数值计算方法第五章

合集下载

数值计算1-5章

数值计算1-5章

数值计算1-5章数值计算⽅法第1章绪论1.1数值计算⽅法的研究对象和特点数值计算⽅法也称数值分析,它研究⽤计算机求解各种数学问题的数值⽅法及其理论。

数学学科内容⼗分⼴泛,数值计算⽅法属于计算数学的范畴,这⾥只涉及科学和⼯程计算中常见的数学问题,如函数的插值、逼近、离散数据的拟合、数值积分与数值微分、线性和⾮线性⽅程数值解法和矩阵特征值问题数值解法和微分⽅程数值解法等.由于计算机科学与技术的迅速发展,数值计算⽅法的应⽤已经普遍深⼊到各个科学领域,很多复杂和⼤规模的计算问题都可以在计算机上进⾏计算,新的、有效的数值⽅法不断出现.现在,科学与⼯程中的数值计算已经成为各门⾃然科学和⼯程技术科学研究的⼀种重要⼿段,成为与实验和理论并列的⼀个不可缺少的环节.所以,数值计算⽅法既是⼀个基础性的,同时也是⼀个应⽤性的数学学科分⽀,与其他学科的联系⼗分紧密.⽤数值⽅法求解数学问题⾸先要构造算法,即由运算规则(包括算术运算、逻辑运算和运算顺序)构成的完整的解题过程.同⼀个数学问题可能有多种数值计算⽅法,但不⼀定都有效.评价⼀个算法的好坏主要有两条标准:计算结果的精度和得到结果所付出的代价.我们⾃然应该选择代价⼩⼜能满⾜精度要求的算法.计算代价也称为计算复杂性,包括时间复杂性和空间复杂性.时间复杂性好是指节省时间,主要由运算次数决定.空间复杂性好是指节省存储量,主要由使⽤的数据量决定.⽤计算机求数学问题的数值解不是简单地构造算法,它涉及多⽅⾯的理论问题,例如,算法的收敛性和稳定性等.除理论分析外,⼀个数值⽅法是否有效,最终要通过⼤量的数值实验来检验.数值计算⽅法具有理论性、实⽤性和实践性都很强的特点.作为数值计算⽅法的基础知识,本课程不可能⾯⾯俱到.除构造算法外,各章根据内容⾃⾝的特点,讨论的问题有所侧重.学习时我们⾸先要注意掌握⽅法的基本原理和思想,要注意⽅法处理的技巧及其与计算机的结合,要重视误差分析、收敛性和稳定性的基本理论.其次,要通过例⼦,学习使⽤各种数值⽅法解决实际计算问题,熟悉数值⽅法的计算过程.最后,为了掌握本课程的内容,还应做⼀定数量的理论分析与计算练习.1.2数值计算的误差1.2.1误差的来源应⽤数学⼯具解决实际问题,⾸先,要对被描述的实际问题进⾏抽象、简化,得到实际问题的数学模型.数学模型与实际问题之间会出现的误差,我们称之为模型误差.在数学模型中,通常要包含⼀些由观测数据确定的参数.数学模型中⼀些参数观测结果⼀般不是绝对准确的.我们把观测模型参数值产⽣的误差称为观测误差.例如,设⼀根铝棒在温度t时的实际长度为Lt,在t=0时的实际长度为L0,⽤lt来表⽰铝棒在温度为t时的长度计算值,并建⽴⼀个数学模型l t =L(1+at), a≈0.0000238/℃,其中a是由实验观测得到的常数,a∈[0.0000237,0.0000239],则称Lt -lt为模型误差,a-0.0000238是a 的观测误差.在解实际问题时,数学模型往往很复杂,因⽽不易获得分析解,这就需要建⽴⼀套⾏之有效的近似⽅法和数值⽅法.我们可能⽤容易计算的问题代替不易计算的问题⽽产⽣误差,也可能⽤有限的过程代替⽆限的过程⽽产⽣误差.我们将模型的准确解与⽤数值⽅法求得的准确解之间的误差称为截断误差或⽅法误差.例如,对函数()()35721sin 13!5!7!21!n x x x xn x x n +=-+-+++-+,该式右边有⽆限多项,计算机上⽆法计算.然⽽,根据微积分学中的泰勒(Taylor )定理,当|x |较⼩时,我们若⽤前3项作为sin x 的近似值,则截断误差的绝对值不超过77!x .⽤计算机做数值计算时,⼀般也不能获得数值计算公式的准确解,需要对原始数据、中间结果和最终结果取有限位数字.我们将计算过程中取有限位数字进⾏运算⽽引起的误差称为舍⼊误差.例如,13=0.33333…,如果我们取⼩数点后4位数字,则13-0.3333=0.000033…就是舍⼊误差.在数值分析中,除了研究数学问题的算法外,还要研究计算结果的误差是否满⾜精度要求,这就是误差估计问题.在数值计算⽅法中,主要讨论的是截断误差和舍⼊误差.1.2.2 误差与有效数字定义1.1 设x 是某实数的精确值,A x 是它的⼀个近似值,则称x -A x 为近似值A x 的绝对误差,或简称误差.Ax x x-称为x A 的相对误差.当x =0时,相对误差没有意义.在实际计算中,精确值x 往往是不知道的,所以通常把AAx x x -作为A x 的相对误差.定义1.2 设x 是某实值的精确值,A x 是它的⼀个近似值,并可对A x 的绝对误差作估计|x -A x |?A ε,则称εA 是A x 的绝对误差界,或简称误差界.称AAx ε是A x 的相对误差界.例 1.1 我们知道π=3.1415926…,若取近似值πA =3.14,则π-πA =0.0015926…,可以估计绝对误差界为0.002,相对误差界为0.0006.例 1.2 测量⼀⽊板长是954 cm,问测量的相对误差界是多⼤?解因为实际问题中所截取的近似数,其绝对误差界⼀般不超过最⼩刻度的半个单位,所以当x =954 cm 时,有A ε=0.5 cm ,其相对误差界为0.50.00052410.053%954AAx ε==< .定义1.3 设A x 是x 的⼀个近似值,将A x 写成12100.,k A i x a a a =±? , (1.1) 它可以是有限或⽆限⼩数的形式,其中i a (i =1,2,…)是0,1,…,9中的⼀个数字,1a ≠0,k 为整数.如果|x -A x |?0.5×10k n -,则称A x 为x 的具有n 位有效数字的近似值.可见,若近似值A x 的误差界是某⼀位的半个单位,该位到A x 的第⼀位⾮零数字共有n 位,则A x 有n 位有效数字.通常在x 的准确值已知的情况下,若要取有限位数的数字作为近似值,就采⽤四舍五⼊的原则,不难验证,采⽤四舍五⼊得到的近似值,其绝对误差界可以取为被保留的最后数位上的半个单位.例如|π-3.14|?0.5×210-, |π-3.142|?0.5×310-.按定义,3.14和3.142分别是具有3位和4位有效数字的近似值.显然,近似值的有效数字位数越多,相对误差界就越⼩,反之也对.下⾯,我们给出相对误差界与有效数字的关系.定理1.1 设x 的近似值A x 有(1.1)式的表达式. (1) 如果A x 有n 位有效数字,则 111×102A nAx x x a --≤; (1.2)(2) 如果()111×1021A nAx x x a --≤+, (1.3)则A x ⾄少具有n 位有效数字.证由(1.1)式可得到()111--?+≤≤?k A k a x a . (1.4)所以,当A x 有n 位有效数字时11110.5101×10,×102k nA nk Ax x x a a ----?≤=即(1.2)式得证.由(1.3)式和(1.4)式有()()nk nk AAA A a a x x x x x x ---?=?+?+≤-=-105.0101211011111,即说明A x 有n 位有效数字,(2)得证.例1.30.1%,应取⼏位有效数字?解由于因此1a =4,设有n 位有效数字,则由(1.2)式,可令11110a -?≤,即410n -?18,得n ?4.故只要对4位有效数字,其相对误差就可⼩于0.1%,4.472.例1.4 已知近似数A x 的相对误差界为0.3%,问A x ⾄少有⼏位有效数字?解设A x 有n 位有效数字,由于A x 的第⼀个有效数1a 没有具体给定,⽽我们知道1a ⼀定是1,2,…,9中的⼀个,由于()12311101000210291A Ax x x --≤<=+,故由(1.3)式知n=2,即A x ⾄少有2位有效数字.1.2.3 函数求值的误差估计对⼀元函数f(x ),⾃变量x 的⼀个近似值为A x ,以f(A x )近似f(x ),其误差界记作ε(f(A x )).若f(x )具有⼆阶连续导数,f′(A x )与f″(A x )的⽐值不太⼤,则可忽略|x -A x |的⼆次项,由Taylor 展开式得到f(A x )的⼀个近似误差界ε(f(A x ))≈|f′(A x )|ε(A x ).对n 元函数f(x 1,x 2,…,x n ),⾃变量x 1,x 2,…,x n 的近似值分别为x 1A ,x 2A ,…,x n A ,则有()()()12121,,,,,,nn A A nA k kA k k Af f x x x f x x x x x x=??-≈- ∑ ,其中()12,,,A A nA k k f f x x x x x A.因此,可以得到函数值的⼀个近似误差界()()()121,,,nAA nA kA k k Af f x x x x x εε=??≈ ∑. 特别地,对f(x 1,x 2)=x 1±x 2有ε(x 1A ±x 2A )=ε(x 1A )+ε(x 2A ).同样,可以得到ε(x 1A x 2A )≈|x 1A |ε(x 2A )+|x 2A |ε(x 1A ),()()12211222A A A A A A A x x x x x x x εεε+??≈,20A x ≠例1.5 设有长为l,宽为d 的某场地.现测得l 的近似值l A =120 m,d 的近似值d A =90 m ,并已知它们的误差界为|l-l A |?0.2 m,|d-d A |?0.2 m.试估计该场地⾯积S=ld 的误差界和相对误差界.解这⾥ε(l A )=0.2,ε(d A )=0.2,并且有2,,10800A A A S S d l S l d mld====.于是有误差界()21200.2900.242A S m ε≈?+?=,相对误差界()()420.39%10800A r A AS S l dεε=≈=.例1.6 设有3个近似数a=2.31, b=1.93, c=2.24,它们都有3位有效数字.试计算p=a+bc 的误差界和相对误差界,并问p 的计算结果能有⼏位有效数字?解 p=2.31+1.93×2.24=6.6332.于是有误差界ε(p)=ε(a)+ε(bc)≈ε(a)+|b|ε(c)+|c|ε(b) =0.005+0.005(1.93+2.24)=0.02585,相对误差界εr (p)=()0.025856.6332p pε≈≈0.39%.因为ε(p)≈0.02585<0.05,所以p=6.6332能有2位有效数字.1.2.4 计算机中数的表⽰任意⼀个⾮零实数⽤(1.1)式表⽰,是规格化的⼗进制科学记数⽅法.在计算机中通常采⽤⼆进制的数系(或其变形的⼗六进制等),并且表⽰成与⼗进制类似的规格化形式,即浮点形式±2m ×0.β1β2…βt ,这⾥整数m 称为阶码,⽤⼆进制表⽰为m=±α1α2…αs , αj =0或1(j=1,2,…,s),s 是阶的位数.⼩数0.β1β2…βt 称为尾数,其中β1=1,βj =0或1(j=2,3,…,t),t 是尾数部位的位数.s 和t 与具体的机器有关.由于计算机的字长总是有限位的,所以计算机所能表⽰的数系是⼀个特殊的离散集合,此集合的数称为机器数.⽤浮点⽅式表⽰的数有⽐较⼤的取值范围.⼗进制输⼊计算机时转换成⼆进制,并对t 位后⾯的数作舍⼊处理,使得尾数为t 位,因此⼀般都有舍⼊误差.两个⼆进制数作算术运算时,对计算结果也要作类似的舍⼊处理,使得尾数为t 位,从⽽也有舍⼊误差.在实现算法时,计算的最后结果与算法的精确解之间的误差,从根本上说是由机器的舍⼊误差造成的,包括输⼊数据和算术运算的舍⼊误差.因此有必要对计算机中数的浮点表⽰⽅法和舍⼊误差有⼀个初步的了解.有时为了分析某⼀个计算⽅法可能出现的误差现象,为了适应⼈们的习惯,我们会采⽤⼗进制实数系统进⾏误差分析.1.3 数值稳定性和要注意的若⼲原则 1.3.1 数值⽅法的稳定性实际计算时,给定的数据会有误差,数值计算中也会产⽣误差,并且,这些误差在进⼀步的计算中会有误差传播.因此,尽管数值计算中的误差估计⽐较困难,我们还是应该重视计算过程中的误差分析.定义 1.4 对于某个数值计算⽅法,如果输⼊数据的误差在计算过程中迅速增长⽽得不到控制,则称该算法是数值不稳定的,否则是数值稳定的.下⾯举例说明误差传播的现象.例 1.7 计算积分值105nxdx I x =+?, n=0,1,…,6.解由于要计算系列的积分值,我们先推导In 的⼀个递推公式.由1110555n n n n x x I I dx x --++=+?111n xdx n-==,可得下⾯两个递推算法.算法1:115n n I I n-=-,n=1,2, (6)算法2:1115n n I I n -??=-,n=6,5, (1)直接计算可得0ln 6ln 5I =-.如果我们⽤4位数字计算,得I 0的近似值为0I *=0.1823.记n n n E I I *=-,I n *为In 的近似值.对算法1,有15n n E E -=-=…=()5n-E 0.按以上初始值I0的取法有|E 0|?0.5×410-,事实上|E 0|≈0.22×410-.这样,我们得到|E 6|=65|E 0|≈0.34.这个数已经⼤⼤超过了I 6的⼤⼩,所以6I *连⼀位有效数字也没有了,误差掩盖了真值.对算法2,有E k-n =15n ??-E k ,|E 0|=615??|E 6|.如果我们能够给出I 6的⼀个近似值,则可由算法2计算I n (n=5,4,…,0)的近似值.并且,即使E 6较⼤,得到的近似值的误差将较⼩.由于()()11011616551kkk xxI d d x x k k =<<=++??,因此,可取Ik 的⼀个近似值为()()11126151k I k k *=+?? ? ?++??. 对k=6有6I *=0.0262.按0I *=0.1823和6I *=0.0262,分别按算法1和算法2计算,计算结果如表1-1,其中()1n I 为算法1的计算值, ()2n I 为算法2的计算值.易知,对于任何⾃然数n,都有0表1-1n()1nI()2nInI (4位)0 0.1823 0.1823 0.18231 0.0885 0.0884 0.08842 0.0575 0.0580 0.05803 0.0458 0.0431 0.04314 0.0210 0.0344 0.03435 0.0950 0.0281 0.02856-0.3083 0.0262 0.0243当然,数值不稳定的⽅法⼀般在实际计算中不能采⽤.数值不稳定的现象属于误差危害现象.下⾯讨论误差危害现象的其他表现及如何避免问题.1.3.2 避免有效数字的损失在数值计算中,参加运算的数有时数量级相差很⼤,⽽计算机位数有限,如不注意,“⼩数”的作⽤可能消失,即出现“⼤数”吃“⼩数”的现象. 例1.8 ⽤3位⼗进制数字计算x =101+δ1+δ2+…+δ100,其中0.1?δi ?0.4,i =1,2, (100)解在计算机内计算时,要写成浮点数形式,且要对阶.如果是101与δ1相加,对阶时,101=0.101×103,δ1=0.000×103.因此,如果我们⾃左⾄右逐个相加,则所有的δi 都会被舍掉,得x ≈101.但若把所有的δi 先加起来,再与101相加,就有111=101+100×0.1?x ?101+100×0.4=141.可见,计算的次序会产⽣很⼤的影响.这是因为⽤计算机计算时,在运算中要“对阶”,对阶引起了⼤数吃⼩数的现象.⼤数吃⼩数在有些情况下是允许的,但有些情况下则会造成谬误.在数值计算中,两个相近数相减会使有效数字严重损失.例1.9 求实系数⼆次⽅程20ax bx c ++=的根,其中b 2-4ac>0,ab ≠0. 解考虑两种算法. 算法1:1,22x a=算法2:(12b sign b x a--=, 21c x ax =,其中sign 表⽰取数的符号,即()1,0,0,0,1,0.b sign b b b >??==??-对算法1,若ac b 42>>,则是不稳定的,否则是稳定的.这是因为在算法1中分⼦会有相近数相减的情形,会造成有效数字的严重损失,从⽽结果的误差很⼤.算法2不存在这个问题,在任何情况下都是稳定的.因此称算法1是条件稳定的,算法2是⽆条件稳定的.例如,对于⽅程262.10 1.0000x x ++=,⽤4位有效数字计算,结果如下:算法1:x 1=-62.08, x 2=-0.02000. 算法2:x 1=-62.08, x 2=-0.01611.准确解是x 1=-62.083892…,x 2=-0.016107237….这⾥,ac b 42>>,所以算法1不稳定,舍⼊误差对x 2的影响⼤.在进⾏数值计算时,如果遇到两相近数相减的情形,可通过变换计算公式来避免或减少有效数字的损失.例如,如果|x |≈0,有变换公式1cos sin sin 1cos x x xx-=+.如果x 1≈x 2,有变换公式1122lg lg lgx x x x -=.如果x 〉〉1,有变换公式.此外,⽤绝对值很⼩的数作除数时,舍⼊误差会很⼤,可能对计算结果带来严重影响.因此,要避免除数绝对值远远⼩于被除数绝对值的除法运算.如果⽆法改变算法,则采⽤增加有效位数进⾏计算,或在计算上采⽤双精度运算,但这要增加机器计算时间和多占内存单元.1.3.3 减少运算次数在数值计算中,要注意简化计算步骤,减少运算次数,这也是数值分析中所要研究的重要内容.同样⼀个计算问题,如果能减少运算次数,不但可节省计算机的计算时间,还能减少误差的积累.下⾯举例说明简化计算公式的重要性.例1.10 给定x ,计算多项式()110nn n n n P x a x a xa --=+++的值.如果我们先求ak x k ,需要进⾏k 次乘法,再相加,则总共需要()12n n +次乘法和n次加法才能得到⼀个多项式的值.如果我们将多项式写成下⾯的形式()(){}1210n n n n P x x x x a x a a a a --??=+++++?? ,则只需n 次乘法和n 次加法即可得到⼀个多项式的值,这就是著名的秦九韶算法,可描述为1,,1,2,,0,n n k k k u a u u x a k n n +=??=+=--?最后有()0n u P x =.例1.11 计算ln2的值. 解如果利⽤级数()()11ln 11nn n xx n∞+=+=-∑计算ln2,若要精确到误差的绝对值⼩于10-5,要计算10万项求和,计算量很⼤,并且舍⼊误差的积累也⼗分严重.如果改⽤级数()35211ln 213!5!21!n xx x xx x n +??+=+++++ ? ?-+??来计算ln2,取x =1,则只要计算前9项,截断误差便⼩于10-10.1.4 向量和矩阵的范数为了对矩阵计算进⾏数值分析,我们需要对向量和矩阵的“⼤⼩”引进某种度量.在解析⼏何中,向量的⼤⼩和两个向量之差的⼤⼩是⽤“长度”和“距离”的概念来度量的.在实数域中,数的⼤⼩和两个数之间的距离是通过绝对值来度量的.范数是绝对值概念的⾃然推⼴.1.4.1 向量的范数定义1.5 如果向量x ∈n R 的某个实值函数f(x )=‖x ‖满⾜ (1) 正定性:x ?0,且x =0当且仅当x =0;(2) 齐次性:对任意实数α,都有αx =|α|x ; (3) 三⾓不等式:对任意x ,y ∈R n ,都有+x y ?x +y ,则称x 为n R 上的⼀个向量范数.在n R 中,记()12,,,Tn x x x =x ,实际计算中最常⽤的向量范数有: (1) 向量的∞范数1max i i nx ∞≤≤=x;(2) 向量的1范数11nii x ==∑x;(3) 向量的2范数12221in x i ==??∑x.容易验证,向量的∞范数和1范数满⾜定义1.5中的条件.对于2范数,满⾜定义1.5中的条件(1)和(2)是显然的,对于条件(3),利⽤向量内积的Cauchy-Schwarz 不等式可以验证.更⼀般地,有如下向量的p 范数1pipn px i ==??∑x,其中p ∈ [1,+∞).容易验证1ppn∞∞≤≤xxx,由此可得如下定理.定理1.2 lim pp ∞→∞=xx.下⾯,我们利⽤向量范数的连续性来说明向量范数的重要特征.定理1.3 设给定A ∈R n ×n ,x =(x 1,x 2,…,x n )T ∈R n ,则对R n 上每⼀种向量范数,‖A x ‖都是x 1,x 2,…,x n 的n 元连续函数.证设a j 为A 的列向量,将A 写成A =(a 1,a 2,…,a n ). 则由三⾓不等式,对h =(h 1,h 2,…,h n )T ∈R n,有|‖A (x +h )‖-‖A x ‖|?‖A h ‖=‖1ni i h =∑a i ‖1ni i h =∑‖a i ‖M max|h i |,其中M=1ni =∑‖a i ‖.所以,对任意的ε>0,当max|h i |<Mε时,有|‖A (x +h )‖-‖A x ‖|<ε, 这就证明了‖A x ‖的连续性.推论1.1 ‖x ‖是x 的各分量的连续函数. 向量范数的⼀个重要特征是具有等价性.定理 1.4 R n 上的所有向量范数是彼此等价的,即对R n 上的任意两种向量范数‖x ‖s和‖x ‖t ,存在常数c 1,c 2>0,使得对任意x ,有c 1‖x ‖s ?‖x ‖t ?c 2‖x ‖s .证只要就‖x ‖s =‖x ‖∞证明上式成⽴即可,即证明存在常数c 1,c 2>0,对⼀切x ∈R n且x ≠0,有c 1‖x ‖∞?‖x ‖t ?c 2‖x ‖∞.记R n 上的有界闭集D={x :x =(x 1,x 2,…,x n )T ,‖x ‖∞=1}.由定理1.3的推论知,‖x ‖t 是D 上的n 元连续函数,所以在D 上有最⼤值c 2和最⼩值c 1,且x ∈D 时有x ≠0,故有c 2?c 1>0.现考虑x ∈R n ,且x ≠0,则有∞x x ∈D,所以有c 1?‖∞x x ‖t ?c 2, ?x ∈R n ,x ≠0.从⽽对x ≠0有c 1‖x ‖∞?‖x ‖t ?c 2‖x ‖∞.⽽x =0时上式⾃然成⽴,定理得证.由于向量范数之间具有等价性,对于范数的极限性质,我们只需对⼀种范数进⾏讨论,其余范数也都具有相似的结论.⽐如,我们可以⽅便地讨论向量序列的收敛性.定义1.6 设向量序列x (k)=()()()()12,,,Tk k k nx x x ∈R n ,k=1,2,…,若存在x *=()12 ,,,Tn x x x ***∈R n ,使得()lim k iik x x *→∞=, i =1,2,…,n,则称序列{x (k)}收敛于x *,记为()lim k ik *→∞=x x.按定义有)()lim lim 0k k k k **→∞→∞∞=?-=xx xx.⼜因为()()()12k k k c c ***∞∞-≤-≤-xxxxxx,所以有()()lim lim 0k k k k **→∞→∞=?-=xx xx.因此,若向量序列在⼀种范数下收敛,则在其他范数下也收敛.不必强调是在哪种范数意义下收敛.1.4.2矩阵的范数定义1.7 如果矩阵A ∈R n ×n 的某个实值函数f(A )=‖A ‖满⾜ (1) 正定性:‖A ‖?0,且‖A ‖=0当且仅当A =0;(2) 齐次性:对任意实数α,都有‖αA ‖=|α|‖A ‖;(3) 三⾓不等式:对任意A ,B ∈R n ×n ,都有‖A +B ‖?‖A ‖+‖B ‖; (4) 相容性:对任意A ,B ∈R n ×n ,都有‖A B ‖?‖A ‖‖B ‖;则称‖A ‖为Rn ×n上的⼀个矩阵范数.可以验证,对()ij n na ?=A ,12211Fn n a ij i j ?? ?=∑∑ ?==??A是⼀种矩阵范数,称之为Froben i us 范数,简称F 范数.由于矩阵与向量常常同时参与讨论与计算,矩阵范数与向量范数之间需要有⼀种联系. 定义1.8 对于给定的R n 上的⼀种向量范数‖x ‖和R n ×n 上的⼀种矩阵范数‖A ‖,如果满⾜‖A x ‖?‖A ‖‖x ‖,则称矩阵范数‖A ‖与向量范数‖x ‖相容.上⾯的定义1.7是矩阵范数的⼀般定义,下⾯我们通过已给的向量范数来定义与之相容的矩阵范数.定义 1.9 设x ∈R n ,A ∈R n ×n ,对给出的⼀种向量范数v x ,相应地定义⼀个矩阵的⾮负函数m axvvx v≠=A x Ax.称之为由向量范数导出的矩阵范数,也称为算⼦范数或从属范数.由定义可得vvv≤A xAx,1max vvv==xAAx.算⼦范数满⾜矩阵范数⼀般定义中的条件(1)和(2)是显然的,现验证满⾜条件(3)和(4).对任意的A ,B ∈R n ×n ,有()1maxvvv =+=+xA B x11max max v vvvvvxx==≤+=+Ax BxAB1max vvv==xABABx1max vvvvvv=≤=xABxA.因此,算⼦范数满⾜矩阵范数⼀般定义中的条件(3)和(4).由常⽤的向量范数,可以导出与其相容的矩阵算⼦范数.定理1.5 设A ∈R n ×n ,记()ij n na ?=A ,则(1)11max nij i nj a ∞≤≤==∑A,称之为矩阵A 的⾏范数;(2) 111m ax nij j ni a ≤≤==∑A ,称之为矩阵A 的列范数;(3)2=A称之为矩阵A 的2范数或谱范数,其中,()max TλA A 表⽰T A A的最⼤特征值.证这⾥只对(1)和(3)给出证明,(2)的证明同理可得. 先证明(1):设x =(x 1,x 2,…,x n )T ≠0,不妨设A ≠0,则有1111max max nnij j ij i ni nj j xa x xa ∞∞≤≤≤≤===≤∑∑A .111max max nij xi nj a ∞∞∞=≤≤===∑AAx.设矩阵A 的第p ⾏元素的绝对值之和达到最⼤,即111max nnpj ij i nj j a a ≤≤===∑∑.取向量()12,,,Tn ξξξ= ξ,其中1,0,1,0.a pj j apjξ≥??=?-显然,‖ξ‖∞=1,⽽且1111m ax m axnn∞∞=≤≤===≥==∑∑xAA xA ξ.于是(1)得证.再证明(3):显然,A TA 是对称半正定矩阵,它的全部特征值均⾮负,设为120n λλλ≥≥≥≥ .由实对称矩阵的性质,各特征值对应的特征向量必正交.设对应的标准正交特征向量为12,,,nu u u ,即T i i i λ=A Au u (i =1,2,…,n),(u i ,u j )=δi j (i ,j=1,2,…,n).对向量x ∈R n ,‖x ‖2=1,可由R n 的⼀组基u i (i =1,2,…,n)线性表⽰,即有1niii c ==∑x u ,22211nii c===∑x11nnT Ti ii i i cc λλλ====≤=∑∑A xx A A x .另⼀⽅⾯,取ξ=u 1,显然有‖ξ‖2=1,211112T T Tλλ===A ξξA A ξu u .因此,2221m ax ===xAA x得证.由定理1.5可见,计算⼀个矩阵的⾏范数和列范数是⽐较容易的,⽽矩阵的2范数计算却不⽅便,但由于它有许多好的性质,所以在理论上还是有⽤的.例1.12 设矩阵1234-??=解 {}m ax 3,77∞==A,{}1m ax 4,66==A ,10141420T-??=-A A ()21014det 3041420Tλλλλλ--==-+-I A A ,求得115λ=+215λ=-因此25.46=≈A.定义1.10 设A ∈R n ×n 的特征值为λi (i =1,2,…,n),称()1max i i nρλ≤≤=A为A 的谱半径.谱半径在⼏何上可解释为以原点为圆⼼,能包含A 的全部特征值的圆的半径中最⼩者.例1.13 计算例1.12中矩阵的谱半径.解由A 的特征⽅程()2=--=-I A得12λ=,22λ=所以() 5.372ρ=≈A .定理1.6 设A ∈R n ×n ,则有()ρ≤A A .证设A x =λx ,x ≠0,且|λ|=ρ(A ),必存在向量y ,使x y T 不是零矩阵.于是()TTTTA ρλ==≤A xyxyxyA xy,即得ρ(A )?‖A ‖.例1.14 设矩阵A 与矩阵B 是对称的,求证ρ(A +B )?ρ(A )+ρ(B ).证因T =A A ,于是有()()()222max max 2A A AA ,即‖A ‖2=ρ(A ).同理‖B ‖2=ρ(B ).由于A +B =(A +B )T,因此()()()222ρρρ+=+≤+=+A B A BABA B .定理1.7 如果‖B ‖<1,则I ±B 为⾮奇异矩阵,且()111-±≤-I B B,这⾥的矩阵范数是指矩阵的算⼦范数.证若I ±B 奇异,则存在向量x ≠0,使(I ±B )x =0,故有ρ(B )?1,这与‖B ‖<1⽭盾,所以I ±B ⾮奇异.由于()()11--±=± I B I B I B ,于是得()()11--±≤+±I B I BI B .上的任意两种矩阵范数都是等价的,即对Rn ×n上的任意两种矩阵范数sA和t A ,存在常数c 1,c 2>0,使得12stsc c ≤≤AAA.由矩阵范数的等价性,我们可以⽤矩阵的范数描述矩阵序列的极限性质.定义1.11 设矩阵序列()()()kk n nijn na ??=∈A R,k=1,2,…,若存在()n nij n na **=∈A R,使得()lim k ijijk a a *→∞()lim k k *→∞=AA.可以验证()()lim lim 0k k k k **→∞→∞=?-=AA AA.评注本章介绍了数值计算的研究对象、误差及相关概念、数值计算的稳定性及构造算法的基本原则.考虑到矩阵计算的数值分析,本章还介绍了向量范数和矩阵范数的基本概念和常⽤定理.误差分析问题是数值分析中重要⽽困难的问题.误差的基本概念和误差分析的若⼲原则,对学习本课程是很有必要的.但是,作为⼯程或科学计算的实际问题则要复杂得多,往往要根据不同问题分门别类地进⾏分析.例如,由于舍⼊误差有随机性,有⼈应⽤概率的观点研究误差规律.在⼯程计算中,常⽤⼏种不同办法(包括实验⽅法)进⾏⽐较,以确定计算结果的可靠性.20世纪60年代以来,发展了两种估计误差的理论:⼀种是J.H.W i lk i nson 等⼈针对计算机浮点算法提出了⼀套预先估计的研究误差的⽅法,使矩阵运算的舍⼊误差研究获得了新发展;另⼀种是R .E.Moore 等⼈应⽤区间分析理论估计误差,开创了研究误差的新⽅法. 关于范数⽅⾯,所述内容是为以下各章服务的⼀些初步概念和常⽤的定理,对本书够⽤就可以了.例如只讨论了R n ×n 的范数,⽽没有顾及R n ×m .⼜例如介绍了R n 和R n ×n 上范数的等价性,此性质对有限维空间都是成⽴的,⽽对于C[a,b]则没有这个性质,这些都是赋范线性空间有关的问题,详细讨论这些问题是泛函分析的内容.习题 11.1 已知e=2.71828…,问下列近似值A x 有⼏位有效数字,相对误差界是多少? (1) x =e, A x =2.7; (2) x =e, A x =2.718; (3) x =e100, A x =0.027; (4) x =e100, A x =0.02718. 1.2 设原始数据的下列近似值每位都是有效数字:1x *=1.1021, 2x *=0.031, 3x *=56.430. 试计算(1) 1x *+2x *+3x *;(2),并估计它们的相对误差界.1.3 设x 的相对误差界为δ,求n x 的相对误差界.1.4 设x >0,x 的相对误差界为δ,求ln2的绝对误差界.1.5 为了使计算球体体积时的相对误差不超过1%,问测量半径R 时的允许相对误差界是多少?1.6 三⾓函数值取4位有效数字,怎样计算1-cos2°才能保证精度? 1.7 设0Y =28,按递推公式nY=1n Y --…,计算.若取27.982(5位有效数字),试问计算Y 100将有多⼤误差?1.8 求解⽅程25610x x ++=,使其根⾄少具有4位有效数字(≈27.982).1.9 正⽅形的边长⼤约为100 cm ,应怎样测量才能使其⾯积的误差不超过21cm ? 1.10 序列{yn}满⾜递推关系1101n n y y -=-,n=1,2,….若y 0 1.41(3位有效数字),计算到y 10时的误差有多⼤?这个计算过程稳定吗?1.11 对积分11n x n I x edx -=,n=0,1,…,验证101I e-=-,11n n I nI -=-.若取e -1≈0.3679,按递推公式11n n I nI -=-,⽤4位有效数字计算I 0,I 1,…,I 9,并证明这种算法是不稳定的.1.12 反双曲正弦函数为()(ln f x x =+.如何计算f(x )才能避免有效数字的损(1) sin x -siny ; (2) arctan x -arctany ;(3)2; (4)212xe-.1.14 已知三⾓形⾯积1sin 2s ab C=,其中C 为弧度,0π,且测量a,b,C 的误差分别为Δa,Δb,ΔC ,证明⾯积的误差Δs 满⾜s a b C s ab C≤++ .1.15 设P ∈R n ×n 且⾮奇异,⼜设‖x ‖为R n 上的⼀种向量范数,定义p=xP x.试证明‖x‖P 是R n 上的⼀种向量范数.1.16 设A ∈R n ×n 为对称正定矩阵,定义()12,A=xA x x .试证明‖x‖A 为R n 上的⼀种向量范数.1.17 设矩阵0.60.50.10.3??=2F≤≤AA,并说明‖A ‖F 与‖x‖2相容.1.19 设P ∈Rn ×n且⾮奇异,⼜设‖x‖为R n上的⼀种向量范数,定义范数‖x‖P =‖P x ‖.证明对应于‖x‖P 的算⼦范数1 p-=APAP.1.20 设A 为⾮奇异矩阵,求证:11m iny ∞-≠∞∞=A y yA.。

(完整word版)《数值计算方法》复习资料全

(完整word版)《数值计算方法》复习资料全

《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。

第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。

二复习要求1. 知道产生误差的主要来源。

2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。

3. 知道四则运算中的误差传播公式。

三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。

计算方法 第5章 数值积分与数值微分

计算方法 第5章 数值积分与数值微分

第五章 数值积分与数值微分在高等数学中我们学过定积分⎰badx x f )(的计算方法,若找到被积函数)(x f 在],[b a 区间上的一个原函数)(x F ,利用Newton-Leibniz 公式⎰-=baa Fb F dx x f )()()(可以轻易得计算出积分值,但在实际问题中,往往会遇到一些困难。

1) 有些函数虽然能找到原函数, 但表达式过于复杂,例如411)(x x f +=的原函数为 )]12arctan()12[arctan(2211212ln 241)(22-++++-++=x x x x x x x F2) 有些函数找不到初等函数形式的原函数,例如积分⎰⎰-1102,sin dx edx x x x3) 有些情况下,函数值是用表格形式给出的,例如:6.1178.876.651.496.364.275.203.1587654321y x对于以上这些积分问题,解决的方法就是使用数值积分方法。

其实数值积分方法不仅可以解决上述问题,最为重要的优点是对任意被积函数任意积分区间的积分问题都可以采用统一的数值积分公式,非常便于计算机编程实现。

对于微分问题,虽然对每一个初等函数都可以求出其导数,但是不同函数其求导方法依赖于各自不同的求导公式,没有简单、统一的处理方法,而数值微分法却可以对不同的函数使用统一的数值微分公式或数值微分算法。

本章首先介绍一些数值积分公式,最后再简单的介绍数值微分问题。

5.1 数值积分公式1. 数值积分的基本思想我们知道定积分⎰badx x f )(的几何意义就是{})(,0,,x f y y b x a x ====所围成的曲边形面积,而数值积分的基本思想是利用函数)(x f y =在区间],[b a 上某些点处函数值的线性组合来计算其定积分的近似值,把计算定积分这一复杂问题转换为仅仅涉及到函数值的计算问题,而无需考虑函数本身的结构以及函数值的真实来源,这样就很便于计算机编程实现。

高等数学(数值计算方法)

高等数学(数值计算方法)

第1章绪论1.1数值计算方法的对象与特点1.1.1 什么是数值计算方法现代的科学技术发展十分迅速,他们有一个共同的特点,就是都有大量的数据问题。

比如,发射一颗探测宇宙奥秘的卫星,从卫星设计开始到发射、回收为止,科学家和工程技术人员、工人就要对卫星的总体、部件进行全面的设计和生产,要对选用的火箭进行设计和生产,这里面就有许许多多的数据要进行准确的计算。

发射和回收的时候,又有关于发射角度、轨道、遥控、回收下落角度等等需要进行精确的计算。

有如,在高能加速器里进行高能物理试验,研究具有很高能量的基本粒子的性质、它们之间的相互作用和转化规律,这里面也有大量的数据计算问题。

计算问题可以数是现代社会各个领域普遍存在的共同问题,工业、农业、交通运输、医疗卫生、文化教育等等,各行各业都有许多数据需要计算,通过数据分析,以便掌握事物发展的规律。

研究计算问题的解决方法和有关数学理论问题的一门学科就叫做计算方法。

计算方法属于应用数学的范畴,它主要研究有关的数学和逻辑问题怎样由计算机加以有效解决。

1.1.2 数值计算方法的内容数值计算方法也叫做计算数学或数值分析。

数值计算方法主要内容包括非线性方程求根、线性代数方程组解法、微分方程的数值解法、插值问题、函数的数值逼近问题、概率统计计算问题等等,还要研究解的存在性、惟一性、收敛性和误差分析等理论问题。

我们知道五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代数方程的解,一般只能求它的近似解,求近似解的方法就是数值分析的方法。

对于一般的超越方程,如对数方程、三角方程等等也只能采用数值分析的办法。

怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题。

在求解方程的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。

迭代法的计算是比较简单的,是比较容易进行的。

迭代法还可以用来求解线性方程组的解。

求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。

数值分析(计算方法)总结

数值分析(计算方法)总结

第一章 绪论误差来源:模型误差、观测误差、截断误差(方法误差)、舍入误差ε(x )=|x −x ∗|是x ∗的绝对误差,e =x ∗−x 是x ∗的误差,ε(x )=|x −x ∗|≤ε,ε为x ∗的绝对误差限(或误差限) e r =ex =x ∗−x x为x ∗ 的相对误差,当|e r |较小时,令 e r =ex ∗=x ∗−x x ∗相对误差绝对值得上限称为相对误差限记为:εr 即:|e r |=|x ∗−x||x ∗|≤ε|x ∗|=εr绝对误差有量纲,而相对误差无量纲若近似值x ∗的绝对误差限为某一位上的半个单位,且该位直到x ∗的第一位非零数字共有n 位,则称近似值 x ∗有n 位有效数字,或说 x ∗精确到该位。

例:设x=π=3.1415926…那么x ∗=3,ε1(x )=0.1415926…≤0.5×100,则x ∗有效数字为1位,即个位上的3,或说 x ∗精确到个位。

科学计数法:记x ∗=±0.a 1a 2⋯a n ×10m (其中a 1≠0),若|x −x ∗|≤0.5×10m−n ,则x ∗有n 位有效数字,精确到10m−n 。

由有效数字求相对误差限:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)有n 位有效数字,则其相对误差限为12a 1×101−n由相对误差限求有效数字:设近似值x ∗=±0.a 1a 2⋯a n ×10m (a 1≠0)的相对误差限为为12(a 1+1)×101−n 则它有n 位有效数字令x ∗、y ∗是x 、y 的近似值,且|x ∗−x|≤η(x )、|y ∗−y|≤η(y)1. x+y 近似值为x ∗+y ∗,且η(x +y )=η(x )+η(y )和的误差(限)等于误差(限)的和2. x-y 近似值为x ∗−y ∗,且η(x +y )=η(x )+η(y )3. xy 近似值为x ∗y ∗,η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)4. η(xy )≈|x ∗|∗η(y )+|y ∗|∗η(x)|y ∗|21.避免两相近数相减2.避免用绝对值很小的数作除数 3.避免大数吃小数 4.尽量减少计算工作量 第二章 非线性方程求根1.逐步搜索法设f (a ) <0, f (b )> 0,有根区间为 (a , b ),从x 0=a 出发, 按某个预定步长(例如h =(b -a )/N )一步一步向右跨,每跨一步进行一次根的搜索,即判别f (x k )=f (a +kh )的符号,若f (x k )>0(而f (x k -1)<0),则有根区间缩小为[x k -1,x k ] (若f (x k )=0,x k 即为所求根), 然后从x k -1出发,把搜索步长再缩小,重复上面步骤,直到满足精度:|x k -x k -1|<E 为止,此时取x *≈(x k +x k -1)/2作为近似根。

数值计算方法教案

数值计算方法教案

数值计算方法教案第一章:数值计算概述1.1 数值计算的定义与特点引言:介绍数值计算的定义和基本概念数值计算的特点:离散化、近似解、误差分析1.2 数值计算方法分类直接方法:高斯消元法、LU分解法等迭代方法:雅可比迭代、高斯-赛德尔迭代等1.3 数值计算的应用领域科学计算:物理、化学、生物学等领域工程计算:结构分析、流体力学、电路模拟等第二章:误差与稳定性分析2.1 误差的概念与来源绝对误差、相对误差和有效数字误差来源:舍入误差、截断误差等2.2 数值方法的稳定性分析线性稳定性分析:特征值分析、李雅普诺夫方法非线性稳定性分析:李模型、指数稳定性分析2.3 提高数值计算精度的方法改进算法:雅可比法、共轭梯度法等增加计算精度:闰塞法、理查森外推法等第三章:线性方程组的数值解法3.1 高斯消元法算法原理与步骤高斯消元法的优缺点3.2 LU分解法LU分解的步骤与实现LU分解法的应用与优势3.3 迭代法雅可比迭代法与高斯-赛德尔迭代法迭代法的选择与收敛性分析第四章:非线性方程和方程组的数值解法4.1 非线性方程的迭代解法牛顿法、弦截法等收敛性条件与改进方法4.2 非线性方程组的数值解法高斯-赛德尔法、共轭梯度法等方程组解的存在性与唯一性4.3 非线性最小二乘问题的数值解法最小二乘法的原理与方法非线性最小二乘问题的算法实现第五章:插值与逼近方法5.1 插值方法拉格朗日插值、牛顿插值等插值公式的构造与性质5.2 逼近方法最佳逼近问题的定义与方法最小二乘逼近、正交逼近等5.3 数值微积分数值求导与数值积分的方法数值微积分的应用与误差分析第六章:常微分方程的数值解法6.1 初值问题的数值解法欧拉法、改进的欧拉法龙格-库塔法(包括单步和多步法)6.2 边界值问题的数值解法有限差分法、有限元法谱方法与辛普森法6.3 常微分方程组与延迟微分方程的数值解法解耦与耦合方程组的处理方法延迟微分方程的特殊考虑第七章:偏微分方程的数值解法7.1 偏微分方程的弱形式介绍偏微分方程的弱形式应用实例:拉普拉斯方程、波动方程等7.2 有限差分法显式和隐式差分格式稳定性分析与收敛性7.3 有限元法离散化过程与元素形状函数数值求解与误差估计第八章:优化问题的数值方法8.1 优化问题概述引言与基本概念常见优化问题类型8.2 梯度法与共轭梯度法梯度法的基本原理共轭梯度法的实现与特点8.3 序列二次规划法与内点法序列二次规划法的步骤内点法的原理与应用第九章:数值模拟与随机数值方法9.1 蒙特卡洛方法随机数与重要性采样应用实例:黑箱模型、金融衍生品定价等9.2 有限元模拟离散化与求解过程应用实例:结构分析、热传导问题等9.3 分子动力学模拟基本原理与算法应用实例:材料科学、生物物理学等第十章:数值计算软件与应用10.1 常用数值计算软件介绍MATLAB、Python、Mathematica等软件功能与使用方法10.2 数值计算在实际应用中的案例分析工程设计中的数值分析科学研究中的数值模拟10.3 数值计算的展望与挑战高性能计算的发展趋势复杂问题与多尺度模拟的挑战重点解析本教案涵盖了数值计算方法的基本概念、误差分析、线性方程组和非线性方程组的数值解法、插值与逼近方法、常微分方程和偏微分方程的数值解法、优化问题的数值方法、数值模拟与随机数值方法以及数值计算软件与应用等多个方面。

数值计算方法总结.

数值计算方法总结.

运算量
1 1 分解A LR需 (n3 n)次, 解Ly b需 (n 2 n)次, 3 2 1 2 n3 n 解Rx y需 (n n)次, 共N n 2 2 3 3
第2章 解线性代数方程的直接法
2.2 三角分解法 2.2.2 克洛特分解法
对A进行杜里特尔分解时, A=LR, L为单位下三角阵, R为上三角阵
1i n j 1
2

( AT A), 称为谱范数
第2章 解线性代数方程的直接法
2.3 舍入误差对解的影响 2.3.1 向量和矩阵的范数
这些系数的绝对值称为求y问题的条件数,其值很大时的问题 称为坏条件问题或病态问题
凡是计算结果接近于零的问题往往是病态问题。
应避免相近数相减,小除数和大乘数
第1章 数值计算方法的一般概念
1.2.3 数据误差影响的估计
由误差估计式(1 1)可知 (x1 x2 ) x1 x2 x1 x2 (x1 x2 ) x x x1 x x x2 1 2 1 2 (x1 x2 ) x2 x1 x1x2 (x1 x2 ) x1 x2 x1 x1 x1 ( ) 2 x 2 x x2 x2 2 ( x1 ) x x 1 2 x 2
2.[回代] 按相反顺序求解上三角形方程组,得到方程组的解
第一步得到xn ,第二步得到xn1,...,第n步得到x1
将方程组写成增广矩阵的形式,将有利于计算机实现
A A b
第2章 解线性代数方程的直接法
2.1 高斯消去法 2.1.2 运算量估计 高斯消去法运算量估计 1.消去算法运算量
第1章 数值计算方法的一般概念
1.2.3 数据误差影响的估计

数值计算方法教学大纲

数值计算方法教学大纲

数值计算方法教学大纲第一部分:使用说明一、课程编号:10322016二、课程性质与特点:数值计算方法是理工科本科或大专各专业的选修课程。

本课程主要介绍计算机上常用的数值计算方法的基本原理及计算过程,包括非线性方程求根,线性方程组的直接法和迭代法,多项式插值逼近,最小二乘拟合,数值微分和数值积分等内容。

学习和掌握计算机上常用的数值计算方法已成为现代科学教育的重要内容。

三、在专业教学计划中的地位和作用:本课程为高等学校非师范专业学生的一门选修课,是为适应数学教育改革和新形势的发展而开设的一门新课程。

主要培养学生基本的数值计算思想及常用数值方法使用,强调学生的学习知识与计算机的结合能力的培养。

四、教学目的:数值计算方法是物理学的新的非常重要的分支,它与理论物理和实验物理一起构成现代物理学的整体。

本课程作为物理系本科四年级的课程是非常重要的。

通过该课程的学习,使学生掌握到计算物理学中常用的计算方法,并紧密结合物理学理论,在计算机上进行数值实验,从而培养学生通过数值计算解决物理问题的能力,增强用程序设计语言进行编程的能力,培养学生的独立工作能力。

五、学时与学分:本课程授课45学时,利用课余时间指导学生上机实验10学时,3学分,每周3学时。

六、教学方法:1、课堂讲授重点讲述数值计算的基本概念,基本方法,介绍数值计算的数学和工程应用,对重点和难点详细分析和深入讨论,讲清解决问题的思路和关键方法,并布置一定的课外作业,强化训练,加强理论与实践的结合。

2、上机编程为加深学生对课程的认识,课程包含10学时的上机实验,通过上机实验,学生自己编写程序,进行数值计算。

培养学生自主学习的能力,使学生通过实践活动掌握综合运用所学的知识独立解决实际物理、数学数值计算基本问题的能力。

3、课外作业和资料阅读将习题和讨论学习与利用参考书和资料通过自学进行主动学习及实践结合起来,培养学生自己阅读和学习的能力,调动学生的积极因素。

七、考核方式:考查课程。

数值计算方法(宋岱才版)课后答案

数值计算方法(宋岱才版)课后答案

第一章 绪论一 本章的学习要求(1)会求有效数字。

(2)会求函数的误差及误差限。

(3)能根据要求进行误差分析。

二 本章应掌握的重点公式(1)绝对误差:设x 为精确值,x *为x 的一个近似值,称e x x **=-为x *的绝对误差。

(2)相对误差:r e e x***=。

(3)绝对误差限:e x x ε***==-。

(4)相对误差限:r x x xxεε*****-==。

(5)一元函数的绝对误差限:设一元函数()()()0,df f x f x dx εε***⎛⎫==⋅ ⎪⎝⎭则。

(6)一元函数的相对误差限:()()1r df f x dx f εε****⎛⎫=⋅ ⎪⎝⎭。

(7)二元函数的绝对误差限:设一元函数()()(),0,f f x y f y y εε***⎛⎫∂==⋅ ⎪∂⎝⎭则。

(8)二元函数的相对误差限:()()()1r f f f x y x y f εεε******⎡⎤⎛⎫∂∂⎛⎫⎢⎥=⋅+⋅ ⎪ ⎪∂∂⎝⎭⎢⎥⎝⎭⎣⎦。

三 本章习题解析1. 下列各数都是经过四舍五入得到的近似值,(1)试指出它们有几位有效数字,(2)分别估计1123A X X X ***=及224X A X **=的相对误差限。

12341.1021,0.031,385.6,56.430x x x x ****====解:(1)1x *有5位有效数字,2x *有2位有效数字,3x *有4位有效数字,4x *有5位有效数字。

(2)1111123231312123,,,,A A AA x x x x x x x x x x x x ∂∂∂====∂∂∂由题可知:1A *为1A 的近似值,123,,x x x ***分别为123,,x x x 近似值。

所以()()111rA A Aεε***=()()()12311111123A A A x x x A X X X εεε*******⎡⎤⎢⎥=++⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫⎛⎫∂∂∂ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭43123131212311111010100.215222x x x x x x x x x **-**-**-***⎡⎤=⨯⨯+⨯⨯+⨯⨯=⎢⎥⎣⎦()222222424441,,,X A Ax A X x x x x ∂∂===-∂∂则有同理有2A *为2A 的近似值,2x *,4x *为2x ,4x 的近似值,代入相对误差限公式:()()222rA A Aεε***=()()24212224A A X X A X X εε*****⎡⎤⎢⎥=+⎢⎥⎢⎥⎣⎦⎛⎫⎛⎫∂∂ ⎪ ⎪∂∂⎝⎭⎝⎭()33542224411*********X X X X X **--***⎡⎤⎢⎥=⨯⨯+⨯⨯=⎢⎥⎣⎦2. 正方形的边长大约为100cm ,怎样测量才能使其面积误差不超过21cm ? 解:设正方形的边长为x ,则面积为2S x =,2dsx dx=,在这里设x *为边长的近似值,S *为面积的近似值:由题可知:()()1ds s x dx εε***=≤⎛⎫ ⎪⎝⎭即:()21x x ε**⋅≤ 推出:()10.005200xcm ε*≤=。

《数值计算方法》课程教学大纲

《数值计算方法》课程教学大纲

《数值计算方法》课程教学大纲一、课程基本信息二、课程教学目标数值计算方法是大规模科学模拟计算领域的一门重要的基础课,具有很强的应用性。

通过对本课程的学习及上机实习,使学生掌握掌握数值计算的基本概念、基本方法及其原理,培养应用计算机从事科学与工程计算的能力。

具体能力目标如下:具有应用计算机进行科学与工程计算的能力;具有算法设计和理论分析能力;熟练掌握并使用数学软件,处理海量数据,进行大型数值计算的能力。

三、教学学时分配《数值计算方法》课程理论教学学时分配表《数值计算方法》课程实验内容设置与教学要求一览表四、教学内容和教学要求第一章数值分析与科学计算引论(4学时)(一)教学要求1.了解误差的来源以及舍入误差、截断误差的定义;2.理解并掌握绝对误差、相对误差、误差限和有效数字的定义和相互关系;3.了解函数计算的误差估计,误差传播、积累带来的危害和提高计算稳定性的一般规律。

(二)教学重点与难点教学重点:误差理论的基本概念教学难点:误差限和有效数字的相互关系,误差在近似值运算中的传播(三)教学内容第一节数值分析的对象、作用与特点1.数学科学与数值分析2.计算数学与科学计算3. 计算方法与计算机4. 数值问题与算法第二节数值计算的误差1.误差的来源与分类2.误差与有效数字3. 数值运算的误差估计第三节误差定性分析与避免误差危害1.算法的数值稳定2.病态问题与条件数3. 避免误差危害第四节数值计算中算法设计的技术1.多项式求值的秦九韶算法2.迭代法与开方求值本章习题要点:要求学生完成作业10-15题。

其中概念题15%,证明题5%,计算题60%,上机题20%第二章插值法(12学时)(一)教学要求1.掌握插值多项式存在唯一性条件;2.熟练掌握Lagrange插值多项式及其余项表达式,掌握基函数及其性质;3.能熟练使用均差表和差分表构造Newton插值公式;4.能理解高次插值的不稳定性并熟练掌握各种分段插值中插值点和分段的对应关系;5.熟练掌握三次样条插值的条件并能构造第一和第二边界条件下的三次样条插值。

丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细,且运行无误)

丁丽娟《数值计算方法》五章课后实验题答案(源程序很详细,且运行无误)

丁丽娟《数值计算方法》五章课后实验题答案(源程序都是自己写的,很详细,且保证运行无误)我做的五章数值实验作业题目如下:第二章:1、2、3、4题第三章:1、2题第四章:1、2题第六章:2、3题第八章:1、2题第二章1:(1)对A进行列主元素三角分解:function [l u]=myfun(A)n=size(A);for k=1:nfor i=k:nsum=0;m=k;for j=1:(k-1)sum=sum+A(i,j)*A(j,k);ends(i)=A(i,k)-sum;if abs(s(m))<abs(s(i))m=i;endendfor j=1:nc=A(m,j);A(m,j)=A(k,j);A(k,j)=c;endfor j=k:nsum=0;for r=1:(k-1)sum=sum+A(k,r)*A(r,j);endu(k,j)=A(k,j)-sum;A(k,j)=u(k,j);endfor i=1:nl(i,i)=1;endfor i=(k+1):nsum=0;for r=1:(k-1)sum=sum+A(i,r)*u(r,k);endl(i,k)=(A(i,k)-sum)/u(k,k);A(i,k)=l(i,k);endend求A的列主元素三角分解:>>A=[1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; >>[L,U]=myfun(A)结果:L =1.0000 0 0 0 01.0000 1.0000 0 0 01.0000 0.5000 1.0000 0 01.0000 0.7500 0.7500 1.0000 01.0000 0.2500 0.7500 -1.0000 1.0000U =1.0000 1.0000 1.0000 1.0000 1.00000 4.0000 14.0000 34.0000 69.00000 0 -2.0000 -8.0000 -20.50000 0 0 -0.5000 -2.37500 0 0 0 -0.2500(2)求矩阵的逆矩阵A-1:inv(A)结果为:ans =5 -10 10 -5 1-10 30 -35 19 -410 -35 46 -27 6-5 19 -27 17 -41 -4 6 -4 1(3)检验结果:E=diag([1 1 1 1 1])A\Eans =5 -10 10 -5 1-10 30 -35 19 -410 -35 46 -27 6-5 19 -27 17 -41 -4 6 -4 1 2:程序:function d=myfun(a,b,c,d,n)for i=2:nl(i)=a(i)/b(i-1);a(i)=l(i);u(i)=b(i)-c(i-1)*a(i);b(i)=u(i);y(i)=d(i)-a(i)*d(i-1);d(i)=y(i);endx(n)=d(n)/b(n);d(n)=x(n);for i=(n-1):-1:1x(i)=(d(i)-c(i)*d(i+1))/b(i);d(i)=x(i);end求各段电流量程序:for i=2:8endb=[2 5 5 5 5 5 5 5];c=[-2 -2 -2 -2 -2 -2 -2];V=220;R=27;d=[V/R 0 0 0 0 0 0 0];n=8;I=myfun(a,b,c,d,n)运行程序得:I =8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.04773:(1)求矩阵A和向量b的matlab程序:function [A b]=myfun(n)for i=1:nX(i)=1+0.1*i;endfor i=1:nfor j=1:nA(i,j)=X(i)^(j-1);endfor i=1:nb(i)=sum(A(i,:));end求n=5时A1,b1及A1的2-条件数程序运行结果如下:n=5;[A1,b1]=myfun(n)A1 =1.0000 1.1000 1.2100 1.3310 1.46411.0000 1.2000 1.4400 1.72802.07361.0000 1.3000 1.69002.1970 2.85611.0000 1.4000 1.96002.74403.84161.0000 1.50002.25003.3750 5.0625 b1 =6.10517.4416 9.0431 10.9456 13.1875cond2=cond(A1,2)cond2 =5.3615e+005求n=10时A2,b2及A2的2-条件数程序运行结果如下:n=10;[A2,b2]=myfun(n)A2 =1.0000 1.1000 1.2100 1.3310 1.4641 1.6105 1.7716 1.94872.1436 2.35791.0000 1.2000 1.4400 1.72802.0736 2.4883 2.98603.58324.29985.15981.0000 1.3000 1.69002.1970 2.85613.71294.8268 6.2749 8.1573 10.60451.0000 1.4000 1.96002.74403.8416 5.3782 7.5295 10.5414 14.7579 20.66101.0000 1.50002.25003.3750 5.0625 7.5938 11.3906 17.0859 25.6289 38.44341.0000 1.60002.5600 4.0960 6.5536 10.4858 16.7772 26.8435 42.9497 68.71951.0000 1.70002.8900 4.9130 8.3521 14.1986 24.1376 41.0339 69.7576 118.58791.0000 1.8000 3.2400 5.8320 10.4976 18.8957 34.0122 61.2220 110.1996 198.35931.0000 1.9000 3.6100 6.8590 13.0321 24.7610 47.0459 89.3872 169.8356 322.68771.00002.0000 4.0000 8.0000 16.0000 32.0000 64.0000 128.0000 256.0000 512.0000b2 =1.0e+003 *0.0159 0.0260 0.0426 0.0698 0.1133 0.1816 0.2866 0.4451 0.6801 1.0230cond2=cond(A2,2)cond2 =8.6823e+011求n=20时A3,b3及A3的2-条件数程序运行结果如下:n=20;[A3,b3]=myfun(n)A3 =1.0e+009 *Columns 1 through 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Columns 11 through 200.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0013 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0007 0.0015 0.0032 0.0000 0.0000 0.0000 0.0001 0.0001 0.0003 0.0006 0.0014 0.0032 0.0075 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0012 0.0029 0.0070 0.0167 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009 0.0023 0.0058 0.0146 0.0364 0.0000 0.0000 0.0001 0.0002 0.0006 0.0017 0.0044 0.0113 0.0295 0.0766 0.0000 0.0001 0.0002 0.0004 0.0011 0.0030 0.0080 0.0215 0.0581 0.1570 0.0000 0.0001 0.0002 0.0007 0.0018 0.0051 0.0143 0.0400 0.1119 0.31330.0000 0.0001 0.0004 0.0010 0.0030 0.0086 0.0250 0.0726 0.2105 0.61030.0001 0.0002 0.0005 0.0016 0.0048 0.0143 0.0430 0.1291 0.3874 1.1623b3 =1.0e+009 *Columns 1 through 100.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0010Columns 11 through 200.0025 0.0059 0.0132 0.0287 0.0606 0.1246 0.2494 0.4874 0.9316 1.7434cond2=cond(A3,2)cond2 =3.2395e+022由上述运行结果可知:它们是病态的,而且随着n的增大,矩阵的病态变得严重。

数值计算方法复习提纲PPT

数值计算方法复习提纲PPT
a) ρ( A) ≤||A||
b) 若矩阵 A 对某个算子范数满足 ||A|| < 1,则 必有: I±A可逆、 I A 1 1
1|| A||
4) 矩阵的条件数: cond(A)=||A||||A-1||
-7-
17:40
❖ 迭代法原理及收敛条件:求解 Ax=b (★)
1) 充分条件: x=Bx+f, ||B||<1
第6章 数值积分
基本概念:
❖ 数值积分(机械求积公式)的一般形式 ❖ 求积公式的代数精度(计算、证明)
Akba
插值型求积公式:
❖ 插值求积公式的构造方法(★) 1) n+1积分结点的插值型求积公式至少具有n次代数精度 2) n+1个积分结点构造n阶Newton-Cotes积分公式,若n为偶数则具有 n+1次代数精度
1) 步骤
2) 估算某点的近似值:
❖ Nn(x)=f(x0)+f[x0,x1](x-x0)+…+f[x0,x1,…,xn] (x-x0)(x-x1)…(x-xn-1)
-11-
17:40
Hermit插值
❖ 基本思想 ❖ 插值多项式的构造方法
1) Lagrange型构造法(基函数构造法) 2) Newton型构造法(重节点的差商)
2) f[x 0 , ,x n ] i n 0 (x i x 0 ) (x i x i f 1 ( )x i x ) i( x i 1 ) (x i x n )
f[x0,,xn]
f
(n)()
(n)!
❖ Ne推 wton插值论 f 公(x 式)的 构: P n 造(x ()★f,若 [ )x 0, ,x k] a 0 n ,,k k n n

(完整版)数值计算方法教案

(完整版)数值计算方法教案

《计算方法》教案课程名称:计算方法适用专业:医学信息技术适用年级:二年级任课教师:***编写时间:2011年 8月新疆医科大学工程学院张利萍教案目录《计算方法》教学大纲 (4)一、课程的性质与任务 (4)二、课程的教学内容、基本要求及学时分配 (4)三、课程改革与特色 (5)四、推荐教材及参考书 (5)《计算方法》教学日历..................................... 错误!未定义书签。

第一章绪论 .. (6)第1讲绪论有效数字 (6)第2讲误差………………………………………………………………………………第二章线性方程组的直接法 (14)第3讲直接法、高斯消去法 (14)第4讲高斯列主元消去法 (22)第5讲平方根法、追赶法 (29)第三章插值法与最小二乘法 (31)第6讲机械求积、插值型求积公式 (32)第7讲牛顿柯特斯公式、复化求积公式 (37)第8讲高斯公式、数值微分 (42)第9讲第10讲第12讲第四章数值积分与数值微分 (48)第11讲欧拉公式、改进的欧拉公式 (48)第12讲龙格库塔方法、亚当姆斯方法 (52)第13讲收敛性与稳定性、方程组与高阶方程 (56)第14讲第15讲第五章微分常微分方程的差分方法 (59)第16讲迭代收敛性与迭代加速 (60)第17讲牛顿法、弦截法 (64)第18讲第19讲第20讲第六章线性方程组的迭代法 (67)第21讲迭代公式的建立 (68)第22讲第23讲第24讲向量范数、迭代收敛性 (71)第25讲《计算方法》教学大纲课程名称:计算方法/Computer Numerical Analysis B学时/学分:54/4先修课程:高等数学、线性代数、高级语言程序设计(如:Matlab语言)适用专业:计算机科学与技术、信息管理与信息系统开课学院(部)、系(教研室):医学工程技术学院、医学信息技术专业一、课程的性质与任务计算方法是一门专业必修课。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法-第5章_解线性方程组的直接法

数值计算方法-第5章_解线性方程组的直接法
①直接法:准确,可靠,理论上得到的解是精确的 ②迭代法:速度快,但有误差
本章讲解直接法
5.1 消元法
我们知道,下面有3种方程的解我们可以直接求出:

n次运算
A
diag(a11, a22 ,
, ann )
xi
bi aii
,i
1,
,n

(n+1)n/2次运算
l11
A
l21 ln1
l22 ln2
(aik
k 1
liklkr ) r 1 lkk
,i k 1, , n
因此不常用
又 l11
1
l11
l21 l22
ln1
ln2
lnn
l '21 l 'n1
1 l'n2
1
l22
lnn
则有
A L~D~D~T L~T LDLT
L~
D~
1
L
l21 ln1
lnn
xi
bi
i 1
lij x j
j 1
lii
,i
1,
,n

(n+1)n/2次运算
u11
A
u12 u22
u1n
u2n unn
xi
bi
n
uij x j
j i 1
uii
,i
n,
,1
对方程组,作如下的变换,解不变 ①交换两个方程的次序 ②一个方程的两边同时乘以一个非0的数 ③一个方程的两边同时乘以一个非0数,加到另一个方程
1 ln2
1
d1
D
d2
dn
a11 a12
a21 a22

数值计算方法褚衍东第五章

数值计算方法褚衍东第五章

数值计算方法褚衍东第五章哎呀呀,亲爱的朋友,今天咱就来唠唠这个《数值计算方法褚衍东第五章》。

这第五章啊,就像是一个神秘的宝库,里面藏着好多实用的宝贝方法。

首先呢,咱来说说第一个关键的方法,就像是打开宝库的第一把钥匙——插值法。

这插值法呀,你就把它想象成你去参加一个猜价格的游戏。

比如说有几个已知的价格点,就像给了你几个提示,然后让你去猜猜中间那些不知道价格的地方大概是多少。

插值法就是帮你根据已知的点,去估摸那些未知的。

具体咋操作呢?比如说给了你几个点(x1,y1),(x2,y2)…… 那咱就可以通过一些公式,像拉格朗日插值公式啥的,来算出中间那些没告诉你的点的数值。

这公式就像是一个神奇的魔法咒语,你得把那些点的坐标带进去,然后就能算出个大概来。

接着,咱们迎来了第二个方法——数值积分法。

这数值积分啊,就好比你要算一块形状不规则的地有多大。

你没办法直接用学过的公式来算,那咋办?咱们就把这块地切成好多小块,每一小块都近似看成一个规则的形状,比如长方形啥的,然后把这些小块的面积加起来,大概就知道整块地的面积啦。

这里面常用的方法,像矩形法、梯形法,你可别被这名字吓到。

矩形法呢,就是把那些小块都看成矩形来计算;梯形法呢,就是把它们看成梯形来算。

再来说说第三个方法——常微分方程数值解法。

这个就有点像你追着一个调皮的小孩跑。

这个小孩的运动轨迹不好直接算,但是咱们可以一小段一小段地去估计他的位置。

比如说,咱们可以用欧拉方法,每一步都根据前面的位置和速度来推测下一步他会跑到哪儿。

在实际操作的时候,你得先确定好初始条件,就像知道小孩从哪儿开始跑,跑得多快。

然后按照公式一步一步地算下去,慢慢地就能大概知道他之后的位置啦。

总之,这第五章里的数值计算方法,虽然听起来有点复杂,但其实就跟咱们日常生活中的一些小事情差不多。

只要你多琢磨琢磨,多练练手,就一定能掌握这些神奇的“魔法”!朋友,加油,相信你能搞定!回头你要是弄明白了,别忘了来跟我分享分享你的成果哟!。

《数值分析》第五章课件

《数值分析》第五章课件
h
取 h = 0.2 ,要求保留六位小数.
校正: cn+1 = y n + 2 ( y n' + mn' +1 )
解:Euler 迭代格式为
校正的改进:
1 y n +1 = c n +1 + ( p n +1 − c n+1 ) 5
yk +1 = yk + 0.2(− yk − xk yk2 ) = 0.8 yk − 0.2 xk yk2
差分方程:关于未知序列的方程.
例如: y n +3 = 5 y n + 2 − 3 y n +1 + 4 y n
例如: y ' ' ( x) − a ( x) y '+b( x) y + c( x) = 0
3
4
微分方程的应用情况
实际中,很多问题的数学模型都是微分方程. 常微分方程作为微分方程的基本类型之一,在 理论研究与工程实际上应用很广泛. 很多问题 的数学模型都可以归结为常微分方程. 很多偏 微分方程问题,也可以化为常微分方程问题来 近似求解.

可得,
y(xn+1) − yn+1 = hf y (xn+1,η)[ y(xn+1) − yn+1] − h2 '' y (xn ) + O(h3 ) 2
f (xn+1, y(xn+1)) = y' (xn+1) = y' (x n ) + hy'' (xn ) + O(h2 )
19
20
2 考虑到 1 − hf y ( xn+1 ,η ) = 1 + hf y ( xn+1 ,η ) + O(h ) ,则有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 数值拟合及最小二乘法一、最小二乘法的基本原理从整体上考虑近似函数)(x p 同所给数据点),(i i y x (i=0,1,…,m)误差i i i y x p r -=)((i=0,1,…,m)一是误差i i i y x p r -=)((i=0,1,…,m)绝对值的最大值im i r ≤≤0max ,即误差 向量T m r r r r ),,(10 =的∞—范数;二是误差绝对值的和∑=mi ir,即误差向量r 的1—范数;三是误差平方和∑=mi ir2的算术平方根,即误差向量r 的2—范数;前两种方法简单、自然,但不便于微分运算 ,后一种方法相当于考虑 2—范数的平方,因此在曲线拟合中常采用误差平方和∑=mi ir02来 度量误差i r (i=0,1,…,m)的整体大小。

数据拟合的具体作法是:对给定数据 ),(i i y x (i=0,1,…,m),在取定的函数类Φ中,求Φ∈)(x p ,使误差i i i y x p r -=)((i=0,1,…,m)的平方和最小,即∑=mi ir2[]∑==-mi iiy x p 02min)(从几何意义上讲,就是寻求与给定点),(i i y x (i=0,1,…,m)的距离平方和为最小的曲线)(x p y =(图6-1)。

函数)(x p 称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。

合中,函数类Φ可有不同的选取方法.5—1二多项式拟合假设给定数据点),(i i y x (i=0,1,…,m),Φ为所有次数不超过)(m n n ≤的多项式构成的函数类,现求一Φ∈=∑=nk k k n x a x p 0)(,使得[]min )(00202=⎪⎭⎫⎝⎛-=-=∑∑∑===mi mi n k i k i k i i n y x a y x p I (1)当拟合函数为多项式时,称为多项式拟合,满足式(1)的)(x p n 称为最小二乘拟合多项式。

特别地,当n=1时,称为线性拟合或直线拟合。

显然∑∑==-=mi nk i k i k y x a I 020)(为n a a a ,,10的多元函数,因此上述问题即为求),,(10n a a a I I =的极值 问题。

由多元函数求极值的必要条件,得nj x y x a a Im i j i nk i k i k j ,,1,0,0)(200==-=∂∂∑∑== (2)即nj y x a xn k mi i j i k mi k j i,,1,0,)(0==∑∑∑===+ (3)(3)是关于n a a a ,,10的线性方程组,用矩阵表示为⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n mi n imi n imi n i mi n i mi im i imi nimi iy x y x y a a a x xx x xxx x m 00010020101020001(4) 式(3)或式(4)称为正规方程组或法方程组。

可以证明,方程组(4)的系数矩阵是一个对称正定矩阵,故存在唯一解。

从式(4)中解出k a (k=0,1,…,n),从而可得多项式∑==nk kk n x a x p 0)( (5)可以证明,式(5)中的)(x p n 满足式(1),即)(x p n 为所求的拟合多项式。

我们把[]∑=-mi i i ny x p2)(称为最小二乘拟合多项式)(x p n的平方误差,记作[]∑=-=mi i i n y x p r222)(由式(2)可得∑∑∑===-=m i n k mi i k i k i y x a y r222)( (6)多项式拟合的一般方法可归纳为以下几步:(1) 由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n;(2) 列表计算∑==mi j in j x)2,,1,0( 和∑==mi ij in j y x)2,,1,0(;(3) 写出正规方程组,求出n a a a ,,10;(4) 写出拟合多项式∑==nk kk n x a x p 0)(。

在实际应用中,m n <或m n ≤;当m n =时所得的拟合多项式就是拉格朗日或牛顿插值多项式。

例1 测得铜导线在温度i T (℃)时的电阻)(Ωi R 如表6-1,求电阻R 与温度 T 的近似函数关系。

数为T a a R 10+=列表如下⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡445.200295.56583.93253.2453.245710a a解方程组得921.0,572.7010==a a故得R 与T 的拟合直线为T R 921.0572.70+=利用上述关系式,可以预测不同温度时铜导线的电阻值。

例如,由R=0得T=-242.5,即预测温度T=-242.5℃时,铜导线无电阻。

5-2例2 例2 已知实验数据如下表解 设拟合曲线方程为2210x a x a a y ++=列表如下⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡102514732253173017381301738152381529210a a a解得2676.06053.3,4597.13210=-==a a a故拟合多项式为22676.06053.34597.13x y +-=三 最小二乘拟合多项式的存在唯一性定理1 设节点n x x x ,,,10 互异,则法方程组(4)的解存在唯一。

证 由克莱姆法则,只需证明方程组(4)的系数矩阵非奇异即可。

用反证法,设方程组(4)的系数矩阵奇异,则其所对应的齐次方程组⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+∑∑∑∑∑∑∑∑∑∑∑=====+==+====m i i n i m i i i m i i n mi n imi n imi n i mi n i mi im i imi nimi iy x y x y a a a x xx x xxx x m 00010020101020001(7)有非零解。

式(7)可写为nj a xn k k mi k j i,,1,0,0)(0==∑∑==+ (8)将式(8)中第j 个方程乘以j a (j=0,1,…,n),然后将新得到的n+1个方程左右两端分别 相加,得∑∑∑===+=⎥⎦⎤⎢⎣⎡nj n k k m i k j i j a x a 0000)( 因为[]∑∑∑∑∑∑∑∑∑∑=======+===+===⎥⎦⎤⎢⎣⎡m i m i mi i n n k ki k n j j i j n j n k k j i j k nj n k k m i k j i j x p x a x a x a a a x a 00020000000)())(()( 其中∑==nk kk n x a x p 0)(所以0)(=i n x p (i=0,1,…,m))(x p n 是次数不超过n 的多项式,它有m+1>n 个相异零点,由代数基本定理,必须有010===n a a a ,与齐次方程组有非零解的假设矛盾。

因此正规方程组(4)必有唯一解 。

定理2 设n a a a ,,1,0 是正规方程组(4)的解,则∑==nk kk n x a x p 0)(是满足式(1)的最小二乘拟合多项式。

证 只需证明,对任意一组数n b b b ,,1,0 组成的多项式∑==nk kk n x b x Q 0)(,恒有[][]∑∑==-≥-mi i i nm i iiny x py x Q 022)()(即可。

[][][][][][]()∑∑∑∑∑∑∑∑∑∑==========⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎥⎦⎤⎢⎣⎡-⋅-+≥-⋅-+-=---n j mi j i n k i k i k j j m i nj n k i ki k ji j j i i n mi i n i n m i i n i n mi ii n mi i i n x y x a a b y x a x a b y x p x p x Q x p x Q y x p y x Q 00000002222)(20)()()(2)()()()(因为k a (k=0,1,…,n)是正规方程组(4)的解,所以满足式(2),因此有[][]0)()(022≥---∑∑==mi i i nm i iiny x py x Q故)(x p n为最小二乘拟合多项式。

*四多项式拟合中克服正规方程组的病态在多项式拟合中,当拟合多项式的次数较高时,其正规方程组往往是病态的。

而且①正规方程组系数矩阵的阶数越高,病态越严重;②拟合节点分布的区间[]m x x ,0偏离原点越远,病态越严重;③i x (i=0,1,…,m)的数量级相差越大,病态越严重。

为了克服以上缺点,一般采用以下措施:①尽量少作高次拟合多项式,而作不同的分段低次拟合;②不使用原始节点作拟合,将节点分布区间作平移,使新的节点i x 关于原 点对称,可大大降低正规方程组的条件数,从而减低病态程度。

平移公式为:mi x x x x mi i ,,1,0,20 =+-= (9)③对平移后的节点i x (i=0,1,…,m),再作压缩或扩张处理:m i x p x i i ,,1,0,==* (10)其中r mi rix m p 202)()1(∑=+=,(r 是拟合次数) (11)经过这样调整可以使*i x 的数量级不太大也不太小,特别对于等距节点),,1,0(0m i ihx x i =+=,作式(10)和式(11)两项变换后,其正规方程组的系数矩阵设 为A ,则对1~4次多项式拟合,条件数都不太大,都可以得到满意的结果。

变换后的条件数上限表如下:④在实际应用中还可以利用正交多项式求拟合多项式。

一种方法是构造离散正交多项式;另一种方法是利用切比雪夫节点求出函数值后再使用正交多项式。

这两种方法都使正规方程 组的系数矩阵为对角矩阵,从而避免了正规方程组的病态。

我们只介绍第一种,见第三节。

例如 m=19,0x =328,h=1, 1x =0x +ih ,i=0,1,…,19,即节点 分布在[328,347],作二次多项式拟合时① 直接用i x 构造正规方程组系数矩阵0A ,计算可得16021025.2)(⨯=A cond严重病态,拟合结果完全不能用。

② 作平移变换19,,1,0,2347328 =+-=i x x i ii x 构造正规方程组系数矩阵1A ,计算可得161210483868.4)(⨯=A cond比)(02A cond 降低了13个数量级,病态显著改善,拟合效果较好。

相关文档
最新文档