结构构件上的荷载及支座反力计算

合集下载

工程中常见静定结构的支座反力计算(工程力学课件)

工程中常见静定结构的支座反力计算(工程力学课件)

之矩的代数和
最常用的应用形式
Fy
F
o
l
Fx
求力矩的两种方法
(1)定义
MO(F) F d
F
o
l
d
(2)合力矩定理
M O (F ) M O (Fx ) M O (Fy )
Fy
F
o
l
Fx
【例 1 】 解: (1)直接按定义 (2)按合力矩定理
【例 2】 求土压力使挡土墙倾覆的力矩?
(求力FR对A点的力矩)
力偶的表示符号
M F d
力偶的等效性
只要保持M不变,可任意改变F和d的大小 只要保持力偶矩M不变,力偶可在其作用面内任意移动和转动
力偶的性质
力偶在任一轴上的投影的代数和恒等于零 力偶对其作用面内任一点之矩恒等于力偶矩
y
o
F O
x
F’
MO (F ) MO (F ) F (x d ) F x Fd
F4x F4 cos 45 250 cos 45 176.78 (N)
F4
y
F4 sin 45 250 sin 45 176.78
(N)
平面汇交力系的平衡
y
FR F 0
Fx 0
Fy 0
x
平衡方程
【例 2】
平面三角支架,F=100kN, 求AB、AC杆的受力?
都是二力构件 的物体系统
FA
Fx Fy
0 0
MFx Fy
O00 0
MO 0
FBx FBy
平面力系平衡计算总结
平面 力系
平面汇交力系 平面
基本力系
平面力偶系
平面 特殊力系
平面平行力系
平面一般力系

模块5 构件内力计算及荷载效应组合(建筑力学与结构)

模块5 构件内力计算及荷载效应组合(建筑力学与结构)
图,假定该截面的剪力和弯矩的方向均为正方向,如图5.12c所示,建立 平衡方程,求解剪力和弯矩:
F x0 F A x0
Fy 0
FAy V112gkl0 0
解得:MV A1 00M M 11 V1 8 1 g k ll 00 2 2 1 8 18 g1 k3 l. 023 3 2 0 5 .1 2 4 3 .3 4 6 k N m
X 0
求得:N2 10kN,负值说明假设方向与实际方向相反,BC杆的轴力 为压力。
2.梁的内力计算
例5.2 图5.12a为案例一砖混结构楼层平面图中简支梁L2的计算简图,计算
跨度
,已知梁上均布永久荷载标准值
,计算梁
跨中及支座处截面的内力。
(a)
(b)
(c)
图5.12简支梁L2
解:(1)求支座反力 取整个梁为研究对象,画出梁的受力图,如图5.12b,建立平衡方程求 解支座反力:
正应力有拉应力与压应力之分,拉应力为正,压应力为负。
(a)
(b)
图5.4轴向压杆横截面上的应力分布
3.矩形截面梁平面弯曲时横截面上的应力 一般情况下,梁在竖向荷载作用下产生弯曲变形,本书只
涉及平面弯曲的梁。平面弯曲指梁上所有外力都作用在纵向 对称面内,梁变形后轴线形成的曲线也在该平面内弯曲,如 图5.5所示。
(4)根据脱离体受力图建立静力平衡方程,求解方程得 截面内力。
1.轴向受力杆件的轴力 , F杆1 件25受k,N力F如2 图355k.1,N1a求所F截3示面1,01k在N-1和力2-、2F 上1 的F、2 轴作F力3 用。下处于平衡。已知
图5.11 轴向受力杆件的内力
解:杆件承受多个轴向力作用时,外力将杆分为几段,各段杆的内力将 不相同,因此要分段求出杆的力。

盖梁计算

盖梁计算

六、盖梁设计(一)荷载计算1.恒载计算上部结构恒载见表62.活载计算(1)活载横向分布系数计算活载横向分布系数计算时荷载对称布置及非对称布置均采用杠杆原理方法进行计算。

单列车对称布置时见图11单列车非对称布置时见图12双列车对称布置时见图13单列车非对称布置时见图141 2 300.12210.8750.437 2ηηη===⨯=1 2 310.560.27821(0.4340.315)0.375 210.6480.3242ηηη=⨯==⨯+==⨯=图110.8750.8750.566图120.6840.434 0.31512310.2860.143210.7010.350210.950.4752ηηη=⨯==⨯==⨯=12310.5560.27821(0.4340.315)0.37521(0.6480.355)0.5022ηηη=⨯==⨯+==⨯+=(2)按顺桥向活载移动情况,求支座活荷载反力的最大值 布载长度L 取15.96m a. 单孔荷载(见图15)0.556 0.7011 0.951 0.4340.3150.648 0.355图14 图130.286b.单列车时支座反力R 2=140×(1+0.913)+120×(0.474+0.386)×30×0.199=236.99KN 两列车时支座反力2×R 2=2×236.99=473.96 KN b.双孔荷载(见图16)单列车时支座反力R 1=140×(0.562+0.65)=169.68 KN R 2=120×(1+0.913)+30×0.725=251.31KN R=R 1 +R 2=169.68+251.31=420.99KN 双列车时支座反力2×(R 1 + R 2)=2×420.99=841.98KN (3)载横向分布后各梁支点反力计算见表9表9 主梁支点反力计算120 140 30140 120 图150.913 0.474 0.3860.199120 140 30140120 0.650.913 1.00 0.7250.562R 2图16(4)各梁恒载、活载反力组合各梁恒载、活载反力组合计算见表10,表中均取主梁最大值。

结构的计算简图及受力分析—支座的简化(建筑力学)

结构的计算简图及受力分析—支座的简化(建筑力学)
所以,该支座可以简化为滑动铰支座,其简图及支座反力如图所示。
支座的简化
3 固定(端)支座 既限制构件沿任何方向移动,又限制构件转动的支座。
固定端支座计算简图
支座反力
正交方向的两个力: FAx、FAy限制移动
一个反力偶:
MA限制转动
支座的简化
3 固定(端)支座 如图所示的钢筋混凝土柱:
将柱的下端插入杯形基础预留的杯口中后,用细石混凝土浇筑填实, 当柱插入杯口深度符合一定要求时,可认为柱脚是固定在基础内的, 限制柱脚的水平移动、竖向移动和转动, 因此可简化为固定(端)支座,其简图及支座反力如右图所示。
常见约束类型及约束反力
(3)圆柱铰链约束 约束力作用线通过销钉中心与接触点。 接触点的位置一般不能预先确定, 铰链的约束力方向不定, 通常用两个正交分力表示。
支座的简化
支座:是将结构物与基础或地面连接在一起的装置或构造 支座的作用是把结构物与基础或地面连接起来,使结构物能稳固在地基上 对结构物或构件来说,支座实质上也是一种约束 在对具体结构物进行分析时,当一个构件支承于另一个构件时,其连接处 对前一构件来说也称为支座。 实际结构中,基础对结构的支承形式多种多样,但根据支座的实际构造和约 束特点,在平面杆系结构的计算简图中,支座通常可简化为:固定铰支座、 活动铰支座、固定端支座和定向支座4种基本类型。
支座的简化
1 固定铰支座 用圆柱铰链把结构或构件与支座底板连接,并将底板固定在支承物上构成的支座。 固定铰支座计算简图
固定铰支座能限制构件在垂直于销钉平面内任意方向的移动, 而不能限制构件绕销钉的转动。 对构件的支座反力如图所示:——正交方向的两个分力
支座的简化
1 固定铰支座
在房屋建筑中,构造要求各不相同,但只要它具有约束两个方向的移动的 性能,而不约束转动,即可视为固定铰支座。

第三讲-荷载及结构计算简图

第三讲-荷载及结构计算简图

1 结构上的荷载 • ② 可变荷载是指在结构设计使用期内其值随时 间而变化,其变化与平均值相比不可忽略的荷载。 例如,楼面活荷载、吊车荷载、风荷载、雪荷载 等,可变荷载又称活荷载。 • ③ 偶然荷载是指在结构设计使用期内不一定出 现,一旦出现,其值很大且持续时间很短的荷载。 例如,爆炸力、撞击力等。
1 结构上的荷载
基本组合的荷载分项系数
1 结构上的荷载
• (2) 荷载的设计值
• 一般情况下,荷载标准值与荷载分项系数的乘积即 为荷载设计值,也称设计荷载,其数值大体上相当 于结构在非正常使用情况下荷载的最大值,它比荷 载的标准值具有更大的可靠度。永久荷载设计值为 γGGk;可变荷载设计值为γQQk。 • 【例3.3】求例3.2中楼面永久荷载设计值和可变荷载 设计值。永久荷载及可变荷载分项系数分别为1.2和 1.4。
• 式中Qf ——可变荷载频遇值; • ψf——可变荷载频遇值系数。
1 结构上的荷载
• 4 可变荷载准永久值(Qq)
• 可变荷载准永久值是指可变荷载中在设计基准期内 经常作用(其超越的时间约为设计基准期一半)的 可变荷载。在规定的期限内有较长的总持续时间, 也就是经常作用于结构上的可变荷载。其值取可变 荷载标准值乘以小于1的荷载准永久值系数,用Qq表 示:
1 结构上的荷载
• (2) 可变荷载标准值(qk,Qk),由设计使用年限内 最大荷载概率分布的某个分位值确定,是可变荷载 的最大荷载代表值,由统计所得。我国《建筑结构 荷载规范》对于楼(屋)面活荷载、雪荷载、风荷载、 吊车荷载等可变荷载标准值,规定了具体的数值, 设计时可直接查用。
根据《荷载规范》查得案例一中教学楼教室的楼 面活荷载标准值为2 kN/m2;楼梯上的楼面活荷载标 准值为2.5 kN/m2。

建筑力学与结构模块4--结构构件上的荷载及支座反力计算

建筑力学与结构模块4--结构构件上的荷载及支座反力计算

(2)风荷载原则值( wk),风受到建筑物旳阻碍和影响时,速度会变
化,并在建筑物表面上形成压力和吸力,即为建筑物所受旳风荷载。
根据《建筑构造荷载规范》(GB50009-2023)有关要求w,k 风荷载原则
值( )按下式计算:
wk z s z w0
(4-1)
式中:wk ——风荷载原则值(kN/m2);
可变荷载频遇值是指构造上时而出现旳较大荷载。对可变荷载,在设 计基准期内,其超越旳总时间为要求旳较小比率或超越频率为要求频
率旳荷载值。可变荷载频遇值总是不大于荷载原则值,其值取可变荷
载原则值乘以不大于旳荷载频遇值系数,Q用f
Qf f Qk
表达: (4-3)
式中
Q f —可变荷载频遇值; f—可变荷载频遇值系数,见附录C表C2;
表4.1 基本组合旳荷载分项系数
2 荷载旳设计值
一般情况下,荷载原则值与荷载分项系数旳乘积为荷载设计值,也称 设计荷载,其数值大致上相当于构造在非正常使用情况下荷载旳最大 值,它比荷载旳原则值具有更大旳可靠度。永久荷载设计值为GGk ; 可变荷载设计值为 。 QQk
应用案例4.4 实例二中,现浇钢筋混凝土楼面板板厚h=100mm,板 面做法选用:即8~10厚地砖,25厚干硬水泥砂浆,素水泥浆,其重 量0.7KN/m2,板底为20厚石灰砂浆粉刷,永久荷载及可变荷载分项 系数分别为1.2和1.4,拟定楼面永久荷载设计值和可变荷载设计值。
120mm空心板自重: 25kN/m3×0.08m =2kN/m2
板底粉刷:
17 kN/m3×0.02m =0.34kN/m2
板每平方米总重力(面荷载)原则值: gk 2.99kN / m
应用案例4.3 实例一中钢筋混凝土梁L5(7),截面尺

荷载计算书

荷载计算书
内柱取b=300mm ,h=300mm
板式楼梯计算书
一、构件编号:LT-1
二、示意图:
三、基本资料:
1.依据规范:
《建筑结构荷载规范》(GB 50009-2001)
《混凝土结构设计规范》(GB 50010-2010)
2.几何参数:
楼梯净跨: L1= 2430 mm楼梯高度: H = 1950 mm
梯板厚: t = 100 mm踏步数: n = 10(阶)
1:8泡沫砼找坡2%(最薄20厚)0.08*6=0.48KN/m2
15厚板底抹灰0.015*17=0.255KN/m2
小计:3KN/m2
(2)屋面活载
不上人屋面0.5KN/m2
3.梁荷载
填充墙体:
外墙采用240厚自隔热混凝土小型砌块,取墙重4.2KN/m2(两面抹灰)
户内分隔墙采用120厚页岩多孔砖,取墙重2.7KN/m2(两面抹灰)
最大弯矩截面距左支座的距离: Lmax= 1.34 m
最大弯矩截面距左边弯折处的距离: x = 1.34 m
Mmax= Rl*Lmax-Pn*x2/2
= 18.92*1.34-14.17*1.342/2
= 12.63 kN·m
相对受压区高度:ζ= 0.255538配筋率:ρ= 0.008447
纵筋(1号)计算面积:As= 582.84 mm2
活荷控制:Pn(L) = γG*Pk+γQ*B*q = 1.20*8.80+1.40*1*3.50 = 15.46 kN/m
荷载设计值:Pn= max{ Pn(G) , Pn(L) } = 15.46 kN/m
3. 正截面受弯承载力计算:
左端支座反力: Rl= 20.64 kN
右端支座反力: Rr= 20.64 kN

结构构件的承载力计算

结构构件的承载力计算
的平衡状态由稳定变成不稳定的情况。 (2)临界应力 压杆从稳定平衡到不稳定平衡状态的应力值
。 (3)确定临界应力的大小,是解决压杆稳定问题的关键。
工程力学与建筑结构
计算临界应力的公式为
1)细长杆( P )使用欧拉公式:
cr
2E 2
2)中长杆( P )使用经验公式: a b2
3)柔度:柔度是压杆长度、支撑情况、截面形状和尺寸等
因素的综合值。
l i
i I A
λ是稳定计算中的重要几何参数,有关压杆稳定计算
应先计算出 。
4)稳定性计算
ቤተ መጻሕፍቲ ባይዱ
工程中常采用折减系数法,稳定条件为
F [ ]
A
工程力学与建筑结构
工程力学与建筑结构
2. 内力及其分析计算方法 (1)内力 因外力作用而引起的杆件内部相互作用力。 (2)截面法 内力分析计算的基本方法,基本依据是平衡条
件,其解法有三个步骤:截开、代替、平衡。 3. 几种基本变形的内力和内力图 (1)内力表示一个具体截面上内力的大小和方向。 (2)内力图表示内力沿着杆件轴线的变化规律。 (3)应力是单位面积上的内力及其计算公式和强度条件。
工程力学与建筑结构
工程力学与建筑结构
结构构件的承载力计算
本章以构件的承载能力和构件变形的基本形式为前提 ,讨论了杆件的轴向拉伸(压缩)、剪切、弯曲三种基本 变形的内力、应力和强度条件的分析计算方法和压杆稳定 的概念及其实用计算。
1. 构件的承载能力 强度 构件在荷载作用下抵抗破坏的能力。 刚度 构件在荷载作用下抵抗变形的能力。 稳定性 构件在荷载作用下保持原有平稳状态的能力。
工程力学与建筑结构
4. 强度计算的步骤 (1)分析外力 画受力图,求约束反力。 (2)画内力图 确定危险截面及其内力。 (3)利用强度条件解决三类问题的计算:1)杆件的强度核

梁模板(扣件式,梁板立柱共用)计算书1000-800,2

梁模板(扣件式,梁板立柱共用)计算书1000-800,2

梁模板(扣件式,梁板立柱共用)计算书计算依据:1、《建筑施工模板安全技术规范》JGJ162-20082、《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-20113、《混凝土结构设计规范》GB 50010-20104、《建筑结构荷载规范》GB 50009-20125、《钢结构设计规范》GB 50017-2003一、工程属性二、荷载设计平面图立面图四、面板验算面板类型覆面木胶合板面板厚度t(mm) 15面板抗弯强度设计值[f](N/mm2) 15 面板抗剪强度设计值[τ](N/mm2) 1.5面板弹性模量E(N/mm2) 5400W=bh2/6=1000×15×15/6=37500mm3,I=bh3/12=1000×15×15×15/12=281250mm4q1=0.9×max[1.2(G1k+(G2k+G3k)×h)+1.4Q2k,1.35(G1k+(G2k+G3k)×h)+1.4ψc Q2k]×b=0.9×max[1.2×(0.1+(24+1.5)×0.8)+1.4×2,1.35×(0.1+(24+1.5)×0.8)+1.4×0.7×2]×1=26.671kN/mq1静=0.9×1.35×[G1k+(G2k+G3k)×h]×b=0.9×1.35×[0.1+(24+1.5)×0.8]×1=24.908kN/mq1活=0.9×1.4×0.7×Q2k×b=0.9×1.4×0.7×2×1=1.764kN/mq2=[1×(G1k+(G2k+G3k)×h)]×b=[1×(0.1+(24+1.5)×0.8)]×1=20.5kN/m计算简图如下:1、强度验算M max=0.107q1静L2+0.121q1活L2=0.107×24.908×0.1432+0.121×1.764×0.1432=0.059kN·mσ=M max/W=0.059×106/37500=1.567N/mm2≤[f]=15N/mm2满足要求!2、挠度验算νmax=0.632q2L4/(100EI)=0.632×20.5×142.8574/(100×5400×281250)=0.036mm≤[ν]=L/250=142.857/250=0.571mm满足要求!3、支座反力计算设计值(承载能力极限状态)R1=R5=0.393q1静L+0.446q1活L=0.393×24.908×0.143+0.446×1.764×0.143=1.511kNR2=R4=1.143q1静L+1.223q1活L=1.143×24.908×0.143+1.223×1.764×0.143=4.375kNR3=0.928q1静L+1.142q1活L=0.928×24.908×0.143+1.142×1.764×0.143=3.59kN 标准值(正常使用极限状态)R1'=R5'=0.393q2L=0.393×20.5×0.143=1.151kNR2'=R4'=1.143q2L=1.143×20.5×0.143=3.347kNR3'=0.928q2L=0.928×20.5×0.143=2.718kN五、小梁验算梁底面板传递给左边小梁线荷载:q1左=R1/b=1.511/1=1.511kN/m梁底面板传递给中间小梁最大线荷载:q1中=Max[R2,R3,R4]/b=Max[4.375,3.59,4.375]/1=4.375kN/m梁底面板传递给右边小梁线荷载:q1右=R5/b=1.511/1=1.511kN/m小梁自重:q2=0.9×1.35×(0.3-0.1)×1/7 =0.035kN/m梁左侧模板传递给左边小梁荷载q3左=0.9×1.35×0.5×(0.8-0.45)=0.213kN/m梁右侧模板传递给右边小梁荷载q3右=0.9×1.35×0.5×(0.8-0.45)=0.213kN/m梁左侧楼板传递给左边小梁荷载q4左=0.9×Max[1.2×(0.5+(24+1.1)×0.45)+1.4×2,1.35×(0.5+(24+1.1)×0.45)+1.4×0.7×2]×(0.8-1/2)/2×1=2.414kN/m梁右侧楼板传递给右边小梁荷载q4右=0.9×Max[1.2×(0.5+(24+1.1)×0.45)+1.4×2,1.35×(0.5+(24+1.1)×0.45)+1.4×0.7×2]×((1.6-0.8)-1/2)/2×1=2.414kN/m左侧小梁荷载q左=q1左+q2+q3左+q4左=1.511+0.035+0.213+2.414=4.172kN/m中间小梁荷载q中= q1中+ q2=4.375+0.035=4.41kN/m右侧小梁荷载q右=q1右+q2+q3右+q4右=1.511+0.035+0.213+2.414=4.172kN/m小梁最大荷载q=Max[q左,q中,q右]=Max[4.172,4.41,4.172]=4.41kN/m正常使用极限状态:梁底面板传递给左边小梁线荷载:q1左'=R1'/b=1.151/1=1.151kN/m梁底面板传递给中间小梁最大线荷载:q1中'=Max[R2',R3',R4']/b=Max[3.347,2.718,3.347]/1=3.347kN/m梁底面板传递给右边小梁线荷载:q1右'=R5'/b=1.151/1=1.151kN/m小梁自重:q2'=1×(0.3-0.1)×1/7 =0.029kN/m梁左侧模板传递给左边小梁荷载q3左'=1×0.5×(0.8-0.45)=0.175kN/m梁右侧模板传递给右边小梁荷载q3右'=1×0.5×(0.8-0.45)=0.175kN/m梁左侧楼板传递给左边小梁荷载q4左'=[1×(0.5+(24+1.1)×0.45)]×(0.8-1/2)/2×1=1.769kN/m梁右侧楼板传递给右边小梁荷载q4右'=[1×(0.5+(24+1.1)×0.45)]×((1.6-0.8)-1/2)/2×1=1.769kN/m左侧小梁荷载q左'=q1左'+q2'+q3左'+q4左'=1.151+0.029+0.175+1.769=3.124kN/m 中间小梁荷载q中'= q1中'+ q2'=3.347+0.029=3.376kN/m右侧小梁荷载q右'=q1右'+q2'+q3右'+q4右' =1.151+0.029+0.175+1.769=3.124kN/m 小梁最大荷载q'=Max[q左',q中',q右']=Max[3.124,3.376,3.124]=3.376kN/m为简化计算,按三等跨连续梁和悬臂梁分别计算,如下图:1、抗弯验算M max=max[0.1ql12,0.5ql22]=max[0.1×4.41×0.3782,0.5×4.41×0.32]=0.198kN·m σ=M max/W=0.198×106/23625=8.4N/mm2≤[f]=11.44N/mm2满足要求!2、抗剪验算V max=max[0.6ql1,ql2]=max[0.6×4.41×0.378,4.41×0.3]=1.323kNτmax=3V max/(2bh0)=3×1.323×1000/(2×70×45)=0.63N/mm2≤[τ]=1.232N/mm2满足要求!3、挠度验算ν1=0.677q'l14/(100EI)=0.677×3.376×3784/(100×7040×53.156×104)=0.125mm≤[ν]=l1/250=378/250=1.512mmν2=q'l24/(8EI)=3.376×3004/(8×7040×53.156×104)=0.913mm≤[ν]=2l2/250=2×300/250=2.4mm满足要求!4、支座反力计算承载能力极限状态R max=[1.1qL1,0.4qL1+qL2]=max[1.1×4.41×0.378,0.4×4.41×0.378+4.41×0.3]=1.99kN 同理可得:梁底支撑小梁所受最大支座反力依次为R1=1.882kN,R2=1.99kN,R3=1.636kN,R4=1.636kN,R5=1.636kN,R6=1.636kN,R7=1.99kN ,R8=1.882kN正常使用极限状态R max'=[1.1q'L1,0.4q'L1+q'L2]=max[1.1×3.376×0.378,0.4×3.376×0.378+3.376×0.3]=1.523 kN同理可得:梁底支撑小梁所受最大支座反力依次为R1'=1.41kN,R2'=1.523kN,R3'=1.239kN,R4'=1.239kN,R5'=1.239kN,R6'=1.239kN,R7'=1.523kN,R8'=1.41kN六、主梁验算主梁类型钢管主梁截面类型(mm) Φ48×3.5主梁计算截面类型(mm) Φ48×2.8主梁抗弯强度设计值[f](N/mm2) 205主梁抗剪强度设计值[τ](N/mm2) 125 主梁截面抵抗矩W(cm3) 4.25主梁弹性模量E(N/mm2) 206000 主梁截面惯性矩I(cm4) 10.191、抗弯验算主梁弯矩图(kN·m)σ=M max/W=0.325×106/4250=76.359N/mm2≤[f]=205N/mm2满足要求!2、抗剪验算主梁剪力图(kN)V max=3.541kNτmax=2V max/A=2×3.541×1000/398=17.796N/mm2≤[τ]=125N/mm2满足要求!3、挠度验算主梁变形图(mm)νmax=0.185mm≤[ν]=L/250=600/250=2.4mm满足要求!4、支座反力计算承载能力极限状态支座反力依次为R1=0.331kN,R2=6.813kN,R3=6.813kN,R4=0.331kN 正常使用极限状态支座反力依次为R1'=0.247kN,R2'=5.164kN,R3'=5.164kN,R4'=0.247kN 七、2号主梁验算主梁类型钢管主梁截面类型(mm) Φ48×3.5主梁计算截面类型(mm) Φ48×2.8主梁抗弯强度设计值[f](N/mm2) 205主梁抗剪强度设计值[τ](N/mm2) 125 主梁截面抵抗矩W(cm3) 4.25主梁弹性模量E(N/mm2) 206000 主梁截面惯性矩I(cm4) 10.19主梁计算方式三等跨连续梁可调托座内主梁根数 2主梁受力不均匀系数0.6主梁自重忽略不计,主梁2根合并,其主梁受力不均匀系数=0.6P=max[R2,R3]×0.6=Max[6.813,6.813]×0.6=4.088kN,P'=max[R2',R3']×0.6=Max[5.164,5.164]×0.6=3.099kN1、抗弯验算2号主梁弯矩图(kN·m)σ=M max/W=0.541×106/4250=127.262N/mm2≤[f]=205N/mm2满足要求!2、抗剪验算2号主梁剪力图(kN)V max=2.657kNτmax=2V max/A=2×2.657×1000/398=13.353N/mm2≤[τ]=125N/mm2满足要求!3、挠度验算2号主梁变形图(mm)νmax=0.737mm≤[ν]=L/250=756/250=3.024mm满足要求!4、支座反力计算极限承载能力状态支座反力依次为R1=5.519kN,R2=8.789kN,R3=8.789kN,R4=5.519kN立柱所受主梁支座反力依次为P2=8.789/0.6=14.649kN,P3=8.789/0.6=14.649kN八、纵向水平钢管验算钢管截面类型(mm) Φ48×3.5钢管计算截面类型(mm) Φ48×2.8钢管截面面积A(mm2) 398 钢管截面回转半径i(mm) 16钢管弹性模量E(N/mm2) 206000 钢管截面惯性矩I(cm4) 10.19 钢管截面抵抗矩W(cm3) 4.25 钢管抗弯强度设计值[f](N/mm2) 205 钢管抗剪强度设计值[τ](N/mm2) 125P=max[R1,R4]=0.331kN,P'=max[R1',R4']=0.247kN计算简图如下:1、抗弯验算纵向水平钢管弯矩图(kN·m)σ=M max/W=0.044×106/4250=10.304N/mm2≤[f]=205N/mm2满足要求!2、抗剪验算纵向水平钢管剪力图(kN)V max=0.215kNτmax=2V max/A=2×0.215×1000/398=1.081N/mm2≤[τ]=125N/mm2满足要求!3、挠度验算纵向水平钢管变形图(mm)νmax=0.059mm≤[ν]=L/250=756/250=3.024mm满足要求!4、支座反力计算支座反力依次为R1=0.447kN,R2=0.712kN,R3=0.712kN,R4=0.447kN同理可得:两侧立柱所受支座反力依次为R1=0.712kN,R4=0.712kN九、可调托座验算荷载传递至立柱方式可调托座2 可调托座承载力容许值[N](kN) 30 扣件抗滑移折减系数k c 11、扣件抗滑移验算两侧立柱最大受力N=max[R1,R4]=max[0.712,0.712]=0.712kN≤1×8=8kN单扣件在扭矩达到40~65N·m且无质量缺陷的情况下,单扣件能满足要求!2、可调托座验算可调托座最大受力N=max[P2,P3]=14.649kN≤[N]=30kN满足要求!十、立柱验算l0=h=1800mmλ=l0/i=1800/16=112.5≤[λ]=150长细比满足要求!查表得,φ=0.5022、风荷载计算M w=0.9×φc×1.4×ωk×l a×h2/10=0.9×0.9×1.4×0.29×0.756×1.82/10=0.081kN·m3、稳定性计算根据《建筑施工模板安全技术规范》JGJ162-2008,荷载设计值q1有所不同:1)面板验算q1=0.9×[1.2×(0.1+(24+1.5)×0.8)+1.4×0.9×2]×1=24.408kN/m2)小梁验算q1=max{1.388+0.9×1.2×[(0.3-0.1)×1/7+0.5×(0.8-0.45)]+0.9×[1.2×(0.5+(24+1.1)×0.45)+1.4×0.9×1]×max[0.8-1/2,(1.6-0.8)-1/2]/2×1,4.011+0.9×1.2×(0.3-0.1)×1/7}=4.042kN/m 同上四~八计算过程,可得:R1=0.604kN,P2=13.367kN,P3=13.367kN,R4=0.604kN立柱最大受力N w=max[R1+N边1,P2,P3,R4+N边2]+0.9×1.2×0.15×(5.4-0.8)+M w/l b =max[0.604+0.9×[1.2×(0.5+(24+1.1)×0.45)+1.4×0.9×1]×(0.756+0.8-1/2)/2×0.756,13.367,13.367,0.604+0.9×[1.2×(0.5+(24+1.1)×0.45)+1.4×0.9×1]×(0.756+1.6-0.8-1/2)/2×0.756]+0.745+ 0.081/1.6=14.162kNf=N/(φA)+M w/W=14162.276/(0.502×398)+0.081×106/4250=89.943N/mm2≤[f]=205N/mm2满足要求!十一、高宽比验算根据《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 第6.9.7:支架高宽比不应大于3H/B=5.4/20=0.27<3满足要求,不需要进行抗倾覆验算!十二、立柱地基基础计算f ak 140kPa满足要求!。

支座的设计与计算

支座的设计与计算

B、盆式橡胶支座吨位大主要用于超静定结构, 如连续梁桥、刚构桥、大跨度拱桥等。
钢构件 与橡胶 组合而 成
盆式橡胶支座的一般构造图
球型钢支座的一般构造图
抗震型支座:球型钢支座、铅芯橡胶支座等
规范规定: 1、弯、坡、斜、宽桥梁宜选用圆形板式橡胶 支座; 2、安装支座时,必须保证上下表面、梁底面 及墩台支承面的水平; 3、墩台构造应满足更换支座的要求。
概述
作用: 1、传递上部结构恒载和活载引起的竖向力、水 平力到下部墩台; 2、保证结构在各种荷载下自由变形,以符合计 算力学模型。
竖向力: 结构自重反力、活载最大反力;应计入
汽车冲击影响;支座应考虑是否上拔,计算 最大上拔力。
水平力: 直线桥计算纵向水平力,斜弯桥考虑离
心力、风力等;纵向水平力考虑汽车的制动 力、摩阻力、风力、温度力等;
板式橡胶支座的设计与计算
板式橡胶支座的计算内容:
1、确定支座平面尺寸axb(d)及h; 2、验算支座受压偏转,当梁端发生转动后, 支座不致于与梁底脱空形成局部承压; 3、验算支座的抗滑性能。
板式橡胶支座的基本设计参数:
1、支座使用阶段的平均压应力限值 c 10.0MPa 2、橡胶支座剪变模量 Ge
结构自重的支座 反力标准值
支座平面毛面积
不计制动力
RGk
1.4Ge Ag
l te
计制动力
Rck
1.4Ge Ag
l te
Fbk
(结构自重+0.5 倍汽车荷载)的
汽车荷载引起的 制动力标准值
支座反力标准值
聚四氟乙烯滑板式橡胶支座的摩擦力计算:
结构自重的支座 反力标准值
支座平面毛面积
不计制动力 f RGk Ge Ag tan

建筑力学常见问题解答

建筑力学常见问题解答

建筑力学常见问题解答3 静定结构內力计算1.为保证结构物正常工作,结构应满足哪些要求?答:为保证结构物正常工作,结构应满足以下要求(1)强度要求:构件在外力作用下不会发生破坏,即构件抵抗破坏能力的要求,称为强度要求。

(2)刚度要求:构件在外力作用下所产生的变形不应超过一定的范围,即构件抵抗变形能力的要求,称为刚度要求。

(3)稳定性要求:构件在外力作用下,其原有平衡状态不能丧失,即构件抵抗丧失稳定能力的要求,称为稳定性要求。

只有满足上述各项要求,才能保证构件安全正常的工作,达到建筑结构安全使用的目的。

2.什么是变形体?变形体分为哪两类?答:各种物体受力后都会产生或大或小的变形,称为变形体。

根据变形的性质,变形可分为弹性变形和塑性变形。

所谓弹性变形,是指变形体在外力去掉后,能恢复到原来形状和尺寸的变形。

当外力去掉后,变形不能完全消失而留有残余,则消失的变形是弹性变形,残余的变形称为塑性变形或残余变形。

3.在建筑力学范围内,我们所研究的物体,一般都作哪些假设?答:在建筑力学范围内,对所研究的变形体作出如下的基本假设:(1)均匀连续假设:即认为整个物体内部是连续不断地充满着均匀的物质,且在各点处材料的性质完全相同。

(2)各向同性假设:即认为制成物体的材料沿着各个方向都具有相同的力学性质。

(3)弹性假设:即当作用于物体上的外力不超过某一限度时,将物体看成是完全弹性体。

总之,在建筑力学的范围内,我们研究的材料是均匀连续的,各向同性的弹性体,且杆件的变形是很小的。

4.什么是杆件?什么是等直杆?答:所谓杆件,是指长度远大于其他两个方向尺寸的变形体。

如房屋中的梁、柱、屋架中的各根杆等等。

杆件的形状和尺寸可由杆的横截面和轴线两个主要几何元素来描述。

横截面是指与杆长方向垂直的截面,而轴线是各横截面中心的连线。

横截面与杆轴线是互相垂直的。

轴线为直线、横截面相同的杆称为等直杆。

建筑力学主要研究等直杆。

图3-15.杆件变形的基本形式有哪几种?答:杆件变形的基本形式有下列四种:(1)轴向拉伸或压缩(图3-2a、b):在作用线与杆轴线重合的外力作用下,杆件将产生长度的改变(伸长或缩短)。

三等跨连续梁支座反力计算

三等跨连续梁支座反力计算

三等跨连续梁支座反力计算
在工程建设中,连续梁是常用的结构形式,它由多个跨度组成,在跨度过大时常常采用三等跨连续梁的结构形式。

在梁体支撑方面,支座是连接梁体和支撑结构的重要构件之一,支座的反力计算是保证梁体正常工作的重要环节。

下面将从三等跨连续梁支座反力计算的步骤来进行一一阐述。

一、梁体受力分析
首先,需要进行梁体受力分析,计算每个跨度的受力情况,在这个过程中需要考虑梁的自重、荷载、风荷载等等多种外因素对梁的影响。

二、支座位移计算
通过第一步的梁体受力分析之后,可以对支座进行位移计算,在计算之前,需要对三等跨连续梁的结构形式进行了解,通常情况下,三等跨连续梁的中间跨度大梁会采用两端跨度小梁的支座设置方法,中间跨度小梁采用三个支座分别设置。

计算时需要考虑不同跨度的支座位移及其所产生的影响。

三、计算支座反力
通过前两部分的计算,即可开始计算支座反力。

在计算支座反力的过程中需要考虑梁体自身重量、梁体受到的荷载、支座的长板、短板分别所承受的压力、支座位移对支座反力的影响、梁体弯矩对支座反力的影响等等因素。

四、检查计算结果
完成支座反力计算之后,需要对结果进行检查,包括检查计算结果是否合理、是否满足规范要求等等,以确保计算结果的准确性和合理性。

综上所述,三等跨连续梁支座反力计算是建设工程中十分关键的环节,需要认真细致的进行。

只有在正确计算的基础上,才能够确保梁体和支撑结构正常工作,同时也能够为工程建设提供更好的保障。

结构力学名词解释问答题东北大学考研

结构力学名词解释问答题东北大学考研

第一章1-1什么是结构:房屋、桥梁、隧道、大坝等用以担负预定任务、支撑荷载的建筑物。

结构力学的研究对象主要是杆系结构,其主要任务是:1、研究结构在荷载等因素作用下的内里和位移的计算。

2、研究结构的稳定计算,以及在动力荷载作用下的动力反应。

3、研究结构的组成规则和合理形式等问题。

1-2什么是荷载:作用在结构上的主动力。

按作用时间分:恒载和活载按作用位置分:固定荷载和移动荷载按产生的动力效应大小:静力荷载和动力荷载静力荷载:是指大小、方向和位置不随时间变化或者变化很缓慢的荷载,它不致结构产生显著的加速度,因而可以略去惯性力的影响。

动力荷载:是指随时间迅速变化的荷载,它将引起结构振动,使结构产生不容忽视的加速度,因而必须考虑惯性力的影响。

1-4什么是结构的计算简图:对实际结构加以简化,表现其主要特点,略去次要因素,用一个简化的图形来代替实际结构,这个图形就是结构的计算简图。

如何结构的计算简图:1杆件的简化:常以其轴线代表。

2支座和结点简化:3荷载的简化:常简化为集中荷载及线分布荷载。

4体系的简化:将空间结构转化为平面结构。

1-5支座:把结构和基础联系起来的装置。

1)活动铰支座2)固定铰支座3)固定支座4)滑动支座结点:结构中杆件相互连接处。

刚结点、铰结点、组合结点。

1-6按照几何特征分:杆系结构、薄壁结构、实体结构杆系结构受力特性:梁:是一种受弯构件,轴线通常为直线,当荷载垂直于梁轴线时,横截面上的内力只有弯矩和剪力,没有轴力。

拱:拱的轴线为曲线且在竖向荷载作用下会产生水平反力(推力),这使得拱比跨度、荷载相同的梁的弯矩及剪力都要小,而有较大的轴向压力。

刚架:由直杆组成并具有刚结点,各杆均为受弯杆,内力通常是弯矩、剪力、轴力都有桁架:由直杆组成,但所有结点均为铰结点,当只受到作用于结点的集中荷载时各杆只产生轴力组合结构:由桁架和梁或者桁架和钢架组合在一起的结构有些只受轴力,另一些同时还承受着弯矩和剪力悬索结构:主要承重构件为悬挂于塔、柱上的缆索,只受轴向拉力。

建筑结构荷载的计算

建筑结构荷载的计算

我国建筑结构设计是以概率理论为基础的极限状态设计法, 但钢桥和疲劳破坏仍采用容许应力设计方法。
22
极限状态设计表达式
1. 承载能力极限状态表达式
23
24
25
26
2.正常使用极限状态
a.标准组合 b.频遇组合 c.准永久组合 正常使用极限状态设计包括两个方面: 裂缝控制验算: 受弯构件挠度验算:
2.2.4
极限状态设计法
不能满足设计规定的某一功能要求的特定状态。
极限状态 ——整个结构或结构的ห้องสมุดไป่ตู้部分超过某一特定状态,就
a.承载能力极限状态——结构或构件达到最大承载力或产生不适于 继续承载的变形。如倾覆、疲劳破坏、压 屈等。 b.正常使用极限状态——结构或构件达到正常使用或耐久性能的某 项规定限值。如过大变形、开裂、振动 等。
2.1 荷载代表值
《荷载规范》规定: 对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求采用标准值、组合值、频 遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值。
13
荷载标准值 荷载标准值是荷载的基本代表值,指结构在使用期 间可能出现的最大荷载值。 荷载标准值统一由设计基准期(50年)最大荷载概 率分布的某个分位值来确定,有永久荷载标准值(Gk)和 可变荷载标准值(Qk)。
27

28
29
3 恒荷载
恒荷载主要包括构件的自重、构造层的自重等。 恒荷载的变异性不大,故其标准值可根据构件或构造层的 设计尺寸和材料或构件的单位自重确定。材料的自重可按《 荷载规范》取值。 对于自重变异较大的材料和构件(如现场制作的保温材 料、混凝土薄壁构件等),自重的标准值应根据对结构的不 利状态,取上限值或下限值。

常用结构计算 荷载与结构静力计算表

常用结构计算 荷载与结构静力计算表

2 常用结构计算2-1 荷载与结构静力计算表2-1-1 荷载1.结构上的荷载结构上的荷载分为下列三类:(1)永久荷载如结构自重、土压力、预应力等。

(2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。

(3)偶然荷载如爆炸力、撞击力等。

建筑结构设计时,对不同荷载应采用不同的代表值。

对永久荷载应采用标准值作为代表值。

对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。

对偶然荷载应按建筑结构使用的特点确定其代表值。

2.荷载组合建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。

对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。

γ0S≤R (2-1)式中γ0——结构重要性系数;S——荷载效应组合的设计值;R——结构构件抗力的设计值。

对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定:(1)由可变荷载效应控制的组合(2-2)式中γG——永久荷载的分项系数;γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数;S GK——按永久荷载标准值G K计算的荷载效应值;S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者;ψci——可变荷载Q i的组合值系数;n——参与组合的可变荷载数。

(2)由永久荷载效应控制的组合(2-3)(3)基本组合的荷载分项系数1)永久荷载的分项系数当其效应对结构不利时:对由可变荷载效应控制的组合,应取1.2;对由永久荷载效应控制的组合,应取1.35;当其效应对结构有利时:一般情况下应取1.0;对结构的倾覆、滑移或漂浮验算,应取0.9。

2)可变荷载的分项系数一般情况下应取1.4;对标准值大于4kN/m2的工业房屋楼面结构活荷载应取1.3。

第4章结构构件上的荷载及支座反力计算

第4章结构构件上的荷载及支座反力计算

第4章结构构件上的荷载及支座反力计算第4章主要是研究结构构件上所受到的荷载以及支座反力的计算。

结构构件上的荷载通常由外部荷载和内部荷载两部分组成。

外部荷载是指结构构件受到的来自外界的荷载作用,例如自重、活荷载、风荷载、地震作用等。

内部荷载是指结构构件内部的荷载,例如弯矩、剪力、轴力等。

在计算结构构件上的荷载时,通常采用静力学的原理,根据平衡条件和变形条件进行计算。

其中,平衡条件是指结构构件上受力的总和必须为零,即ΣF=0,ΣM=0;变形条件是指结构构件上的变形必须满足一定的条件,例如梁的弯曲变形必须满足梁的曲率方程。

在计算支座反力时,一般可以采用静力平衡的原理进行计算。

静力平衡的原理是指在结构构件的静力平衡状态下,结构构件上的受力总和必须为零。

在计算支座反力时,可以通过荷载和受力的平衡条件,根据结构构件的几何特性和荷载分布进行计算。

支座反力的计算是结构设计中的重要内容,其准确性对于结构的稳定性和安全性至关重要。

支座反力的计算需要考虑结构的几何形状、荷载分布、材料特性等因素,并且需要根据结构的使用要求和安全标准进行计算。

常用的计算方法包括力平衡法、变形平衡法、弹性平衡法等。

支座反力的计算是结构设计中的一项基本工作,它为结构的合理设计和安全使用提供重要依据。

合理的支座反力计算可以保证结构的稳定性和安全性,并且对于结构的经济性和可行性也有一定的影响。

总之,第4章是研究结构构件上的荷载及支座反力计算的重要内容。

荷载计算是结构设计的基础工作,而支座反力的计算对于结构的稳定性和安全性具有重要意义。

只有通过合理的计算方法和准确的计算结果,才能够保证结构的合理设计,从而满足设计要求和安全标准。

支座反力总结

支座反力总结

支座反力总结引言在工程力学中,支座反力是指一个结构或构件在支撑点上受到的力的总和。

支座反力是结构分析的重要结果之一,对于工程设计、施工以及安全评估具有重要意义。

本文将总结支座反力的概念、计算方法以及常见应用。

支座反力的定义与分类支座反力是指一个结构在支撑点上受到的力的总和。

根据支撑点的类型和结构的约束条件,支座反力可以分为以下几类:1.钉子支座:在一个固定支座中,结构可以绕任意一个轴旋转,但在该轴向上不能发生横移动。

钉子支座在水平方向上提供反力,但不提供弯矩。

2.滑动支座:滑动支座在水平和垂直方向上都可以提供反力,但不提供弯矩。

滑动支座可以滑动,但不可以转动。

3.旋转支座:旋转支座可以提供反力和弯矩。

它可以绕一个轴旋转,但在该轴向上不能发生横移动。

4.固定支座:固定支座可以提供反力、弯矩和剪力。

它既不能滑动,也不能转动。

支座反力的计算方法支座反力的计算方法根据结构的类型和支座的约束条件而有所不同。

下面将介绍一些常见的计算方法。

钉子支座的反力计算钉子支座只能提供水平方向上的反力,不提供弯矩。

计算方法如下:1.在水平方向上的总受力为零。

即水平方向上的反力之和等于零。

2.根据结构的平衡条件,可以计算出每个支座上的反力。

滑动支座的反力计算滑动支座在水平和垂直方向上都可以提供反力,但不提供弯矩。

计算方法如下:1.在水平和垂直方向上的总受力为零。

即水平和垂直方向上的反力之和等于零。

2.根据结构的平衡条件,可以计算出每个支座上的反力。

旋转支座的反力计算旋转支座可以提供反力和弯矩。

计算方法如下:1.在垂直方向上的总受力为零。

即垂直方向上的反力之和等于零。

2.在水平方向上的总弯矩为零。

即所有支座上的弯矩之和等于零。

3.根据结构的平衡条件和弹性力学原理,可以计算出每个支座上的反力和弯矩。

固定支座的反力计算固定支座可以提供反力、弯矩和剪力。

计算方法如下:1.在垂直方向上的总受力为零。

即垂直方向上的反力之和等于零。

2.在水平方向上的总弯矩为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)风荷载标准值
k z s z0
Байду номын сангаас 2、可变荷载准永久值
定义:在设计基准期内经常达到或超过的那部份荷载值(总的 持续时间不低于25年),称为可变荷载准永久值。
可变荷载准永久值可表示为ψqQk ,其中Qk为可变荷载标准
值,ψq为可变荷载准永久值系数。ψq值见附表C2、C3。
3、可变荷载组合值
定义:两种或两种以上可变荷载同时作用于结构上时,除主导 荷载(产生最大效应的荷载)仍可以其标准值为代表值外,其 他伴随荷载均应以小于标准值的荷载值为代表值,此即可变荷 载组合值。
2.5
(3)消防疏散楼梯、其他民用建筑
3.5
阳台:
12 (1)一般情况 (2)当人群有可能密集时
2.5 3.5
0.7 0.5 0.4 0.7 0.6 0.5 0.7 0.5 0.3
0.7 0.6 0.5
注:①本表所列各项活荷载适用于一般使用条件,当使用荷载大时,应按实际情况采用。 ②本表各项荷载不包括隔墙自重和二次装修荷载。
2.5
0.7
(1)礼堂、剧场、影院、有固定座位的看
3
台 (2)公共洗衣房
3.0
0.7
3.0
0.7
(1)商店、展览厅、车站、港口、机场大
4
厅及其旅客等候室 (2)无固定座位的看台
3.5
0.7
3.5
0.7
频偶 值系
Ψf
准永久 值系数
Ψq
0.5
0.4
0.6
0.5
0.6
0.5
0.5
0.3
0.6
0.5
0.6
0.5
(2)可变荷载标准值 (民用楼面均布活荷载标准值按下表采用)
民用建筑楼面均布活荷载标准值及其组合值、频偶值和永久值系数
项 次


标准值
(kN/m2)
(1)住宅、宿舍、旅馆、办公楼、医院病
房、托儿所、幼儿园
1 (2)教室、实验室、阅览室、会议室、医
2.0
院门诊室
组合 值系 Ψc
0.7
2 食堂、办公楼中的一般资料档案室
遇值系数,其值按表1.1.1查取。
荷载的设计值
1、荷载的分项系数
➢ 用于结构承载力极限状态设计中,目的是保证在各种可能的荷载组合出现 时,结构均能维持在相同的可靠度水平上。
➢ 永久荷载分项系数γG和可变荷载分项系数γQ ➢ 其值见P84表4.1
荷载分项系数的取值
荷载特性
分项系数
永久荷载效应 由可变荷载效应控制的组合
Fx 0 M A (F ) 0 M B (F ) 0
其中A、B两点的连线AB不能垂直于投影轴x。
三矩式
M M
A B
( (
F F
) )
0 0
MC (F ) 0
其中A、B、C三点不能在同一条直线上。
2、构件的支座反力计算
基本步骤 1)进行受力分析,绘制受力图 2)建立Oxy直角坐标系 3)依据静力平衡条件,根据受力图建立静力平衡方程,求
3、按荷载作用在结构上的性质分 静力荷载 从零缓慢增大到一定数值后,大小、方向、位置不变化的荷载
动力荷载 大小、方向、位置随时间迅速变化,使结构(构件)产生加速变 化的荷载
荷载的代表值
结构设计时,根据各种极限状态的设计要求所采用的不同的荷载数值称为荷载代表值。 对于永久荷载以标准值作为代表值;对可变荷载根据不同的设计要求采用不同的代表 值,如标准值、组合值、频遇值、准永久值。
1.2
永久 对结构不利 由永久荷载效应控制的组合
1.35
荷载 永久荷载效应对结构有利
1.0
倾覆、滑移或飘浮验算
0.9
一般情况
1.4
可变
荷载 对标准值大于4kN/m2的工业房屋楼面结构的活荷载
1.3

2、荷载的设计值
永久荷载设计值= 永久荷载标准值×永久荷载分项系数 γG
可变荷载设计值= 可变荷载标准值×可变荷载分项系数 γQ
汽车通道及停车库
(1)单向板楼盖(板跨不小于2m)
客车
消防车
4.0
0.7 0.7 0.6
8
(2)双向板楼盖和无梁楼盖(柱网尺寸 35.0
0.7
0.7
0.6
不小于6m×6m)
2.5
0.7 0.7 0.6
客车
20.0
0.7
0.7
0.6
消防车
(2)可变荷载标准值 (民用楼面均布活荷载标准值按下表采用)
厨房(1)一般的
§ 4.1 结构上的荷载
荷载的分类
1、按其作用在结构上的时间久暂分 恒载(永久荷载) 大小、作用位置不随时间变化或变化幅度很小。如:构件的自重 活载(可变荷载) 大小、作用位置随时间变化且变化幅度很大。如:风荷载、楼面活
荷载
2、按荷载分布情况分 分布荷载 满布在结构(构件)上的荷载 集中荷载 荷载分布面积远小于结构尺寸
0.5
0.3
(2)可变荷载标准值 (民用楼面均布活荷载标准值按下表采用)
(1)健身房、演出舞台 5 (2)舞厅
4.0
0.7 0.6 0.5
4.0
0.7 0.6 0.3
(1)书库、档案室、储藏室 6 (2)密集柜书库
5.0 12.0
0.9
0.9
0.8
7 通风机房、电梯机房
7.0
0.9 0.9 0.8
§ 4.2 静力平衡条件及构件支座反力计算
一、平面一般力系的平衡条件
平面任意力系平衡的解析条件是:力系中所有各力在其作用面内 两个任选的坐标轴上投影的代数和分别等于零,所有各力对任一 点之矩的代数和等于零。
平面任意力系的平衡方程:
Fxi 0 Fyi 0
M O (Fi ) 0
二力矩形式的平衡方程
可变荷载组合值可表示为ψcQk 。其中ψc 为可变荷载组合值系 数,其值按附表C2、C3查取。
4、可变荷载频遇值 定义:对可变荷载,在设计基准期内,其超越的总时间 为规定的较小比率或超越频率为规定频率的荷载值(总的持 续时间不低于50年),称为可变荷载频遇值。
可变荷载频遇值可表示为ψfQk。其中ψf为可变荷载频
其实质是以确定值(代表值)表达不确定的随机变量,便于设计时,定量描述和运算。
1、荷载标准值
按构件尺寸和构件单位体积自重
(1)永久荷载标准值 的标准值来确定。
常用材料单位体积的自重(单位kN/m3) 混凝土22~24, 钢筋混凝土24~25, 水泥砂浆20, 石灰砂浆、混合砂浆17, 普通砖18, 普通砖(机器制)19, 浆砌普通砖砌体18, 浆砌机砖砌体19。
9
(2)餐厅
浴室、厕所、盥洗室:
10
(1)第1项中的民用建筑 (2)其他民用建筑
2.0
0.7 0.6 0.5
4.0
0.7 0.7 0.7
2.0
0.7 0.5 0.4
2.5
0.7 0.6 0.5
走廊、门厅、楼梯:
(1)宿舍、旅馆、医院病房、托儿所、幼 2.0
11 儿园、住宅
(2)办公楼、教室、餐厅、医院门诊部
相关文档
最新文档