F_富足半群_英文_
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收稿日期:2005-03-31
基金项目:江西省自然科学基金资助项目(0311038).
作者简介:倪翔飞(1981-),女,江西鹰潭市人,理学硕士研究生,主要从事半群理论的研究.
文章编号:1000-5862(2005)05-0407-04
F -Abundant Semigroup
NI X iang -fei , CHEN Wei , G UO X iao -jiang
(Institute of M athematics and In formatics ,Jiangxi N ormal University ,Nangchang 330027,China )
Abstract :In this paper ,we introduce the concept of pre -hom om orphism and characterize F -abundant semigroups
in terms of pre -hom om orphisms.
K ey w ords :F -abundant semigroup ;canceled semigroups ;pre -hom om orphism
1 Introduction and Preliminaries
A semigroupis S called abundant if each R 3-class and each L 3-class contains an idem potent.An abundant semigroup is called quasi -adequate if its idem potents form a subsemigroup.Abundant semigroups are generalizations of regular semi -groups while quasi -adequate seigroups those of orthodox semigroups.As a class of semigroups intermedi 2ate between the class of abundant semigroups and the class of regular ones E L -Qallali and F ountain [1]defined and stud 2ied idem potent connected abundant semi -groups.S o -called an idem potent connected (IC )abundant semigroups of
defined as an abundant semigroup in which for each a ∈S and for s ome a +∈R 3a ∩E (S ),a 3∈L 3a ∩E (S )there
is a bijection θ:〈a +〉→〈a 3〉such that xa =a (x θ),for all x ∈〈a +〉,where 〈a +〉is the subsemigroup of S gener 2
ated by eE (S )e ,Indeed ,in this case θis an is om orphism [1].Various kinds of abundant semigroups have been investi 2gating by many authors [1~5].
An F -inverse semigroup is an inverse semigroup whose congruence classes m odulo the least group (congruence contain greatest elements with respect to the natural partial order.McFadden and O ’Carroll [6]determined a structure of such semi -groups.A fter that Edwards [7]studied regular semigroups satis fying the same condition ,called F -regular semigroups.She established the construction of F -regular semi -groups.In [8],X iojiang G uo introduced (strongly )F -abundant semigroups and ,in particular ,determined the structure of strongly F -abundant semigroups.In this paper we shall continue [8]to establish the construction of F -abundant semigroups.
Throughout this paper we shall use the terminology a notations of [2,5].
Lemm a 1[4] Let S be a semigroup and a ,b ∈S .The following statements are equivalent :
(1)aL 3b ; (2)for all x ,y ∈S 1,ax =ay Ζbx =by.
As an easy but useful consequence ,we have
Corollary 1[4] Let a ,e 2=e ∈S.The following statements are equivalent :
(1)aL 3e ; (2)a =ae and for all x ,y ∈S 1,ax =ay Ζex =ey.
F or a semigroup S ,we use E (S )to denote the set of idem potents of S.F or the sake of sim plicity ,a typical idem 2potent in the L 3-class [resp.R 3-class]of an element a of S will be denoted by a 3[resp.a +].
Let S be an abundant semigroup.F ollowing Laws on [5],define partial orders on S as follows :
a ≤l
b ΖL
3(a )ΑL 3(b ) and a =bf for s ome f ∈E (S );
第29卷第5期
2005年9月 江西师范大学学报(自然科学版)JOURNA L OF J I ANG XI NORM A L UNI VERSITY (NAT URA L SCIE NCE )V ol.29N o.5 Sep.2005