浅谈基因工程技术的现状及其发展概要

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈基因工程技术的现状及其发展

摘要:关于基因工程对人类的发展在当今社会中也有了广泛的应用,它主要表现在,医药方面,农业方面,环保方面,植物方面。展望现状很乐观,我自己认为对于我们现在的社会条件来看,基因工程的发展至关重要,我们是一个多人口的国家,对于粮食的需求面临着严重的缺乏。不管是什么事,没有粮食什么都不会做好,因此我们要应用好基因工程技术来增加我们的粮食产量,确保我们发展的前提条件。目前我们也有很多在基因工程方面有了很大的发展。但是我们也不要否认我们的不足,我们要更加的努力做得更好。那我就说一下它用于的几个方面和前景;现状;发展。从20

世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域

关键词:基因工程技术;现状;发展

前言

基因工程技术是一项极为复杂的高新生物技术,它利用现代遗传学与分子生

物学的理论和方法,按照人类所需,用DNA重组技术对生物基因组的结构和组成进

蛋白质或人类有益的生物性状。基因工程从诞生至今,仅有30年的历史,然而,无

论是在基础理论研究领域,还是在生产实际应用方面,都已取得了惊人的成绩。首

先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多

种细胞器的基因组全序列测定工作。其次,基因工程具有广泛的应用价值,能为工

农业生产、医药卫生、环境保护开辟新途径。

1.基因工程技术在医药方面的应用

1.1基因工程药物

利用基因工程技术开发新型治疗药物是当前最活跃和发展最快的领域。自

1982年世界第一个基因工程药物---重组胰岛素投放市场以来,基因工程药物就

成为制药行业的一支奇兵,每年平均有3-4个新药或疫苗问世,开发成功的约50个

药品,诸如人胰岛素、忍尿激酶、人生长激素、干扰素、激活剂、乙肝疫苗等广

泛应用于治疗癌症、肝炎、发育不良、糖尿病和一些遗传病上,在很多领域特别

是疑难病症上,起到了传统化学药物难以达到的作用。为治愈癌症正在研制的用

单克隆抗体制成的“生物导弹”,就是按照人类的设计,把“生物导弹”发射出去,精确的命中癌细胞,并炸死癌细胞,而不伤害健康的细胞,比如专门用于肿瘤的“肿瘤基因导弹”等。可见,生物工程药物将成为21世纪药业的支柱。而脱氧核糖核酸或者基因疫苗的问世,变革了机体的免疫方式。如今,人们翘首关注困扰人类的艾滋病病毒疫苗的早日问世。

尽管目前诱变育种技术仍是改良微生物工业生产菌种的主要手段,但是基因工程技术在改良工业生产菌种方面已有成功的报道。最常见的是将控制药物合成关键

步骤的酶基因克隆,通过适当的载体转移到原生产菌中,以使控制限速步骤的酶水平,从而提高产量。Malmberg等构建了一种带有编码赖氨酸ε-氨基转移酶基因(lysine-ε-aminotranster-ase,LAT这种控制Streptomycesclavuligerus生物合成头霉素C的限速步骤的关键酶的基因(lat的高拷贝质粒,并转入这种头霉素产生菌,使LAT提高活力提高了4倍,在2L发酵罐中产生头霉素的能力是原来的2倍,重组菌胞外LAT产物α-氨基己二酸的积累量也比原受体菌高。伊维菌素(ivermectins是一个市场很大的抗虫抗生素,其前体阿弗米丁(avermectins的产生菌种的发酵液中有8个以上的组分,其中只有B1a组分才是制备伊维菌素的原料。Ikeda等经过近十年的努力,已将阿弗米丁的生物合成基因簇全部搞清,并经过诱变与DNA重组,获得了仅产阿弗米丁B2a单一组分和B1a、B2a组份的重组工程菌,这不仅大大提高了阿弗米丁有效组分的发酵效价,且给提取、精制、半合成等后处理工序带来了很大的便利。可以预见,随着对各种工业生产的微生物药物生物合成途径的深入了解以及基因重组技术的不断进展,应用基因工程方法定向构建高产菌株的成功实例将越来越多。在抗生素发酵过程中供氧往往是一个限制因素,充足的氧气供给是药物工业发酵稳定和提高产量,降低成本的关键。传统的解决方法如增加通气量等对设备要求高,能量消耗大。20世纪70年代末在专性好氧菌透明颤(Vitreoscilla中发现了血红蛋白(VHb,它能促进氧气扩散到细胞末端氧化酶上。于是人们想到了将其基因Vgb克隆到其它微生物中,以促进微生物在低氧条件下生长。

1988年Khosla等从Vitreoscilla中分离出Vgb基因并将之转入大肠杆菌(E·coli,提高了大肠杆菌在溶氧量低于5%时对氧的利用率。目前已用克隆表达

VHb的方法提高了放线紫红素、头孢霉素C、红霉素等产生菌及青霉素酰化酶基因工程菌的产量。血红蛋白基因工程的研究和应用,必将对抗生素工业和其它重组药物发酵工业的节能等带来美好的前景。作为半合成头孢菌素类抗生素重要原料的7-氨基头孢烷酸(7-ACA,目前国内外仍以化学裂解头孢菌素C的工艺路线为主。国内外已报道可用经由GL-7-ACA的二步法(化学/酶法或二步酶法来生产

7-ACA,与化学裂解法相比不仅收率提高,且能大大减少环境污染,简化生产工艺。但二步法中关键的GL-7-ACA酰化酶在假单胞菌中表达量低而且分离纯化困

难,限制了这种方法的应用。通过将GL-7-ACA酰化酶基因转入大肠杆菌中表达恰好可以解决这一问题。最近又报道可将编码2个酶的基因直接转入头孢菌素C的生产菌种中,使其在发酵时直接产生7-ACA。调节基因在药物的生物合成中也起着重要作用,增加调节基因的基因量能够大幅提高药物产量。 Hopwood等将放线紫红素生物合成的一个调节基因actⅡ导入原产生菌,尽管基因的拷贝数仅增加了2倍,放线紫

红素的产量却增加了30-40倍。某些抗生素生产菌的产量不高,是由于其自身对该抗生素的抗性不高。因此,利用高拷贝质粒的基因量效应,增加菌种对自身产生的抗生素的抗性,可能增加抗生素的产量。例如,将氨基糖苷-6-乙酰转移酶基因导入卡那霉素和新霉素产生菌,由于提高了对氨糖类抗生素的抗性,产量提高了2-6倍

1.2基因治疗

基因治疗是指由于某种基因缺陷引起的遗传病通过转基因技术而得到纠正。临床实践已经表明:基因治病已经变革了整个医学的预防和治疗领域。比如白痴病,用健康的基因更换或者矫正患者的有缺损的基因,就有可能根治这种疾病。现在已知的人类遗传病约有4000种,包括单基因缺陷和多基因的综合症。运用基因工程技术或基因打靶的手段,将病毒的基因杀灭,插入矫正基因,得以治疗、校正和预防遗传疾病的目的。目前,基因治疗已扩大到肿瘤、心血管系统疾病、神经系统疾病等的治疗。人类也已成功实现了肾、心、肝、胰、肺等器官的移植,也有双器官和多器官的联合移植。

基因治疗有两种途径:一是体细胞的基因治疗,一是生殖细胞的基因治疗。由于生殖细胞的基因治疗操作技术异常复杂,又涉及伦理缓行之理充足,故尚无人涉足。基因工程是20世纪生命科学中最伟大的成绩,开辟了生命科学的新纪元。

经过几十年的发展,基因工程技术已成为一个巨大的朝阳产业,它可以超越动物、植物、微生物之间的界限,创造出新的生物类型。基因工程不仅在医学上应用广泛,而且也广泛应用在工业、农业、冶金、环保、资源、能源、畜牧渔业等领域,

相关文档
最新文档