压裂工艺技术在油田应用课件

合集下载

油田化学压裂液及压裂用添加剂ppt课件

油田化学压裂液及压裂用添加剂ppt课件
过氧化物 酶
常用的破坏剂:
潜在酸 潜在螯合剂
压裂液中使用的破坏剂主要是破胶剂。
1.过氧化物破坏剂
过氧化物是含有过氧基(-O-O-)的化合物。 过氧化物是通过聚合物氧化降解,破坏冻胶结构。
胶囊
2.酶类破坏剂
破坏机理 对聚糖水解降解起催化作用,破坏冻胶结构。
使用条件 酶只能用于温度低于65℃和pH值在3.5~8范
下层 提纯分离 甘油
上层:高级 脂肪酸钠 下层:甘油、 NaCl溶液
肥皂的去污过程
1)脂肪酸皂
亲油基,碳原子数大于8
脂肪酸钠皂
稠化机理
超过一定浓度以后,脂肪酸皂可在油中形成结构, 产生结构粘度,将油稠化。
1)脂肪酸皂
Al3+ 脂肪酸铝皂
1)脂肪酸皂 单皂
双皂 通过羟桥连接,形成结构,将油稠化
前言
(1)什么是压裂?
压裂就是用压力将地层压开,形成裂缝并用支 撑剂将它支撑起来,以减小流体流动阻力的增产、 增注措施。
(2)压裂的地位 是低渗透油藏、碳酸盐油藏主要的增产、增注措
施。
Why do we hydraulically fracture oil & gas reservors?
Hydraulic fracturing can create cracks in the unconventional reservoirs by which the oil and gas can flow to wellbore.
的条件下。
3.潜在酸 定义
潜在酸是在一定条件下能转变为酸的物质。
破坏机理
通过改变条件(pH值),使冻胶交联结构破坏 而起作用。
4.潜在螯合剂
(1)定义

压裂工艺ppt

压裂工艺ppt

05
02
详细描述
某水电站采用压裂工艺成功增加了发电量, 通过优化水轮机叶片形状和运行参数,提高 了水能利用率和发电效率。
04
详细描述
采用压裂工艺可以降低水电站运营成本,通 过降低维修和能源消耗费用,提高了运营效 益。
06
详细描述
压裂工艺可以有效地提高水能利用率,通过 优化水轮机叶片形状和运行参数,增加了水 的动能转化为电能的效率。
压裂工艺ppt
xx年xx月xx日
contents
目录
• 压裂工艺概述 • 压裂工艺流程 • 压裂工艺应用范围 • 压裂工艺优势与挑战 • 压裂工艺发展趋势与展望 • 案例分析
01
压裂工艺概述
压裂工艺定义
压裂工艺是一种将石油或天然气开采到地面的技术,通过向 地下施加高压,使地下岩石破裂并形成裂缝,从而增加地下 石油或天然气的流动性,提高石油或天然气的开采效率。
压裂工艺挑战
高成本和技术要求
压裂工艺需要高昂的成本和技术支 持,包括压裂车、高压管汇、支撑 剂等设备和材料。
环境污染和健康危害
压裂工艺过程中会产生大量的废水 和废气,对环境和人类健康造成危 害。
地质条件限制
压裂工艺受地质条件限制,如地层 厚度、岩石类型和裂缝发育程度等 。
操作风险
压裂工艺操作过程中存在各种风险 ,如井喷、设备故障等,需要严格 的操作规程和安全措施。
天然气储存与运输案例
总结词
增加储气量
详细描述
某天然气储存设施采用压裂工艺成功增加了储气量,通过 优化储层改造方案和注气技术,提高了储气库的储气效率 和注气速度。
总结词
降低运输成本
详细描述
采用压裂工艺可以降低天然气运输成本,通过降低管道建 设和维护费用,提高了管道运输效率。

压裂工艺技术在油田应用

压裂工艺技术在油田应用
压裂设备
2
压裂液的发展: 从最初的清水压 裂到目前的各种 化学添加剂压裂

4
压裂工艺技术的 优化:从最初的 单一压裂工艺到 目前的多种压裂
工艺组合应用
创新应用
A
压裂工艺技术在页岩 气开发中的应用
B
压裂工艺技术在致密 油藏开发中的应用
C
压裂工艺技术在煤层 气开发中的应用
D
压裂工艺技术在低渗 透油藏开发中的应用
技术挑战与应对
1
技术挑战:提高 压裂效果、降低 成本、提高环保

3
技术突破:页岩 气开采、水平井 压裂、多级压裂
等技术的发展
2
应对措施:研发 新型压裂液、优 化压裂工艺、提
高设备性能
4
未来趋势:智能 化、绿色化、高 效化的压裂工艺
技术ቤተ መጻሕፍቲ ባይዱ展
4
技术升级
提高压裂效率: 通过优化工艺参 数和设备性能, 提高压裂效率, 降低成本
01
环保技术:研发 环保型压裂液, 降低对环境的影 响
03
02
04
智能化发展:利 用大数据、人工 智能等技术,实 现压裂工艺的智 能化、自动化
提高安全性:通 过改进工艺和设 备,提高压裂作 业的安全性,降 低事故发生率
环保要求
1
减少废水排放:采用 先进的废水处理技术,
降低废水排放量
2
降低噪音污染:采用 低噪音设备,降低作 业过程中的噪音污染
压裂工艺技术可以 提高油田的开发效 率,缩短开发周期。
压裂工艺技术可以 提高油田的产量, 增加经济效益。
2
压裂工艺技术可以 提高油田的环保性 能,减少环境污染。
4
3
技术进步

第5讲 常用的压裂工艺技术

第5讲 常用的压裂工艺技术

孔眼堵塞球法压裂工艺A
– 技术原理将若干堵球随液体泵入井中,堵球将 高渗层的孔眼堵住,待压力蹩起,即可将低渗 层压开。这种方法的基本原理是堵球由压裂液 带入井内,经压裂管柱,最后到达流体所进入 的射孔孔眼。堵塞球接触孔眼后,必将阻止液 体流进孔眼,因此,在孔眼内外出现压差,使 堵塞球在压差的作用下牢牢地座在孔眼上,切 断液体进入地层的通道。只要井筒压力超过周 围的地层压力,堵塞球就会堵住孔眼。
多层压裂技术B
• 在工艺上,分层的方法很多,包括: 使用封隔器的机械分层 暂堵剂分层 堵塞球分层 限流分层 填砂分层
暂堵剂分层压裂工艺
• 应用封隔器机械分层的压裂技术在大多 数情况下是行之有效的方法,但是对于 下列两种情况,此方法难以实施。 裸眼段井径过大,不能用封隔器隔 开压裂层段; 管鞋附近或射孔段之间固井质量差, 无法封隔压裂层段。
新工艺、新技术
• 高能气体压裂 • 水力冲击波压裂 • 振动压裂
压裂新工艺
多层压裂技术
暂堵剂分层压裂工艺 孔眼堵塞球法压裂工艺 限流法分层压裂技术 填砂法压裂技术
氮气压裂技术 控缝高压裂技术 端部脱砂压裂技术 重复压裂技术 油藏整体压裂技术(油藏优化)
多层压裂技术A
• 大多数油气田都具有多产层。在多层 的情况下,压裂成功率低的原因之一 就是压裂液不能按需要进入目的层段, 从而导致该压开的压不开,不应压开 的反而压开了。因此,对于多层的情 况应进行分层压裂。
填砂法压裂技术
• 这种方法一是射开一层压裂一层,再射 开一层再压裂一层。另一种不同的方法 是一开始便射开全部层段,封隔器坐在 最底部油层的上部进行压裂,然后用砂 柱封堵,再将封隔器提到上一层的上部, 重复这一过程即可压开全部层段,最后 通过反循环把砂柱冲出。

《压裂工艺技术》PPT课件

《压裂工艺技术》PPT课件

(一)压裂的机理
利用地面高压泵, 注入液体压开缝。 填充适量支撑剂, 改善地层渗透性。
(二)压裂技术的发展
1947年在美国进行了首次水力压裂增产作业 六十年代,压裂主要作为单井的增产、增注措施 七十年代,进入低渗透油田的勘探开发领域 八十年代以后,成为提高采油速度和原油采收率 及油田开发效益的重要手段。
(二) 压裂设备

砂 车
一是把支撑剂与压裂液充分混合,

二是为泵车提供充足的液体。


最大排量15.9 m3/min,最大输 送砂量8165 Kg /min,8个泵车 接口。
(二) 压裂设备

表 车
一是控制泵车和混砂车的运行参数
的 作
二是适时记录及监测分析施工参数

201队在用压裂设备综合性能参数表
(一)压裂施工过程
⑵ 试压
缓慢平稳启动压裂车高压泵,对井口阀 门以上的设备和地面压裂流程管线进行承受 高压性能试验,试验压力为预测泵压的1.2- 1.5倍,稳压5min,不刺不漏,压力不降为合 格。
(一)压裂施工过程
(3) 试挤
打开井口阀门,关闭循环放空阀门,逐台 启动压裂车,按压裂施工设计规定的试挤排量 将压裂液试挤入油层,压力由低到高至稳定为 止。目的是检查井下管柱及井下工具情况,检 查压裂层位的吸水能力。
77.5 107.9 130.2 150.1 181.3 221.5 283.3
(一)压裂施工过程
1、压裂准备 (4) 连接地面压裂流程 地面管线要使用N80以上钢级的油管和短节,
禁止使用软管线,并要求保证不刺不漏。 (5) 准备好压裂材料 主要是指压裂液和支撑剂。
(一)压裂施工过程
2、压裂施工工序

利用人工暂堵转向压裂提高重复压裂效果课件

利用人工暂堵转向压裂提高重复压裂效果课件

人工暂堵转向压裂技术还能够提 高压裂液的返排率,减少对地层
的伤害,提高压裂效果。
人工暂堵转向压裂技术在重复压裂中的实践案例
在某油田的重复压裂中,采用人 工暂堵转向压裂技术,成功地提
高了压裂效果。
在该实践中,通过在裂缝中加入 暂堵剂,成功地使压裂液转向, 形成了更多的分支裂缝,提高了
油藏的动用程度。
该技术能够有效地改变裂缝的延伸方 向,提高重复压裂效果,从而提高油 田采收率。
CHAPTER
人工暂堵转向压裂技术在重复压裂中的应用
人工暂堵转向压裂技术是一种先进的重 复压裂技术,通过在裂缝中加入暂堵剂,
暂时阻止裂缝的延伸,使压裂液能够转 向,形成新的裂缝。
该技术在重复压裂中广泛应用,适用于 老油田的挖潜和低渗透油田的开发。
优化施工参数
通过实验和模拟,不断优 化施工参数,提高暂堵剂 的分布效果和暂堵强度。
人工暂堵转向压裂技术的发展趋势
智能化与自动化
未来人工暂堵转向压裂技术将向 智能化和自动化方向发展,利用 智能决策系统实现自动控制和优化。
多学科交叉融合
将地质工程、材料科学、计算机科 学等多学科的理论和技术应用于人 工暂堵转向压裂技术中,提升技术 整体水平。
实践结果表明,人工暂堵转向压 裂技术能够有效地提高重复压裂 效果,为油田的增产提供了有力
支持。
CHAPTER
人工暂堵转向压裂技术面临的挑战
01
02
03
暂堵剂性能不足
目前的人工暂堵剂在耐温、 抗压、稳定性等方面存在 不足,影响了暂堵效果。
裂缝复杂多变
不同地层裂缝的形态、宽 度、角度等存在差异,对 暂堵剂的选择和分布提出 了更高的要求。
人工暂堵转向压裂技术对油气工业的影响

水力压裂工艺技术

水力压裂工艺技术

调整方案制定
根据评估结果,制定调整 方案,包括重新注入支撑 剂、增加裂缝长度或改变 压裂液类型等。
04
水力压裂技术的关键技术及创新 发展
支撑剂的选择与性能评价
支撑剂的材质与性能
针对不同地层条件,选择合适的支撑剂材质,如陶粒、石英砂等 ,并评估其性能,如硬度、粒径分布等。
支撑剂的表面改性
通过物理或化学方法对支撑剂表面进行改性,提高其润湿性、渗透 性和抗破碎能力。
报, 2016, 37(3): 1-10.
[2] 李四. 水力压裂设计优化 及效果评价[J]. 岩石力学与工 程学报, 2018, 37(6): 1-15.
[3] 王五. 水力压裂技术在*油 田的应用研究[J]. 地球物理学
报, 2020, 63(7): 1-12.
THANK S感谢观看
井筒准备
清洗并准备井筒,包括通井、洗井等 操作,确保井筒内无杂质,为压裂作 业做好准备。
压裂液的配制与注入
01
02
03
压裂液选择
根据地质条件和目标需求 ,选择合适的压裂液,如 瓜胶、羟丙基瓜胶、石英 砂等。
压裂液配制
按照一定的比例和顺序将 压裂液的各成分混合在一 起,确保压裂液的各项性 能指标达到要求。
03
水力压裂技术的工艺流程
压裂前的准备
目标确定
明确压裂的目的和目标,如提高石油 或天然气的产量,改善井筒周围的应 力场等。
地质评估
收集并评估与目标区域相关的地质数 据,如岩石类型、地层厚度、地层破 裂压力等。
设备检查
确保压裂设备(如压裂车、混砂车等 )处于良好的工作状态,并准备好所 需的物资和器材。
02
水力压裂技术的基本原理

《水力压裂技术》PPT课件

《水力压裂技术》PPT课件

h
24
➢腐蚀 ➢破碎 ➢镶嵌
➢支撑挤下沉
➢破胶不彻底,胶质残余物堵塞
h
5
水力压裂的现场实施 压裂施工设备
h
6
水力压裂的现场实施 压裂施工设备
h
7
HQ2000型压裂车
外型尺寸: 11.78m×2.5m×3.97m 总 重:31.9t
前后桥距:8.7m
转弯半径:18m 离地间隙:260mm 离 去 角:24° 最高工作压力:103.4MPa 最高工作压力下排量:
h
15
几种压裂工艺
分层压裂工艺技术
油田开发进入中后期以后,层间矛盾加剧,水窜严重, 有针对性的分层压裂技术是挖潜的重要手段。
h
16
压裂防砂技术
A、树脂防砂机理
Байду номын сангаас
覆膜砂是在筛选好的石
英砂表面,涂敷一层能够耐
高温的树脂粘合剂,制成常
温下呈分散粒状的树脂覆膜
砂,施工时在泵入石英砂后
期将树脂覆膜砂尾追泵入油
层,在油层温度和压力下,
树脂粘合剂交联固化,在井
底附近形成一个渗透率较好
且具有一定强度的挡砂屏障
以达到防止地层出砂的目的

h
17
压裂防砂技术
树脂砂提高导流能力的机理主要体现在两方面: 1、树脂砂外层的树脂薄膜可以防止破碎砂粒的运动。 2、树脂砂达到一定温度后,将会胶结,使裂缝内的支撑 剂固结,这样可以进一步防止碎屑运移。
h
9
施工准备
井场准备 压裂液准备 支撑挤准备 应急方案
压裂施工
设备运转情况检查 施工监测
h
压裂液 支撑挤 管汇泵车 采油树 采油树保护器 安全会议 施工会议

压裂工艺ppt

压裂工艺ppt
效果分析
对选择的压裂液进行效果分析,包括性能评估、增产效果等 方面的评估。
油田开发方案中压裂液的配制及应用效果
配制方法
详细介绍所选择的压裂液的配制方法,包括配方、配比等方面的信息。
应用效果
介绍该压裂液在油田现场应用的效果,包括提高产量、降低伤害等方面的效 果。
05
压裂工艺的优势与不足
压裂工艺的优势
2
压裂工艺也可用于改造老油田或气田,提高采 收率。
3
压裂工艺还可应用于开发非常规能源,如煤层 气、天然气水合物等。
02
压裂工艺基本原理
压裂液的组成及作用
总结词
由多种化学剂复配而成,主要 作用为支撑裂缝、清洁裂缝以
及传递压力。
组成
由稠用
压裂液在地层中产生支撑裂缝 ,增大储层渗透率;同时清洁 裂缝,使地层中的流体流动更 加顺畅;并通过传递压力,形
压裂工艺发展历程
压裂工艺起源于20世纪40年代,经历了传统压裂、水力喷 射压裂、多段压裂、水平井压裂等多个阶段,目前正在向 无砂支撑剂和重复压裂方向发展。
中国自20世纪50年代开始应用压裂工艺,目前在该领域的 技术水平已经达到国际先进水平。
压裂工艺应用场景
1
压裂工艺广泛应用于低渗透油田或气田开发中 ,如页岩气、致密气等。
压裂液的配制及使用
总结词
根据实际需求进行配制,使用过程中需严格控制质量。
配制
根据不同的配方和比例,将化学剂和水混合搅拌均匀,制成压裂液。
使用
将配制好的压裂液通过泵送系统注入地层,在高压作用下压开地层并形成裂缝,同时通过清洁和支撑作用提高地层渗透率 。使用过程中需严格控制压裂液的质量和注入速度,以保证压裂效果和安全性。

水平井压裂工艺技术.pptx

水平井压裂工艺技术.pptx

磨损前 磨损后
新管柱
研制Y344-115封隔器,中心管优选耐磨材质,改进了工具连 接部位结构,采用橡胶垫充填间隙,满足了施工要求。
3、发展了水平井限流压裂诊断和评估技术
完善摩阻分析法,提高压 水平井压裂节点压力分析示意图 开炮眼数判断的可靠性
水平井限流压裂过程 中的摩阻与直井相比增加 了套管沿程损失,在以往 的诊断中被忽略,使得计 算的炮眼摩阻大于实际, 导致计算的压开孔数不准。
胶筒外径 (mm) 104
胶筒油浸试验(70℃柴油中浸泡1小时 )
疲劳 40MPa×5min×5次
承压后外径 (mm)
下109
最大变形 %
4.80
结果 合格
备注 50MPa未爆
现场试验情况及效果
截至目前,应用机械分段压裂工艺成功压裂10 口井45个层段,并均获成功。
✓一趟管柱最多压裂3段,最大射孔井段10m,每 段最多孔数100孔 ✓最大卡距33m ✓单井及单趟管柱最大加砂量90m3、45m3 ✓最高施工压力53.9MPa
水平井压裂工艺技术
第一部分 大庆油田水平井总体情况
第二部分 大庆油田水平井井下作业配套 技术
第三部分 目前存在的问题及下步攻关重 点
大庆油田水平井总体情况
52口 38口
44口 ✓单井日产液17.4t
✓日产油15.2t ✓累计产油20.8万吨 ✓南1-2-平25井日产百吨
1991-2005年 2006年 目前投产井数
✓水平井限流法压裂技术不断完善 ✓双卡分段压裂取得突破性进展 ✓水平井连续油管酸化和分段酸化技术日趋成熟 ✓水平井解卡、打捞工艺不断进步
✓ 针对大庆外围油田储层物性差、井筒轨迹复杂等增
产改造的难题,初步形成了压裂优化设计、高压耐 磨管柱、测试压裂分析等配套技术

[实用参考]CO2压裂工艺技术简介.ppt

[实用参考]CO2压裂工艺技术简介.ppt

五、CO2压裂工艺技术应用概况
1、基本情况
2004年以来,共实施CO2增能/泡沫压裂88井(层)。施工井深824.0-4445.1m,最大压裂井 深 4426.5-4445.1m(濮深8井),压裂井段最大跨距83.5m(部1-2井),平均压裂厚度25 m,压裂井 最高地层温度157℃(濮深8井)。施工总液量6455.3 m3,平均单井用液293.4 m3;共注入CO2 2254 t,平均单井注入CO2 102.5 t,单井最高注入CO2 140t(濮153井);加粉陶50.8 m3,中 陶668.1 m3,平均单井加砂30.37 m3,平均砂比27.6%,平均排量4.13 m3/min,平均破压66.95 MPa ,压裂液返排80%平均时间3.9天。
2)CO2设备的摆放区域应远离工作人员区域并处于下风口。
三、CO2压裂施工工艺技术
7、CO2压裂施工井场布置
三、CO2压裂施工工艺技术
8、 CO2压裂优势
室内试验和现场实践证明,CO2压裂具有更好的增产效果,这主要是:

在压裂后,CO2可与地层水反应生成碳酸使体系的PH值降低,可减少对地层的伤害;
CO2压裂工艺技术简介
中国石化 中原石油勘探局
目录
一、CO2压裂施工工艺技术状况及发展趋势 二、CO2施工队伍及设备状况 三、CO2压裂施工工艺技术 四、CO2压裂施工选井选层原则 五、CO2压裂工艺技术应用概况
一、 CO2压裂施工工艺技术状况及发展趋势 (国外)
国外泡沫压裂技术始于60年代末期的美国, 70年代得到了 较快的发展,70~80年代泡沫压裂技术逐渐成熟,1980年底,在美国 东德克萨斯州成功地进行了几次大型泡沫压裂施工,泡沫液用量最 大已达到2233m3,加砂530t, 1985年美国已进行约3600井次的泡沫压 裂作业,约占总压裂井次的10%。1986-1990年,采用泡沫压裂的比 例由20%上升到50%。90年代以后在北美地区(美国和加拿大)油、气 井的90%均采用泡沫压裂技术。

《油藏增产措施》ppt课件

《油藏增产措施》ppt课件
《油藏增产措施》ppt 课件
汇报人: 2023-11-26
目 录
• 油藏增产措施概述 • 压裂增产措施 • 酸化增产措施 • 堵水调剖增产措施 • 其他增产措施 • 油藏增产措施案例分析
油藏增产措施概述
01
定义与重要性
定义
油藏增产措施是指通过采用各种 工程技术方法,改善油藏的渗流 条件,提高原油的采收率,以达 到提高油田产量的目的。
水驱
通过注水保油层压力,将原 油驱向生产井。
物理法
通过改变地层和井筒的物理性 质,如压裂、酸化等,改善渗 流条件。
增产措施发展历程
从早期的单纯注水到多轮次化学 驱、热采和气驱等复杂方法的应
用。
从单一技术到综合技术的应用, 如水平井、复合驱等。
从经验型到科学型的转变,借助 数值模拟、物理模拟等技术进行
压裂实施效果评估
通过对比压裂实施前后的产量变化,评估压裂技术的实际效果,以 及可能存在的问题和改进方向。
案例二:某油田酸化增产措施应用效果分析
1 2 3
酸化技术介绍
酸化技术是一种通过向地下注入酸液,使地层中 的岩石溶解,从而扩大裂缝,增加原油渗透率的 增产措施。
某油田酸化方案设计
根据某油田的地质特点和实际情况,设计合理的 酸化方案,包括酸液的选择、酸化设备的选用、 酸化程序的制定等。
工艺流程
将酸液通过注酸井注入油 层,溶解油层岩石中的胶 结物和堵塞物,从而扩大 油层的渗透性。
适用范围
适用于因岩石胶结物和堵 塞物导致油层渗透性下降 的油藏。
酸化主要材料及性能要求
主要材料:盐酸- 酸化剂:常用的酸 化剂包括盐酸- 酸化剂:常用的酸化 剂包括盐酸- 酸化剂:常用的酸化剂 包括盐酸- 酸化剂:常用的酸化剂包 括盐酸很抱歉,上述文本中未提及具 体的酸化剂。不过,根据常见的油田 酸化作业,酸化剂通常包括盐酸根据 常见的油田酸化作业,酸化剂通常包 括盐酸根据常见的油田酸化作业,酸 化剂通常包括以下几种

压裂工艺技术在油田应用

压裂工艺技术在油田应用

✓ 集成化:将压裂工艺与其
和模拟技术,实现压裂工
他油气开采技术相结合,
艺的精准控制和优化。
提高油气开采效率。
压裂工艺技术在油 田中的应用
压裂工艺在油田增产中的应用
1
提高采收率:通过压裂工艺, 可以增加油井的产量,提高
油田的采收率。
2
延长油井寿命:压裂工艺可 以延长油井的寿命,提高油
田的经济效益。
3
降低生产成本:通过压裂工 艺,可以降低油田的生产成
本,提高油田的竞争力。
4
提高油品质量:压裂工艺可 以提高油品的质量,满足市
场需求。
压裂工艺在油田开发中的挑战
01 地质条件复杂:不同油田
的地质条件差异较大,需 要针对具体地质条件进行 压裂工艺的优化和调整。
02 成本问题:压裂工艺需要
较高的成本投入,需要平 衡成本与效益的关系。
降低环境影响: 通过采用环保型 压裂液、优化压 裂工艺等手段, 降低压裂作业对 环境的影响。
提高压裂液回收 率:通过优化压 裂液配方、改进 压裂工艺等手段, 提高压裂液回收 率,降低成本。
提高压裂液性能: 通过优化压裂液 配方、改进压裂 工艺等手段,提 高压裂液性能, 提高压裂效果。
压裂工艺技术在油田应用的前景
支撑剂:用于保持裂缝张开的固体颗粒,如石英 砂、陶粒等。
裂缝:地层中由于压裂液注入产生的裂缝,有利 于油气的流动和开采。
压裂工艺的工作原理
01
02
压裂液的注 入:将压裂 液注入地层, 形成高压环 境
地层破裂: 在高压环 境下,地 层产生裂 缝
03
04
支撑剂的注 入:将支撑 剂注入裂缝, 保持裂缝的 稳定性
压裂工艺技术在油田应用

采油工艺压裂工艺技术

采油工艺压裂工艺技术
采油工艺压裂工艺技术
目 录
• 压裂工艺技术概述 • 压裂工艺原理 • 压裂工艺的应用 • 压裂工艺的优化与改进 • 压裂工艺的挑战与解决方案 • 未来展望
01
压裂工艺技术概述
定义与特点
定义
压裂工艺技术是一种通过高压注入流 体,使地层产生裂缝,从而增加油井 产能的采油工艺。
特点
适用于低渗透油田,能有效提高油井 产量和采收率,但需要高成本和技术 要求。
详细描述
为了解决这一问题,需要优化压裂液的配方和性能, 减少其对储层的伤害。同时,加强施工现场的监测和 检测,及时发现和处理储层伤害问题。此外,采用保 护储层的压裂技术和设备也是解决储层伤害问题的有 效途径。
06
未来展望
新型压裂液体系的研究与应用
总结词
新型压裂液体系是未来研究的重点,旨在提高压裂效 果和降低环境污染。
钢球支撑剂
强度高、导流能力强,适用于高压 和深层油气层。
04
压裂施工工艺流程
试压
检查井口装置和管线是否密封 良好。
支撑剂选择与注入
根据地层情况和所选支撑剂类 型进行选择和注入。
施工前准备
包括井筒准备、选择压裂液和 支撑剂等。
压裂液配制与注入
根据地层情况和所选压裂液类 型进行配制,并注入井中。
返排与测试
返排压裂液,并对新形成的裂 缝进行测试和评估。
03
压裂工艺的应用
常规油气藏压裂
总结词
常规油气藏压裂是采油工艺中应用最 广泛的压裂技术,适用于具有较好渗 透性的油气藏。
详细描述
常规油气藏压裂通过水力或气压将地 层压裂,增加地层裂缝,提高油气的 渗透性和流动性,从而提高采收率。
低渗透油气藏压裂
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Q J 压 裂 液 破 胶50-60℃配方
520
93
140
60-70℃配方
130
防 膨 性 能 对 比 实 验 0 .3 % 胍 胶 破 胶 7液0-80℃配方
250
45
120 110

80-90℃配方 90-100℃配方
840

100 90
序号 药品名称及浓度 防膨率(离心法)% Q J 压 裂 液 破 胶1液00-110℃配方
压裂工艺技术在油田应用
(超)深井压裂管柱设计
压裂工艺技术在油田应用
光油管压裂管柱
特点:管柱结构简单,施工
7″套管
操作方便,由于油套环空相
连,压裂时油管安全性能好,
而套管承受高压,因此,对 套管强度、固井质量和井口
7″ 套 管 ( 薄 壁)
承压要求高。
适用条件:套管强度高、固
井质量好的低地层破裂压力 井。
沉砂实验:
内容 剪 切 3min( 4000转 /分 ) 未 剪 切
T1/2
100min
152min
T1/4
125min
175min
T1/8
150min
193min
流变性:
400 350 300 250 200 150 100 50
0 0分 5分 10分 15分 20分 25分 30分 35分 40分 45分 50分 55分 60分
7″封隔器
5″ 套 管 ( 油 管)
压损耗等恶劣条件。
压裂工艺技术在油田应用
技套 7″ 套管
人工井底
深井压裂管柱油管、套管钢级材料选择 套管、油管在无腐蚀性(H2S、CO2)环境下,推荐使
用API钢级;在腐蚀性(H2S、CO2)环境下,选择抗硫、 抗二氧化碳或抗硫抗二氧化碳共用钢级材料。
要求:油、套管必须是新的,需经过探伤检验。保 证无裂纹、缺陷、弯曲及损伤等,丝扣完好,保证无 泄露;油管柱所配短节必须保证满足施工质量要求。
0
0
5 10 15 20 压2裂5工艺技3术0在油田3应5用 40 45 50 55 60
应用实例
在准噶尔盆地边缘夏子街油区的气井施工两井次, 准噶尔盆地西北缘五三东油田施工一井次夏子街 X2703气井,使用表面活性剂压裂液作业一次成功, 加 砂 20 方 。 由 于 该 井 的 地 层 压 力 系 数 很 低 ( 仅 为 0.76左右),液体的返排很困难,采取后压风气举, 由压前的不出增加到日产气1.6万方,日产凝析油10 吨。目前现场应用超过100井次。
压裂工艺技术在油田应用
聚合物压裂液性能 破胶性能:6—8小时完全破胶破胶水化后压裂液残 液的粘度《5mpa.S,残渣含量〈0.08% 滤失性能:
内容 剪 切 3min( 4000转 /分 )
未 剪 切
滤 失 系 数 ( m/min1/2) 1. 5× 10-3 1. 3× 10-3
压裂工艺技术在油田应用
压裂工艺技术在油田应用
应用实例
该压裂液目前已应用1230余井次,最高施工温 度为120℃,尤其在准噶尔盆地彩南油田的20余 井次施工中收到了良好的增产效果,与常规植物 胶压裂液相比单井日增产量在2吨以上。
压裂工艺技术在油田应用
以上压裂液具有以下特点:
(1)耐高温能力强,可以满足高温深井压裂的需要; (2)摩阻低,为有效利用压裂设备的动力提供了保障; (3)伤害小,完全适合深井致密油层改造的需要; (4)破胶彻底,进一步减少了压裂液对地层的伤害; (5)快速返排技术的应用将压裂液对地层的伤害降至最低; (6)油基压裂液能有效的提高低压、水敏油层的改造效果: (7)表面活性剂压裂液是目前对地层伤害最小的压裂液体系。
砂卡,不能循环洗井。
适用条件:适用于分层压裂
井;中深井、较高地层破裂
套管
压力井。
压裂工艺技术在油田应用
3 1/2 油 管 (UP)
2 7/8 油 管 (UP)
油层
油层
人工井底
非常规套管压裂管柱
特点:结构相对简单,对套 管、套管回接处强度要求高。
5″ 套 管 (油管)
管柱结构示意图 适用条件:深井、高地层破 裂压力、高摩阻损失、高泵
1200
1800
2400
3600
9 3 % ~ 9 2 % 左 右 。 当 岩 芯 原 始 渗2透2率.2越 低 时 , Q J
压裂液的
QJ压裂液系列配方在时不间渗同(透秒温)率 度保 持下率的越粘高 .度保持率
较高,满足标准3(剪切速率冻为胶 17液0s-1,剪切
96.4
88.5
3600秒后粘度大于等于30 mPa.s)。
水力压裂技术
压裂工艺技术在油田应用
压裂液技术
粘度(mPa.s)
——表面活性剂(清洁)压裂液
压裂液耐温抗剪切性能评价实验
QJ 压 裂 液 配 方 岩 芯 伤 害 实 验
液体类型
人 工 岩 芯 渗 透 率 ( mD)
渗透率保持率(%)
QJ压裂液耐温抗剪切性能曲线— 20-40℃配方
560

40-50℃配方
4
破胶液
90.8
5ห้องสมุดไป่ตู้.6
备注
膨胀仪法所用岩芯为送样人所送莫北岩芯。
压裂工艺技术在油田应用
压裂液性能
破胶性能:90摄氏度下破胶液粘度为4.34mpa.S 滤失性:该压裂液滤失系数为1.7×10-3m/√min。 沉砂实验:压裂液的静态悬砂半衰期为35分钟. 流变性:
140 120 100
80 60 40 20
油层 51/2″套管
压裂工艺技术在油田应用
3 1/2(UP) TBG
2 7/8(UP) TBG
油层 人工井底
封隔器油管压裂管柱
特点:管柱结构较复杂(单、
双封隔器),施工要求高。
由于油、套不通,压裂时油 管受力状况复杂,
7″套管
因此,对油管结构强度和封 隔器性能要求高。注意防止
7″ 套 管 (厚壁)
770
120℃配方
防膨率(膨胀仪9法2 )%
80
0.3% 胍 胶 破 胶 液
330
39
70
60
1
JM-01.2 5 %1胍.胶5破%胶 液
75.4 4 4 0
22.2 5 2
50
40 300
2 600
900
JM-2 1.5% 72.3 Q J 压 裂 液 对 岩 芯 渗 透 率 的 保 持 率 很 高 , 在
压裂工艺技术在油田应用
聚合物压裂液体系
该技术是采用很低含量的人工合成聚合物为增稠剂,通 过经特殊工艺合成的交联剂交联而成的水基冻胶压裂液体 系。由于增稠剂为人工合成所得,不象植物胶那样含有水 不溶物,聚合物在压裂液原液中完全溶解,不含有固相成 分,因此,也象表面活性剂压裂液一样在裂缝中不形成滤 饼。破胶后不含有任何残渣,对地层的伤害也非常小。由 于聚合物分子量较大,形成的冻胶较比常规聚合物携砂性 能好。
相关文档
最新文档