻的时间间隔内的位移为 x 2=v 1t 1-12a 2t 21⑧由题给条件有v 20=2g ×2h =4gh ⑨ 式中h 是B 、A 两点之间的距离. 若B 点在A 点之上,依题意有 x 1+x 2=h ⑩由①②③⑥⑦⑧⑨⑩式得 E 2=[2-2v 0gt 1+14(v 0gt 1)2]E 1⑪为使E 2>E 1,应有 2-2v 0gt 1+14(v 0gt 1)2>1⑫即当0<t 1<(1-32)v 0g⑬ 或t 1>(1+32)v 0g⑭ 才是可能的;条件⑬式和⑭式分别对应于v 2>0和v 2<0两种情形. 若B 在A 点之下,依题意有 x 2+x 1=-h ⑮由①②③⑥⑦⑧⑨⑮式得 E 2=[2-2v 0gt 1-14(v 0gt 1)2]E 1⑯为使E 2>E 1,应有 2-2v 0gt 1-14(v 0gt 1)2>1⑰即t 1>(52+1)v 0g⑱ 另一解为负,不符合题意,舍去.第十二道 带电粒子在组合场中的运动:电场中类平抛运动,磁场中的匀速圆周运动1.(2018年全国1卷)(20分)如图1,在y >0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y <0的区域存在方向垂直于xOy 平面向外的匀强磁场.一个氕核11H 和一个氘核21H 先后从y 轴上y =h 点以相同的动能射出,速度方向沿x 轴正方向.已知11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场.11H 的质量为m ,电荷量为q .不计重力.求:图1(1)11H 第一次进入磁场的位置到原点O 的距离; (2)磁场的磁感应强度大小;(3)21H 第一次离开磁场的位置到原点O 的距离.2.(轨迹的对称性)(2018年全国2卷)(20分)一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy 平面内的截面如图1所示:中间是磁场区域,其边界与y 轴垂直,宽度为l ,磁感应强度的大小为B ,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l ′,电场强度的大小均为E ,方向均沿x 轴正方向;M 、N 为条状区域边界上的两点,它们的连线与y 轴平行.一带正电的粒子以某一速度从M 点沿y 轴正方向射入电场,经过一段时间后恰好以从M 点入射的速度从N 点沿y 轴正方向射出.不计重力.图1(1)定性画出该粒子在电磁场中运动的轨迹; (2)求该粒子从M 点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x 轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N 点的时间.。
高考物理电磁学大题习题20题Word版含答案及解析
x
tan
,t2
x3m
,t2
vqB
过MO后粒子做类平抛运动,设运动的时间为t
3,则:3R
1
3
又:v
E3m
,t3
BqB
2
则速度最大的粒子自O进入磁场至重回水平线POQ所用的时间tt1t2t3
联立解得:t
或
qB
(3)由题知速度大小不同的粒子均要水平通过OM,其飞出磁场的位置均应在ON的连线上,故磁场范围的最小面积S是速度最大的粒子在磁场中的轨迹与ON所围成的面积。扇形
OON的面积S1R2
3
OO N的面积为:
又SSS
S
3
R2
4
联立解得
12
m2E2
q2B4
或(3)
3
m2E2
q2B4。
2.如图甲所示,两平行金属板接有如图乙所示随时间t变化的电压U,两板间电场可看作均匀的,且两金属板外无电场,两金属板长L=0.2m,两板间距离d=0.2m.在金属板右侧边界MN的区域有一足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度为B,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子速度v0
【答案】(1)。方向:斜向右上方或斜向右下方,与初速
度方向成45°夹角;(2)s,距离s与粒子在磁场中运行速度的大小无关,
s为定值。
【解析】
能射出电场,也可能只有部分粒子能射出电场,设偏转的电压为U0时,粒子刚好能经过极板的右边缘射出,则:
解得U0=100V
3.如图所示,在倾角θ=37°的光滑绝缘斜面内有两个质量分别为4m和m的正方形导线框a、
b电阻均为R,边长均为l;它们分别系在一跨过两个定滑轮的轻绳两端,在两导线框之间
高中物理电磁学部分试题精选.
电磁学部分一、在下列各踢的四个选项中,1~60小题只有一个选项是符合题目要求的,61~70小题有两个或两个以上的选项是符合题目要求的。
1. 下列关于电磁波的叙述中正确的是( )A. 电磁波是变化的电磁场由发生区域向远处的传播B .电磁波在任何介质中的传播速度为3×108m/sC. 电磁波由真空进入介质传播时, 波长将变化D. 电磁波不能产生干涉、衍射现象2. 19世纪20年代, 以数学家赛贝克为代表的科学家己认识到温度差会引起电流. 安培考虑到地球自转造成了被太阳照射后正面与背面的温度差, 从而提出如下假设:地球磁场是绕地球的环形电流引起的. 该假设中电流的方向是 ( )A. 由西向东垂直磁子午线B. 由东向西垂直磁子午线C .由南向北沿磁子午线方向 D. 由赤道向两极沿磁子午线方向3. 如图所示,A 、B 是两个外形相同的正六面体, 其中A 由金属板焊接而成,B 由玻璃板粘合而成, 在A 、B 之间有一个由电容器C 、电感线圈L, 干电池E 和单刀双掷开关S 组成的电路.初始时将S 置于位置l, 当电路处于稳定状态后, 不考虑其它干扰 , 将有( )A. 保持开关S 在1位置不变 ,A 内没有电磁波传播, B 内有电磁波传播B. 保持开关S 在1位置不变 ,A 和 B 内都有电磁波传播C. 将开关 S 掷于2位置后 ,A 内没有电磁波传播 ,B 内有电磁波传播D. 无论开关 S 置于何处 ,A 内均没有电磁波传播 ,B 内总有电磁波传播4. 如图,一绝缘细杆的两端各固定着一个小球,两小球带有等量异号的电荷,处于匀强电场中,电场方向如图中箭头所示。
开始时,细杆与电场方向垂直,即在图中Ⅰ所示的位置;接着使细杆绕其中心转过90”,到达图中Ⅱ所示的位置;最后,使细杆移到图中Ⅲ所示的位置。
以W 1表示细杆由位置Ⅰ到位置Ⅱ过程中电场力对两小球所做的功,W 2表示细杆由位置Ⅱ到位置Ⅲ过程中电场力对两小球所做的功,则有 A .W 1=0,W 2≠0 B .W 1=0,W 2=0 C .W 1≠0,W 2=0 D .W 1≠0,W 2≠05. 宇航员在探测某星球时, 发现该星球均匀带电,且电性为负, 电量为Q, 表面无大气 .在一次实验中, 宇航员将一带电-q (q 《 Q)的粉尘置于离该星球表面h 高处, 该粉尘恰处于悬浮状态;宇航员又将此粉尘带到距该星球表面2h 处, 无初速释放, 则此带电粉尘将( )A. 背向星球球心方向飞向太空B. 仍处于悬浮状态C. 沿星球自转的线速度方向飞向太空D. 向星球球心方向下落6. 等量异种点电荷的连线和其中垂线如图所示, 现将一个带负电的检验电荷先从图中a 点沿直线移到b 点, 再从b 点沿直线移到C 点. 则检验电荷在此全过程中( )A. 所受电场力的方向将发生改变B .所受电场力的大小恒定C. 电势能一直减小D. 电势能先不变后减小7. 空间中有一个孤立的带负电的金属球, 电荷量为q, 球半径为R, 球外a 、b 两点距球心的距离分别为2R 和4R, 如图所示 , 已知在带电金属球的电场中这两点的电场强度分别为a E 、b E , 电势分别为a φ、b φ关于这个电场有以下判断① a E >b E ② a φ > b φ③ 若在a 点引入一个带正电、电荷量也是q 的点电荷, 则该点电荷受到的电场力应是 F=q a E , 其中a E 是没有引人点电荷时, 金属球在a 点所产生的场强④ 若把该正点电荷从a 点移到b 点 , 电势能一定增大下述四个选项中包含全部正确说法的是( )A. ①②③B. ①③C. ①③④D. ①④8.空间存在一匀强磁场B, 其方向垂直纸面向里,另有一个点电荷+Q 的电场, 如图所示 .一带电-q 的粒子以初速度v 0从某处垂直电场、磁场入射, 初位置到点电荷的距离为r, 则粒子在电、磁场中的运动轨迹不可能为( )A. 以点电荷十Q 为圆心 , 以r 为半径的在纸平面内的圆周B. 开始阶段在纸面内向右偏的曲线C. 开始阶段在纸面内向左偏的曲线D. 沿初速度v 0方向的直线9. 不带电的金属球A 的正上方有一点, 该处有带电液滴不断地自静止开始落下, 液滴到达A 球后将电荷全部传给A 球, 不计其它影响, 则下列叙述中正确的是( )A. 第一液滴做自由落体运动 , 以后的液滴做变加速运动, 都能到达A 球B. 当液滴下落到重力等于电场力位置时, 液滴速度为零C. 当液滴下落到重力等于电场力位置时, 开始做匀速运动D. 一定有液滴无法到达A 球10. 如图所示, 在竖直放置的光滑半圆弧绝缘细管的圆心O 处固定一点电荷, 将质量为m, 带电量为q 的小球从圆弧管的水平直径端点A 由静止释放, 小球沿细管滑到最低点B 时, 对管壁恰好无压力, 则固定于圆心处的点电荷在AB 弧中点处的电场强度的大小为( )A. E=mg/qB. E=2mg/qC. E=3mg/qD. E =4mg/q11. 内壁光滑, 水平放置的玻璃圆环内, 有一直径略小于环口直径的带正电的小球, 以速度V 0沿逆时针方向匀速转动, 如图所示, 若在此空间突然加上方向竖直向上、磁感应强 度B 随时间成正比增加的变化磁场, 设运动过程中小球带电量不变,则正确的是( )A. 小球对玻璃环的压力一定不断增大B. 小球受到的磁场力一定不断增大C. 小球先沿逆时针方向减速运动一段时间后沿顺时针方向加速运动D. 磁场力对小球先做负功后做正功12. A 、B 是电场中的一条直线形的电场线, 若将一个带正电的点电荷从A 点由静止释放, 它在沿电场线从A 向B 运动过程中的速度图象如图所示 .比较A 、B 两点的电势ϕ和场强E ,下列说法中正确的是( )A .A ϕ<B ϕ,B A E E < B.B A ϕϕ<,B A E E >C. B A ϕϕ>,B A E E >D.B A ϕϕ>, B A E E <13. 传感器是把非电学量(如温度、速度、压力等)的变化转换为电学量变化的一种元件. 在自动控刽中有着广泛的应用. 如图所示是种测量液面高度h 的电容式传感器的示意图,从电容C 大小的变化就能反映液面的升降情况 .关于两者关系的说法中正确的是( )A. C 增大表示h 减小B .C 减小表示h 增大C .C 减小表示h 较小D. C 的变化与h 变化无直接关系14. 示波器可以视为加速电场与偏转电场的组合,若已知前者的电压为U 1 , 后者电压为U 2、极板长为L 、板间距为d ,且电子被加速前的初速度可忽略, 则下面关于示波器的灵敏度(偏转电场中每单位偏转电压所引起的偏转量h/U 2称“灵敏度”)与加速电场、偏转电场的关系中正确的是( )A. L 越大,灵敏度越大B. d 越大, 灵敏度越大C .U 1越大,灵敏度越小 D. 灵敏度与U 2无关15.要使平行板电容器两极板间电势差加倍, 同时极板间的场强减半,下述的四种方法中应采取哪种( )A .两极板的电荷量加倍,板间距离为原来的4倍B .两极板的电荷量减半, 板间距离为原来的4倍C .两极板的电荷量加倍, 板间距离为原来的2倍D .两极板的电荷量减半, 板间距离为原来的2倍16.传感器是一种采集信息的重要器件, 如图所示的是一种测定压力的电容式传感器,当待测压力F 作用于可动膜片的电极上时,以下说法中正确的是( )① 若F 向上压膜片电极, 电路中有从a 到b 的电流② 若F 向上压膜片电极, 电路中有从b 到a 的电流③ 若F 向上压膜片电极, 电路中不会出现电流④ 若电流表有示数 , 则说明压力 F 发生变化⑤ 若电流有有示数 , 则说明压力 F 不发生变化A. ②④B. ①④C. ③⑤D. ①⑤17. 如图所示, 质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点 (不计P 、Q 的重力以及它们间的相互作用),则从开始射入到打到上极板的过程, 下列说法中不正 确的是( )A. 它们运动的时间相等B. 它们所带的电荷量之比21=Q P q q C. 它们的电势能减小量之比21=∆∆Q P E E D. 它们的动量增量之比21=∆∆Q P P P 18. 电阻R 与两个完全相同的二极管连成如图所示的电路,a 、b 端加上电压ab U =1OV 时,a 点的电流为0.01A ;当ab U =-0.2V 肘 ,a 点的电流也为0.0lA,电阻R 的阻值为( )A .1020Ω B. 1000Ω C. 980Ω D. 20Ω19. 有一内阻为4.4Ω的直流电动机和一盏标有“110V 6OW ”的灯泡串联后接在电压恒定为22OV 的电路两端, 灯泡正常发光 , 则( )A. 电动机的输入功率为 60 WB. 电动机的发热电功率为 60 WC. 电路消耗的总功率为 6OWD. 电动机的输出功率为 6O W20. 如图所示的电路, 开关S 原来是闭合的, 当S 开时, 电流表的示数变化情况是 ( 电池内阻符号为 r )( )A. r=0 时示数不变 ,r≠0时示数变大B. r=0 时、 r≠0时示数都变大C .r=0 时示数变小 ,r ≠0时示数变大D. r=0时示数变大,r ≠0时示数变小21. 如图所示是一火警报警器的部分电路示意图. 其中R2为用半导体热敏材料制成的传感器, 电流表为值班室的显示器,a、b之间接报警器. 当传感器R2所在处出现火情时, 显示器的电流I、报警器两端的电压U的变化情况是( )A. I 变大, U 变大B. I 变大 ,U 变小C. I 变小 ,U 变大D. I 变小 ,U 变小22. 如图所示的电路图是测量电流表G内阻的实验电路图, 根据实验原理分析可知( )A. 测量值比真实值偏大B. 测量值比真实值偏小C. 测量值与真实值相等D. 测量值与真实值是否相等难以确定23. 如图所示的电路中,电阻R1=R2,外加电压U保持不变,在双刀双掷开关分别掷向3、6位置和掷向1 、4位置的两种情况下,电路在单位时间里放出的总热量之比是( )A.4 :1B.l :4C.2 :1D.1 :224. 在如图所示电路中,电源的电动势为E,内电阻为r,当变阻器R3的滑动触头P向b端移动时( )A. 电压表示数变大,电流表示数变小B. 电压表示数变小,电流表示数变大C. 电压表示数变大,电流表示数变大D. 电压表示数变小,电流表示数变小25. 如图所示是一种测量电阻阻值的实验电路图, 其中R1、R2是未知的定值电阻,R3是保护电阻. R是电阻箱,Rx为待测电阻. V0是一只零刻度在中央、指针可以左右偏转的双向电压表, 闭合开关S1、S2 , 调节R. 使电压表V0的指针指在零刻度处, 这时R的读数为90Ω,将R1、R2互换后再次闭合S1、S2, 调节R, 使指针指在零刻度处, 这时R的读数为 160Ω, 那么被测电阻Rx的数值和R1与R2的比值分别为 ( )A.120Ω,3 :4B. 125Ω,4 :3C.160Ω,16 :9D. 25OΩ,9 :1626. 某同学做电学实验 , 通过改变滑动变阻器电阻大小, 测量并记录了多组电压表和电流表的读数, 根据表格中记录的数据分析, 他所连接的电路可能是下列电路图中的( )27. 如图所示, R 1为定值电阻,R 2为可变电阻,E 为电源电动势,r 为电源的内电阻, 以下说法中正确的是( )A. 当R 2=R 1+r 时 ,R 2上获得最大功率B. 当R 2=R 1+r 时 ,R 1上获得最大功率C. 当R 2=0 时 , 电源的效率最大D. 当R 2=0 时 , 电源的输出功率一定最大28. 临沂市电厂发电机的输出电压稳定, 它发出的电先通过电厂附近的升压变压器升压,然后用输电线路把电能输送到远处居民小区附近的降压变压器, 经降低电压后输送到用户, 设升、降变压器都是理想变压器, 那么在用电高峰期, 白炽灯不够亮, 但电厂输送的总功率增加 , 这时( )A. 升压变压器的副线圈的电压变大B. 降压变压器的副线圈的电压变大C. 高压输电线路的电压损失变大D. 用户的负载增多, 高压输电线中的电流减小29. 计算电功率的公式RU P 2=中,U 表示用交流电压表测出的加在用电器两端的电压值,R 是用欧姆表测出的用电器的电阻值, 则此式可用于计算 ( )A. 电冰箱的功率B. 电风扇的功率C. 电烙铁的功率D. 洗衣机的功率30. 如图所示, 理想变压器的输入电压U 1不变 , R 1、R 2、R 3、R 4为定值电阻,R 为滑动变阻器 , 设电压表和电流表的示数分别为U 和I, 当R 的滑动触头向图中b 移动时,则( )A. U 不变 , I 不变B.U 减小 ,I 增大C.U 不变 ,I 增大D.U 减小 ,I 不变31. 如图所示,T 为理想变压器,A 1、A 2 为交流电流表 , R 1、R 2为定值电阻,R 3为滑动变阻器 ,原线圈两端接恒压交流电源, 当滑动变阻器的滑动触头向下 滑动时 ( )A. A 1读数变大 ,A 2 读数变大B. A 1读数变大 ,A 2读数变小C. A 1读数变小 ,A 2读数变大D. A 1读数变小, A 2读数变小32. 如图甲所示为分压器电路图, 已知电源电动势为E, 内电阻不计, 变阻器总电阻为 R 0=50Ω. 闭合开关S后, 负载电阻R L 两端的电压U 随变阻器a 端至滑动触头间的阻值Rx 变化而改变. 当负载电阻分别为R L1=20O Ω和R L2=2O Ω时, 关于负载电阻两端的电压U 随Rx 变化的图线大致接近图乙中哪条曲线的下列说法中, 正确的是( )A.R L1大致接近曲线① ,R L2大致接近曲线②B.R L1大致接近曲线②,R L2大致接近曲线①C.R L1大致接近曲线③,R L2大致接近曲线④D.R L1大致接近曲线④,R L2大致接近曲线③33. 如图所示为一理想变压器, 其原、副线圈的匝数均可调节, 原线圈两端电压为一最大值不变的正弦交流电, 为了使变压器输入功率增大, 可使 ( )A. 其他条件不变, 原线圈的匝数n 1增加B. 其他条件不变, 副线圈的匝数n 2的减小C . 其他条件不变 .负载电阻R 的阻值增大D . 其他条件不变 .负载电阻R 的阻值减小34. 如图所示 .理想变压器、原副线圈匝数之比n 1:n 2=3:l , 且分别接有阻值相同的电阻R 1和R 2,所加交流电源电压的有效值为U, 则( )A. R 1两端电压与R 2两端电压之比为3:1B. R1、R2消耗功率之比为1:9C. R 1、R 2两端电压均为U/4D. R 1 、R 2 消耗功率之比为l:l35. 如图所示, 理想变压器原、副线圈匝数之比n 1: n 2=4:1, 原线圈两端连接光滑导轨, 副线圈与电阻R 相连组成闭合回路. 当直导线AB在均强磁场中沿导轨匀速地向右做切割磁感线运动时, 电流表A 1 的读数是12mA, 那么电流表A 2的读数为 ( )A.OB. 3mAC.48mAD. 与电阻 R 大小有关36. 如图所示, 有一个理想变压器,0为副线圈中心抽出的线头 , 电路中两个电阻R 1和R 2的阻值相同, 开关S 闭合前后, 原线圈的电流分别为I 1和I 2, 则I 1:I 2等于 ( )A. 1:1B. 2:1C. 1:2D. 4:137. 如图所示, 理想变压器原、副线圈的匝数比为10:1,b 是原线圈的中心抽头, 电压表V 和电流表A 均为理想电表, 除R 以外其余电阻不计, 从某时刻开始在原线圈两端加上交变电压,其瞬时值表达式为u 1=220t π100sin 2V). 下列说法中正确的是( ) A. t=6001s 时, ac 两点间的电压瞬时值为110V B. t=6001s 时, 电压表的读数为22V C. 滑动变阻器触头向上移, 电压表和电流表的示数均变大D. 单刀双掷开关由a 搬向b,电压表和电流表的示数均变小38. 图(a)为某型号电热毯的电路图, 将电热丝接在u=156sin120πtV 的电源上, 电热毯被加热到一定温度后, 由于P 的作用使输入的正弦交流电仅有半个周期能够通过, 即电压变为图(b)所示波形, 从而进入保温状态, 则此时交流电压表的读数是( )A. 156VB. 110VC. 78VD. 55V39. 自藕变压器的特点是在铁心上只绕一个线圈,它的结构如图所示,P 、M 之间可以当作一个线圈,移动滑动触头P, 可以改变这个线圈的匝数;N 、M 之间可以当作另一个线圈. M 、N 与一个滑动变阻器相连,Q 为滑动变阻器的滑动触头, 下列论述中正确的是( )A. 当恒压电源接到a 、b 时, 向上移动滑动触头P, 电压表V 1的示数不变, V 2示数变大B. 当恒压电源接到a 、b 时, 向上移动滑动触头P, 电压表V 1的示数变大, V 2示数也变大C. 当恒压电源接到c 、d 时, 向上移动滑动触头Q, 电压表V 1的示数不变, V 2示数不变D. 当恒压电源接到c 、d 时, 向上移动滑动触头Q, 电压表V 1的示数变大, V 2示数不变40. 如图所示 , 三只白炽灯L 1、L 2、L 3分别和电感、电阻、电容器串联后并联接在同一个交变电源上. 当交变电源的电压为U, 频率为5OHz 时,三只灯泡的亮度相同, 那么当交变电源的电压不变,而频率增大后, 三只灯泡的亮度变化将是( )A. L 1变暗, L 2不变, L 3变亮B. L l 变亮, L 2不变, L 3变暗C. L l 变暗, L 2变亮, L 3变亮D. L 1变亮, L 2变亮, L 3变暗41. 一直升飞机停在南半球的地磁极上空。
2023高考物理电磁学练习题及答案
2023高考物理电磁学练习题及答案电磁学是高中物理非常重要的一部分内容,而电磁学又是高考物理考试中的一项重要内容,掌握电磁学的理论知识和解题方法对于高考取得好成绩非常关键。
以下是一些2023高考物理电磁学的练习题及答案,希望对广大考生有所帮助。
一、选择题1. 在电磁波频率相同的两根电磁波导管中,A导管的半径是B导管的2倍,那么A导管的截止频率是B导管的几倍?A. 1/2B. 1/4C. 2D. 4答案:C2. 一根长直导线,其长度为l,由电流I,其磁感应强度在距导线距离R处的大小为B,如果将导线弯曲成一个n匝的均匀环形线圈,然后通以相同电流I,那么在环形线圈的中心处的磁感应强度大小变为多少?A. BB. nBC. B/nD. 2nB答案:B3. 将一个质量为m的点电荷q静止放置在真空中,如果向点电荷靠近一质量为M,带电量为Q的质点,质点以v的速率靠近点电荷,那么当质点离点电荷非常远时,质点的运动惯性变化量为多少?A. 0B. mvC. mVD. mV/v答案:D二、填空题1. 如果将一根细的长直导线弯成一个准圆形,半径为r,则在圆心处的磁感应强度大小为多少?答案:μ0I/2r2. 真空中两个点电荷之间存在一段距离,它们发生相互作用的力的大小与它们的电荷量之间的关系是什么?答案:正比于电荷量的乘积,反比于距离的平方。
三、解答题1. 一根直径为d、电阻为R的均匀导线绕成一个半径为R的圆环,通以恒定电流I。
求圆环的自感系数。
解答:首先计算圆环导线长度:l = πd然后计算圆环的自感系数:L = μ0N²A/l导线的匝数N = 1,导线的横截面积A = π(R/2)²代入公式后,得到L = (μ0πR²)/d2. 一电子以速度v按竖直方向从上向下进入磁感应强度大小为B的均匀磁场,且与磁场成θ角。
电子的轨迹弯曲的半径是多少?解答:电子受到的洛伦兹力向圆心方向,所以电子在磁场中的轨迹是一个圆。
高中物理电磁学磁场经典大题例题
(每日一练)高中物理电磁学磁场经典大题例题单选题1、如图所示,在M、N处存在与纸面垂直,且通有大小相等、方向相反电流的长直导线,已知a、O、b在M、N的连线上,O为MN的中点,c、d位于MN的中垂线上,且a、b、c、d到O点的距离均相等。
下列说法正确的是()A.O点处的磁感应强度为零B.a、b两点处的的磁感应强度方向相反C.c、d两点处的磁感应强度方向相同D.a、c两点处的磁感应强度方向不同答案:C解析:A.a、b、c、d四个点的磁感应强度均为M、N两长直导线在各点的磁感应强度的叠加,由安培定则可知,M、N在O点处磁感应强度的方向相同,合磁感应强度竖直向下,不为零,故A错误;B.M在a处产生的磁场方向竖直向下,在b处产生的磁场方向竖直向下,N在a处产生的磁场方向竖直向下,b处产生的磁场方向竖直向下,根据场强的叠加知,a、b两点处磁感应强度大小相等,方向相同,故B错误;C.M在c处产生的磁场方向垂直于cM偏向右下,在d处产生的磁场方向垂直dM偏向左下,N在c处产生的磁场方向垂直于cN偏向左下,在d处产生的磁场方向垂直于dN偏向右下,根据平行四边形定则,知c处的磁场方向竖直向下,d处的磁场方向竖直向下,且合场强大小相等,故C正确;D.由以上分析可知,a、c两点处磁感应强度的方向都竖直向下,方向相同,故D错误。
故选C。
2、如图所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O 是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°角射出的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为()A.πa3v B.√3πa3vC.4πa3v D.2πav答案:C解析:当θ=60°时,粒子的运动轨迹如图甲所示,根据几何关系有a=R sin30°解得R=2a设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间为t=α2πT即α越大,粒子在磁场中运行的时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R=2a,此时圆心角αm为120°,即最长运行时间为T3,因T=2πRv=4πav所以粒子在磁场中运动的最长时间为4πa3v。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3-1 【新课标全国Ⅰ】关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是()。
A 安培力的方向可以不垂直于直导线B 安培力的方向总是垂直于磁场的方向C 安培力的大小与通电直导线和磁场方向的夹角无关D 将直导线从中点折成直角,安培力的大小一定变为原来的一半例3-2 图中装置可演示磁场对通电导线的作用.电磁铁上、下两磁极之间某一水平面内固定两条平行金属导轨,是置于导轨上并与导轨垂直的金属杆。
当电磁铁线圈两端、,导轨两端、,分别接到两个不流电源上时,便在导轨上滑动。
下列说法正确的是()。
A若接正极,接负极,接正极,接负极,则向右滑动B若接正极,接负极,接负极,接正极,则向右滑动C若接负极,接正极,接正极,接负极,则向左滑动D若接负极,接正极,接负极,接正极,则向左滑动例3-3 如图所示,磁感应强度大小为的匀强磁场方向斜向右上方,与水平方向所夹的锐角为45°。
将一个34金属圆环置于磁场中,圆环的圆心为,半径为,两条半径和0 相互垂直,且沿水平方向。
当圆环中通以电流I时,圆环受到的安培力大小为()。
A 2B 32 CD 2例3-4 如图所示,边长为的等边三角形导体框是由3根电阻均为3 的导体棒构成,磁感应强度为的匀强磁场垂直导体框所在平面,导体框两顶点与电动势为,内阻为的电源用电阻可忽略的导线相连,则整个线框受到的安培力大小为()。
A 0B3 C2 D例4-1 如图所示,在倾角为的光滑斜面上,垂直斜面放置一根长为、质量为的直导体棒,当通以图示方向电流I时,欲使导体棒静止在斜面上,可加一平行于纸面的匀强磁场,当外加匀强磁场的磁感应强度的方向由垂直斜面向上沿逆时针方向转至水平向左的过程中,下列说法中正确的是()。
A 此过程中磁感应强度逐渐增大B 此过程中磁感应强度先减小后增大C 此过程中磁感应强度的最小值为sinD 此过程中磁感应强度的最大值为tan例4-2 【上海卷】如图所示,质量为、长度为的直导线用两绝缘细线悬挂于、′,并处于匀强磁场中,当导线中通以沿正方向的电流,且导线保持静止时悬线与竖直方向夹角为。
磁感应强度方向和大小可能为()。
A 正向,tanB 正向,C 负向,tanD 延悬线向上,sin例4-3 【新课标全国Ⅰ卷】如图,一长为10 的金属棒用两个完全相同的弹簧水平地悬挂在匀强磁场中,磁场的磁感应强度大小为0.1 ,方向垂直于纸面向里;弹簧上端固定,下端与金属棒绝缘。
金属棒通过开关与一电动势为12 的电池相连,电路总电阻为2Ω。
已知开关断开时两弹簧的伸长量均为0.5 ;闭合开关,系统重新平衡后,两弹簧的伸长量与开关断开时相比均改变了0.3 ,重力加速度大小取10 / 2。
判断开关闭合后金属棒所受安培力的方向,并求出金属棒的质量。
例5-1 如图所示,一个长方形线框静止放在同一平面内直导线附近,线框可以自由移动,直导线固定不动。
当直导线和线框中分别通以图示方向的恒定电流′和时,则线框的受力情况和运动情况是()。
A 线框四个边受到安培力的作用B 线框仅左边和右边受到安培力C 线框向左运动D 线框向右运动例5-2 一直导线平行于通电螺线管的轴线放置在螺线管的上方,如图所示,如果直导线可以自由地运动且通以方向为由到的电流,则导线受到安培力作用后的运动情况为()。
A 从上向下看顺时针转动并靠近螺线管B 从上向下看顺时针转动并远离螺线管C 从上向下看逆时针转动并远离螺线管D 从上向下看逆时针转动并靠近螺线管例5-3 如图所示,两平行导轨、竖直放置在匀强磁场中,匀强磁场方向竖直向上,将一根金属棒放在导轨上使其水平且始终与导轨保持良好接触。
现在金属棒中通以变化的电流I,同时释放金属棒使其运动。
已知电流I随时间t变化的关系式为=(为常数,>0),金属棒与导轨间的动摩擦因数一定。
以竖直向下为正方向,则下面关于棒的速度、加速度随时间变化的关系图象中,可能正确的有()。
例6-1 【全国新课标卷】电磁轨道炮工作原理如图所示。
待发射弹体可在两平行轨道之间自由移动,并与轨道保持良好接触。
电流从一条轨道流入,通过导电弹体后从另一条轨道流回。
轨道电流可形成在弹体处垂直于轨道面的磁场(可视为匀强磁场),磁感应强度的大小与成正比。
通电的弹体在轨道上受到安培力的作用而高速射出。
现欲使弹体的出射速度增加至原来的2倍,理论上可采用的方法是()。
A 只将轨道长度变为原来的2倍B 只将电流增加至原来的2倍C只将弹体质量减至原来的一半D将弹体质量减至原来的一半,轨道长度变为原来的2倍,其他量不变例6-2 光滑平行导轨水平放置,导轨左端通过开关与内阻不计、电动势为的电源相连,右端与半径为=20 的两段光滑圆弧导轨相接,一根质量=60 、电阻=1Ω、长为的导体棒,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度=0.5 ,当闭合开关后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,=10 / 2,则()。
A 磁场方向一定竖直向下B 电源电动势=3C 导体棒在摆动过程中所受安培力=3 D 导体棒在摆动过程中电源提供的电能为0.048例1-1 下列关于洛伦兹力的说法中,正确的是()。
A 只要速度大小相同,所受洛伦兹力就相同B 如果把+改为-,且速度反向,大小不变,则洛伦兹力的大小、方向均不变C 洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直D 粒子在只受到洛伦兹力作用下运动的动能、速度均不变例1-2 【2016∙北京卷】中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。
”进一步研究表明,地球周围地磁场的磁感线分布示意如图。
结合上述材料,下列说法不正确的是()。
A 地理南、北极与地磁场的南、北极不重合B 地球内部也存在磁场,地磁南极在地理北极附近C地球表面任意位置的地磁场方向都与地面平行D地磁场对射向地球赤道的带电宇宙射线粒子有力的作用例1-3 在赤道处,将一小球向东水平抛出,落地点为;给小球带上电荷后,仍从同一位置以原来的速度水平抛出,考虑地磁场的影响,下列说法正确的是()。
A 无论小球带何种电荷,小球仍会落在点B 无论小球带何种电荷,小球下落时间都会延长C 若小球带负电荷,小球会落在更远的点D 若小球带正电荷,小球会落在更远的点例1-4在M、N两条长直导线所在的平面内带电粒子的运动轨迹示意图如图所示,已知两条导线中只有一条导线中通有恒定电流,另一条导线中无电流,关于电流、电流方向和粒子的带电情况及运动的方向,可能的是()M中通有自上而下的恒定电流,带正电的粒子从a点向b点运动M中通有自上而下的恒定电流,带正电的粒子从b点向a点运动N中通有自下而上的恒定电流,带负电的粒子从b点向a点运动N中通有自下而上的恒定电流,带负电的粒子从a点向b点运动例1-5 如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的、两小孔中,为、连线中点,连线上、两点关于点对称。
导线均通有大小相等、方向向上的电流。
已知长直导线在周围产生的磁场的磁感应强度= ,式中是常数、是导线中电流、为点到导线的距离。
一带正电的小球以初速度0 从点出发沿连线运动到点。
关于上述过程,下列说法正确的是()。
A 小球先做加速运动后做减速运动B 小球一直做匀速直线运动C 小球对桌面的压力先减小后增大D 小球对桌面的压力一直在增大例1-6 如图所示,两个半径相同的半圆形光滑轨道置于竖直平面内,左右两端点等高,分别处于沿水平方向的匀强电场和匀强磁场中.两个相同的带正电小球同时从两轨道左端最高由静止释放.M、N为轨道的最低点,则下列说法中正确的是()A两个小球到达轨道最低点的速度VM VNB两个小球第一次经过轨道最低点时对轨道的压力FM FN C a小球第一次到达M点的时间大于b小球第一次到达N点的时间D在磁场中a小球能到达轨道的另一端最高处,在电场中b小球不能到达轨道另一端最高处例1-7足够长的光滑绝缘斜面,与水平方向的夹角分别为α和β(α<β),如图所示,加垂直于纸面向里的磁场,分别将质量相等,带等量正、负电荷的小球a和b,依次从两斜面的顶端由静止释放,关于两球在斜面上的运动,下列说法中正确的是()在斜面上a.b两球都做匀加速直线运动,aa ab在斜面上a、b两球都做变加速直线运动,但总有aa aba、b两球在斜面上运动的时间关系ta tba、b两球在斜面上下降的最大高度关系ha hb例1-8 【安徽卷】图中、、、为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。
一带正电的粒子从正方形中心点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是()。
A 向上B 向下C 向左D 向右例2-1 一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动。
则下列能表示运动周期与半径之间的关系图像的是例2-2 【广东卷】如图,两个初速度大小相同的同种离子和,从点沿垂直磁场方向进入匀强磁场,最后打到屏上。
不计重力。
下列说法正确的有()。
A、均带正电B 在磁场中飞行的时间比的短B、c 在磁场中飞行的路程比的短D 在上的落点与点的距离比的近例2-3 【新课标全国卷Ⅱ】有两个匀强磁场区域Ⅰ和Ⅱ,Ⅰ中的磁感应强度是Ⅱ中的倍。
两个速率相同的电子分别在两磁场区域做圆周运动。
与Ⅰ中运动的电子相比,Ⅱ中的电子()。
A 运动轨迹的半径是Ⅰ中的倍B 加速度的大小是Ⅰ中的倍C 做圆周运动的周期是Ⅰ中的倍D 做圆周运动的角速度与Ⅰ中的相等例2-4 【北京卷】处于匀强磁场中的一个带电粒子,仅在磁场力作用下做匀速圆周运动。
将该粒子的运动等效为环形电流,那么此电流值()。
A 与粒子电荷量成正比B 与粒子速率成正比C 与粒子质量成正比D 与磁感应强度成正比例2-5 在同一匀强磁场中,α粒子(24 He)和质子( 11H )做匀速圆周运动,若它们的动量大小相等,则α粒子和质子( )。
a运动半径比是2∶1B运动周期之比是2∶1C运动速度大小之比是4∶1D受到的洛伦兹力之比是2∶1例3-2 【新课标全国Ⅰ】两相邻匀强磁场区域的磁感应强度大小不同、方向平行。
一速度方向与磁感应强度方向垂直的带电粒子(不计重力),从较强磁场区域进入到较弱磁场区域后,粒子的()。
A 轨道半径减小,角速度增大B 轨道半径减小,角速度减小C 轨道半径增大,角速度增大D 轨道半径增大,角速度减小例3-3 【安徽卷】右图是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹。
云室放置在匀强磁场中,磁场方向垂直照片向里。