九年级数学知识点归纳:相似图形
九年级数学上册 第四章 图形的相似知识归纳 北师大版
图形的相似1. 比例线段的有关概念==在比例式::中,、叫外项,、叫内项,、叫前项,a c(a b c d )a d b c a c b db 、d 叫后项,d 叫第四比例项,如果b =c ,那么b 叫做a 、d 的比例中项. 2. 比例性质①基本性质:a b cdad bc =⇔= ②更比性质(交换比例的内项或外项):()()()()⎧=⎪⎪⎪=⎪=⇒⎨⎪=⎪⎪⎪=⎩交换内项交换外项同时交换内外项同时交换比的前项和后项a bc d d c a cb a d b b dc a b da c②合比性质:±±a b c d a b b c d d =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 黄金分割在线段AB 上,点C 把线段AB 分成两条线段AC 和BC (AC >BC ),如果ACBCAB AC =,即AC 2=AB ×BC ,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比.其中AB AC 215-=≈0.618AB . 4. 平行线分线段成比例定理①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3.则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边. 5. 相似三角形的判定①两角对应相等,两个三角形相似;②两边对应成比例且夹角相等,两三角形相似; ③三边对应成比例,两三角形相似. 6. 相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;面积的比等于相似比的平方. 7. 六种相似基本模型:CABD CABDE E D BACDE ∥BC∠B ∠AED∠B ∠ACDADBCDOBACO DCBAX 型母子型AC ∥BD∠B ∠CAD 是Rt △ABC 斜边上的高8. 射影定理由_____________,得______________,即_______________; 由_____________,得______________,即_______________; 由_____________,得______________,即_______________.9. 中位线1) 三角形的中位线:连结三角形两边中点的线段. 三角形的中位线平行于第三边并且等于第三边的一半. 三角形三条边上的中线交于一点,这个点就是三角形的重心,重心与一边中点的线段的长是对应中线长的31. 2) 梯形的中位线:连结梯形两腰中点的线段.梯形的中位线平行于两底边,并且等于两底边和的一半. 10. 位似①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比. ②位似图形上任意一对对应点到位似中心的距离之比等于位似比.AD B C。
九年级下册数学第27章相似图形知识点归纳
知识点1.概念
把形状相同的图形叫做相似图形。
(即对应⾓相等、对应边的⽐也相等的图形)
解读:(1)两个图形相似,其中⼀个图形可以看做由另⼀个图形放⼤或缩⼩得到.
(2)全等形可以看成是⼀种特殊的相似,即不仅形状相同,⼤⼩也相同.
(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素⽆关.
知识点2.⽐例线段
对于四条线段a,b,c,d ,如果其中两条线段的长度的⽐与另两条线段的长度的⽐相等,即(或a:b=c:d)那么这四条线段叫做成⽐例线段,简称⽐例线段.
知识点3.相似多边形的性质
相似多边形的性质:相似多边形的'对应⾓相等,对应边的⽐相等.
解读:(1)正确理解相似多边形的定义,明确“对应”关系.
(2)明确相似多边形的“对应”来⾃于书写,且要明确相似⽐具有顺序性.
知识点4.相似三⾓形的概念
对应⾓相等,对应边之⽐相等的三⾓形叫做相似三⾓形.
解读:(1)相似三⾓形是相似多边形中的⼀种;
(2)应结合相似多边形的性质来理解相似三⾓形;
(3)相似三⾓形应满⾜形状⼀样,但⼤⼩可以不同;
(4)相似⽤“∽”表⽰,读作“相似于”;
(5)相似三⾓形的对应边之⽐叫做相似⽐.
【九年级下册数学第27章相似图形知识点归纳】。
九年级图形的相似性知识点
九年级图形的相似性知识点九年级的数学课程中,图形的相似性是一个重要的知识点。
相似性是指两个或多个图形在形状上相似的性质。
在学习相似性的过程中,我们将会了解到比例、角度、边长等概念的应用,进一步提高我们的几何思维能力。
一、比例和比例关系相似性的关键之一是比例。
比例在几何学中的应用非常广泛,它在描述相似图形的关系时起着重要的作用。
比例可以理解为两个或多个量之间的比较,通常可以用两个数字或表达式之间的比值表示。
在相似图形中,我们可以通过比较两个图形的对应边长的比例来判断它们是否相似。
例如,设有两个三角形ABC和DEF,如果它们的对应边长的比例相等,即AB/DE = BC/EF = AC/DF,那么这两个三角形就是相似的。
通过比较他们的边长比例,我们可以得出它们形状相似的结论。
二、角度的对应关系除了比例关系外,角度的对应关系也是判断图形相似的重要依据。
两个相似的图形,其对应的内角度是相等的。
也就是说,如果两个三角形ABC和DEF是相似的,那么它们的对应内角度A、B、C和D、E、F是相等的。
这个性质在实际问题中非常有用。
通过测量两个图形的内角度的大小,我们可以判断它们是否相似,从而在解决几何问题时得到更精确的结果。
三、比例尺在实际应用中,我们经常会遇到需要进行测量并绘制缩放图形的情况。
比例尺是一种常用的工具,它能够将实际尺寸与绘制尺寸之间的比例关系呈现出来。
比例尺通常以分数的形式表示,例如1/50或1:50。
意思是1个单位的实际长度对应于绘制的50个单位长度。
通过使用比例尺,我们可以将实际的图形缩小或放大到所需的大小,以便更好地进行观察和研究。
四、图形的相似性应用图形的相似性在实际生活中有着广泛的应用。
举个例子,我们常常看到地图上的图形,它们是按比例绘制的,以便更直观地显示地理信息。
此外,相似性还被应用在建筑、工程、艺术等领域。
例如,在建筑设计中,相似三角形的原理被广泛运用。
建筑师可以通过相似性来计算建筑物的比例,以便在保持整体平衡和美观的同时,满足功能和结构的要求。
九年级数学相似的知识点
九年级数学相似的知识点
1. 相似三角形:了解相似三角形的定义和性质,掌握判定两个三角形是否相似的几何条件,了解相似三角形的比例关系以及应用。
2. 相似多边形:了解相似多边形的定义和性质,掌握判断两个多边形是否相似的几何条件,了解相似多边形的比例关系以及应用。
3. 相似比例:学习相似比例的定义,掌握相似比例的计算和应用,了解相似比例与比例的关系。
4. 相似形状的尺寸关系:通过相似性的特点和比例关系,掌握计算相似形状的尺寸关系,实际应用中解决实际问题。
5. 相似图形的面积和体积:了解相似图形的面积和体积之间的关系,掌握计算相似图形的面积和体积的方法。
6. 相似三角形的三线合一定理:了解相似三角形的三线合一定理,掌握计算相似三角形的高、中线、角平分线以及重心、垂心和外心的方法。
7. 三角形的判定:了解判定三角形是否相似的几何条件,掌握相似三角形中角的性质和边的关系,应用相似三角形解决实际问题。
8. 相似函数的性质:了解相似函数的定义和性质,掌握相似函数的图像特点和变化规律,应用相似函数解决实际问题。
9. 相似变换:了解平移、旋转、翻折和缩放等相似变换的性质,掌握相似变换的基本概念、性质和运算法则,应用相似变换解决实际问题。
10. 相似图形中的角度关系:通过相似图形的角度关系,学习解决相似图形中的角度问题。
以上是九年级数学中与相似相关的知识点,希望对你有帮助!。
九年级数学相似三角形知识点
九年级数学相似三角形知识点咱来唠唠九年级数学里的相似三角形知识点哈。
一、相似三角形是啥玩意儿呢?简单来说,相似三角形就像是三角形家族里的“克隆兄弟”,它们形状相同,但大小可能不一样。
就好比你用放大镜看一个小三角形,放大后的三角形和原来的小三角形就是相似的。
二、相似三角形的判定方法1. 两角对应相等- 如果两个三角形有两个角分别相等,那这两个三角形就相似。
这就像是两个人,只要他们在两个关键的地方(角度)长得一样,那他们就有相似之处。
比如说三角形ABC和三角形DEF,要是∠A = ∠D,∠B = ∠E,那这两个三角形就相似啦。
2. 两边对应成比例且夹角相等- 想象一下,两个三角形的两条边的长度比例是一样的,而且这两条边所夹的角也相等。
就像两根一样比例的小棍,它们夹着相同角度的话,那这两个三角形也是相似的。
比如在三角形ABC和三角形DEF中,AB/DE = AC/DF,并且∠A = ∠D,那这两个三角形就相似喽。
3. 三边对应成比例- 这个就更好理解啦,三个边的长度比例都一样的两个三角形肯定相似。
就好比三个小伙伴,他们的身高、臂长、腿长的比例都相同,那他们就是相似的三角形啦。
如果AB/DE = BC/EF = AC/DF,那么三角形ABC和三角形DEF就是相似三角形。
三、相似三角形的性质1. 对应边成比例- 相似三角形的对应边的比例是相等的。
就像前面说的那些判定方法里的边的比例一样。
如果三角形ABC相似于三角形DEF,那么AB/DE = BC/EF = AC/DF,这个比例是固定的哦。
2. 对应角相等- 因为相似三角形形状相同嘛,所以它们的对应角肯定是相等的。
∠A = ∠D,∠B = ∠E,∠C = ∠F。
3. 相似三角形的周长比等于相似比- 相似比就是对应边的比例。
比如说相似三角形ABC和DEF的相似比是k (AB/DE = k),那么它们的周长比也是k。
就好比两个相似的图形,一个大一个小,大的图形的周长是小的图形周长的k倍。
九年级相似知识点归纳
九年级相似知识点归纳一、数学方面的相似知识点归纳1. 相似三角形相似三角形是指具有相同形状但不同大小的三角形。
相似三角形的性质包括:对应角相等,对应边成比例。
利用这些性质,我们可以求解各种与相似三角形相关的问题。
2. 相似比与比例相似比是指相似图形(包括三角形和多边形)的对应边的比值。
比例是指两个数之间的相对关系。
在解题中,我们需要用到相似比和比例来确定图形的相似性质以及求解未知数。
3. 相似多边形相似多边形是指具有相同形状但不同大小的多边形。
相似多边形的性质与相似三角形类似,对应角相等,对应边成比例。
我们可以利用相似多边形的性质来求解各类相关问题。
二、科学方面的相似知识点归纳1. 生物相似性在生物学中,相似性是指不同物种之间在形态特征、生理功能等方面存在相似之处。
相似性可以用来推断物种之间的亲缘关系,进行分类和进化研究。
2. 物理相似性在物理学中,相似性是指两个事物在某些性质上的相似程度。
物理相似性的研究可以帮助我们更好地理解和预测不同物体或系统的行为,比如利用相似性原理可以在实验室中进行模型实验,进而推广到真实情况。
3. 化学相似性在化学领域,相似性是指化合物或元素之间具有相似的化学性质或结构特征。
化学相似性可以用来预测物质的性质、反应行为,以及设计新的化合物或材料。
三、语文方面的相似知识点归纳1. 同义词与近义词同义词是指意思相同或相近的词语,而近义词指意思相近但不完全相同的词语。
在写作中,我们可以利用同义词和近义词来丰富文章的表达方式,避免重复使用相同的词汇。
2. 反义词与对义词反义词是指意思相反的词语,而对义词指相对应关系的词语。
在阅读理解和写作中,我们需要对反义词和对义词进行准确理解,以便正确地领会作者的意图和准确表达自己的思想。
3. 成语与俗语成语是特定社会和历史背景下形成的固定词组,具有特定的意义。
俗语是反映民间传统和智慧的短小词句。
在语文学习中,我们需要理解和运用成语和俗语,以提升语言表达的准确性和韵律感。
图形的相似知识点总结
图形的相似知识点总结图形的相似是初中数学中的重要内容,它是指在形状相似的两个图形中,对应的角相等,对应的边成比例。
在学习图形的相似知识点时,我们需要掌握以下几个方面的内容:1. 相似三角形的判定方法。
相似三角形的判定方法有三种,分别是AAA判定、AA判定和SAS判定。
AAA判定是指两个三角形的对应角相等,则这两个三角形相似;AA判定是指两个三角形的一个角对应相等,且这两个角所对的边成比例,则这两个三角形相似;SAS判定是指两个三角形的一个角对应相等,且这两个角所对的边成比例,再加上这两个角的夹角相等,则这两个三角形相似。
2. 相似三角形的性质。
相似三角形的性质包括对应角相等、对应边成比例和周长比的性质。
对应角相等是相似三角形的最基本的性质,它是相似三角形的判定条件之一;对应边成比例是指相似三角形中对应边的比值相等;周长比是指相似三角形的周长之比等于对应边的比值。
3. 相似三角形的应用。
相似三角形的应用非常广泛,它可以用来解决很多实际问题。
例如在测量高楼的高度时,可以利用相似三角形的性质,通过测量阴影和物体的高度来计算高楼的高度;在工程中,利用相似三角形的性质可以进行测量和设计;在日常生活中,也可以利用相似三角形的性质来解决一些实际问题。
4. 相似多边形的性质和判定。
相似多边形是指对应角相等,对应边成比例的多边形。
相似多边形的性质和判定与相似三角形类似,也包括对应角相等、对应边成比例和周长比的性质。
相似多边形的判定方法是通过观察对应边的比值是否相等来判断。
5. 相似图形的应用。
相似图形的应用也非常广泛,它可以用来解决很多实际问题。
在地图测量中,可以利用相似图形的性质来计算地图上两点之间的距离;在建筑设计中,可以利用相似图形的性质来进行比例放大或缩小;在艺术设计中,也可以利用相似图形的性质来进行比例变换。
总结,图形的相似是数学中的重要内容,它涉及到相似三角形和相似多边形的判定方法、性质和应用。
通过对图形的相似知识点进行总结和学习,可以帮助我们更好地理解和应用这一部分的数学知识,提高数学解题能力和实际问题的解决能力。
16初中数学“相似图形”知识点全解析
初中数学“相似图形”知识点全解析一、引言相似图形是初中数学中一个非常重要的概念,它是几何学的基础,对于培养学生的空间观念和几何直觉具有重要的作用。
本文将详细解析相似图形的概念、性质、判定方法以及应用,帮助学生更好地理解和掌握这一知识点。
二、相似图形的概念1.定义:如果两个图形对应角相等,对应边成比例,那么这两个图形叫做相似图形。
2.术语解析:在相似图形中,对应角相等的角叫做对应角,对应边成比例的边叫做对应边。
相似比是指对应边的长度之比。
三、相似图形的性质1.对应角相等:相似图形的对应角一定相等。
2.对应边成比例:相似图形的对应边之间的比例是恒定的,这个比例称为相似比。
3.面积比与相似比的关系:如果两个相似图形的相似比是k,那么它们的面积之比等于k²。
4.周长比与相似比的关系:相似图形的周长之比也等于相似比。
四、相似图形的判定方法1.三边对应成比例:如果两个三角形的三边对应成比例,那么这两个三角形相似。
2.两边对应成比例且夹角相等:如果两个三角形有两边对应成比例且夹角相等,那么这两个三角形相似。
3.两角对应相等:如果两个三角形有两个角对应相等,那么这两个三角形相似。
4.特殊角三角形的相似性:具有特殊角的三角形(如等腰三角形、直角三角形等)在满足一定条件时也可以判定为相似。
五、相似图形的应用1.几何证明:在几何证明中,利用相似图形的性质可以解决很多问题,如证明线段的比例关系、证明角的关系等。
2.实际问题解决:在实际生活中,很多问题可以通过建立数学模型并运用相似图形的知识进行解决。
例如,在建筑设计中,可以利用相似三角形的性质计算建筑物的高度或距离;在地理学中,可以利用相似图形的原理计算地球表面两点之间的距离等。
3.数学竞赛:在数学竞赛中,相似图形经常作为难题的考点出现。
掌握这一知识点可以提高学生的数学竞赛水平。
六、解题方法与技巧1.建立数学模型:在解决问题时,首先要根据问题的实际背景和条件建立数学模型,将问题转化为数学语言进行描述。
九年级下册数学《相似》重点知识整理
九年级下册数学《相似》重点知识整理《相似》重点知识27.1 图形的相似1、相似的定义如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽)2、相似的判定如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
3、相似比相似多边形的对应边的比叫相似比。
相似比为1时,相似的两个图形全等相似多边形的对应角相等,对应边的比相等。
相似多边形的周长比等于相似比。
相似多边形的面积比等于相似比的平方。
27.2 相似三角形1、相似三角形的判定(★重难点)(1).平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似(2)三边对应成比例(3)两边对应成比例,且夹角相等(4)两个三角形的两个角对应相等★常考题型:1、利用三角形的相似测量塔高、河宽2、相似三角形判定的常用模型A字型、8字型、三等角模型3、相似的性质1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方4.多边形的面积的比等于相似比的平方,周长比等于相似比。
27.3 位似1、定义:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
2、位似的相关性质(1)位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
(2)位似多边形的对应边平行或共线。
(3)位似可以将一个图形放大或缩小。
(4)位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
(5)根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
★易错点1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。
九年级相似图形知识点归纳
九年级相似图形知识点归纳相似图形是几何学中的一个基本概念,它指的是形状相似但尺寸不同的两个或多个图形。
在九年级的数学学习中,相似图形是一个重要的知识点,涉及到比例、比例尺、相似比等概念。
本文将对九年级相似图形的相关知识进行归纳总结。
一、相似图形的定义相似图形是指在形状上相似但尺寸不同的两个或多个图形。
相似图形具有以下特点:1. 对应角相等:两个相似图形的对应角都相等;2. 对应边成比例:两个相似图形的对应边的长度成比例。
二、相似图形的判定方法1. AAA判定法:若两个图形的对应角分别相等,则它们是相似图形。
2. AA判定法:若两个图形的两组对应角分别相等,则它们是相似图形。
三、相似图形的性质和定理1. 三角形的相似定理:a. AA相似定理:如果两个三角形的两组对应角相等,则这两个三角形是相似的。
b. SSS相似定理:如果两个三角形的三组对边成比例,则这两个三角形是相似的。
c. SAS相似定理:如果两个三角形的一组对边成比例且对应角相等,则这两个三角形是相似的。
2. 相似三角形的性质:a. 对应边成比例:相似三角形的对应边的长度成比例。
b. 三角形内角对应:相似三角形的内角都对应相等。
四、相似图形的应用相似图形的知识在实际生活和实际问题中有广泛应用,例如:1. 测量:利用相似图形的知识可以进行测量,如通过测量一个三角形的边长和另一个相似三角形的边长,可以得到未知边长的长度。
2. 设计:在设计中,相似图形的概念可以应用于建筑、道路等方面,通过对已知图形进行放大或缩小,使其与实际需求相适应。
3. 地图测绘:地图上的比例尺就是利用相似图形的原理进行测绘的。
五、示例题目1. 已知两个三角形的对边成比例,但两个三角形的对应角不全等,是否可以判定这两个三角形是相似的?2. 若一个平面图形与一个已知的相似图形所对应的角相等,并且对应边成比例,能否判断这两个图形是相似的?六、总结九年级相似图形是一个重要的几何学知识点,它涵盖了相似图形的定义、判定方法、性质和应用等方面。
北师大版九年级数学上册图形的相似知识点归纳
知识点
具体内容
成比例线段
- 定义:如果四条线段a、b、c、d中,a与b的比等于c与d的比,即a/b=c/d,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。 - 定理:如果a/b=c/d=...=m/n (b+d+...+n≠0),那么(a+c+...+m)/(b+d+...+n)=a/b。
平行线分线段成比例
- 两条直线被一组平行线所截,所得的对应线段成比例。 - 推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例。
相似多边形
- 定义:各角分别相等,各边成比例的两个多边形叫做相ቤተ መጻሕፍቲ ባይዱ多边形。相似多边形对应边的比叫做相似比。 - 性质:对应边成比例,对应角相等;面积比等于相似比的平方。
黄金分割
- 定义:一般地,点C把线段AB分成两条线段AC和BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比,约为0.618。
图形的位似
- 定义:一般地,如果两个相似多边形任意一组对应顶点P、P1所在的直线都经过同一个点O,且有OP1=k*OP(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心。k就是这两个相似多边形的相似比。
相似三角形
- 定义:三角分别相等,三边成比例的两个三角形叫做相似三角形。 - 判定定理: 1. 两角分别相等的两个三角形相似。 2. 两边成比例且夹角相等的两个三角形相似。 3. 三边成比例的两个三角形相似。 - 性质: 1. 对应角相等,对应边成比例。 2. 对应高的比、对应角平分线的比、对应中线的比等于相似比。 3. 周长比等于相似比,面积比等于相似比的平方。 - 应用: 1. 利用阳光下的影子测量高度(同一时刻,物高与影长成比例)。 2. 利用标杆来测量高度(构造相似三角形)。 3. 利用镜子的反射来测量高度(反射角等于入射角,构造相似三角形)。
九年级数学知识点归纳:相似图形
九年级数学知识点归纳:相似图形常见考法(1)判定某两个图形是不是相似;(2)判定一组数据是不是成比例线段;(3)已知图上距离和比例尺大小求实际距离;(4)利用比例的性质求值。
误区提示(1)在判定四条线段是不是成比例问题时忽略单位统一;(2)在用图上距离求实际距离时忽略了单位换算问题。
【典型例题】(XX江苏淮安)在比例尺为1:200的地图上,测得A,B两地间的图上距离为4,那么A,B两地间的实际距离为.【解析】4×200=9000=9相似三角形一、平行线分线段成比例定理及其推论:定理:三条平行线截两条直线,所得的对应线段成比例。
2推论:平行于三角形一边的直线截其他两边所得的对应线段成比例。
3推论的逆定理:若是一条直线截三角形的两边所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:平行于三角形的一边,而且和其他两边相交的直线,截得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:概念:对应角相等,对应边成比例的三角形叫做相似三角形。
2性质:(1)相似三角形的对应角相等;(2)相似三角形的对应线段成比例;(3)相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
3判定定理:(1)两角对应相等,两三角形相似;(2)两边对应成比例,且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似;(4)若是一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
四、三角形相似的证题思路:五、利用相似三角形证明线段成比例的一样步骤:一“定”:先确信四条线段在哪两个可能相似的三角形中;二“找”:再找出两个三角形相似所需的条;三“证”:依照分析,写出证明进程。
若是这两个三角形不相似,只能采纳其他方式,如找中间比或引平行线等。
六、相似与全等:全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:一起点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。
初中数学知识归纳平面几何的相似性质与判定
初中数学知识归纳平面几何的相似性质与判定初中数学知识归纳:平面几何的相似性质与判定平面几何是初中数学中的一大重点内容,其中的相似性质与判定是其中的一个重要部分。
在本文中,我们将对平面几何的相似性质进行归纳和总结,以帮助初中学生更好地理解和掌握这一知识点。
一、相似性质的概念相似性质是指两个或多个图形在形状上相似的性质。
具体而言,对于两个图形A和图形B,如果它们的形状相似,那么它们之间存在着一种对应关系,满足以下三个条件:1. 对应角相等:两个相似图形的各个对应角相等。
2. 对应边成比例:两个相似图形的各个对应边之间成比例。
3. 对应边平行:如果两个相似图形的对应边成比例,则对应边之间必定平行。
二、判定相似的方法有多种方法可以判定两个图形是否相似。
下面我们将介绍一些常用的方法。
1. 对应角相等:如果两个图形的对应角相等,则可以判定它们是相似的。
这可以通过测量角度的大小或者通过图形的已知性质来判断。
2. 边的成比例:如果两个图形的对应边之间成比例,那么它们是相似的。
常用的方法有比较边的长度或者使用海伦公式等。
3. 三角形相似定理:根据三角形的相似定理,我们可以判定两个三角形是否相似。
其中,有三个定理是常用的判定方法:(1) AA相似定理:如果两个三角形中有两对对应角相等,那么它们是相似的。
(2) SAS相似定理:如果两个三角形中有一对对应边成比例,并且夹角相等,那么它们是相似的。
(3) SSS相似定理:如果两个三角形中的对应边成比例,那么它们是相似的。
4. 调整比例:判定两个图形相似后,可以通过调整各个边的比例来得到相似图形。
比如,可以放大或缩小图形的各个边,使其满足相应的比例关系。
三、相似性质的应用相似性质在实际问题中有着广泛的应用。
下面我们以几个实例来说明。
例1:树的阴影假设一棵树的高度为3米,其阴影的长度为4米。
现在有一根6米高的灯杆,问它的阴影有多长?解析:由于树和灯杆的高度成比例,且阴影与高度成比例,可以建立如下关系:树的高度/灯杆的高度 = 树的阴影/灯杆的阴影3/6 = 4/x (其中x为灯杆的阴影长度)解得 x = 8因此,灯杆的阴影长度为8米。
九年级位似图形知识点归纳
九年级位似图形知识点归纳九年级位似图形是数学中的一个重要内容,它涉及到平面几何中的相似性质以及相似图形的相关知识。
在这篇文章中,我将对九年级位似图形的知识点进行归纳总结。
1. 什么是位似图形位似图形指的是具有相同形状但是大小不同的图形。
在位似图形中,图形的内部角度是相等的,各边的对应长度按比例关系成立。
2. 相似比位似图形中,相似比是一个重要的概念。
相似比指的是两个位似图形的相应边长度之比。
在位似图形中,相似比相等,即对应边长度的比例相等。
3. 判断位似图形判断位似图形时,需要考虑以下几个条件:- 内部角度相等:对应角度相等,即对应顶点的角度相等。
- 对应边按比例关系成立:对应边之间的比例相等。
4. 位似图形的性质位似图形具有一些特点和性质,主要包括:- 边比相等:在位似图形中,对应边的长度比例相等。
- 面积比相等:在位似图形中,对应面积之比等于边比的平方。
- 周长比相等:在位似图形中,对应边长之比等于周长比。
5. 图形变换对位似图形进行变换是学习位似图形的重要环节之一。
常见的图形变换包括:- 平移:图形在平面上的位置保持不变,只改变其位置。
- 旋转:图形按照一定的角度绕着某个固定点进行旋转。
- 缩放:图形按照一定的比例进行放大或缩小。
6. 练习题为了加深对位似图形知识点的理解和掌握,我们可以进行一些练习题。
以下是一些例题:例题1:已知两个三角形ABC和DEF,且∠A=∠D,AB:DE=3:5,BC:EF=4:7,AC:DF=2:3。
判断两个三角形是否位似,并说明理由。
解答:根据给定条件,可以发现两个三角形的内部角度相等,且对应边的比例关系成立。
因此,根据位似图形的判断条件,可以判断两个三角形是位似的。
例题2:已知两个矩形ABCD和EFGH,且AB:EF=2:3,BC:FG=3:5,CD:GH=4:7。
计算两个矩形的面积比。
解答:根据给定的边比关系,可以算出两个矩形的边长比例分别为2:3和3:5。
九年级数学相似三角形知识点总结及例题讲解
1. 平行线分线段成比例定理
例.
已知 l 1∥ l 2∥ l 3,
A Dl
B El
: 三条平行线截两条直线
1 2
, 所得的 对应线段成比 .
C
Fl
可得 AB
DE AB 或
DE 等.
BC EF AC DF
2. 推论 : 平行于三角形一边的直线截其它两边
3
( 或两边的延长线 ) 所得的对应线段成比例 .
注意 :(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法.
(2) 应用等比性质时,要考虑到分母是否为零.
(3)
可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.
知识点三:黄金分割
1) 定义 :在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和 BC(AC>BC ),如果 AC AB
ad bc
(两外项的积等于两内项积)
2. 反比性质:
ac bd
bd a c ( 把比的前项、后项交换 )
3. 更比性质 ( 交换比例的内项或外项 ) :
ac bd
a b ,(交换内项 ) cd d c ,(交换外项 ) ba d b .(同时交换内外项 ) ca
4. 合比性质
a
:
c
bd
ab b
cd (分子加(减)分母 , 分母不变)
例 4、矩形 ABCD 中, BC=3AB , E、F,是 BC 边的三等分点,连结 AE 、 AF 、AC ,问图中是否存在非全 等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式
例 5、△ ABC 中,在 AC 上截取 AD ,在 CB 延长线上截取 BE ,使 AD=BE ,求证: DF AC=BC FE
九年级下册数学相似-知识点总结
九年级下册数学相似-知识点总结数学是一门让人们头疼的学科,尤其是在九年级下册的数学中,相似这个概念可能是让学生犯迷糊的一个知识点。
相似是几何学中一个非常重要的概念,它在解决几何问题时经常被运用。
在本文中,我将对九年级下册数学中与相似有关的知识进行总结和归纳,希望能够为同学们带来一些帮助。
1. 相似的基本概念相似指的是两个或多个图形在形状上相同,但是大小不同的情况。
当两个图形相似时,它们的对应边长之比相等,而对应的角度也相等。
这就是相似的基本概念。
在解决相似问题时,我们通常会用到比例和比例的性质。
2. 相似三角形相似三角形是相似的一个重要例子。
在解决相似三角形的问题时,我们可以利用三角形内角、相似三角形边长的比例关系,运用相似三角形的性质解题。
此外,还可以运用相似三角形的性质证明一些结论,如直角三角形斜边上的中线等于斜边的一半。
3. 相似的判定条件在判断两个图形是否相似的情况下,我们有一些判定条件可以依据。
其中一个常见的判定条件是AA相似判定法,也就是两个图形的对应角相等。
另一个常见的判定条件是三边比例相等判定法,也就是两个图形的三条边对应的比值相等。
这些判定条件可以帮助我们在解决相似问题时迅速确定是否相似。
4. 相似比例的运用相似比例是解决相似问题的关键。
当我们确定了两个相似图形之间的比例关系后,我们可以利用相似比例计算未知边长或角度,并解决与相似有关的各种几何问题。
在运用相似比例时,我们需要注意单位的转换和计算的准确性。
5. 长方体与正方体的相似在相似的概念中,长方体与正方体的相似问题也是常见的。
当两个立体图形相似时,它们的对应面的积之比等于对应边长的比值的平方。
我们可以运用这一性质解决立体几何中的相似问题,例如求解一个长方体与正方体的边长比例。
总结起来,在九年级下册的数学学习中,相似是一个重要的几何概念,掌握相似的基本概念、判定条件和相似比例的运用是解决相似问题的关键。
要注意运用相似比例时的单位转换和计算准确性。
初三数学相似知识点总结
初三数学相似知识点总结学好数学要善于总结自己掌握的数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。
做到总结和归纳是学会数学的关键。
下面是整理的初三数学相似知识点,仅供参考希望能够帮助到大家。
初三数学相似知识点1 图形的相似相似多边形的对应边的比值相等,对应角相等;两个多边形的对应角相等,对应边的比值也相等,那么这两个多边形相似;相似比:相似多边形对应边的比值。
2 相似三角形判定:平行于三角形一边的直线和其它两边相交,所构成的三角形和原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么两个三角形相似;如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两个三角形相似。
3相似三角形的周长和面积相似三角形(多边形)的周长的比等于相似比;相似三角形(多边形)的面积的比等于相似比的平方。
4位似位似图形:两个多边形相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫位似图形,相交的点叫位似中心。
初二数学三角形知识点复习1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8.多边形的内角:多边形相邻两边组成的角叫做它的内角。
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
数学九年级知识点相似
数学九年级知识点相似在数学九年级中,相似是一个非常重要的知识点。
相似性质是指两个或多个图形在形状上相似的性质。
相似的图形既可以是平面图形,也可以是空间图形。
在学习相似性质时,我们需要了解相似的定义、相似的判定方法以及相似的性质与应用等方面的知识。
一、相似的定义相似是指两个或多个图形在形状上相同,但大小可能不同,既没有重叠也没有间隙的性质。
对于两个平面图形来说,如果它们的对应角度相等,对应边的比例相等,那么这两个图形是相似的。
对于两个空间图形来说,如果它们的对应面的角度相等,对应边的比例相等,那么这两个图形是相似的。
二、相似的判定方法1. AA判定法:如果两个三角形的两个对应角分别相等,则这两个三角形是相似的。
2. SAS判定法:如果两个三角形的一个对应角相等,并且两个对应边的比例相等,则这两个三角形是相似的。
3. SSS判定法:如果两个三角形的三个对应边的比例相等,则这两个三角形是相似的。
三、相似的性质与应用1. 相似三角形的性质:相似三角形的对应角相等,对应边的比例相等。
根据这个性质,我们可以利用已知条件求解未知量,进而解决各种实际问题,比如测量高楼的高度、计算远近物体的距离等。
2. 相似形状的应用:在工程设计、建筑设计等领域中,相似性质可以用来进行模型的设计和缩放,以便更好地展示和理解复杂的结构、形状等。
四、相似的注意事项1. 相似的比例关系:在判定相似时,我们需要注意对应边或对应面的比例是否相等,这是相似的重要条件之一。
2. 注意相似的顺序:在进行相似判定时,我们需要保持对应关系一致,即相似三角形的对应边或对应面的顺序应该一致。
3. 注意判断相似的条件:在使用判定法时,我们需要确保满足相应的条件,才能得出两个图形相似的结论。
总之,相似是数学九年级中重要的知识点之一。
了解相似的定义、判定方法、性质与应用是我们理解和掌握相似性质的基础。
通过学习相似,我们可以应用数学的知识解决实际问题,提高数学的实践性和应用性。
九年级下册数学相似知识点汇总
九年级下册数学相似知识点汇总在九年级下册数学中,相似是一个重要的概念。
相似可以理解为两个几何图形在形状上保持一定的比例关系。
本文将对九年级下册数学中的相似知识点进行汇总,以帮助同学们更好地理解和应用这些知识。
1. 相似三角形相似三角形是九年级下册数学中的一个重要概念。
两个三角形相似的条件是:对应角相等,对应边成比例。
同学们应该注意掌握相似三角形的判定方法和应用。
2. 相似比例相似比例是相似的基本性质,它表示两个相似图形中对应边的比例关系。
例如,如果两个三角形相似,那么它们的对应边的比例相等。
同学们需要灵活运用相似比例来求解各种几何问题。
3. 三角形的面积比如果两个三角形相似,那么它们的面积比等于它们相应边长的平方比。
同学们应该掌握如何计算三角形的面积,并且了解面积比的性质及应用。
4. 相似三角形的性质相似三角形具有一些特殊的性质,比如它们的对应角相等,对应边成比例。
同学们应该学会利用这些性质解决各种几何问题,如长度比、面积比等。
5. 相似图形的比例尺对于相似的几何图形,我们可以定义一个比例尺来表示它们的对应边长之间的比例关系。
同学们需要了解比例尺的概念和使用方法,并且能够将实际问题转化为比例尺问题进行求解。
6. 平行线与相似平行线与相似有密切的联系。
同学们应该了解平行线与相似的性质,如平行线分割的三角形相似、平行线分割的四边形相似等。
7. 相似三角形的判定如何快速判断两个三角形是否相似是一个重要的问题。
同学们应该熟练掌握相似三角形的判定方法,如AAA判定法、相似三角形对应角相等等。
8. 应用题相似的知识在应用题中经常会出现。
同学们需要善于将实际问题转化为相似三角形问题,并通过相似的性质和方法解决问题。
总结:通过对九年级下册数学相似知识点的汇总,我们可以看到相似是一个重要的几何概念。
同学们在学习相似知识时,应该注重理解概念和性质,熟练掌握判定方法和计算技巧,并能够将相似的知识灵活应用到实际问题中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学知识点归纳:相似图形
常见考法
判断某两个图形是不是相似;
判断一组数据是不是成比例线段;
已知图上距离和比例尺大小求实际距离;
利用比例的性质求值。
误区提醒
在判断四条线段是否成比例问题时忽略单位统一;在用图上距离求实际距离时忽略了单位换算问题。
【典型例题】在比例尺为1:200的地图上,测得A,B 两地间的图上距离为4.5c,则A,B两地间的实际距离为.【解析】4.5×200=9000c=9
相似三角形
一、平行线分线段成比例定理及其推论:
定理:三条平行线截两条直线,所得的对应线段成比例。
推论:平行于三角形一边的直线截其他两边所得的对应线段成比例。
推论的逆定理:如果一条直线截三角形的两边所得的对应线段成比例,那么这条线段平行于三角形的第三边。
二、相似预备定理:
平行于三角形的一边,并且和其他两边相交的直线,截
得的三角形的三边与原三角形三边对应成比例。
三、相似三角形:
定义:对应角相等,对应边成比例的三角形叫做相似三角形。
性质:相似三角形的对应角相等;
相似三角形的对应线段成比例;
相似三角形的周长比等于相似比,面积比等于相似比的平方。
说明:①等高三角形的面积比等于底之比,等底三角形的面积比等于高之比;②要注意两个图形元素的对应。
判定定理:
两角对应相等,两三角形相似;
两边对应成比例,且夹角相等,两三角形相似;
三边对应成比例,两三角形相似;
如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角对应成比例,那么这两个直角三角形相似。
四、三角形相似的证题思路:
五、利用相似三角形证明线段成比例的一般步骤:
一“定”:先确定四条线段在哪两个可能相似的三角形中;
二“找”:再找出两个三角形相似所需的条件;
三“证”:根据分析,写出证明过程。
如果这两个三角形不相似,只能采用其他方法,如找中间比或引平行线等。
六、相似与全等:
全等三角形是相似比为1的相似三角形,即全等三角形是相似三角形的特例,它们之间的区别与联系:
共同点它们的对应角相等,不同点是边长的大小,全等三角形的对应边相等,而相似三角形的对应的边成比例。
判定方法不同,相似三角形只求形状相同的,大小不一定相等,所以改“对应边相等”成“对应边成比例”。
常见考法
利用判定定理证明三角形相似;利用三角形相似解决圆、函数的有关问题。
误区提醒
根据相似三角形找对应边时,出现失误找错对应边,因此在写比例式时出错,导致解题错误信息;在定理的实际应用中,常常忽视“夹角相等”这个重条件,错误认为有两边对应比相等,再有一组角相等,就能得到两个三角形相似。