北师大版高二数学必修5模块试题及答案

合集下载

北师大高二数学必修模块考试题附标准答案

北师大高二数学必修模块考试题附标准答案

高二年级必修5宝鸡铁一中 张爱丽班级: 姓名:一.选择题(本大题共12小题,每小题5分,共60分)1.已知数列{a n }地通项公式为a n =121-2n,在下列各数中,( )不是数列{a n }地项 A. 1 B. -1 C. 2 D. 32.某厂地产值若每年平均比上一年增长10%,经过x 年后,可以增长到原来地2倍,在求x 时,所列地方程正确地是( )A. (1+10%)x-1=2 B. (1+10%)x =2 C. (1+10%)x+1=2 D. x=(1+10%)23.已知数列{a n }中,a n /a n-1=2,(n ≥2),且a 1=1,则这个数列地第10项为( ) A .1024B .512 C .256D .1284.在△ABC 中,一定成立地等式是( ) A.a sinA=b sinB B.a cosA=b cosB C.a sinB=b sinA D.a cosB=b cosA5.在△ABC 中,a=1,b=3,∠A=30°,则∠B 等于 ( )A .60°B .60°或120°C .30°或150°D .120°6.两个等差数列,它们地前n 项和之比为1235-+n n ,则这两个数列地第9项之比是( )A .35B .58C .38D .477.已知△ABC 地周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 地值为 ( )A .41-B .41C .32-D .328. 设a= 3-x, b=x-2,则a 与b 地大小关系为( )A . a>b B. a=b C . a<b D. 与x 有关9.若实数a 、b 满足a +b =2,是3a +3b 地最小值是( ) A .18 B .6 C .23 D .24310.等式11(-x)(x -)023>地解集为( )11. 32A x x ⎧⎫<<⎨⎬⎩⎭1. 2⎧⎫>⎨⎬⎩⎭B x x1. |3⎧⎫<⎨⎬⎩⎭C x x 11. |32⎧⎫<>⎨⎬⎩⎭或D x x x11.知点(3,1)和(-4,6)在直线3x-2y+a=0地两侧,则a 地取值范围是( )A .a<-7或a>24B .a=7或a=24C .-7<a<24D .-24<a<712.图, 不等式(x+y)(x-y)<0表示地平面区域是()二.填空题 ( 每小题4分,共16分)13.数224y =x +x +1地最小值是___14.比数列{a n }中,已知a 1=23,a 4=12,则q =_____,S4 =____.15.某高山上地温度从山脚起,每升高100米降低0.7C ︒,已知山顶处地温度是14.8C ︒,山脚温度是26C ︒,则这山地山顶相对于山脚处地高度是.16.x 、y 满足不等式组⎪⎩⎪⎨⎧≥≥≥+≥+0,01222y x y x y x ,目标函数z=3x+y 地最小值为____.三、 解答题:(共44分) 17.(6分)解不等式(x 2-3x +2) (3 -x )>018.(12分)等差数列{a n }地前n 项和记为Sn,已知 a 10=30,a 20 =50.(1)求通项a n(2)若Sn=242,求n19.12分)在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c20.(14分)假设某市2004年新建住房400万2m ,其中有250万2m 是中低价房.预计在今后地若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房地面积均比上一年增加50万2m .那么,到哪一年底,该市历年所建中低价房地累计面积(以2004年为累计地第一年)将首次不少于4750万2m ?(2) 当年建造地中低价房地面积占该年建造住房面积地比例首次大于85%?参考答案13. 3 14.2, 22.5 15.1600米 16.1min =z三. 解答题:17.{x ︱x<1或2 < x < 3}; 18.(1)a n = 2n + 10 ; (2) n = 11;19.解:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒即b <a ∴A=60︒或120︒当A=60︒时C=75︒22645sin 75sin 2sin sin +===BC b c 当A=120︒时C=15︒22645sin 15sin 2sin sin -===B C b c 20.(1)到2013年底,该市历年所建中低价房地累计面积将首次不少于4750(2)到2009年底,当年建造地中低房地面积占该年建造住房面积地比例将首次大于85%试题说明:本试题共20道题,时间120分钟,满分120分1.课本P6 练习:2 改变3.课本P38A组. 2 改变4.正弦定理地变形5.课本P49练习2:1改变6.专家伴读8.基本不等式地应用:课本P92练习1:1改变16.课本P19A组. 6 改变17.课本P83例11 改变20.课本P40C组. 2 改变版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.xHAQX。

高中数学北师大版必修5习题:模块综合检测含解析

高中数学北师大版必修5习题:模块综合检测含解析

??≥ 0 .
A.3
B.2
C.-2
D.-3
解析 :由约束条件画出可行域 ,如图阴影部分所示 .
线性目标函数 z=ax+y ,即 y=-ax+z.
设直线 l 0:ax+y= 0.
当 -a≥ 1,即 a≤ -1 时 ,l0 过 O(0,0)时 ,z 取得最大值 ,zmax= 0+ 0= 0,不合题意 ;
模块综合检测
(时间 :120 分钟 满分 :150 分)
一、选择题 (本大题共 12 小题 ,每小题 5 分,共 60 分 .在每小题给出的四个选项中
项是符合题目要求的 )
1.已知 a∈R ,且 a2+a< 0,则-a,-a3,a2的大小关系是 (
)
A. a2>-a 3>-a C.-a3>a 2>-a
解析 :画出约束条件对应的平面区域 (如图 ),点 A 为 (1,3),要使 ????最大 ,则 ????--00最大 ,即过点 (x,y),(0,0) 两点的
直线斜率最大 ,由图形知当该直线过点
A

,(
??
??)
max
=
3 -0
1 -0= 3.
答案 :3
16.①数列 { an} 的前
n 项和
Sn=n
即 an+ 1= 4an(n≥ 2).
故 n≥2 时 ,{ an} 是以 a2 为首项 ,以 4 为公比的等比数列 . ∵a2= 3S1= 3a1= 3,∴ ??2 = 3≠4.
??1
∴a1 不在上述等比数列里面 .
∴数列 { an} 的通项公式为
1 (??= 1),
a
n=

北师大版高中数学必修5综合测试试题及答案

北师大版高中数学必修5综合测试试题及答案

北师大版高中数学必修5综合测试试题及答案必修模块5试题.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共3页.满分为150分。

考试时间120分钟.第Ⅰ卷选择题共50分一.选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一项是符合题目要求的)1.已知等差数列{an}中,a7a916,a41,则a12的值是A.15B.30C.31D.6422.若全集U=R,集合M=某某4,S=某3某0,则MðUS=某1A.{某某2}B.{某某2或某3}C.{某某3}D.{某2某3}3.若1+2+22+……+2n>128,nN某,则n的最小值为A.6B.7C.8D.94.在ABC中,B60,bac,则ABC一定是2A、等腰三角形B、等边三角形C、锐角三角形D、钝角三角形115.若不等式a某2b某20的解集为某|某,则a-b值是23A.-10B.-14C.10D.146.在等比数列{an}中,S4=1,S8=3,则a17a18a19a20的值是A.14B.16C.18D.207.已知某2y1,则2某4y的最小值为A.8B.6C.22D.28.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n个图案中有白色地面砖的块数是A.4n2B.4n2C.2n4D.3n3第1个第2个第3个某4y309.已知变量某,y满足3某5y25,目标函数是z2某y,则有某1A.zma某12,zmin3C.zmin3,z无最大值B.zma某12,z无最小值D.z既无最大值,也无最小值10.在R上定义运算:某y某(1y),若不等式(某a)(某a)1对任意实数某成立,则实数a的取值范围是A.1a1B.0a2C.1331aD.a2222第Ⅱ卷非选择题共100分二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上)11.已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.12.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为.13.在数列an中,a11,且对于任意正整数n,都有an1ann,则a100=________________.14.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设ai,j(i、j∈N某)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,23456如a4,2=8.若ai,j=2006,则i、j的值分别为________,__________78910…………………………三、解答题:(本大题共6小题,共80分。

高二数学必修五模块试题(北师大版含答案和解释)

高二数学必修五模块试题(北师大版含答案和解释)

高二数学必修五模块试题(北师大版含答案和解释)模块学习评价 (时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若a>b>c,则一定成立的不等式是( ) A.a|c|>b|c| B.ab>ac C.a-|c|>b-|c| D.1a<1b<1c 【解析】∵a>b,∴a-|c|>b-|c|. 【答案】 C 2.在△ABC中,若sin A∶sin B∶sin C=3∶2∶4,则cos C的值为( ) A.-14 B.14 C.-23 D.23 【解析】由正弦定理知,a∶b∶c=sin A∶sin B∶sin C=3∶2∶4,设a=3k,b=2k,c=4k,(k>0),由余弦定理得 cos C=a2+b2-c22ab =9k2+4k2-16k22×3k×2k=-14. 【答案】 A 3.(2013•洋浦高二检测)在△ABC中,若a=2,b=23,A=30°,则B为( ) A.60° B.60°或120° C.30° D.30°或150° 【解析】根据正弦定理得sin B=bsin Aa=23×sin30°2=32,∴B=60°或120°,∵b>a,故两解都符合题意.【答案】 B 4.不等式ax2+2x+c>0的解集是(-2,3),则a+c的值是( ) A.10 B.-10 C.14 D.-14 【解析】不等式ax2+2x+c>0的解集是(-2,3),即方程ax2+2x+c=0的解为x=-2或x=3. ∴-2+3=-2a,-2×3=ca,∴a=-2,c=12,∴a+c=10. 【答案】 A 5.设{an}是等差数列,且a2=-6,a8=6,Sn是数列{an}的前n项和,则( ) A.S4<S5 B.S4=S5 C.S6<S5 D.S6=S5 【解析】设公差为d,则a1+d=-6,a1+7d=6解得d=2,a1=-8.则a4=-2,a5=0,a6=2,∴S4=S5. 【答案】 B 6.(2013•乌鲁木齐高二检测)已知U 为实数集,M={x|x2-2x<0},N={x|y=x-1},则M∩(∁UN)等于( ) A.{x|0<x<1} B.{x|0<x<2} C.{x|x<1} D.∅【解析】不等式x2-2x<0可化为x(x-2)<0,所以M={x|0<x<2},又因为N={x|x≥1},所以∁UN={x|x<1},M∩(∁UN)={x|0<x<2}∩{x|x<1}={x|0<x<1}.【答案】 A 7.不等式组(x-y+5)(x+y)≥0,0≤x≤3表示的平面区域是( ) A.矩形 B.三角形 C.直角梯形D.等腰梯形【解析】画出图形可知:不等式组(x-y+5)(x+y)≥00≤x≤3表示的平面区域是等腰梯形.【答案】 D 8.(2013•惠州高二检测)若AB→•BC→+AB→2=0,则△ABC是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰直角三角形【解析】由AB→•BC→+AB→2=0,得c2=-ac•cos(π-B),∴cos B=ca,根据余弦定理得a2+c2-b22ac=ca,整理得a2=c2+b2,所以该三角形为直角三角形.【答案】 A 9.等比数列{an}是递增数列,若a5-a1=60,a4-a2=24,则公比q为( ) A.12 B.2 C.12或-2 D.2或12 【解析】由已知得a1q4-a1=60,a1q3-a1q=24,两式相除得q=2或12,经检验q=2或12均满足{an}是递增数列,故选D. 【答案】 D 10.(2013•丰台高二检测)已知数列{an}中,a1=35,an=1-1an-1(n≥2),则a2 012=( ) A.-12 B.-23 C.35 D.52 【解析】由an=1-1an-1及a1=35得a2=-23,a3=52,a4=35,a5=-23,…,所以数列中的项呈周期出现,周期为3,于是a2 012=a670×3+2=a2=-23. 【答案】 B 11.(2012•辽宁高考)设变量x,y满足x-y≤10,0≤x+y≤20,0≤y≤15,则2x+3y的最大值为( ) A.20 B.35 C.45 D.55 【解析】不等式组表示的区域如图所示,所以过点A(5,15)时2x+3y 的值最大,此时2x+3y=55. 【答案】 D 图1 12.如图1,某汽车运输公司刚买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y(单位:10万元)与营运年数x(x∈N)为二次函数关系,若使营运的年平均利润最大,则每辆客车应营运( ) A.3年 B.4年 C.5年 D.6年【解析】由图像知,函数过点(6,11),可设y=a(x-6)2+11,把点(4,7)代入得7=a(4-6)2+11,解得a=-1,∴y=-(x-6)2+11=-x2+12x-25. ∴平均利润yx=-x2+12x-25x=-(x+25x)+12≤-2x×25x+12=2.这时x=25x即x=5. 【答案】 C 二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.若关于x的不等式x-ax+1>0的解集为(-∞,-1)∪(12,+∞),则实数a=________.【解析】由题意知 x=-1和x=12是方程(x-a)•(x+1)=0的两个根,∴a =12. 【答案】12 14.等比数列{an}的前n项和为2n-1,则数列{an2}的前n项和为________.【解析】设{an}的前n项和为Sn,则Sn=2n-1,∴n≥2时Sn-1=2n-1-1,∴an=Sn-Sn-1=2n-1,n=1时也适合上式,∴an=2n-1(n∈N+),故an2=4n -1. 易知{an2}为以1为首项,以4为公比的等比数列,∴其前n 项和为1-4n1-4=4n-13. 【答案】13(4n-1) 15.设x,y为正实数,且x+y=2,则2x+1y的最小值为________.【解析】2x +1y=(2x+1y)×1=(2x+1y)•(x+y2)=32+yx+x2y≥32+2 yx•x2y=3+222,当且仅当x+y=2,yx=x2y,即x=4-22,y=22-2,时等号成立.【答案】3+222 16.(2013•哈师大附中高二检测)如图2,在某灾区的搜救现场,一条搜救犬从A点出发沿正北方向行进x m到达B处发现生命迹象,然后向右转105°,行进10 m到达C处发现另一生命迹象,这时它向右转135°回到出发点,那么x=________.图2 【解析】∠ABC=180°-105°=75°,∠BCA=180°-135°=45°,∠BAC=180°-75°-45°=60°,又AB=x,BC=10,∴xsin 45°=10sin 60°. 得x=10sin 45°sin 60°=1063. 【答案】1063 三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知a、b、c分别是△ABC的三个内角所对的边,若△ABC面积S△ABC=32,c=2,A=60°,求a、b的值.【解】∵32=12b×2×sin 60°,∴b=1,又a2=b2+c2-2bccos A,∴a2=3,即a=3. 18.(本小题满分12分)(2013•福州高二检测)已知不等式mx2+nx-1m<0的解集为{x|x<-12,或x>2}. (1)求m,n的值; (2)解关于x的不等式:(2a-1-x)(x+m)>0,其中a是实数.【解】(1)依题意m<0,-12+2=-nm,-12×2=-1m2得m=-1,n=32.(2)原不等式为(2a-1-x)(x-1)>0即[x-(2a-1)](x-1)<0. ①当2a-1<1,即a<1时,原不等式的解集为{x|2a-1<x<1}.②当2a-1=1即a=1时,原不等式的解集为∅. ③当2a-1>1即a>1时,原不等式的解集为{x|1<x<2a-1}. 19.(本小题满分12分)某货轮在A处看灯塔B在货轮北偏东75°,距离为126 n mile;在A处看灯塔C在货轮的北偏西30°,距离为83 n mile.货轮由A处向正北航行到D处时,再看灯塔B在北偏东120°,求: (1)A处与D处之间的距离; (2)灯塔C与D处之间的距离.【解】(1)在△ABD中,由已知得∠ADB=60°,B=45°. 由正弦定理得 AD=ABsinBsin∠AD B=126×2232 =24(n mile). (2)在△ADC中,AC=83,AD=24,∠CAD=30°,由余弦定理得 CD2=AD2+AC2-2AD•ACcos 30° =242+(83)2-2×24×83cos 30° =3×64,∴CD=83(n mile).所以A处与D处之间的距离为24n mile,灯塔C与D处之间的距离为83 n mile. 20.(本小题满分12分)某工厂家具车间造A、B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A、B型桌子分别需要1小时和2小时,漆工油漆一张A、B型桌子分别需要3小时和1小时,又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A、B型桌子分别获利润2千元和3千元,试问工厂每天应生产A、B型桌子各多少张,才能获得利润最大?【解】设每天生产A型桌子x张,B型桌子y张,则x+2y≤8,3x +y≤9,x≥0,y≥0,目标函数为:z=2x+3y. 作出可行域:把直线l:2x+3y=0向右上方平移至l′的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=2x+3y取最大值,解方程x +2y=83x+y=9,得M的坐标为(2,3).故每天应生产A型桌子2张,B型桌子3张才能获得最大利润. 21.(本小题满分12分)(2013•黄冈高二检测)已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn. (1)求an及Sn; (2)令bn=1an2-1(n∈N+),求数列{bn}的前n项和Tn. 【解】(1)设等差数列{an}的公差为d,因为a3=7,a5+a7=26,所以有a1+2d=7,2a1+10d=26,解得a1=3,d=2,所以an=3+2(n-1)=2n+1;Sn=3n+n(n-1)2×2=n2+2n. (2)由(1)知an=2n+1,所以bn=1an2-1=1(2n+1)2-1=14•1n(n+1)=14•(1n-1n+1),所以Tn=14•(1-12+12-13+…+1n-1n+1)=14•(1-1n+1)=n4(n+1),即数列{bn}的前n项和Tn=n4(n +1). 22.(本小题满分12分)某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元.设f(n)表示前n年的纯利润总和f(n)=(前n年的总收入-前n年的总支出-投资额). (1)该厂从第几年开始盈利? (2)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以10万元出售该厂,问哪种方案更合算?【解】由题意知, f(n)=50n-12n+n(n-1)2×4-72 =-2n2+40n-72. (1)由f(n)>0,即-2n2+40n-72>0,解得2<n <18. 由n∈N+知,从第三年开始盈利. (2)方案①:年平均纯利润f(n)n=40-2n+36n≤16当且仅当n=6时等号成立.故方案①共获利6×16+48=144(万元),此时n=6. 方案②:f(n)=-2(n -10)2+128.当n=10,f(n)max=128. 故方案②共获利128+10=138(万元).比较两种方案,选择第①种方案更合算.。

高中数学 模块综合评估1(含解析)北师大版必修5-北师大版高二必修5数学试题

高中数学 模块综合评估1(含解析)北师大版必修5-北师大版高二必修5数学试题

模块综合评估(一)时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.数列1,3,7,15,…的通项公式a n 可能是( C ) A .2n B .2n +1 C .2n -1 D .2n -1解析:取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D. 2.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( A ) A .[-2,-1] B .[-1,2) C .[-1,1] D .[1,2)解析:由已知,可得A ={x |x ≥3或x ≤-1},则A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A.3.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为( A ) A .5 2 B .5 3 C .2 5 D .3 5解析:依题意,知三角形的最大边为b .由于A =30°,根据正弦定理,得b sin B =asin A ,所以b =a sin B sin A =5sin135°sin30°=5 2. 4.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( A ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D.1<m <3解析:因为f (x )=-x 2+mx -1有正值,所以Δ=m 2-4>0,所以m >2或m <-2. 5.已知c <d ,a >b >0,则下列不等式中必成立的一个是( B ) A .a +c >b +d B .a -c >b -d C .ad >bc D.a c >bd解析:由不等式的性质可知c <d ,∴-c >-d .又a >b >0,∴a +(-c )>b +(-d ),即a -c >b -d .6.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为( D ) A .-9 B .-15 C .15 D .±15解析:因为a 24+a 27+2a 4a 7=(a 4+a 7)2=9,所以a 4+a 7=±3,所以a 1+a 10=±3,所以S 10=10a 1+a 102=±15.7.某学生用一不准确的天平(两臂不等长)称10 g 药品,他先将5 g 的砝码放在左盘,将药品放在右盘使之平衡;然后又将5 g 的砝码放在右盘,将药品放在左盘使之平衡,则此学生实际所得药品( B )A .小于10 gB .大于10 gC .大于等于10 gD .小于等于10 g解析:设左、右臂长分别为t 1,t 2(t 1≠t 2),第一次称的药品为x 1 g ,第二次称的药品为x 2 g ,则有5t 1=x 1t 2,x 2t 1=5t 2,所以x 1+x 2=5⎝ ⎛⎭⎪⎫t 1t 2+t 2t 1>5×2=10,即大于10 g.8.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则yx的取值范围是( C )A .(3,6) B.⎝ ⎛⎭⎪⎫95,3 C.⎣⎢⎡⎦⎥⎤95,6 D .(3,+∞)解析:作出可行域,如图阴影部分所示.目标函数z =y x =y -0x -0的几何意义是可行域内的点(x ,y )与原点(0,0)间连线的斜率.由图可知k OC ≤z ≤k OB .易求得B (1,6),C ⎝ ⎛⎭⎪⎫52,92,因为k OC =95,k OB =61=6,所以95≤z ≤6.9.在如图所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么x +y +z 的值为( B )A .1B .2C .3D .4解析:由题知表格中第三列成首项为4,公比为12的等比数列,故有x =1.根据每行成等差数列得第四列前两个数字依次为5,52,故其公比为12,所以y =5×⎝ ⎛⎭⎪⎫123=58,同理z =6×⎝ ⎛⎭⎪⎫124=38,故x +y +z =2. 10.已知x ,y 为正实数,且x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则a 1+a 22b 1b 2的取值范围是( C )A .RB .(0,4]C .[4,+∞) D.(-∞,0]∪[4,+∞)解析:原式=x +y2xy=x 2+2xy +y 2xy =x y +y x +2,又∵x ,y >0,∴x y +y x +2≥2x y ·yx+2=4,当且仅当x y =y x,即x =y 时等号成立.11.若x ,y 满足条件⎩⎪⎨⎪⎧3x -5y +6≥0,2x +3y -15≤0,y ≥0当且仅当x =y =3时,z =ax +y 取得最大值,则实数a 的取值范围是( C )A.⎝ ⎛⎭⎪⎫-23,35B.⎝ ⎛⎭⎪⎫-∞,-35∪⎝ ⎛⎭⎪⎫23,+∞C.⎝ ⎛⎭⎪⎫-35,23D.⎝ ⎛⎭⎪⎫-∞,-23∪⎝ ⎛⎭⎪⎫35,+∞解析:直线3x -5y +6=0和直线2x +3y -15=0的斜率分别为k 1=35,k 2=-23,且两直线的交点坐标为(3,3),作出可行域如图所示,当且仅当直线z =ax +y 经过点(3,3)时,z 取得最大值,则直线z =ax +y 的斜率-a 满足-23<-a <35,解得-35<a <23,故选C.12.在各项均为正数的等比数列{a n }中,公比q ∈(0,1).若a 3+a 5=5,a 2·a 6=4,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn取最大值时,n 的值为( C ) A .8 B .9 C .8或9 D .17解析:因为a 2·a 6=a 3·a 5=4,且a 3+a 5=5,所以a 3,a 5是方程x 2-5x +4=0的两个根.又因为等比数列{a n }各项均为正数且q ∈(0,1),所以a 3=4,a 5=1.所以q 2=a 5a 3=14,所以q =12.所以a n =4·⎝ ⎛⎭⎪⎫12n -3,所以b n =log 2a n =5-n .所以S n =9-n ·n 2,所以S n n =9-n2. T n =S 11+S 22+…+S n n =14(-n 2+17n )=14⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫n -1722+2894.所以当n =8或9时,T n 取得最大值.二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上) 13.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,c=3,C =π3,则A=π6. 解析:由正弦定理,得a sin A =c sin C ⇒sin A =a sin C c =323=12,所以A =π6.14.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =(-2)n -1.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝ ⎛⎭⎪⎫23a n +13-⎝ ⎛⎭⎪⎫23a n -1+13=23a n -23a n -1,所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1.15.如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处,则两艘轮船之间的距离为13海里.解析:如图,连接AC ,由题意知,AB =BC =5,∠ABC =60°,所以△ABC 为等边三角形,则AC =5,在△ACD 中,AD =32,∠DAC =45°,由余弦定理得CD =13.16.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是①③④(写出所有正确不等式的编号).①ab ≤1;②a +b ≤2;③a 2+b 2≥2;④1a +1b≥2.解析:两个正数,和为定值,积有最大值,即ab ≤a +b24=1,当且仅当a =b 时取等号,故①正确;(a +b )2=a +b +2ab =2+2ab ≤4,当且仅当a =b 时取等号,得a +b ≤2,故②错误;由于a 2+b 22≥a +b24=1,故a 2+b 2≥2成立,故③正确;1a +1b =⎝ ⎛⎭⎪⎫1a +1b a +b2=1+a 2b +b2a≥1+1=2,当且仅当a =b 时取等号,故④正确.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题10分)已知方程ax 2+bx +2=0的两根为-12和2.(1)求a ,b 的值; (2)解不等式ax 2+bx -1>0.解:(1)因为方程ax 2+bx +2=0的两根为-12和2.由根与系数的关系,得⎩⎪⎨⎪⎧-12+2=-b a,-12×2=2a ,解得a =-2,b =3.(2)易知ax 2+bx -1>0,即2x 2-3x +1<0,解得12<x <1.所以不等式ax 2+bx -1>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <1. 18.(本小题12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知A =π3,sin B=3sin C .(1)求tan C 的值;(2)若a =7,求△ABC 的面积.解:(1)因为A =π3,所以B +C =2π3,故sin ⎝ ⎛⎭⎪⎫2π3-C =3sin C , 所以32cos C +12sin C =3sin C ,即32cos C =52sin C ,得tan C =35. (2)由b sin B =csin C,sin B =3sin C ,得b =3c . 在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A =9c 2+c 2-2×(3c )×c ×12=7c 2,又因为a =7,所以c =1,b =3, 所以△ABC 的面积为S =12bc sin A =334.19.(本小题12分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 解:(1)证明:∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B .∵sin B =sin[π-(A +C )]=sin(A +C ),∴sin A +sin C =2sin(A +C ). (2)∵a ,b ,c 成等比数列,∴b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立.∴cos B 的最小值为12.20.(本小题12分)在等差数列{a n }中,已知公差d =2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式; (2)设b n =an n +12,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知(a 1+d )2=a 1(a 1+3d ),即(a 1+2)2=a 1(a 1+6),解得a 1=2, 所以数列{a n }的通项公式为a n =2n . (2)由题意知b n =a n n +12=n (n +1),所以T n =-1×2+2×3-3×4+…+(-1)nn ·(n +1).因为b n +1-b n =2(n +1),可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+...+(-b n -1+b n )=4+8+12+ (2)=n24+2n 2=n n +22,当n 为奇数时,T n =T n -1+(-b n )=n -1n +12-n (n +1)=-n +122.所以T n=⎩⎪⎨⎪⎧-n +122,n 为奇数,nn +22,n 为偶数.21.(本小题12分)某蔬菜基地种植甲、乙两种无公害蔬菜.生产一吨甲种蔬菜需用电力9千瓦时,耗肥4吨,3个工时;生产一吨乙种蔬菜需用电力5千瓦时,耗肥5吨,10个工时,现该基地仅有电力360千瓦时,肥200吨,工时300个.已知生产一吨甲种蔬菜获利700元,生产一吨乙种蔬菜获利1 200元,在上述电力、肥、工时的限制下,问如何安排甲、乙两种蔬菜种植,才能使利润最大?最大利润是多少?解:设种植甲种蔬菜x 吨,乙种蔬菜y 吨,利润为z 元,根据题意可得⎩⎪⎨⎪⎧9x +5y ≤360,4x +5y ≤200,3x +10y ≤300,x ≥0,y ≥0,目标函数为:z =700x +1 200y ,作出二元一次不等式组表示的平面区域,即可行域,如图,作直线:700x +1 200y =0,即7x +12y =0,平移直线,当直线过A 点时目标函数取最大值.解方程组⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得x =20,y =24.所以点A 的坐标为(20,24).所以z max =700×20+1 200×24=42 800.即种植甲种蔬菜20吨,乙种蔬菜24吨,才能使利润最大,最大利润为42 800元. 22.(本小题12分)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x的图像上(n ∈N +).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln2,求数列{a n b 2n }的前n 项和S n .解:(1)证明:由已知,b n =2a n >0. 当n ≥1时,b n +1b n=2a n +1-a n =2d. 所以,数列{b n }是首项为2a 1,公比为2d的等比数列.(2)函数f (x )=2x在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln2)(x -a 2),它在x 轴上的截距为a 2-1ln2.由题意,a 2-1ln2=2-1ln2.解得a 2=2.所以,d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n. 于是,T n =1×4+2×42+3×43+…+(n -1)·4n -1+n ·4n,4T n =1×42+2×43+…+(n -1)×4n+n ·4n +1.因此,T n -4T n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=1-3n 4n +1-43.所以,T n =3n -14n +1+49.。

北师大版必修5高二数学第一单元试卷及答案

北师大版必修5高二数学第一单元试卷及答案

高二年级数学学科第一单元质量检测试题参赛试卷学校:石油中学 命题人:胡伟红一、 选择题(60分)1.等差数列前10项和为100,前100项和为10。

则前110项的和为A .-90B .90C .-110D .10 2.两个等差数列,它们的前n 项和之比为1235-+n n ,则这两个数列的第9项之比是A .35 B .58 C .38 D .473.若数列{}n a 中,n a =43-3n ,则n S 最大值n =A .13B .14C .15D .14或15 4.一个项数为偶数的等差数列,奇数项的和与偶数项的和分别为24和30。

若最后一项超过第一项10.5,则该数列的项数为 A .18 B .12 C .10 D .8 5.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是A .130B .170C .210D .260 6.等差数列{}n a 中,01≠a ,10S =45S ,若有k a =91a ,则k = A .2 B .3 C .4 D .5 7.等比数列{}n a 中,已知3231891===q a a n ,,,则n 为A .3B .4C .5D .6 8.等比数列{}n a 中,9696==a a ,,则3a 等于A .3B .23 C .916 D .49.等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么等于A .3B .2C .-2D .2±10.设由正数组成的等比数列,公比q =2,且3030212=a a a ……·,则30963a a a a ……··等于A .102B .202C .162D .152 11、已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .2312、在单位正方体ABCD-A 1B 1C 1D 1中,黑、白两只蚂蚁均从点A 出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,白蚂蚁的爬行路线是AA 1⇒A 1D 1⇒D 1C 1⇒…;黑蚂蚁的爬行路线是AB ⇒BB 1⇒B 1C 1⇒…,它们都遵循以下的爬行规则:所爬行的第i+2段与第i 段所在的直线必为异面直线(其中i 为自然数),设黑、白蚂蚁都爬完2008段后各自停止在正方体的某个顶点处,则此时两者的距离为 ( ) A 1 B 2 C 3 D 0 二、 填空题(20分)1.等差数列{}n a 中5S =25,45S =405。

北师大版高中数学必修5模块测试试题及答案

北师大版高中数学必修5模块测试试题及答案

数学必修5第一部分(选择题 共50分)一、 选择题(每小题5分,10小题,共50分)1、在ABC ∆中,︒===452232B b a ,,,则A 为( )A .︒︒︒︒︒︒30.15030.60.12060D CB 或或2、在ABC ∆中,bc c b a ++=222,则A 等于( )A ︒︒︒︒30.45.60.120.D C B3、在ABC ∆中,1660=︒=b A ,,面积3220=S ,则a 等于( ) A. 610.B. 75C . 49D. 514、等比数列{}n a 中293a a =,则313239310log log log log a a a a ++++ 等于( ) A .9 B .27 C .81 D .2435、三个数a ,b ,c 既是等差数列,又是等比数列,则a ,b ,c 间的关系为 ( ) A .b-a =c-b B .b 2=a c C .a =b=c D .a =b=c ≠06、等比数列{}n a 的首项1a =1,公比为q ,前n 项和是n S ,则数列⎭⎬⎫⎩⎨⎧n a 1的前n 项和是( )A .1-n SB .n n q S -C .n n q S -1D .11--n n q S7、在等差数列{}n a 中,前四项之和为40,最后四项之和为80,所有项之和是210,则项数n 为( )A .12B .14C .15D .16 8、已知,,a b c R ∈,则下列选项正确的是 ( )A.22a b am bm >⇒>B.a ba b c c>⇒> C .11,0a b ab a b >>⇒< D.2211,0a b ab a b>>⇒<9、已知x y xy +=,则y x +的取值范围是( )A .]1,0(B .),2[+∞C .]4,0(D .),4[+∞10、⎪⎪⎩⎪⎪⎨⎧≥≥-<-<+0011234x y y x y x 表示的平面区域内的整点的个数是( )A .8个B .5个C .4个D .2个第二部分(非选择题 共100分)二、填空题(每小题5分,4小题,共20分)11、已知0,0>>y x ,且191=+yx ,求y x +的最小值 _____________ 12、当x 取值范围是_____________ 时,函数122-+=x x y 的值大于零 13、在等比数列}{n a 中,08,204321=+=+a a a a ,则=10S14、不等式组6003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域的面积是三、解答题(共六个题,前两题每题10分,后面每题15分,共80分)15、在△ABC 中,BC =a ,AC =b ,a ,b 是方程02322=+-x x 的两个根,且()1cos 2=+B A 。

北师大版高中数学必修五模块测试卷.docx

北师大版高中数学必修五模块测试卷.docx

高中数学学习材料鼎尚图文*整理制作必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c )cos A =a cos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x (x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2 C.a n =n +1 D.a n =n8.设函数f (x )=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f (a )<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1) 9.已知a >0,b >0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z =2x +y 中变量x ,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f (x )对任意a ,b 满足f (a +b )=f (a )·f (b ),且f (1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab )>1,则c 的取值范围是( ) A.0<c <1 B.1<c <8 C.c >8 D.0<c<1或c >8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且a cos C ,b cos B ,c cos A 成等差数列,则角B = .14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为 . 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为 .16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n = .三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N *) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b =n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船 发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间? 图120.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).21.已知等差数列{a n }的首项a 1=4,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前三项,记{b n }的前n 项和为T n ,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t ,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元. (1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少? (2)若提供面粉的公司规定:当一次性购买面粉不少于210 t 时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =c b .而cos A=bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c )cos A =a cos C ,由正弦定理得3sin B cos A =sin C cos A +cos C sin A⇒3sin B cos A =sin(C +A )=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫ ⎝⎛t =⎪⎭⎫⎝⎛-5151t ×4t ,显然t ≠0,∴t =5. 5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q >0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(qa q q a --=q 3(1-q )()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0, 即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n (n ∈N +).8.A 点拨:不等式f (a )<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a <0,即不等式f (a )<a 的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a1=b1,且ab 1=ab 时,取等号,故应选C.10.C11.D 点拨:由f (a +b )=f (a )·f (b ),可得f (n +1)=f (n )·f (1),)()1(n f n f +=f (1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b ),即b =2a .又因为a ,b ,ab 成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab )=log c 8>1=log c c ,有1<c <8,故选B. 二、13.60° 点拨:依题意得a cos C +c cos A =2b cos B ,根据正弦定理得sin A cos C +sin C cos A =2sin B cos B ,则sin(A +C )=2sin B cos B ,即sin B =2sin B cos B ,所以cos B =21,又0°<B <180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫ ⎝⎛+y x =41.设f (t )=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f (t 1)-f (t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f (t 1)-f (t 2)>0.即f (t 1)>f (t 2).∴f (t )=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f (t )=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫ ⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sin A ·(sin A +3cos A )-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc , 又S △ABC =21bc sin A =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bc sin A =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n +1=2a n +1(n ∈N *),∴a n +1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n . 即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n +1)-(n +1)]=(n +1)b n +1.②②-①,得2(b n +1-1)=(n +1)b n +1-nb n ,即(n -1)b n +1-nb n +2=0,③ ∴nb n +2-(n +1)b n +1+2=0.④ ④-③,得nb n +2-2nb n +1+nb n =0,即b n +2-2b n +1+b n =0,∴b n +2-b n +1=b n +1-b n (n ∈N *).∴{b n }是等差数列.19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1. (2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2, 又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21,所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f (n )=n⎪⎭⎫ ⎝⎛21.因为f (n )=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值,即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x (x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x (x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x (x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f (x )=x +x100(x ≥35),x 2>x 1≥35,则f (x 1)-f (x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。

2020-2021学年北师大版高中数学必修五模块测试卷及答案解析

2020-2021学年北师大版高中数学必修五模块测试卷及答案解析

(新课标)最新北师大版高中数学必修五必修五模块测试卷(150分,120分钟)一、选择题(每题5分,共60分)1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且cos 22A =ccb 2+,则△ABC 是( )A.直角三角形B.等腰三角形或直角三角形C.等边三角形D.等腰直角三角形2.在等比数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8等于( ) A.135 B.100 C.95 D.803.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(3b -c)cos A =acos C ,则cos A 的值等于( ) A.23 B. 33 C. 43 D. 63 4.〈日照模拟〉已知等比数列{a n }的前n 项和S n =t 25-⋅n -51,则实数t 的值为( ) A.4 B.5 C. 54 D. 515.某人向正东方向走x km 后,向右转150°,然后朝新方向走3 km ,结果他离出发点恰好是3 km ,那么x 的值为( )A.3B.23C.3或23D.3 6.设{a n }为各项均是正数的等比数列,S n 为{a n }的前n 项和,则( ) A.44S a =66S a B. 44S a >66S a C. 44S a <66S a D. 44S a≤66S a 7.已知数列{a n }的首项为1,并且对任意n ∈N +都有a n >0.设其前n 项和为S n ,若以(a n ,S n )(n ∈N +)为坐标的点在曲线y =21x(x +1)上运动,则数列{a n }的通项公式为( ) A.a n =n 2+1 B.a n =n 2C.a n =n +1D.a n =n8.设函数f(x)=⎪⎪⎩⎪⎪⎨⎧≥-.0,1,0,132<x xx x 若f(a)<a ,则实数a 的取值范围为( )A.(-1,+∞)B.(-∞,-1)C.(3,+∞)D.(0,1)9.已知a>0,b>0,则a 1+b1+2ab 的最小值是( ) A.2 B.22 C.4 D.510.已知目标函数z=2x+y 中变量x,y 满足条件⎪⎩⎪⎨⎧≥+-≤-,1,2553,34x y x y x <则( )A.z max =12,z min =3B.z max =12,无最小值C.z min =3,无最大值D.z 无最大值,也无最小值 11.如果函数f(x)对任意a ,b 满足f(a +b)=f(a)·f(b),且f(1)=2,则)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =( )A.4 018B.1 006C.2 010D.2 014 12.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,且log c (ab)>1,则c 的取值范围是( ) A.0<c<1 B.1<c<8 C.c>8 D.0<c<1或c>8 二、填空题(每题4分,共16分)13.〈泉州质检〉△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,且acosC ,bcosB ,ccosA 成等差数列,则角B=.14.已知两正数x ,y 满足x +y =1,则z =⎪⎪⎭⎫⎝⎛+⋅⎪⎭⎫ ⎝⎛+y y x x 11的最小值为. 15.两个等差数列的前n 项和之比为12105-+n n ,则它们的第7项之比为.16.在数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=31S n (n ≥1),则a n =.三、解答题(解答应写出文字说明,证明过程或演算步骤)(17~20题每题12分,21~22题每题13分,共74分)17.已知向量m =⎪⎭⎫ ⎝⎛21,sin A 与n =(3,sin A +3cos A)共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 的面积S 的最大值,并判断S 取得最大值时△ABC 的形状.18.已知数列{a n }满足a 1=1,a n+1=2a n +1(n ∈N*) (1)求数列{a n }的通项公式; (2)若数列{b n }满足11144421---n b b b Λ=n b n a )1(+ (n ∈N*),证明:{b n }是等差数列;19.如图1,A,B是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距203海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?20.解关于x的不等式ax2-2≥2x-ax(a∈R).21.已知等差数列{a n}的首项a1=4,且a2+a7+a12=-6.(1)求数列{a n}的通项公式a n与前n项和S n;(2)将数列{a n}的前四项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前三项,记{b n}的前n项和为T n,若存在m∈N+,使对任意n∈N+总有T n<S m+λ恒成立,求实数λ的最小值.22.某食品厂定期购买面粉,已知该厂每天需用面粉6 t,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,每次购买面粉需支付运费900元.(1)该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)若提供面粉的公司规定:当一次性购买面粉不少于210 t时,其价格可享受9折优惠(即原价的90%),该厂是否应考虑接受此优惠条件?请说明理由.参考答案及点拨一、1.A 点拨:因为cos 22A =c c b 2+及2cos 22A -1=cos A ,所以cos A =cb .而cos A=bca cb 2222-+,∴b 2+a 2=c 2,则△ABC 是直角三角形.故选A.2.A 点拨:由等比数列的性质知a 1+a 2,a 3+a 4,…,a 7+a 8仍然成等比数列,公比q =2143a a a a ++=4060=23,∴a 7+a 8=(a 1+a 2)14-q =40×323⎪⎭⎫ ⎝⎛=135. 3.B 点拨:(3b -c)cos A =acos C ,由正弦定理得3sin Bcos A =sin Ccos A +cos Csin A⇒3sin Bcos A =sin(C +A)=sin B ,又sin B ≠0,所以cos A =33.故选B. 4.B 点拨:∵a 1=S 1=51t -51,a 2=S 2-S 1=54t ,a 3=S 3-S 2=4t ,∴由{a n }是等比数列.知254⎪⎭⎫⎝⎛t =⎪⎭⎫ ⎝⎛-5151t ×4t ,显然t ≠0,∴t =5.5.C 点拨:根据题意,由余弦定理得(3)2=x 2+32-2x ·3·cos 30°,整理得x 2-33x +6=0,解得x =3或23.6.B 点拨:由题意得公比q>0,当q =1时,有44S a -66S a =41-61>0,即44S a >66S a ; 当q ≠1时,有44S a -66S a =()41311)1(q a q q a ---()61511)1(q a q q a --=q 3(1-q)()()642111q q q ---⋅=231q q +611q q --⋅>0,所以44S a >66S a .综上所述,应选B. 7.D 点拨:由题意,得S n =21a n (a n +1),∴S n -1=21a n -1(a n -1+1)(n ≥2). 作差,得a n =21()1212---+-n n n n a a a a , 即(a n +a n -1)(a n -a n -1-1)=0.∵a n >0(n ∈N +),∴a n -a n -1-1=0,即a n -a n -1=1(n ≥2).∴数列{a n }为首项a 1=1,公差为1的等差数列. ∴a n =n(n ∈N +).8.A 点拨:不等式f(a)<a 等价于⎪⎩⎪⎨⎧≥-0,132a a a <或⎪⎩⎪⎨⎧,1,0a aa <<解得a ≥0或-1<a<0,即不等式f(a)<a的解集为(-1,+∞). 9.C 点拨:依题意得a 1+b 1+2ab ≥2ab 1+2ab ≥4ab ab ⋅1=4,当且仅当a 1=b1,且ab1=ab 时,取等号,故应选C. 10.C11.D 点拨:由f(a +b)=f(a)·f(b),可得f(n +1)=f(n)·f(1),)()1(n f n f +=f(1)=2,所以)1()2(f f +)3()4(f f +)5()6(f f +…+)2013()2014(f f =2×1 007=2 014. 12.B 点拨:因为a ,b ,a +b 成等差数列,所以2b =a +(a +b),即b =2a.又因为a ,b ,ab成等比数列,所以b 2=a ×ab ,即b =a 2.所以a =2,b =4,因此log c (ab)=log c 8>1=log c c ,有1<c<8,故选B. 二、13.60° 点拨:依题意得acos C +ccos A =2bcos B ,根据正弦定理得sin Acos C +sin Ccos A =2sin Bcos B ,则sin(A +C)=2sin Bcos B ,即sin B =2sin Bcos B ,所以cos B =21,又0°<B<180°,所以B =60°,14. 425 点拨:z =⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+y y x x 11=xy +xy 1+x y +y x =xy +xy 1+xy xy y x 2)(2-+=xy 2+xy -2,令t =xy ,则0<t =xy ≤22⎪⎭⎫ ⎝⎛+y x =41.设f(t)=t +t 2,t ∈⎥⎦⎤ ⎝⎛41,0,设41≥t 2>t 1>0,则f(t 1)-f(t 2)=⎪⎪⎭⎫ ⎝⎛+112t t -⎪⎪⎭⎫ ⎝⎛+222t t =212121)2)((t t t t t t --. 因为41≥t 2>t 1>0, 所以t 2-t 1>0,t 1·t 2<161.则t 1·t 2-2<0. 所以f(t 1)-f(t 2)>0.即f(t 1)>f(t 2).∴f(t)=t +t 2在⎥⎦⎤ ⎝⎛41,0上单调递减,故当t =41时f(t)=t +t2有最小值433,所以当x =y =21时,z 有最小值425. 15.3∶1 点拨:设两个等差数列{a n },{b n }的前n 项和为S n ,T n ,则n n T S =12105-+n n ,而77b a=131131b b a a ++=1313T S =113210135-⨯+⨯=3. 16.21,114,233n n n -=⎧⎪⎨⎛⎫≥ ⎪⎪⎝⎭⎩ 点拨:∵3a n +1=S n (n ≥1),∴3a n =S n -1(n ≥2). 两式相减,得3(a n +1-a n )=S n -S n -1=a n (n ≥2)⇒n n a a 1+=34(n ≥2) ⇒n ≥2时,数列{a n }是以34为公比,以a 2为首项的等比数列, ∴n ≥2时,a n =a 2234-⎪⎭⎫ ⎝⎛⋅n .令n =1,由3a n +1=S n ,得3a 2=a 1,又a 1=1⇒a 2=31,∴a n =31234-⎪⎭⎫⎝⎛⋅n (n ≥2).故⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛⋅=-.2,3431,112n n n , 三、17.解:(1)因为m ∥n , 所以sinA ·(sinA +3cosA)-23=0. 所以22cos 1A -+23sin2A -23=0.即23sin2A -21cos2A =1,即sin ⎪⎭⎫ ⎝⎛-62πA =1. 因为A ∈(0,π),所以2A -6π∈⎪⎭⎫ ⎝⎛-611,6ππ, 故2A -6π=2π,即A =3π. (2)由余弦定理,得4=b 2+c 2-bc ,又S △ABC =21bcsinA =43bc ,而b 2+c 2≥2bc ,bc +4≥2bc ,bc ≤4(当且仅当b =c 时等号成立), 所以S △ABC =21bcsinA =43bc ≤43×4=3.当△ABC 的面积最大时,b =c ,又A =3π,故此时△ABC 为等边三角形. 18.(1)解:∵a n+1=2a n +1(n ∈N *),∴a n+1+1=2(a n +1).∴{a n +1}是以a 1+1=2为首项,2为公比的等比数列.∴a n +1=2n.即a n =2n -1(n ∈N *). (2)证明:∵114-b 124-b …14-n b =()n bn a 1+.∴nb b b n -+++)(214Λ=nnb 2.∴2[(b 1+b 2+…+b n )-n ]=nb n ,①2[(b 1+b 2+…+b n +b n+1)-(n+1)]=(n+1)b n+1.②②-①,得2(b n+1-1)=(n+1)b n+1-nb n ,即(n -1)b n+1-nb n +2=0,③ ∴nb n+2-(n+1)b n+1+2=0.④④-③,得nb n+2-2nb n+1+nb n =0,即b n+2-2b n+1+b n =0,∴b n+2-b n+1=b n+1-b n (n ∈N *).∴{b n }是等差数列. 19.解:由题意知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理得,DAB DB ∠sin =ADBAB∠sin .∴DB =ADBDAB AB ∠∠⋅sin sin =︒︒⋅+105sin 45sin )33(5=︒⋅︒+︒⋅︒︒⋅+45cos 60sin 60sin 45sin 45sin )33(5=213)13(35++=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°, BC =203海里,在△DBC 中,由余弦定理得CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×21=900, ∴CD =30海里.则需要的时间t =3030=1(小时). 答:救援船到达D 点需要1小时.20.解:原不等式可化为ax 2+(a -2)x -2≥0⇒(ax -2)(x +1)≥0. (1)当a =0时,原不等式化为x +1≤0⇒x ≤-1.(2)当a >0时, 原不等式化为⎪⎭⎫ ⎝⎛-a x 2 (x +1)≥0⇒x ≥a2或x ≤-1; (3)当a <0时,原不等式化为⎪⎭⎫⎝⎛-a x 2 (x +1)≤0. ①当a 2>-1,即a <-2时,原不等式的解集为-1≤x ≤a 2; ②当a 2=-1,即a =-2时,原不等式的解集为x =-1;③当a 2<-1,即-2<a <0时,原不等式的解集为a2≤x ≤-1.综上所述:当a <-2时,原不等式的解集为⎥⎦⎤⎢⎣⎡-a2,1;当a =-2时,原不等式的解集为{-1}; 当-2<a <0时,原不等式的解集为⎥⎦⎤⎢⎣⎡-1,2a ; 当a =0时,原不等式的解集为(-∞,-1];当a >0时,原不等式的解集为(-∞,-1]∪⎪⎭⎫⎢⎣⎡+∞,2a . 21.解:(1)由a 2+a 7+a 12=-6得a 7=-2,又a 1=4,所以公差d =-1,所以a n =5-n , 从而S n =2)9(n n -. (2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列的公比为q ,则q =12b b =21, 所以T n =2112114-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n =8⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-n 211.令f(n)=n⎪⎭⎫ ⎝⎛21.因为f(n)=n⎪⎭⎫⎝⎛21是关于自然数n 的减函数,所以{T n }是递增数列,得4≤T n <8.又S m =2)9(m m -=-22921⎪⎭⎫⎝⎛-m +881,当m =4或m =5时,S m 取得最大值, 即(S m )max =S 4=S 5=10,若存在m ∈N +,使对任意n ∈N +总有T n <S m +λ恒成立, 则8≤10+λ,得λ≥-2, 所以λ的最小值为-2.22.解:(1)设该厂应每x 天购买一次面粉,则其购买量为6x t.由题意知,面粉的保管等其他费用为3[6x +6(x -1)+…+6×2+6×1]=9x(x +1)元. 设每天所支付的总费用为y 1元,则 y 1=x 1[9x(x +1)+900]+6×1 800=x900+9x +10 809≥2x x 9900⋅+10 809=10 989, 当且仅当9x =x900,即x =10时取等号. 所以该厂每10天购买一次面粉,才能使平均每天所支付的总费用最少.(2)若该厂接受此优惠条件,则至少每35天购买一次面粉.设该厂接受此优惠条件后,每x(x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=x 1[9x(x +1)+900]+6×1 800×0.90=x900+9x +9 729(x ≥35). 令f(x)=x +x100(x ≥35),x 2>x 1≥35,则f(x 1)-f(x 2)=⎪⎪⎭⎫ ⎝⎛+11100x x -⎪⎪⎭⎫ ⎝⎛+22100x x =212121)100)((x x x x x x --. 因为x 2>x 1≥35,所以x 1-x 2<0,x 1·x 2>100.所以x 1x 2-100>0. 所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 所以f(x)=x +x100在[35,+∞)内为增函数. 所以当x =35时,y 2有最小值,约为10 069.7. 此时y 2<10 989,所以该厂应该接受此优惠条件.。

北师大版高二数学必修5测试题及答案.doc

北师大版高二数学必修5测试题及答案.doc

高二数学(必修5)命题人:宝鸡铁一中数学组 周粉粉 (全卷满分120分,考试时间100分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.已知数列{n a }的通项公式是n a =252+n n (n ∈*N ),则数列的第5项为( ) (A )110 (B )16 (C )15 (D )122.在ABC ∆中,bc c b a ++=222,则A 等于( )A ︒︒︒︒30.45.60.120.D C B3.不等式0322≥-+x x 的解集为( )A 、{|13}x x x ≤-≥或B 、}31|{≤≤-x xC 、{|31}x x x ≤-≥或D 、}13|{≤≤-x x 4.在ABC ∆中,80,100,45a b A ︒===,则此三角形解的情况是( )A.一解B.两解C.一解或两解D.无解5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂二个)经过3小时,这种细菌由1个可以繁殖成( )A.511个B.512个C.1023个D.1024个 6.数列{n a }的通项公式是n a =122+n n (n ∈*N ),那么n a 与1+n a 的大小关系是( ) (A )n a >1+n a (B )n a <1+n a (C )n a = 1+n a (D )不能确定 7.关于x 的不等式)1,(0-∞>+的解集为b ax ,则关于x 的不等式02>+-x abx 的解集为( ) A .(-2,1) B .),1()2,(+∞-⋃--∞C .(-2,-1)D .),1()2,(+∞⋃--∞8. 两个等差数列}{n a 和}{n b ,其前n 项和分别为n n T S ,,且,327++=n n T S n n 则157202b b a a ++等于 A.49 B. 837 C. 1479 D. 241499.已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是( )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]10. 等差数列}{n a 中,,0,0,020042003200420031<⋅>+>a a a a a 则使前n 项和0>n S 成立的最大自然数n 为A. 4005B. 4006C. 4007D. 4008 二.填空题. (本大题共6小题,每小题5分,共30分)) 11、数列 121, 241, 381, 4161, 5321, …, 的前n 项之和等于 . 12、已知数列{}n a 的前n 项和2n S n n =+,那么它的通项公式为=n a ________13、在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为 . 14、已知232a b +=,则48ab+的最小值是 .15.某人向银行贷款A 万元用于购房。

2020-2021学年北师大版高中数学必修五模块质量检测2及答案解析

2020-2021学年北师大版高中数学必修五模块质量检测2及答案解析

(新课标)最新北师大版高中数学必修五模块质量检测(二)(江西专用)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( ) A .45 B .75 C .180D .300解析: ∵a 2+a 8=a 3+a 7=a 4+a 6=2a 5, ∴由已知得5a 5=450,∴a 5=90 ∴a 2+a 8=2a 5=180. 答案: C2.在△ABC 中,若b =2asin B ,则角A 为( ) A .30°或60° B .45°或60° C .120°或60°D .30°或150° 解析: 根据正弦定理sin B =2sin Asin B , 所以sin A =12,所以A =30°或150°.答案: D3.a ∈R ,且a 2+a <0,那么-a ,-a 3,a 2的大小关系是( ) A .a 2>-a 3>-a B .-a >a 2>-a 3C .-a 3>a 2>-aD .a 2>-a >-a 3解析: 由a 2+a <0得-1<a <0, ∴-a >a 2>-a 3. 答案: B4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析: a 4+a 6=2a 5=-6∴d =a 5-a 15-1=2∴S n =-11n +n (n -1)2·2=n 2-12n故n =6时S n 取最小值. 答案: A5.△ABC 中,a 、b 、c 分别为A 、B 、C 的对边,如果a ,b ,c 成等差数列,B =30°,△ABC 的面积为32,那么b =( )A.1+32B .1+ 3C.2+32D .2+ 3解析: 2b =a +c ,S =12acsin B =32∴ac =6又∵b 2=a 2+c 2-2accos B ∴b 2=(a +c)2-2ac -2accos 30° ∴b 2=4+23,即b =1+3,故选B. 答案: B6.若数列{x n }满足lg x n +1=1+lg x n (n ∈N +),且x 1+x 2+x 3+…+x 100=100,则lg(x 101+x 102+…+x 200)的值为( )A .102B .101C .100D .99解析: 由lg x n +1=1+lg x n 得x n +1x n=10,∴数列{x n }是公比为10的等比数列,又x 101=x 1·q 100, x 102=x 2·q 100,…,x 200=x 100·q 100, ∴x 101+x 102+…+x 200=q 100(x 1+x 2+…+x 100) =10100·100=10102.∴lg(x 101+x 102+…+x 200)=102.7.已知△ABC 中,sin 2A =sin 2B +sin 2C ,bsin B -csin C =0,则△ABC 为( ) A .直角三角形 B .等腰三角形 C .等腰直角三角形D .等边三角形解析: ∵sin 2A =sin 2B +sin 2C ,∴a 2=b 2+c 2, ∴△ABC 是直角三角形,A =90°.又∵bsin B -csin C =0,即bsin B =csin C , ∴sin 2B =sin 2C ,又∵A =90°,∴B =C. ∴△ABC 是等腰直角三角形. 答案: C8.在平面直角坐标系中,不等式组⎩⎨⎧x +y ≥0x -y +4≥0x ≤1表示的平面区域面积是( )A .3B .6 C.92D .9解析: 如图所示,不等式组表示的平面区域为△ABC 边界及其内部的部分,由⎩⎨⎧x =1x -y +4=0可得A(1,5),同理可得B(-2,2),C(1,-1),故AC =6,△ABC 的高h =3,所以S △ABC =12·AC ·h =9.9.已知数列{a n }的前n 项和为S n ,且S n =a n-2(a 为常数且a ≠0),则数列{a n }( ) A .是等比数列B .当a ≠1时是等比数列C .从第二项起成等比数列D .从第二项起成等比数列或等差数列解析: a n =⎩⎨⎧a -2 n =1,a n -1(a -1)n ≥2,当a ≠0,n ≥2,a n =an -1(a -1),a ≠1是等比数列,当a =1,是等差数列. 答案: D10.在R 上定义运算⊗:x ⊗y =x(1-y).若不等式(x -a)⊗(x +a)<1对任意实数x 均成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12解析: ∵(x -a)⊗(x +a)=(x -a)(1-x -a), ∴不等式(x -a)⊗(x +a)<1对任意实数x 成立, 即(x -a)(1-x -a)<1对任意实数x 成立, 即使x 2-x -a 2+a +1>0对任意实数x 成立, 所以Δ=1-4(-a 2+a +1)<0, 解得-12<a <32,故选C.答案: C二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上) 11.在△ABC 中,已知a =32,cos C =13,S △ABC =43,则b =________.解析: 因为cos C =13,得sin C =223.因为S △ABC =12absin C =12×32×b ×223=43,所以b =2 3. 答案: 2 312.在等比数列{a n }中,若a 3,a 7是方程3x 2-11x +9=0的两根,则a 5的值为________.解析: 由a 3a 7=3,知a 52=3,所以a 5=± 3. 答案: ± 313.设点P(x ,y)在函数y =4-2x 的图像上运动,则9x+3y的最小值为________. 解析: ∵y =4-2x , ∴9x+3y=9x+34-2x=9x+819x≥281=18. 答案: 1814.若不等式组⎩⎨⎧x ≥0y ≥02x +y -6≤0x -y +m ≤0表示的平面区域是一个三角形,则实数m 的取值范围是________.解析: 先画部分可行域⎩⎨⎧x ≥0y ≥02x +y -6≤0,设直线x -y +m =0与x 轴的交点为(-m,0),另外A(3,0),B(0,6),由图形可知:当m ∈(-∞,-3]∪[0,6)时,可行域为三角形.故实数m 的取值范围是(-∞,-3]∪[0,6). 答案: (-∞,-3]∪[0,6)15.钝角三角形的三边为a ,a +1,a +2,其最大角不超过120°,则a 的取值范围是________.解析: ∵三角形为钝角三角形,∴⎩⎨⎧a +a +1>a +2-12≤a 2+(a +1)2-(a +2)22a (a +1)<0,解得32≤a <3.答案:32≤a <3 三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)在△ABC 中,已知B =45°,D 是BC 边上的一点,AD =5,AC =7,DC =3,求AB 的长.解析: 在△ACD 中,由余弦定理,得 cos C =AC 2+CD 2-AD 22AC ·CD =72+32-522×7×3=1114.∴sin C =1-cos 2C =1-⎝ ⎛⎭⎪⎫11142=5143. 在△ABC 中,由正弦定理,得AB sin C =ACsin B ,∴AB =AC ·sin C sin B =7×5143sin 45°=562.17.(12分)数列{a n }中,a 1=13,前n 项和S n 满足S n +1-S n =⎝ ⎛⎭⎪⎫13n +1(n ∈N +).(1)求数列{a n }的通项公式a n 以及前n 项和S n ;(2)若S 1,t(S 1+S 2),3(S 2+S 3)成等差数列,求实数t 的值.解析: (1)由S n +1-S n =⎝ ⎛⎭⎪⎫13n +1得a n +1=⎝ ⎛⎭⎪⎫13n +1(n ∈N *);又a 1=13,故a n =⎝ ⎛⎭⎪⎫13n (n ∈N *).从而,S n =13×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n (n ∈N *).(2)由(1)可得S 1=13,S 2=49,S 3=1327.从而由S 1,t(S 1+S 2),3(S 2+S 3)成等差数列可得: 13+3⎝ ⎛⎭⎪⎫49+1327=2×⎝ ⎛⎭⎪⎫13+49t , 解得t =2.18.(12分)已知全集U =R ,集合A ={x|x 2+(a -1)x -a>0},B ={x|(x +a)(x +b)>0(a ≠b)},M ={x|x 2-2x -3≤0}.(1)若∁U B =M ,求a ,b 的值; (2)若-1<b<a<1,求A ∩B ;(3)若-3<a<-1,且a 2-1∈∁U A ,求实数a 的取值范围.解析: 由题意,得A ={x|(x +a)(x -1)>0},∁U B ={x|(x +a)(x +b)≤0},M ={x|(x +1)(x -3)≤0}.(1)若∁U B =M ,则(x +a)(x +b)=(x +1)(x -3), 所以a =1,b =-3,或a =-3,b =1. (2)若-1<b<a<1,则-1<-a<-b <1,所以A ={x|x<-a 或x>1},B ={x|x<-a 或x>-b}. 故A ∩B ={x|x <-a 或x >1}. (3)若-3<a<-1,则1<-a<3,所以A ={x|x<1或x>-a},∁U A ={x|1≤x ≤-a}. 又由a 2-1∈∁U A ,得1≤a 2-1≤-a ,即⎩⎨⎧a 2-2≥0a 2+a -1≤0,解得-1-52≤a ≤- 2.19.(12分)已知f(x)=ax 2+(b -8)x -a -ab ,当x ∈(-3,2)时,f(x)>0; x ∈(-∞,-3)∪(2,+∞)时,f(x)<0. (1)求y =f(x)的解析式;(2)c 为何值时,ax 2+bx +c ≤0的解集为R.解析: (1)由x ∈(-3,2)时,f(x)>0;x ∈(-∞,-3)∪(2,+∞)时,f(x)<0知:-3,2是方程ax 2+(b -8)x -a -ab =0的两根⎩⎪⎨⎪⎧-3+2=-b -8a ,-3×2=-a -ab a,⇒⎩⎨⎧a =-3,b =5.∴f(x)=-3x 2-3x +18.(2)由a<0,知二次函数y =ax 2+bx +c 的图像开口向下.要使-3x 2+5x +c ≤0的解集为R ,只需Δ≤0,即25+12c ≤0⇔c ≤-2512.∴当c ≤-2512时,ax 2+bx +c ≤0的解集为R.20.(12分)如图,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里,问:(1)乙船每小时航行多少海里?(2)甲、乙两船是否会在某一点相遇,若能,求出甲从A 1处到相遇点共航行了多少海里? 解析: (1)如图,连接A 1B 2,A 2B 2=102, A 1A 2=2060×302=102,∴△A 1A 2B 2是等边三角形,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 12+A 1B 22-2A 1B 1·A 1B 2cos 45° =202+(102)2-2×20×102×22=200B 1B 2=10 2.因此乙船的速度的大小为10220×60=302海里/小时.(2)若能在C 点相遇,则显然A 1C <B 1C.因为甲、乙两船的航速恰好相等,因此不可能相遇.21.(15分)设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n =1,2,3,…. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n +1=b n +a n ,求数列{b n }的通项公式; (3)设c n =n(3-b n ),数列{c n }的前n 项和为T n ,求证:T n <8. 解析: (1)∵n =1时,a 1+S 1=a 1+a 1=2, ∴a 1=1.∵S n =2-a n ,即a n +S n =2, ∴a n +1+S n +1=2.两式相减:a n +1-a n +S n +1-S n =0. 即a n +1-a n +a n +1=0 故有2a n +1=a n ,∵a n ≠0,∴a n +1a n =12(n ∈N +),∴a n =⎝ ⎛⎭⎪⎫12n -1.(2)∵b n +1=b n +a n (n =1,2,3,…),∴b n +1-b n =⎝ ⎛⎭⎪⎫12n -1.得b 2-b 1=1,b 3-b 2=12,b 4-b 3=⎝ ⎛⎭⎪⎫122,…b n -b n -1=⎝ ⎛⎭⎪⎫12n -2(n =2,3,…).将这n -1个等式相加,得b n -b 1=1+12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -2=1-⎝ ⎛⎭⎪⎫12n -11-12=2-⎝ ⎛⎭⎪⎫12n -2.又∵b 1=1,∴b n =3-⎝ ⎛⎭⎪⎫12n -2(n =1,2,3…).(3)证明:∵c n =n(3-b n )=2n ⎝ ⎛⎭⎪⎫12n -1.∴T n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫120+2×⎝ ⎛⎭⎪⎫12+3×⎝ ⎛⎭⎪⎫122+…+(n -1)×⎝ ⎛⎭⎪⎫12n -2+n ×⎝ ⎛⎭⎪⎫12n -1.① 而12T n = 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12+2×⎝ ⎛⎭⎪⎫122+3×⎝ ⎛⎭⎪⎫123+…+(n -1)×⎝ ⎛⎭⎪⎫12n -1+n ×⎝ ⎛⎭⎪⎫12n .② ①-②得12T n =2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫120+⎝ ⎛⎭⎪⎫121+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-2×n ×⎝ ⎛⎭⎪⎫12n . T n =4×1-⎝ ⎛⎭⎪⎫12n1-12-4×n ×⎝ ⎛⎭⎪⎫12n&知识就是力量&=8-82n -4×n ×⎝ ⎛⎭⎪⎫12n =8-8+4n 2n (n =1,2,3,…). ∴T n <8.。

北师大版高中数学必修五模块综合测试(b).docx

北师大版高中数学必修五模块综合测试(b).docx

模块综合测试(B)(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果a <0,b >0,那么,下列不等式中正确的是( ) A.1a <1b B.-a <b C .a 2<b 2D .|a |>|b |解析: 如果a <0,b >0,那么1a <0,1b >0,∴1a <1b . 答案: A2.已知两个正数a ,b 的等差中项为4,则a ,b 的等比中项的最大值为( ) A .2 B .4 C .8 D .16解析:ab ≤a +b2=4,故选B. 答案: B3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =( )A. 6 B .2 C. 3D. 2解析: 由正弦定理,得6sin 120°=2sin C,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c =2,故选D. 答案: D4.在等差数列{a n }中,若a 4+a 6=12,S n 是数列{a n }的前n 项和,则S 9的值为( ) A .48 B .54 C .60D .66解析: 因为a 4+a 6=a 1+a 9=a 2+a 8=a 3+a 7=2a 5=12, 所以S 9=a 1+…+a 9=54. 答案: B5.不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b 的值是( ) A .10 B .-10 C .-14D .14解析: 不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,即方程ax 2+bx +2=0的解为x =-12或13, 故⎩⎨⎧-12+13=-ba ,-12×13=2a .解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14. 答案: C6.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba=( ) A .2 3 B .2 2 C. 3D. 2解析: 由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A ,即sin B ·(sin 2A +cos 2A )=2sin A ,sin B =2sin A ,∴b a =sin B sin A= 2.答案: D7.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( )A.1514B.1213C.1316D.1516解析: 因为a 23=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ). 所以a 1=d .所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316.答案: C8.数列{a n }满足a 1=1,a 2=2,2a n +1=a n +a n +2,若b n =1a n a n +1,则数列{b n }的前5项和等于( )A .1 B.56 C.16D.130解析: ∵2a n +1=a n +a n +2,∴{a n }是等差数列. 又∵a 1=1,a 2=2,∴a n =n . 又b n =1a n ·a n +1=1n (n +1)=1n -1n +1,∴b 1+b 2+b 3+b 4+b 5=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫15-16 =1-16=56,故选B.答案: B9.实数x ,y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则k =y -1x +1的取值范围是( )A.⎣⎡⎦⎤-1,13B.⎣⎡⎦⎤-12,13 C.⎣⎡⎭⎫-12,+∞ D.⎣⎡⎭⎫-12,1 解析:作平面区域如图所示,k =y -1x +1表示点(x ,y )与点(-1,1)连线的斜率,故选D.答案: D10.等比数列{a n }中,已知对任意自然数n ,a 1+a 2+a 3+…+a n =2n -1,则a 21+a 22+a 23+…+a 2n =( )A .(2n -1)2 B.13(2n -1) C .4n -1D.13(4n -1) 解析: 由已知等比数列{a n }的前n 项和S n =2n -1, 所以a 1=S 1=1,a 2=S 2-a 1=2,所以公比q =2. 又因为a 2n +1a 2n =⎝⎛⎭⎫a n +1a n 2=q 2=4,所以数列{a 2n }是以q 2=4为公比的等比数列,所以a 21+a 22+a 23+…+a 2n =1-4n 1-4=13(4n -1).答案: D11.已知x ,y ∈R +,2x +y =2,c =xy ,那么c 的最大值为( ) A .1 B.12 C.22D.14解析: 由已知,2=2x +y ≥22xy =22c ,所以c ≤12.答案: B12.在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦值是32,则△ABC 的面积是( )A.154B.154 3C.2143 D.3543 解析: 由题可知a =b +2,b =c +2,∴a =c +4. ∵sin A =32,∴A =120°. 又cos A =cos 120°=b 2+c 2-a 22bc =(c +2)2+c 2-(c +4)22c (c +2)=c 2-4c -122c (c +2)=-12,整理得c 2-c -6=0,∴c =3(c =-2舍去),从而b =5, ∴S △ABC =12bc sin A =1543.故选B.二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上) 13.若⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z =2y -2x +4的最小值为________.解析: 作出可行域,如图所示,当直线z =2y -2x +4过可行域上点B 时,直线在y 轴上的截距最小,z 最小,又点B 坐标为(1,1),所以z min =2×1-2×1+4=4. 答案: 414.在等比数列{a n }中,若a 9·a 11=4,则数列log 12a n 前19项之和为________.解析: 由题意a n >0,且a 1·a 19=a 2·a 18=…=a 9·a 11=a 210, 又a 9·a 11=4,所以a 10=2,故a 1a 2…a 19=(a 10)19=219. 故log 12a 1+log 12a 2+…+log 12a 19=log 12(a 1a 2…a 19)=log 12219=-19.答案: -1915.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析: ∵c 2=a 2+b 2-2ab cos ∠C , ∴(3)2=a 2+12-2a ·1·cos 23π,∴a 2+a -2=0, ∴(a +2)(a -1)=0 ∴a =1 答案: 116.设关于x 的不等式ax +b >0的解集为{x |x >1},则关于x 的不等式ax +bx 2-5x -6>0的解集为________.由题意得: a >0且-ba=1.又原不等式可变为(x -6)(x +1)(ax +b )>0, 故由右图可知{x |-1<x <1或x >6}. 答案: {x |-1<x <1或x >6}三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)解不等式组⎩⎪⎨⎪⎧x -2x >2x 2-x -2>0.解析: ⎩⎪⎨⎪⎧ x -2x >2x 2-x -2>0⇒⎩⎪⎨⎪⎧x -2-2x x >0x 2-x -2>0⇒⎩⎪⎨⎪⎧ x (x +2)<0(x -2)(x +1)>0⇒⎩⎪⎨⎪⎧-2<x <0x >2或x <-1⇒-2<x <-1. ∴不等式组的解集为{x |-2<x <-1}.18.(本小题满分12分)设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求a 2a 1的值;(2)若a 5=9,求a n 及S n 的表达式. 解析: (1)设等差数列{a n }的公差是d . ∵S 1,S 2,S 4成等比数列,∴S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ),化简得d 2=2a 1d ,注意到d ≠0, ∴d =2a 1.∴a 2a 1=a 1+d a 1=3a 1a 1=3.(2)a 5=a 1+4d =9a 1=9,∴a 1=1,d =2. ∴a n =a 1+(n -1)d =2n -1,S n =n (a 1+a n )2=n 2.19.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且(2a +c )cos B +b cos C =0.(1)求角B 的大小;(2)若b =13;a +c =4,求△ABC 的面积. 解析: (1)由余弦定理得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,将上式代入(2a +c )cos B +b cos C =0, 整理得a 2+c 2-b 2=-ac , ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12,∵B 为△ABC 的内角,∴B =23π.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 即b 2=(a +c )2-2ac -2ac cos B ,将b =13,a +c =4,B =23π代入上式得,13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.20.(本小题满分12分)设集合A 、B 分别是函数y =1x 2+2x -8与函数y =lg(6+x -x 2)的定义域,C ={x |x 2-4ax +3a 2<0}.若A ∩B ⊆C ,求实数a 的取值范围.解析: 由x 2+2x -8>0,得x <-4或x >2, 所以A ={x |x <-4或x >2};由6+x -x 2>0,即x 2-x -6<0,得-2<x <3, 所以B ={x |-2<x <3}. 于是A ∩B ={x |2<x <3}.由x 2-4ax +3a 2<0,得(x -a )(x -3a )<0, 当a >0时,C ={x |a <x <3a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧ a ≤23a ≥3,所以1≤a ≤2;当a =0时,不等式x 2-4ax +3a 2<0即为x 2<0,解集为空集,此时不满足A ∩B ⊆C ; 当a <0时,C ={x |3a <x <a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧3a ≤2a ≥3,此不等式组无解.综上,满足题设条件的实数a 的取值范围为{a |1≤a ≤2}.21.(本小题满分12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:资金 单位产品所需资金(百元) 月资金供 空调机 洗衣机 应量(百元)成本 30 20300 劳动力(工资) 5 10 110 单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少? 解析: 设空调机、洗衣机的月供应量分别是x ,y 台,总利润是z ,则z =6x +8y 由题意有⎩⎪⎨⎪⎧30x +20y ≤300,5x +10y ≤110,x ≥0,y ≥0,x ,y 均为整数.由图知直线y =-34x +18z 过M (4,9)时,纵截距最大.这时z 也取最大值z max =6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.(本小题满分14分)设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n =1,2,3,…. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n +1=b n +a n ,求数列{b n }的通项公式; (3)设c n =n (3-b n ),数列{c n }的前n 项和为T n ,求证:T n <8. 解析: (1)∵n =1时,a 1+S 1=a 1+a 1=2, ∴a 1=1.∵S n =2-a n ,即a n +S n =2, ∴a n +1+S n +1=2.两式相减:a n +1-a n +S n +1-S n =0. 即a n +1-a n +a n +1=0故有2a n +1=a n ,∵a n ≠0,∴a n +1a n =12(n ∈N +),∴a n =⎝⎛⎭⎫12n -1.(2)∵b n +1=b n +a n (n =1,2,3,…), ∴b n +1-b n =⎝⎛⎭⎫12n -1.得b 2-b 1=1,b 3-b 2=12,b 4-b 3=⎝⎛⎭⎫122, …b n -b n -1=⎝⎛⎭⎫12n -2(n =2,3,…). 将这n -1个等式相加,得b n -b 1=1+12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -2 =1-⎝⎛⎭⎫12n -11-12=2-⎝⎛⎭⎫12n -2.又∵b 1=1,∴b n =3-⎝⎛⎭⎫12n -2(n =1,2,3…). (3)证明:∵c n =n (3-b n )=2n ⎝⎛⎭⎫12n -1. ∴T n =2⎣⎡⎦⎤⎝⎛⎭⎫120+2×⎝⎛⎭⎫12+3×⎝⎛⎭⎫122+…+(n -1)×⎝⎛⎭⎫12n -2+n ×⎝⎛⎭⎫12n -1.① 而12T n = 2⎣⎡⎦⎤⎝⎛⎭⎫12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+(n -1)×⎝⎛⎭⎫12n -1+n ×⎝⎛⎭⎫12n .② ①-②得12T n =2⎣⎡⎦⎤⎝⎛⎭⎫120+⎝⎛⎭⎫121+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -1-2×n ×⎝⎛⎭⎫12n . T n =4×1-⎝⎛⎭⎫12n1-12-4×n ×⎝⎛⎭⎫12n=8-82n -4×n ×⎝⎛⎭⎫12n =8-8+4n2n (n =1,2,3,…).∴T n<8.。

最新北师大版高中数学必修五模块测试卷(附答案)

最新北师大版高中数学必修五模块测试卷(附答案)

2.设 a,b,c,d∈R,且 a>b,c>d,则下列结论正确的是( A. a+c>b+d B. a-c>b-d C. ac>bd a b D. d>c
3.已知 a,b,c 分别是△ABC 的三个内角 A,B,C 所对的边,若 A=45°,B=60°,a =6,则 b 等于( A. 3 B. 3 ) C. 3 D. 2 )
第 3 页 共 7 页
a b c 18. 同学们对正弦定理的探索与研究中, 得到sinA=sinB=sinC=2R(R 为△ABC 外接圆 的半径).请利用该结论,解决下列问题:
(1)现有一个破损的圆块如图 1,只给出一把带有刻度的直尺和一个量角器,请你设计 一种方案,求出这个圆块的直径的长度. (2)如图 2,已知△ ABC 三个角满足(sin∠ CBA) +(sin∠ ACB) -(sin∠ CAB) =sin∠
8.已知 0<x<1,则 x(3-3x)取最大值时 x 的值为( 1 A.3 1 B.2 3 C.4 2 D.3
9.在△ABC 中,已知 a4+b4+c4=2c2(a2+b2),则 C 等于( A.30° B.60° C.45°或 135° D.120°
)
10.设{an}是任意等比数列,它的前 n 项和,前 2n 项和与前 3n 项和分别为 X,Y,Z, 则下列等式中恒成立的是( )
2 2 2
CBA·sin∠ACB,AD 是△ABC 外接圆直径,CD=2,BD=3,求∠CAB 和直径的长.
参考答案
一、选择题 a5 1 1 3 3 1.D ∵a5=a2q ,∴q =a2=8,∴q=2. 2.A 3.A
第 4 页 共 7 页
4.B 画出可行域如图,分析图可知当直线 u=x+2y 经过点 A、C 时分别对应 u 的最大 值和最小值. 2 2 5.A 因数列{an}是等比数列,a2a4=a3,a4a6=a5,代入条件 a2a4+2a3a5+a4a6=25,得 2 2 a3+2a3a5+a5=25,(a3+a5)2=25,又 an>0,所以 a3+a5=5. 6.C 设 a+b=t,则 a=t-b;代入 a +2b =6 中得,(t-b) +2b =6,整理得 3b2-2tb+t2-6=0,∵b∈R,∴Δ=4t2-12(t2-6)≥0, ∴-3≤t≤3.即(a+b)min=-3. 7.C ∵运算满足 xy=x(1-y),∴不等式(x-a) (x+a)<1 化为(x-a)(1-x-

2021-2022高二数学北师大版必修5 模块综合测评 Word版含解析

2021-2022高二数学北师大版必修5 模块综合测评 Word版含解析

模块综合测评(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题5分,共50分)1.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .14解析:由于S 3=3a 1+3×(3-1)2d=3×2+3×22d=12,所以d=2.所以a 6=a 1+(6-1)d=2+5×2=12.故选C .答案:C2.已知c<d ,a>b>0,则下列不等式中必成立的一个是 ( )A.a+c>b+dB.a-c>b-dC.ad>bcD.a c>b d解析:由不等式的性质可知,c<d ,∴-c>-d.又a>b>0,∴a+(-c )>b+(-d ),即a-c>b-d.答案:B3.在△ABC 中,B=135°,C=15°,a=5,则此三角形的最大边长为( ) A.5√2B.5√3C.2√5D.3√5解析:依题意,知三角形的最大边为b.由于A=30°,依据正弦定理,得b sinB=a sinA ,所以b=asinB sinA =5sin135°sin30°=5√2.答案:A4.在△ABC 中,若AB=√5,AC=5,且cos C=910,则BC 为 ( )A.4B.5C.4或5D.3解析:设BC=x ,由余弦定理得5=x 2+25-2·5·x ·910,即x 2-9x+20=0,解得x=4或x=5. 答案:C5.若△ABC 中,sin B ·sin C=cos 2A2,则△ABC 的外形为 ( )A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形解析:由sin B ·sin C=cos 2A 2可得2sin B ·sin C=2cos 2A 2=1+cos A ,即2sin B ·sin C=1-cos(B+C )=1-cos B cos C+sin B sin C , 则sin B sin C+cos B cos C=1,即cos(B-C )=1, 又-π<B-C<π.所以B-C=0,即B=C.答案:C 6.假如不等式2x 2+2mx+m4x 2+6x+3<1对一切实数x 均成立,则实数m 的取值范围是( )A.(1,3)B.(-∞,3)C.(-∞,1)∪(2,+∞)D.(-∞,+∞) 解析:∵4x 2+6x+3=(2x +32)2+34>0,∴原不等式⇔2x 2+2mx+m<4x 2+6x+3⇔2x 2+(6-2m )x+(3-m )>0,x ∈R 恒成立⇔Δ=(6-2m )2-8(3-m )<0,解得1<m<3. 答案:A7.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d=2,S k+2-S k =24,则k=( ) A.8B.7C.6D.5解析:∵S k+2-S k =24,∴a k+1+a k+2=24,∴a 1+kd+a 1+(k+1)d=24, ∴2a 1+(2k+1)d=24.又∵a 1=1,d=2,∴k=5.答案:D8.已知a ,b ,c ,d 成等比数列,且曲线y=x 2-2x+3的顶点是(b ,c ),则ad 等于( ) A.3B.2C.1D.-2解析:∵y=x 2-2x+3的顶点为(1,2),∴b=1,c=2.又∵a ,b ,c ,d 成等比数列,∴a=12,d=4,∴ad=2. 答案:B9.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是( )A.3B.4C.92D.112解析:本题主要考查不等式的解法及最值的求法等学问.∵x+2y+2xy=8,∴(x+2y )+(x+2y 2)2≥8,解得x+2y ≥4.∴x+2y 的最小值为4.答案:B10.已知a>0,x ,y 满足约束条件{x ≥1,x +y ≤3,y ≥a (x -3).若z=2x+y 的最小值为1,则a=( )A.14B.12C.1D.2解析:由题意作出{x ≥1,x +y ≤3所表示的区域如图阴影部分所示,作直线2x+y=1,由于直线2x+y=1与直线x=1的交点坐标为(1,-1),结合题意知直线y=a (x-3)过点(1,-1),代入得a=12,所以a=12. 答案:B二、填空题(本大题共5小题,每小题5分,共25分)11.在△ABC 中,a ,b ,c 分别为三个内角A ,B ,C 所对的边,设向量m =(b-c ,c-a ),n =(b ,c+a ),且m ⊥n ,b 和c 的等差中项为12,则△ABC 面积的最大值为 .解析:由m ⊥n 得(b-c )b+(c-a )(c+a )=0,整理得b 2+c 2-a 2=bc ,则cos A=b 2+c 2-a 22bc=12,所以A=π3,sin A=√32.由于b 和c 的等差中项为12,所以b+c=1. 所以bc ≤(b+c 2)2=14,当且仅当b=c=12时取等号.从而S △ABC =12bc sin A ≤12×14×√32=√316. 答案:√31612.已知函数f (x )={x -1x ,x ≥2,x ,x <2,若使不等式f (x )<83成立,则x 的取值范围为 .解析:当x ≥2时,由x-1x <83化简得,3x 2-8x-3<0,解得-13<x<3,∴2≤x<3.当x<2时,x<83,∴x<2,∴x<3.答案:{x|x<3}13.若变量x ,y 满足约束条件{y ≤x ,x +y ≤4,y ≥k ,且z=2x+y 的最小值为-6,则k= .解析:画出可行域如图:画直线l 0:y=-2x ,平移直线l 0,当过A (k ,k )时,使得z 最小,由最小值为-6,可得3k=-6,解得k=-2. 答案:-214.设x ,y ∈R ,a>1,b>1,若a x =b y =3,a+b=2√3,则1x+1y的最大值为 . 解析:由于a>1,b>1,a x =b y =3,a+b=2√3,所以x=log a 3,y=log b 3.1x +1y=1log a 3+1log b 3=log 3a+log 3b=log 3ab ≤log 3(a+b 2)2=log 3(2√32)2=1,当且仅当a=b 时,等号成立.即1x+1y的最大值为1. 答案:115.设{a n }为公比q>1的等比数列,若a 2 013和a 2 014是方程4x 2-8x+3=0的两根,则a 2 015+a 2 016= . 解析:∵a 2021和a 2022是方程4x 2-8x+3=0的两根,而方程的两个根是x=12,x=32,又{a n }的公比q>1,∴a 2021=12,a 2022=32,∴q=3.∴a 2021+a 2022=a 2021q 2+a 2022q 2=(a 2021+a 2022)q 2=(12+32)×32=18.答案:18三、解答题(本大题共6小题,共75分)16.(本小题满分12分)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A+sin C=2sin(A+C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 解:(1)∵a ,b ,c 成等差数列,∴a+c=2b.由正弦定理得sin A+sin C=2sin B.∵sin B=sin[π-(A+C )]=sin(A+C ), ∴sin A+sin C=2sin(A+C ).(2)∵a ,b ,c 成等比数列,∴b 2=ac. 由余弦定理得cos B=a 2+c 2-b22ac=a 2+c 2-ac 2ac≥2ac -ac 2ac =12,当且仅当a=c 时等号成立.∴cos B 的最小值为12.17.(本小题满分12分)已知关于x 的不等式x+2m >1+x -5m 2. (1)当m>0时,解这个不等式;(2)若此不等式的解集为{x|x>5},试求实数m 的值. 解:(1)原不等式可化为m (x+2)>m 2+x-5,(m-1)x>m 2-2m-5,若0<m<1,不等式的解集为 {x |x <m 2-2m -5m -1}; 若m=1,则不等式的解集为R ; 若m>1,则不等式的解集为 {x |x >m 2-2m -5m -1}. (2)由题意和(1)知,m>1且满足 {x |x >m 2-2m -5m -1}={x|x>5}, 于是m 2-2m -5m -1=5,解得m=7.18.(本小题满分12分)在锐角三角形ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c.向量m =(1,cos B ),n =(sin B ,-√3),且m ⊥n .(1)求角B 的大小;(2)若△ABC 的面积为10√3,b=7,求此三角形周长. 解:(1)∵m ⊥n ,∴m ·n=0.∴m ·n=sin B-√3cos B=0. ∵△ABC 为锐角三角形, ∴tan B=√3.∵0<B<π2,∴B=π3.(2)∵S △ABC =12ac sin B=√34ac , 由题设知√34ac=10√3,得ac=40.由余弦定理得b 2=a 2+c 2-2ac cos B ,即49=a 2+c 2-ac ,∴(a+c )2=(a 2+c 2-ac )+3ac=49+120=169. ∴a+c=13,∴三角形周长是20.19.(本小题满分13分)在等差数列{a n }中,已知公差d=2,a 2是a 1与a 4的等比中项. (1)求数列{a n }的通项公式;(2)设b n =a n (n+1)2,记T n =-b 1+b 2-b 3+b 4-…+(-1)n b n ,求T n .解:(1)由题意知(a 1+d )2=a 1(a 1+3d ),即(a 1+2)2=a 1(a 1+6), 解得a 1=2,所以数列{a n }的通项公式为a n =2n.(2)由题意知b n =a n (n+1)2=n (n+1),所以T n =-1×2+2×3-3×4+…+(-1)n n ·(n+1).由于b n+1-b n =2(n+1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n-1+b n )=4+8+12+…+2n=n2(4+2n )2=n (n+2)2, 当n 为奇数时,T n =T n-1+(-b n )=(n -1)(n+1)2-n (n+1)=-(n+1)22.所以T n ={-(n+1)22,n 为奇数,n (n+2)2,n 为偶数.20.(本小题满分13分)如图,某学校拟建一块周长为400 m 的操场,操场的两头是半圆形,中间区域是矩形,同学做操一般支配在矩形区域.为了能让同学的做操区域尽可能大,试问如何设计矩形的长和宽? 解:设中间矩形区域的长、宽分别为x m,y m,中间的矩形区域面积为S m 2,则半圆的周长为πy2m .∵操场周长为400m, ∴2x+2×πy2=400,即2x+πy=400(0<x <200,0<y <400π). ∴S=xy=12π·(2x )·(πy )≤12π·(2x+πy 2)2=20000π. 由{2x =πy ,2x +πy =400,解得{x =100,y =200π.∴当且仅当{x =100,y =200π时,等号成立.即当矩形的长和宽分别设计为100m 和200πm 时,矩形区域面积最大.21.(本小题满分13分)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N +). (1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln2,求数列{a n b n 2}的前n 项和S n .(1)证明:由已知,b n =2a n >0.当n ≥1时,bn+1b n=2a n+1-a n=2d . 所以,数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)解:函数f (x )=2x 在(a 2,b 2)处的切线方程为y-2a 2=(2a 2ln 2)(x-a 2),它在x 轴上的截距为a 2-1ln2.由题意,a 2-1ln2=2-1ln2. 解得a 2=2.所以,d=a 2-a 1=1,a n =n ,b n =2n ,a n b n 2=n ·4n .于是,T n =1×4+2×42+3×43+…+(n-1)·4n-1+n ·4n , 4T n =1×42+2×43+…+(n-1)×4n +n ·4n+1. 因此,T n -4T n =4+42+…+4n -n ·4n+1=4n+1-43-n ·4n+1=(1-3n )4n+1-43. 所以,T n =(3n -1)4n+1+49.。

高中数学 模块综合测试(B)北师大版必修5(完整资料).doc

高中数学 模块综合测试(B)北师大版必修5(完整资料).doc

【最新整理,下载后即可编辑】模块综合测试(B)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果a <0,b >0,那么,下列不等式中正确的是( ) A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |解析: 如果a <0,b >0,那么1a <0,1b>0,∴1a <1b.答案: A2.已知两个正数a ,b 的等差中项为4,则a ,b 的等比中项的最大值为( )A .2B .4C .8D .16解析: ab ≤a +b2=4,故选B.答案: B3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则a =( )A. 6B .2C. 3D. 2解析: 由正弦定理,得6sin 120°=2sin C ,∴sin C =12.又∵C 为锐角,则C =30°,∴A =30°, △ABC 为等腰三角形,a =c =2,故选D. 答案: D4.在等差数列{a n }中,若a 4+a 6=12,S n 是数列{a n }的前n 项和,则S 9的值为( )A .48B .54C .60D .66解析: 因为a 4+a 6=a 1+a 9=a 2+a 8=a 3+a 7=2a 5=12, 所以S 9=a 1+…+a 9=54. 答案: B5.不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎪⎫-12,13,则a +b 的值是( )A .10B .-10C .-14D .14解析: 不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎪⎫-12,13,即方程ax 2+bx +2=0的解为x =-12或13,故⎩⎪⎨⎪⎧-12+13=-b a,-12×13=2a.解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14. 答案: C6.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则ba=( )A .2 3B .2 2 C. 3D. 2解析: 由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A ,即sin B ·(sin 2A +cos 2A )=2sin A ,sinB =2sin A ,∴b a =sin Bsin A=2.答案: D7.已知等差数列{a n }的公差d ≠0且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10等于( )A.1514B.1213C.1316D.1516解析: 因为a 23=a 1·a 9,所以(a 1+2d )2=a 1·(a 1+8d ).所以a 1=d .所以a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d =1316.答案: C8.数列{a n }满足a 1=1,a 2=2,2a n +1=a n +a n +2,若b n =1a n a n +1,则数列{b n }的前5项和等于( )A .1 B.56 C.16D.130解析: ∵2a n +1=a n +a n +2,∴{a n }是等差数列. 又∵a 1=1,a 2=2,∴a n =n . 又b n =1a n ·a n +1=1nn +1=1n -1n +1, ∴b 1+b 2+b 3+b 4+b 5=⎝ ⎛⎭⎪⎪⎫1-12+⎝ ⎛⎭⎪⎪⎫12-13+…+⎝ ⎛⎭⎪⎪⎫15-16=1-16=56,故选B.答案: B9.实数x ,y 满足不等式组⎩⎨⎧y ≥0,x -y ≥0,2x -y -2≥0,则k =y -1x +1的取值范围是( )A.⎣⎢⎢⎡⎦⎥⎥⎤-1,13B.⎣⎢⎢⎡⎦⎥⎥⎤-12,13 C.⎣⎢⎢⎡⎭⎪⎪⎫-12,+∞D.⎣⎢⎢⎡⎭⎪⎪⎫-12,1 解析:作平面区域如图所示,k =y -1x +1表示点(x ,y )与点(-1,1)连线的斜率,故选D.答案: D10.等比数列{a n }中,已知对任意自然数n ,a 1+a 2+a 3+…+a n =2n -1,则a 21+a 22+a 23+…+a 2n =( )A .(2n -1)2B.13(2n-1)C .4n-1D.13(4n-1) 解析: 由已知等比数列{a n }的前n 项和S n =2n -1, 所以a 1=S 1=1,a 2=S 2-a 1=2,所以公比q =2.又因为a 2n +1a 2n =⎝ ⎛⎭⎪⎪⎫a n +1a n 2=q 2=4, 所以数列{a 2n }是以q 2=4为公比的等比数列,所以a 21+a 22+a 23+…+a 2n =1-4n1-4=13(4n-1).答案: D11.已知x ,y ∈R +,2x +y =2,c =xy ,那么c 的最大值为( ) A .1 B.12 C.22D.14解析: 由已知,2=2x +y ≥22xy =22c ,所以c ≤12.答案: B12.在△ABC 中,已知a 比b 长2,b 比c 长2,且最大角的正弦值是32,则△ABC 的面积是( )A.154B.1543C.2143D.3543解析:由题可知a=b+2,b=c+2,∴a=c+4.∵sin A=32,∴A=120°.又cos A=cos 120°=b2+c2-a22bc=c+22+c2-c+422c c+2=c2-4c-122c c+2=-12,整理得c2-c-6=0,∴c=3(c=-2舍去),从而b=5,∴S△ABC=12bc sin A=1543.故选B.答案: B二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.若⎩⎨⎧0≤x≤1,0≤y≤2,2y-x≥1,则z=2y-2x+4的最小值为________.解析:作出可行域,如图所示,当直线z =2y -2x +4过可行域上点B 时,直线在y 轴上的截距最小,z 最小,又点B 坐标为(1,1),所以z min =2×1-2×1+4=4. 答案: 414.在等比数列{a n }中,若a 9·a 11=4,则数列log 12a n 前19项之和为________.解析: 由题意a n >0,且a 1·a 19=a 2·a 18=…=a 9·a 11=a 210, 又a 9·a 11=4,所以a 10=2,故a 1a 2…a 19=(a 10)19=219. 故log 12a 1+log 12a 2+…+log 12a 19=log 12(a 1a 2…a 19)=log 12219=-19.答案: -1915.在△ABC 中,若b =1,c =3,∠C =2π3,则a =________.解析: ∵c 2=a 2+b 2-2ab cos ∠C , ∴(3)2=a 2+12-2a ·1·cos 23π,∴a 2+a -2=0, ∴(a +2)(a -1)=0 ∴a =1答案: 116.设关于x的不等式ax+b>0的解集为{x|x>1},则关于x的不等式ax+bx2-5x-6>0的解集为________.解析:由题意得:a>0且-ba=1.又原不等式可变为(x-6)(x+1)(ax+b)>0,故由右图可知{x|-1<x<1或x>6}.答案:{x|-1<x<1或x>6}三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)解不等式组⎩⎪⎨⎪⎧x-2x>2x2-x-2>0.解析:⎩⎪⎨⎪⎧x-2x>2x2-x-2>0⇒⎩⎪⎨⎪⎧x-2-2xx>0x2-x-2>0⇒⎩⎪⎨⎪⎧x x +2<0x -2x +1>0⇒⎩⎪⎨⎪⎧-2<x <0x >2或x <-1⇒-2<x <-1.∴不等式组的解集为{x |-2<x <-1}.18.(本小题满分12分)设S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求a 2a 1的值;(2)若a 5=9,求a n 及S n 的表达式. 解析: (1)设等差数列{a n }的公差是d . ∵S 1,S 2,S 4成等比数列,∴S 22=S 1S 4,即(2a 1+d )2=a 1(4a 1+6d ),化简得d 2=2a 1d ,注意到d ≠0,∴d =2a 1.∴a 2a 1=a 1+d a 1=3a 1a 1=3.(2)a 5=a 1+4d =9a 1=9,∴a 1=1,d =2. ∴a n =a 1+(n -1)d =2n -1,S n =n a 1+a n2=n 2.19.(本小题满分12分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且(2a +c )cos B +b cos C =0.(1)求角B 的大小;(2)若b =13;a +c =4,求△ABC 的面积.解析: (1)由余弦定理得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab,将上式代入(2a +c )cos B +b cos C =0, 整理得a 2+c 2-b 2=-ac ,∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12,∵B 为△ABC 的内角,∴B =23π.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 即b 2=(a +c )2-2ac -2ac cos B ,将b =13,a +c =4,B =23π代入上式得,13=16-2ac ⎝⎛⎭⎪⎪⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.20.(本小题满分12分)设集合A 、B 分别是函数y =1x 2+2x -8与函数y =lg(6+x -x 2)的定义域,C ={x |x 2-4ax +3a 2<0}.若A ∩B ⊆C ,求实数a 的取值范围.解析: 由x 2+2x -8>0,得x <-4或x >2,所以A ={x |x <-4或x >2};由6+x -x 2>0,即x 2-x -6<0,得-2<x <3, 所以B ={x |-2<x <3}. 于是A ∩B ={x |2<x <3}.由x 2-4ax +3a 2<0,得(x -a )(x -3a )<0, 当a >0时,C ={x |a <x <3a }, 由A ∩B ⊆C ,得⎩⎪⎨⎪⎧ a ≤23a ≥3,所以1≤a ≤2;当a =0时,不等式x 2-4ax +3a 2<0即为x 2<0,解集为空集,此时不满足A ∩B ⊆C ; 当a <0时,C ={x |3a <x <a }, 由A ∩B ⊆C ,得⎩⎪⎨⎪⎧3a ≤2a ≥3,此不等式组无解.综上,满足题设条件的实数a 的取值范围为{a |1≤a ≤2}. 21.(本小题满分12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:资金单位产品所需资金(百元) 月资金供空调机洗衣机应量(百元)成本3020300劳动力(工资)510110单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?解析:设空调机、洗衣机的月供应量分别是x,y台,总利润是z,则z=6x+8y由题意有⎩⎪⎨⎪⎧30x+20y≤300,5x+10y≤110,x≥0,y≥0,x,y均为整数.由图知直线y=-34x+18z过M(4,9)时,纵截距最大.这时z 也取最大值z max=6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9 600元.22.(本小题满分14分)设数列{a n }的前n 项和为S n ,且满足S n =2-a n ,n =1,2,3,….(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=1,且b n +1=b n +a n ,求数列{b n }的通项公式;(3)设c n =n (3-b n ),数列{c n }的前n 项和为T n ,求证:T n <8. 解析: (1)∵n =1时,a 1+S 1=a 1+a 1=2, ∴a 1=1.∵S n =2-a n ,即a n +S n =2, ∴a n +1+S n +1=2.两式相减:a n +1-a n +S n +1-S n =0. 即a n +1-a n +a n +1=0 故有2a n +1=a n ,∵a n ≠0,∴a n +1a n =12(n ∈N +),∴a n =⎝ ⎛⎭⎪⎪⎫12n -1.(2)∵b n +1=b n +a n (n =1,2,3,…),∴b n +1-b n =⎝ ⎛⎭⎪⎪⎫12n -1.得b 2-b 1=1,b 3-b 2=12,b 4-b 3=⎝ ⎛⎭⎪⎪⎫122, …b n -b n -1=⎝ ⎛⎭⎪⎪⎫12n -2(n =2,3,…).将这n -1个等式相加,得b n -b 1=1+12+⎝ ⎛⎭⎪⎪⎫122+⎝ ⎛⎭⎪⎪⎫123+…+⎝ ⎛⎭⎪⎪⎫12n -2=1-⎝ ⎛⎭⎪⎪⎫12n -11-12=2-⎝ ⎛⎭⎪⎪⎫12n -2.又∵b 1=1,∴b n =3-⎝ ⎛⎭⎪⎪⎫12n -2(n =1,2,3…).(3)证明:∵c n =n (3-b n )=2n ⎝ ⎛⎭⎪⎪⎫12n -1.∴T n = 2⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫120+2×⎝ ⎛⎭⎪⎪⎫12+3×⎝ ⎛⎭⎪⎪⎫122+…+n -1×⎝ ⎛⎭⎪⎪⎫12n -2+n ×⎝ ⎛⎭⎪⎪⎫12n -1.①而12T n = 2⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫12+2×⎝ ⎛⎭⎪⎪⎫122+3×⎝ ⎛⎭⎪⎪⎫123+…+n -1×⎝ ⎛⎭⎪⎪⎫12n -1+n ×⎝ ⎛⎭⎪⎪⎫12n .②①-②得1 2T n=2⎣⎢⎢⎡⎦⎥⎥⎤⎝⎛⎭⎪⎪⎫120+⎝⎛⎭⎪⎪⎫121+⎝⎛⎭⎪⎪⎫122+…+⎝⎛⎭⎪⎪⎫12n-1-2×n×⎝⎛⎭⎪⎪⎫12n.T n=4×1-⎝⎛⎭⎪⎪⎫12n1-12-4×n×⎝⎛⎭⎪⎪⎫12n=8-82n-4×n×⎝⎛⎭⎪⎪⎫12n=8-8+4n2n(n=1,2,3,…).∴T n<8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二年级数学学科必修5模块试题
命题人:宝鸡市斗鸡中学 张永春
卷面满分为120分 考试时间90分钟
一:选择题(本题共10小题,每题4分,共40分)
1.已知等差数列{}n a 的前n 项和为n S ,若4518,a a =-则8S 等于 ( )
A .18
B .36
C .54
D .72 2.不等式022>++bx ax 的解集是)31,21(-
,则a +b 的值是( ) A.10 B.-10 C.14
D.-14 3.已知点(3,1)和(-4,6)在直线320x y a -+=的两侧,则a 的取值范围是( )
A. a <-7或a >24
B. a =7或a =24
C. -7<a <24
D. -24<a <7
4.已知{}n a 是等比数列,22a =,514
a =,则12231n n a a a a a a ++++= ( ) A .16(14)n -- B .16(12)n -- C .32(14)3n -- D .32(12)3
n -- 5.函数2
()lg(31)
f x x =+的定义域是( ) A.1(,)3-+∞ B.1(,1)3- C.11(,)33- D. 1(,)3
-∞-
6.某观察站C 与两灯塔A 、B 的距离分别为300米和500米,测得灯塔A 在观察站C 北
偏东30 ,灯塔B 在观察站C C 正西方向,则两灯塔A 、B 间的距离为 ( ) A. 500米 B. 600米 C. 700米 D. 800米
7.在ABC ∆中,若()()3a b c b c a bc +++-=,则角A 为( )
A . 30
B .60
C .120
D .150
8.在ABC ∆中,已知2,45b B == ,如果用正弦定理解三角形有两解,则边长a 的取值范围是( )
A .2a <<
B .24a <<
C 2a <
D a <9.在R 上定义运算a c ad bc b d =-,若32012
x x x <-成立,则x 的取值范围是( ) A.(4,1)- B.(1,4)- C.(,4)(1,)-∞-+∞ D.(,1)(4,)-∞-+∞
10.把数列依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,循环分为:(3),(5,7),(9,11,13),(15,17,19,21),
(23),(25,27),(29,31,33),(35,37,39,41)……,则第104个括号内各数之和为
( )
A. 2036
B. 2048
C. 2060
D. 2072
二:填空题(本题共4个小题,每小题5分,共20分)
11.某校要建造一个容积为3
8m ,深为2m 的长方体无盖水池,池底和池壁的造价每平方米分别为240元和160元,那么水池的最低总造价为 元。

12.设变量x 、y 满足约束条件2211x y x y x y -≤⎧⎪-≥-⎨⎪+≥⎩
,则23z x y =+的最大值为
13.已知1,2,3a a a +++是钝角三角形的三边,则a 的取值范围是
14.数列{}n a 是递减的等差数列,{}n a 的前n 项和是n S ,且69S S =,有以下四个结论:
(1)08=a , (2)当n 等于7或8时,n s 取最大值,
(3)存在正整数k ,使0k S =(4)存在正整数m ,使2m m S S =,
写出以上所有正确结论的序号
三:计算题(本题共5小题,每题15分,共 45分)
15.等比数列{}n a 中, 72=S ,916=S ,求4S
16.锐角ABC ∆满足2sin a b A =.
(1) 求B 的大小;
(2) 求cos sin A C +的取值范围.
17.某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。

同时,公司每年需要付出设备的维修和工人工资等费用,第一年各种费用2万元,第二年各种费用4万元,以后每年各种费用都增加2万元。

(1)引进这种设备后,第几年后该公司开始获利;
(2)这种设备使用多少年,该公司的年平均获利最大?
18.已知不等式2230x x --<的解集为A ,不等式260x x +-<的解集为B 。

(1)求A∩B;
(2)若不等式20x ax b ++<的解集为A∩B,求不等式20ax x b ++<的解集。

19.数列}{n a 满足11=a ,111122n n
a a +=+(*N n ∈)。

(I )求证:数列1{}n
a 是等差数列; (II )若331613221>
++++n n a a a a a a ,求n 的取值范围
高二年级数学学科必修5模块试题答案
一:选择题
1:D 2:D 3:C 4:C 5:B
6: C 7: B 8: A 9:A 10:D
二:填空题
11:3520 12:18 13:(0,2) 14:1,2,3,4
三:计算题
15.解:∵数列{}n a 为等比数列,
∴2S ,24S S -,46S S -也为等比数列,即7,74-S ,491S -成等比数列, ∴)91(7)7(424S S -=-,
解得284=S 或214-=S
∵022*********>+++=+++=q a q a a a a a a a S
∴284=S .
16.解:(1)sin 2sin sin A A B =,锐角三角形,故6B π=
(2)56A C π+=,而5cos sin cos sin 66
A C C C C ππ+=-+=-()() 锐角三角形,故32C ππ∈(,),故3cos sin 2
A C +∈,) 17.解:(1)由题意知,每年的费用是以2为首项,2为公差的等差数列,设纯收入与年数n 的关系为()f n ,则(1)()21[22]252n n f n n n -=-+
⨯-22025n n =--
由()0f n >得220250n n --< 解得1010n -<<+又因为N n ∈,所以2,3,4,,18n = .即从第2年该公司开始获利
(2)年平均收入为()2520()202510f n n n n
=-+≤-⨯= 当且仅当5n =时,年平均收益最大.所以这种设备使用5年,该公司的年平均获利最大。

18.解:(1)由2230x x --<得13x -<<,所以A=(-1,3)
由260x x +-<得32x -<<,所以B=(-3,2),
∴A∩B=(-1,2)
(2)由不等式2
0x ax b ++<的解集为(-1,2),
所以10420a b a b -+=⎧⎨
++=⎩,解得12a b =-⎧⎨=-⎩ ∴220x x -+-<,解得解集为R.
19.解:(I )由
111122n n a a +=+可得:1112n n a a +=+所以数列}1{n a 是等差数列,首项111=a ,公差2d =
∴ 12)1(111
-=-+=n d n a a n ∴121-=
n a n (II )∵)1
21121(21)12)(12(11+--=+-=+n n n n a a n n ∴12231n n a a a a a a ++++ 1111111()213352121
n n =
-+-++--+ 11(1)22121n n n =-=++ ∴ 162133
n n >+ 解得16n > 解得n 的取值范围:{|16,}n n n N +>∈。

相关文档
最新文档