ARMA模型的eviews的建立--时间序列分析实验指导资料讲解

合集下载

ARMA模型的eviews的建立--时间序列分析实验指导

ARMA模型的eviews的建立--时间序列分析实验指导

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 8 - 实验三时间序列随机性和平稳性检验 ···························· - 18 - 实验四时间序列季节性、可逆性检验 ···························· - 21 - 实验五 ARMA模型的建立、识别、检验···························· - 27 - 实验六 ARMA模型的诊断性检验····································· - 30 - 实验七 ARMA模型的预测·············································· - 31 - 实验八复习ARMA建模过程·········································· - 33 - 实验九时间序列非平稳性检验 ····································· - 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

时间序列上机实验ARMA模型的建立

时间序列上机实验ARMA模型的建立

实验一ARMA模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA模型进行估计,以及掌握利用ARMA模型进行预测的方法。

学会运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。

AR模型:AR模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测,自回归模型的数学公式为:乂2『t2 川p y t p t式中:p为自回归模型的阶数i(i=1,2,,p)为模型的待定系数,t为误差,yt 为一个平稳时间序列。

MA模型:MA模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

滑动平均模型的数学公式为:y t t 1 t 1 2 t 2 川q t q式中:q为模型的阶数;j(j=1,2,,q)为模型的待定系数;t为误差;yt为平稳时间序列。

ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA,数学公式为:y t 1 y t 1 2 y t 2 p y t p t 1 t 1 2 t 2 q t q三、实验内容(1)通过时序图判断序列平稳性;(2)根据相关图,初步确定移动平均阶数q 和自回归阶数p;(3)对时间序列进行建模四、实验要求学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。

五、实验步骤1.模型识别(1)绘制时序图在Eviews 软件中,建立一个新的工作文件, 500个数据。

通过Eviews 生成随机序列“ e,再根据“ x=*x(-1)*x(-2)+e ”生成AR(2)模型序列“ x” 默认x(1)=1, x(2)=2,得到下列数据,由于篇幅有限。

ARMA模型的eviews的建立--时间序列分析实验指导

ARMA模型的eviews的建立--时间序列分析实验指导

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 8 - 实验三时间序列随机性和平稳性检验 ···························· - 18 - 实验四时间序列季节性、可逆性检验 ···························· - 21 - 实验五 ARMA模型的建立、识别、检验···························· - 27 - 实验六 ARMA模型的诊断性检验····································· - 30 - 实验七 ARMA模型的预测·············································· - 31 - 实验八复习ARMA建模过程·········································· - 33 - 实验九时间序列非平稳性检验 ····································· - 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

实验报告-时间序列

实验报告-时间序列

实验报告----平稳时间序列模型的建立08经济统计I60814030王思瑶一.实验目的从观察到的化工生产过程产量的70个数据样本出发,通过对模型的识别、模型的定价、模型的参数估计等步骤建立起适合序列的模型。

以下是化工生产过程的产量数据:obs BF obs BF1 47 36582 64 37453 23 38544 71 39365 38 40546 64 41487 55 42558 41 43459 59 445710 48 455011 71 466212 35 474413 57 486414 40 494315 58 505216 44 513817 80 525918 55 535519 37 544120 74 555321 51 564922 57 573423 50 583524 60 595425 45 604526 57 616827 50 623828 45 635029 25 646030 59 653931 50 665932 71 674033 56 685734 74 695435 50 7023可以明显看出序列均值显著非零,所以用样本均值作为其估计对序列进行零均值化。

obs BF 零均值化后的数据Y obs BF零均值化后的数据Y1 47 -4.12857 3658 6.871432 64 12.87143 3745-6.128573 23 -28.12857 3854 2.871434 71 19.87143 3936-15.128575 38 -13.12857 4054 2.871436 64 12.87143 4148-3.128577 55 3.87143 4255 3.871438 41 -10.12857 4345-6.128579 59 7.87143 4457 5.8714310 48 -3.12857 4550-1.1285711 71 19.87143 466210.8714312 35 -16.12857 4744-7.1285713 57 5.87143 486412.8714314 40 -11.12857 4943-8.1285715 58 6.87143 50520.8714316 44 -7.12857 5138-13.1285717 80 28.87143 52597.8714318 55 3.87143 5355 3.8714319 37 -14.12857 5441-10.1285720 74 22.87143 5553 1.8714321 51 -0.12857 5649-2.1285722 57 5.87143 5734-17.1285723 50 -1.12857 5835-16.1285724 60 8.87143 5954 2.8714325 45 -6.12857 6045-6.1285726 57 5.87143 616816.8714327 50 -1.12857 6238-13.1285728 45 -6.12857 6350-1.1285729 25 -26.12857 64608.8714330 59 7.87143 6539-12.1285731 50 -1.12857 66597.8714332 71 19.87143 6740-11.1285733 56 4.87143 6857 5.8714334 74 22.87143 6954 2.8714335 50 -1.12857 7023-28.12857二.实验步骤1.模型识别零均值平稳序列的自相关函数与偏相关函数的统计特性如下:模型 AR(n) MA(m) ARMA(n,m)自相关函数拖尾截尾拖尾偏自相关函数截尾拖尾拖尾所以,作零均值化后数据的自相关函数与偏自相关函数图Date: 04/25/11 Time: 22:35Sample: 2001 2070Included observations: 70Autocorrelation Partial Correlation AC PAC Q-Stat Prob***| . | ***| . | 1 -0.382 -0.382 10.638 0.001. |** | . |** | 2 0.325 0.209 18.444 0.000**| . | . | . | 3 -0.193 -0.018 21.234 0.000. |*. | . | . | 4 0.090 -0.049 21.857 0.000.*| . | .*| . | 5 -0.162 -0.126 23.900 0.000. | . | .*| . | 6 0.014 -0.094 23.916 0.001. | . | . | . | 7 0.012 0.065 23.928 0.001.*| . | .*| . | 8 -0.085 -0.079 24.519 0.002. | . | . | . | 9 0.039 -0.051 24.644 0.003. | . | . |*. | 10 0.033 0.080 24.736 0.006. |*. | . |*. | 11 0.090 0.125 25.426 0.008.*| . | . | . | 12 -0.077 -0.054 25.942 0.011. | . | . | . | 13 0.063 -0.045 26.291 0.016. | . | . |*. | 14 0.051 0.134 26.524 0.022. | . | . |*. | 15 -0.006 0.079 26.528 0.033. |*. | . |*. | 16 0.126 0.145 28.016 0.031.*| . | . | . | 17 -0.090 -0.040 28.792 0.036. | . | .*| . | 18 0.017 -0.084 28.820 0.051.*| . | . | . | 19 -0.099 -0.017 29.795 0.054. | . | . | . | 20 0.006 -0.036 29.798 0.073. | . | . | . | 21 0.015 0.055 29.820 0.096. | . | . | . | 22 -0.037 -0.015 29.968 0.119. | . | . | . | 23 0.013 -0.051 29.985 0.150. | . | . | . | 24 0.010 0.010 29.997 0.185. | . | . | . | 25 0.015 -0.016 30.023 0.223. | . | . | . | 26 0.036 0.023 30.172 0.261. | . | . | . | 27 -0.016 -0.036 30.202 0.305. | . | . | . | 28 0.033 0.030 30.335 0.347. | . | . | . | 29 -0.057 -0.015 30.735 0.378. | . | . | . | 30 0.051 -0.003 31.064 0.412.*| . | . | . | 31 -0.070 -0.053 31.706 0.431. | . | . | . | 32 0.057 -0.003 32.141 0.460由上图可知Autocorrelation与Partial Correlation序列均有收敛到零的趋势,可以认为Y的自相关函数与偏自相关函数均是拖尾的,所以初步判断该序列适合ARMA模型。

eviews时间序列分析

eviews时间序列分析

方差分解
❖ 利用VAR模型,还可以进行方差分解研究模 型的动态特征。其主要思想是,把系统中每 个内生变量(m)的波动按其成因分解为与 各方程新息相关联的m个组成部分,从而了 解各新息对模型内生变量的相对重要性。
• 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。21. 11.1821.11.18Thursday, November 18, 2021
❖ 例3 下面以1949 ~2001年中国人口时间序列 数据(case42)为例介绍: (1)时间序列图; (2)求 中国人口序列的相关图和偏相关图,识别模 型形式; (3)估计时间序列模型; (4)样本外预 测。
❖ 1、画时间序列图
❖ 点击View键,选择Graph/Line功能
❖ 从人口序列y的变化特征看,这是一个非平 稳序列。
yt c t yt1 j yt j t j 1
❖ PP检验
❖ 例1:661天的深证成指(SZ)序列见case37。
❖ 初步选择①ADF检验,②对原序列sz,做单 位根检验,③检验式中不包括趋势项,但包 括截距项。
❖ 因为常数项没有显著性。从检验式中去掉截 距项,继续迸行单位根检验。
第三节 模型的预测
❖ 比如用估计的模型Dyt = 0. 0547 + 0. 6171 Dy t- 1+ vt预测2001年的中国总人口,在窗口 中点击forecast键,弹出对话窗口。在S. E. (optional)选择区填入yfse,把Forecast sample (预测样本区间)改为2001 ~2001,预 测方法(Method)选静态预测(Static)
❖ 输出结果由两部分组成。左半部分是序列的

基于AR(2)模型和 ARMA(2,1)模型的时间序列分析模型的建立与预测

基于AR(2)模型和  ARMA(2,1)模型的时间序列分析模型的建立与预测

图4
3
图5
第三步:在 Eviews 菜单栏中点击 Quick→Equation Estimate,在输入栏输入 如下图 6 所示的 内容,点击“确定”,得到如图 7 所示的结果图:
图6
4
图7
第四步 结果分析: 通过对比两种模型的估计结果可以知道,ARMA(2、1)模型的 AIC、BIC 值均 小于 AR(2)模型的值,故得出结论 ARMA(2、1)模型更好。 两种模型的各期预测表达式如下: AR(2)一期预测表达式为: yt 1793 .589 1.557061 yt 1 AR(2)二期预测表达式为: yt 1 1793 .589 1.55061 yt 2 AR(2)三期预测表达式为: yt 2 1793 .589 1.55061 yt 3 ARMA(2、1)一期预测表达式为: yt 2.238542 yt 1 1.235874 yt 3 12492 .15 0.927281 t 1 ARMA(2、1)二期预测表达式为: yt 1 2.238542 yt 2 1.235874 yt 3 12492 .15 0.927281 t 2 ARMA(2、1)三期预测表达式为: yt 2 2,238542 yt 3 1.235874 yt 4 12492 .15 0.927281 t 3 得出两种模型各期误差方差分别为: AR(2)一期误差方差= 2 ( 1 2 ) 2 6.0109897 2 AR(2)二期误差方差= AR(2)三期误差方差= ((12 22 ) 1 12 ) 2 48.7613274 2
5
四、实验总结
通过对 1978-2008 年中国财政收入的数据分析, 建立了 AR ( 2 )模型和 ARMA(2,1)模型,并且对这两个模型进行了比较。通过比较,我了解到不同的 数据用不同的模型分析,可以得出不一样的分析效果,让我更加了解了如何用 Eviews 软件对数据进行分析。

ARMA模型时间序列分析法

ARMA模型时间序列分析法

ARMA模型时间序列分析法ARMA模型时间序列分析法简称为时序分析法,是一种利用参数模型对有序随机振动响应数据进行处理,从而进行模态参数识别的方法。

参数模型包括AR自回归模型、MA滑动平均模型和ARMA自回归滑动平均模型。

1969年AkaikeH首次利用自回归滑动平均ARMA模型进行了白噪声激励下的模态参数识别。

N个自由度的线性系统激励与响应之间的关系可用高阶微分方程来描述,在离散时间域内,该微分方程变成由一系列不同时刻的时间序列表示的差分方程,即ARMA时序模型方程:(1)式(1)表示响应数据序列与历史值的关系,其中等式的左边称为自回归差分多项式,即AR模型,右边称为滑动平均差分多项式,即MA模型。

2N为自回归模型和滑动均值模型的阶次,、分别表示待识别的自回归系数和滑动均值系数,表示白噪声激励。

当k=0时,设。

由于ARMA过程{}具有唯一的平稳解为(2)式中:为脉冲响应函数。

的相关函数为(3)是白噪声,故(4)式中:为白噪声方差。

将此结果代人式(3),即可得(5)因为线性系统的脉冲响应函数,是脉冲信号,激励该系统时的输出响应,故由ARMA过程定义的表达式为(6)利用式(5)和式(6),可以得出:(7)对于一个ARMA过程,当是大于其阶次2N时,参数=0。

故当l>2N时,式(7)恒等于零,于是有(8)或写成(9)设相关函数的长度为L,并令M=2N。

对应不同的l值,由代人以上公式可得一组方程:(10)将式(10)方程组写成矩阵形式,则有(11)或缩写为(12)式(12)为推广的Yule-walker方程。

一般情况下,由于L比2N大得多,采用伪逆法可求得方程组的最小二乘解,即(13)由此求得自回归系数。

滑动平均模型系数可通过以下非线性方程组来求解:(14)其中(15)式中:为响应序列的自协方差函数。

滑动平均模型MA系数的估算方法很多,主要的有基于Newton-Raphson算法的迭代最优化方法和基于最小二乘原理的次最优化方法。

eviews实验指导(ARIMA模型建模与预测)

eviews实验指导(ARIMA模型建模与预测)

eviews实验指导(ARIMA模型建模与预测) eviews实验指导(ARIMA模型建模与预测)ARIMA模型是一种常用的时间序列分析方法,可以用于建模和预测时间序列数据。

在eviews软件中,我们可以利用其强大的功能进行ARIMA模型的建模和预测分析。

一、数据准备与导入在进行ARIMA模型建模之前,首先需要准备好相关的时间序列数据,并导入eviews软件中。

可以通过以下步骤进行操作:1. 创建一个新的工作文件,点击"File" -> "New" -> "Workfile",选择合适的时间范围和频率。

2. 在eviews软件中,点击"Quick" -> "Read Text",导入包含时间序列数据的文本文件。

确保文本文件中的数据格式正确,并根据需要设置导入选项。

3. 确认数据已经成功导入,可以通过在工作文件窗口中查看和编辑数据。

二、ARIMA模型建模在eviews中,建立ARIMA模型需要进行以下步骤:1. 点击"Quick" -> "Estimate Equation",打开方程估计对话框。

2. 在对话框中,选择要建模的时间序列变量,并选择ARIMA模型。

根据数据的特点,可以选择不同的AR、MA和差分阶数。

3. 设置其他参数,如是否包含常数项、是否进行季节性调整等。

根据具体分析需求进行选取。

4. 点击"OK",进行模型估计。

eviews将自动计算出ARIMA模型的系数估计和相应的统计指标。

5. 检查模型的拟合优度,可以通过观察残差序列的ACF和PACF图、Ljung-Box检验等方法来判断模型是否合适。

三、模型诊断与改进建立ARIMA模型后,需要对模型进行诊断,以确保其满足建模的基本假设。

常见的诊断方法包括:1. 检查模型的残差序列是否为白噪声,可以通过观察残差序列的ACF和PACF图、Ljung-Box检验等方法来判断。

Eviews新建和管理系统时间的序列大数据。

Eviews新建和管理系统时间的序列大数据。
3.为了进一步的判断序列SHA的平稳性,需要绘制出该序列的自相关图。双击序列名sha出现序列观测值的电子表格工作文件,点击View/Correlogram,出现相关图设定对话框,上面选项要求选择对谁计算自相关系数:原始序列(Level)、一阶差分(1st difference)和二阶差分(2nd difference),默认是对原始序列显示相关图。下面指定相关图显示的最大滞后阶数k,若观测值较多,k可取 或 ;若样本量较小k一般取 ( 表示时间序列观测值个数, 表明不超过其的最大整数)。若序列是季节数据,一般k取季节周期的整数倍。设定完毕点击OK就出现图的序列相关图和相应的统计量。
4.
纯随机性判断
一个时间序列是否有分析价值,要看序列观测值之间是否有一定的相关性没有显著性差异,序列为白噪声序列,则图中Q统计量正是对序列是否是白噪声序列即纯随机序列进行的统计检验,该检验的原假设和备择假设分别为:
至少存在某个
在图中,由每个Q统计量的伴随概率可以看出,都是拒绝原假设的,说明至少存在某个k,使得滞后k期的自相关系数显著非0,也即拒绝序列是白噪声序列的原假设。
2.点击主菜单Quick/Graph就可作图,分别是折线图(Line graph)、条形图(Bar graph)、散点图(Scatter)等,也可双击序列名,出现显示电子表格的序列观测值,然后点击工具栏的View/Graph。如果选择折线图,出现对话框,在此对话框中键入要做图的序列,点击OK则出现折线图,横轴表示时间,纵轴表示纱产量,图上工具栏options可以对折线图做相应修饰。点击主菜单的Edit/Copy,然后粘贴到文档就变成了折线图。
ADF检验
从图1-11可以看出,在显著性水平0.01下,一阶差分序列拒绝存在一个单位根的原假设,说明经过差分后的序列已经平稳,可以为以后的建模使用。

用EVIEWS处理时间序列分析报告

用EVIEWS处理时间序列分析报告

应用时间序列分析实验手册目录目录 (2)第二章时间序列的预处理 (3)一、平稳性检验 (3)二、纯随机性检验 (11)第三章平稳时间序列建模实验教程 (12)一、模型识别 (12)二、模型参数估计(如何判断拟合的模型以及结果写法) (17)三、模型的显著性检验 (21)四、模型优化 (22)第四章非平稳时间序列的确定性分析 (24)一、趋势分析 (24)二、季节效应分析 (42)三、综合分析 (48)第五章非平稳序列的随机分析 (54)一、差分法提取确定性信息 (54)二、ARIMA 模型 (68)三、季节模型 (74)第二章时间序列的预处理、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1 :打开外来数据图2 :打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3 :打开过程中给序列命名图4 :打开数据2. 绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline ; 绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1 :绘制散点图Ranct. 1 3G JSanvls; 196」 图2 :年份和产出的散点图廿胡 Pnxjot^ Graph! QVrLILED VnTfctiles Ift^r 2\Urrtitie<i匚何冈K outpilYEAR图3 :年份和产出的散点图(二)自相关图检验例2.3导入数据,方式同上;在Quick 菜单下选择自相关图,对 Qiwen 原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

006 0 I9601970 1980199000 5 00 4 00300 2002000图1 :序列的相关分析图2 :输入序列名称C orrelo^ra* Speci fica・.Correlogram ofE LeireJj''1st di ffereitt 21\(1 disrLa^s to incliide固—图2 :选择相关分析的对象H¥i FTS - F?iPrif?iT : QT¥HW Tnrfrfilf?: ffi1.4\nnr iTlrdlPil-a Edi< C'bjflcl Viow Frefl Qu ;dr 0虫liam Virtd-sv Half■颌 X炬呼]毗r]gjB?t|mer 慨s| Prmt|M4ne.卜^叩©. arr|抄8«]或眦|lcerr Lir^ltarCorrelogram ol UlWtNDate: [K/23/D8 Tima: 21:36 Sarrpl&. 1949 19QSIncluded DDservatioiis:工Ajlacarention Partial Correlation1 XJ.177 -0.177 20 017 .nni5 J ii l/-1 III .T4 0.013 0.065 5 -0.167 -0.1SG6 0 zas -n run 7Q 0 016日-0JQ12 0.063 9 -0 021』0221U 0.D53 U1J13 11 O.D® 0.035 12 -0.^9 -0.079 13 0 077 D M014 -0.036 U UWU 帖 ^O.TO -0.04^ 16 £ 血 0 IrO图3 :序列的相关分析结果:1.可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q 统计量的P 值:该统计量的原假设为 X 的1期,2期……k 期的自相关系 数均等于0,备择假设为自相关系数中至少有一个不等于 0,因此如图知,该 P 值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之 间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响 ,因此为纯随机序列,即白噪声序列.)有的题目平稳性描述可以模仿书本 33页最后一段•(三)平稳性检验还可以用:单位根检验:ADF,PP 检验等; 非参数检验:游程检验1.354J 1 nfln ; 3.3253 3.3435 4.S17 5 TFI40 5.2S43 5.39^ 54227 土T5.G4536.1721b.=/43 7J0134 沖口22予13佑饰归芜册芒4/帘也14^544677 J 3 9 5 J - J -4 n^D^n^n^n-n^n^n^n-n-n-n-n-nu-n^n irn图1:序列的单位根检验图2 :单位根检验的方法选择图3: ADF检验的结果:如图,单位根统计量ADF=-0.016384 都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

Eviews中的ARMA模型操作

Eviews中的ARMA模型操作

数据导入
在Eviews中,可以通过"File" -> "Open" -> "Foreign Data as Workfile"导入外部数据,支持多 种格式如Excel、CSV等。
数据预处理
对数据进行平稳性检验,如ADF 检验,确保数据满足ARMA模型 的前提假设。如果不平稳,则需 要进行差分或其他变换。
模型优化
如果模型检验不通过,可能需要调整模型阶数或加入其他 变量进行优化,然后重新进行参数估计和检验。
模型检验
对估计得到的模型进行残差诊断,包括残差的自相关性检 验(如Ljung-Box Q检验)、异方差性检验(如ARCH效 应检验)以及正态性检验等。
预测与应用
利用通过检验的模型进行预测,分析预测结果并应用于实 际问题中。
案例分析与实践
通过具体案例,演示了如何在Eviews中应用ARMA模型进行时间序列分析和预测,包 括模型的选择、参数的估计和模型的评估等。
学员心得体会分享
01
加深了对ARMA模型 的理解
通过本次课程,学员们对ARMA模型 的基本原理和应用有了更深入的理解 ,能够更好地应用该模型进行时间序 列分析和预测。
适用于平稳时间序列: ARMA模型适用于平稳时间 序列的建模和预测,即时间 序列的统计特性不随时间变 化。
线性模型:ARMA模型是一 种线性模型,可以用线性方 程来表示。
参数化方法:ARMA模型采 用参数化方法,通过估计模 型参数来描述数据的动态特 性。
适用范围与局限性
• 适用范围:ARMA模型适用于具有平稳性、线性和参数化特性的时间序列数 据。它广泛应用于经济、金融、社会科学等领域的时间序列分析和预测。

ARMA模型的eviews的建立 时间序列分析实验指导(word文档良心出品)

ARMA模型的eviews的建立  时间序列分析实验指导(word文档良心出品)

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 8 - 实验三时间序列随机性和平稳性检验 ···························· - 18 - 实验四时间序列季节性、可逆性检验 ···························· - 21 - 实验五 ARMA模型的建立、识别、检验···························· - 27 - 实验六 ARMA模型的诊断性检验····································· - 30 - 实验七 ARMA模型的预测·············································· - 31 - 实验八复习ARMA建模过程·········································· - 33 - 实验九时间序列非平稳性检验 ····································· - 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

eviews时间序列分析实验Word版

eviews时间序列分析实验Word版

实验一ARMA 模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA 模型进行估计,以及掌握利用ARMA 模型进行预测的方法。

学会运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念 1 平稳时间序列:定义:时间序列{zt}是平稳的。

如果{zt}有有穷的二阶中心矩,而且满足:(a )ut= Ezt =c;(b )r(t,s) = E[(zt-c)(zs-c)] = r(t-s,0) 则称{zt}是平稳的。

2 AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测。

具有如下结构的模型称为P 阶自回归模型,简记为AR(P)。

⎪⎪⎪⎪⎨⎧<∀=≠===≠+++++=---ts Ex t s E Var E x x x x t s s t t t p t p t p t t t ,0,0)(,)(,0)(0222110εεεσεεφεφφφφε3 MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

具有如下结构的模型称为Q 阶移动平均回归模型,简记为MA(q)。

4 ARMA 模型:ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA 。

具有如下结构的模型称为自回归移动平均回归模型,简记为ARMA(p,q)。

112220()0(),()0,t t t t q t q q t t t s x E Var E s t εμεθεθεθεθεεσεε---⎧=+----⎪≠⎨⎪===≠⎩,⎪⎪⎪⎪⎨⎧<∀=≠===≠≠---++++=----ts Ex t s E Var E x x x t s s t t t q p q t q t t p t p t t ,0,0)(,)(,0)(0,0211110εεεσεεθφεθεθεφφφε三、实验内容及要求 1 实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;2 实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测;(3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A R M A模型的e v i e w s 的建立--时间序列分析实验指导时间序列分析实验指导42-2-450100150200250收集于网络,如有侵权请联系管理员删除统计与应用数学学院收集于网络,如有侵权请联系管理员删除前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

收集于网络,如有侵权请联系管理员删除统计与数学模型分析实验中心 2007年2月收集于网络,如有侵权请联系管理员删除目录实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 9 - 实验三时间序列随机性和平稳性检验 ···························· - 19 - 实验四时间序列季节性、可逆性检验 ···························· - 23 - 实验五 ARMA模型的建立、识别、检验···························· - 30 - 实验六 ARMA模型的诊断性检验····································· - 33 - 实验七 ARMA模型的预测·············································· - 34 - 实验八复习ARMA建模过程·········································· - 36 - 实验九时间序列非平稳性检验 ····································· - 38 -收集于网络,如有侵权请联系管理员删除实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

【实验内容】一、EViews软件的常用菜单方式和命令方式;二、各种常用差分函数表达式;三、时间序列的自相关和偏自相关图与函数;【实验步骤】一、EViews软件的常用菜单方式和命令方式;㈠创建工作文件⒈菜单方式启动EViews软件之后,进入EViews主窗口在主菜单上依次点击File/New/Workfile,即选择新建对象的类型为工作文件,将弹出一个对话框,由用户选择数据的时间频率(frequency)、起始期和终止期。

选择时间频率为Annual(年度),再分别点击起始期栏(Start date)和终止期栏(End date),输入相应的日期,然后点击OK按钮,将在EViews软件的主显示窗口显示相应的工作文件窗口。

工作文件窗口是EViews的子窗口,工作文件一开始其中就包含了两个对象,一个是系数向量C(保存估计系数用),另一个是残差序列RESID(实际值与拟合值之差)。

收集于网络,如有侵权请联系管理员删除⒉命令方式在EViews软件的命令窗口中直接键入CREATE命令,也可以建立工作文件。

命令格式为:CREATE 时间频率类型起始期终止期则菜单方式过程可写为:CREATE A 1985 1998㈡输入Y、X的数据⒈DATA命令方式在EViews软件的命令窗口键入DATA命令,命令格式为:DATA <序列名1> <序列名2>…<序列名n>本例中可在命令窗口键入如下命令:DATA Y X⒉鼠标图形界面方式在EViews软件主窗口或工作文件窗口点击Objects/New Object,对象类型选择Series,并给定序列名,一次只能创建一个新序列。

再从工作文件目录中选取并双击所创建的新序列就可以展示该对象,选择Edit+/-,进入编辑状态,输入数据。

㈢生成log(Y)、log(X)、X^2、1/X、时间变量T等序列在命令窗口中依次键入以下命令即可:GENR LOGY=LOG(Y)GENR LOGX=LOG(X)GENR X1=X^2GENR X2=1/XGENR T=@TREND(84)㈣选择若干变量构成数组,在数组中增加变量。

收集于网络,如有侵权请联系管理员删除在工作文件窗口中单击所要选择的变量,按住Ctrl键不放,继续用鼠标选择要展示的变量,选择完以后,单击鼠标右键,在弹出的快捷菜单中点击Open/as Group,则会弹出数组窗口,其中变量从左至右按在工作文件窗口中选择变量的顺序来排列。

在数组窗口点击Edit+/-,进入全屏幕编辑状态,选择一个空列,点击标题栏,在编辑窗口输入变量名,再点击屏幕任意位置,即可增加一个新变量。

增加变量后,即可输入数据。

点击要删除的变量列的标题栏,在编辑窗口输入新变量名,再点击屏幕任意位置,弹出RENAME对话框,点击YES按钮即可。

㈤在工作文件窗口中删除、更名变量。

⒈在工作文件窗口中选取所要删除或更名的变量并单击鼠标右键,在弹出的快捷菜单中选择Delete(删除)或Rename(更名)即可⒉在工作文件窗口中选取所要删除或更名的变量,点击工作文件窗口菜单栏中的Objects/Delete selected…(Rename selected…),即可删除(更名)变量⒊在工作文件窗口中选取所要删除的变量,点击工作文件窗口菜单栏中的Delete按钮即可删除变量。

三、图形分析与描述统计分析㈠利用PLOT命令绘制趋势图收集于网络,如有侵权请联系管理员删除在命令窗口中键入:PLOT Y也可以利用PLOT命令将多个变量的变化趋势描绘在同一张图中,例如键入以下命令,可以观察变量Y、X的变化趋势PLOT Y X㈡利用SCAT命令绘制X、Y的散点图在命令窗口中键入:SCAT X Y则可以初步观察变量之间的相关程度与相关类型二、各种常用差分函数表达式(一)利用D(x)命令系列对时间序列进行差分(x为表1-1中的数据)。

1、在命令窗口中键入:genr dx= D(x)则生成的新序列为序列x的一阶差分序列2、在命令窗口中键入:genr dxn= D(x,n)则生成的新序列为序列x的n阶差分。

相关文档
最新文档