红外吸收光谱实验

合集下载

红外光谱实验步骤

红外光谱实验步骤

红外光谱实验步骤
红外光谱实验是一种用于分析物质结构的方法,具体步骤如下:
1. 准备样品:选择需要分析的样品,通常需要将样品制备成透明的薄片或溶液。

对于固体样品,可以使用金刚石压片机将其压制成薄片。

2. 设置光谱仪:打开红外光谱仪,在仪器上选择红外光谱扫描模式。

3. 校准仪器:根据仪器的要求,进行波数校准,通常使用气体或参考样品进行校准。

4. 选择检测方法:红外光谱实验可以采用不同的检测方法,最常用的是透射法和反射法。

透射法是将红外光通过样品后进行检测,反射法是将红外光照射在样品表面后进行检测。

5. 放置样品:将样品放置在光谱仪的光路中,根据实验要求选择透射池、反射杯等装置。

6. 开始实验:启动光谱仪,选择适当的波数范围和扫描速度,开始记录红外光谱。

7. 分析结果:根据实验记录的红外光谱图,观察吸收峰的位置和强度,进行物质结构的分析和鉴定。

8. 清洗仪器:实验结束后,关闭光谱仪,并进行相应的清洗和
维护工作,保持仪器的良好状态。

以上是典型的红外光谱实验步骤,具体步骤可能会根据不同的实验要求和仪器设备而略有变化。

红外吸收光谱实验报告

红外吸收光谱实验报告

一、实验目的1. 掌握红外吸收光谱的基本原理和操作方法。

2. 学习使用红外光谱仪进行样品分析。

3. 通过红外光谱图解析,识别样品中的官能团,确定化合物的结构。

4. 培养实验操作能力和数据分析能力。

二、实验原理红外吸收光谱是一种基于分子振动和转动跃迁的光谱技术。

当分子中的化学键振动时,会吸收特定波长的红外光,从而产生红外吸收光谱。

通过分析红外吸收光谱图,可以识别分子中的官能团,确定化合物的结构。

三、实验仪器与试剂1. 仪器:红外光谱仪、样品台、KBr压片机、电子天平、研钵、剪刀等。

2. 试剂:待测样品、KBr、红外光谱标准样品等。

四、实验步骤1. 样品制备:将待测样品与KBr按一定比例混合,研磨均匀后,压制成薄片。

2. 样品测试:将样品薄片放置在红外光谱仪的样品台上,进行扫描。

3. 数据处理:将扫描得到的红外光谱图进行分析,识别官能团,确定化合物结构。

五、实验结果与分析1. 样品A:经红外光谱分析,发现样品A在3400cm-1处有宽吸收峰,为-OH伸缩振动峰;在1700cm-1处有强吸收峰,为C=O伸缩振动峰;在1450cm-1处有中等强度吸收峰,为C-O伸缩振动峰。

综合以上分析,确定样品A为乙醇。

2. 样品B:经红外光谱分析,发现样品B在3400cm-1处有宽吸收峰,为-NH伸缩振动峰;在1630cm-1处有强吸收峰,为C=N伸缩振动峰;在1450cm-1处有中等强度吸收峰,为C-O伸缩振动峰。

综合以上分析,确定样品B为乙酰胺。

六、实验讨论1. 红外光谱分析是一种重要的有机化合物结构鉴定方法,具有操作简便、灵敏度高、应用范围广等优点。

2. 在进行红外光谱分析时,样品制备和仪器操作对实验结果有很大影响。

因此,要严格按照实验步骤进行操作,确保实验结果的准确性。

3. 在解析红外光谱图时,要熟悉各种官能团的吸收峰位置,并结合样品的性质进行综合判断。

七、实验结论通过本次实验,我们掌握了红外吸收光谱的基本原理和操作方法,学会了使用红外光谱仪进行样品分析,并成功解析了两种化合物的红外光谱图,确定了其结构。

苯甲酸红外吸收光谱的测绘实验报告

苯甲酸红外吸收光谱的测绘实验报告

苯甲酸红外吸收光谱的测绘实验报告实验目的:本实验旨在通过红外光谱仪测绘苯甲酸的红外吸收光谱,探究其分子结构与红外光谱的关系。

实验原理:红外光谱是一种通过分子振动和转动引起的电偶极矩变化所产生的吸收光谱。

苯甲酸分子中含有C-H、C=O和O-H等键,这些键的振动会引起红外光的吸收,从而形成特定的红外吸收峰。

实验步骤:1. 准备样品:取少量苯甲酸样品,将其放置在红外吸收光谱仪的样品室中。

2. 启动红外光谱仪:按照仪器说明书的要求,启动红外光谱仪,并进行仪器的校准和调试。

3. 设置参数:根据实验需要,设置红外光谱仪的扫描范围、扫描速度等参数。

4. 测绘光谱:点击开始扫描按钮,红外光谱仪开始扫描样品,记录光谱数据。

5. 数据处理:将得到的光谱数据导入光谱处理软件中,进行光谱峰的分析和解释。

6. 结果分析:根据光谱峰的位置和强度,推断苯甲酸分子中的键和官能团类型。

实验结果与讨论:通过红外光谱仪测绘得到的苯甲酸红外吸收光谱如图所示。

在波数范围4000-400 cm-1内,观察到了多个吸收峰。

首先,我们可以观察到一个强烈的吸收峰位于1700 cm-1附近,这是由于苯甲酸分子中的羧基(-COOH)引起的C=O键的伸缩振动所致。

这一吸收峰的强度较高,说明羧基是苯甲酸分子中的主要官能团。

其次,我们还可以观察到两个较弱的吸收峰,分别位于3000-2800 cm-1和3600-3200 cm-1范围内。

前者是由于苯甲酸分子中的芳香环上的C-H键引起的伸缩振动,后者则是由于苯甲酸分子中的羟基(-OH)引起的O-H键的伸缩振动。

此外,还可以观察到一些较弱的吸收峰,位于1500-1300 cm-1和1000-600cm-1范围内。

这些吸收峰是由于苯甲酸分子中其他键的振动引起的,如芳香环上的C-C键、羧基与芳香环之间的C-O键等。

通过对苯甲酸红外吸收光谱的测绘和分析,我们可以初步推断出苯甲酸分子的结构特征。

苯甲酸分子由一个苯环和一个羧基组成,苯环上还有一个羟基。

红外光谱实验实验报告

红外光谱实验实验报告

一、实验目的1. 了解红外光谱的基本原理和应用领域。

2. 掌握红外光谱仪的操作方法和实验技巧。

3. 通过红外光谱分析,对样品进行定性鉴定。

二、实验原理红外光谱(Infrared Spectroscopy)是一种利用分子对红外辐射的吸收特性进行物质定性和定量分析的技术。

当分子中的化学键振动和转动时,会吸收特定频率的红外光,从而产生红外光谱。

红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于有机化学、材料科学、生物医学等领域。

三、实验仪器与试剂1. 仪器:红外光谱仪、样品池、紫外-可见分光光度计、电子天平、干燥器等。

2. 试剂:待测样品、标准样品、溶剂等。

四、实验步骤1. 样品制备:将待测样品研磨成粉末,过筛后备用。

2. 样品池准备:将样品池清洗干净,晾干后备用。

3. 样品测试:将样品放入样品池中,进行红外光谱扫描。

扫描范围为4000-400cm-1,分辨率设置为2cm-1。

4. 数据处理:将得到的红外光谱数据导入数据处理软件,进行基线校正、平滑处理等操作。

5. 定性分析:将处理后的红外光谱与标准样品光谱进行比对,结合化学知识,对样品进行定性鉴定。

五、实验结果与分析1. 样品A:经过红外光谱分析,样品A的特征峰与标准样品光谱一致,鉴定为化合物A。

2. 样品B:样品B的红外光谱特征峰与标准样品光谱存在差异,但经过化学知识分析,推断样品B为化合物B。

3. 样品C:样品C的红外光谱特征峰与标准样品光谱一致,鉴定为化合物C。

六、实验讨论与心得1. 实验过程中,样品池的清洁度对实验结果有较大影响。

实验前需确保样品池干净、干燥。

2. 在数据处理过程中,基线校正和平滑处理是提高光谱质量的重要步骤。

3. 红外光谱分析具有较好的准确性和可靠性,但在进行定性鉴定时,还需结合化学知识进行分析。

4. 实验过程中,注意红外光谱仪的操作安全,避免仪器损坏。

5. 本实验加深了对红外光谱原理和操作方法的理解,提高了样品分析能力。

红外吸收光谱实验报告

红外吸收光谱实验报告

红外吸收光谱实验报告实验报告:红外吸收光谱实验一、实验目的:1.学习红外光谱分析的基本原理和方法;2.掌握红外光谱实验仪器的操作;3.了解不同化合物的红外光谱特征,分析其结构和功能团。

二、实验原理:红外光谱是通过测定样品对红外辐射的吸收来获取化合物结构信息的技术。

在红外区域的电磁辐射可以被化合物中的化学键吸收,产生共振激发。

吸收的位置和强度与分子的结构和存在的官能团有关。

常见的红外光谱吸收峰常用来鉴定具有特定官能团的化合物。

三、实验仪器与试剂:1.红外光谱仪;2.样品;3.氯仿和必需品。

四、实验操作:2.准备样品盘:将样品加入KBr或NaCl颗粒中,并用手压成均匀的透明片。

4.打开红外光谱仪,选择目标化合物的工作模式。

5.选择一个空白片,将其放入光谱仪并进行基础校准。

6.选择样品,将其放入仪器,等待红外光谱仪的分析结果。

7.分析结果后,将样品从仪器中取出,并清洁样品盘以准备下一个样品的测试。

8.将测试得到的红外吸收光谱数据与已知数据库中的数据进行对照,确定化合物的结构和官能团。

五、实验结果与讨论:将测试得到的红外吸收光谱数据与已知数据库中的数据进行对照,可以准确地确定化合物的结构和官能团。

通过观察吸收峰的位置和形状,可以推断出化合物中存在的官能团。

以酰胺试剂为例,其红外光谱图中会有一个宽弱的吸收峰,该吸收峰位于3300-3400cm-1的范围内,这是由于酰胺中的氨基振动引起的。

另外,酯类化合物一般在1750cm-1的位置会有一个强吸收峰,此吸收峰是由于羰基振动产生的。

通过这些特征峰可以判断化合物中的官能团类型和存在的基团。

六、实验结论:通过红外光谱实验,我们可以通过化合物吸收红外辐射的特征谱图,推断化合物结构和官能团类型。

通过与已知数据库中的对照,可以确定化合物的结构和功能团。

红外光谱是一种非常有用的分析方法,可以用于识别和鉴定未知化合物的结构。

实验报告红外光谱实验

实验报告红外光谱实验

实验报告红外光谱实验实验报告:红外光谱实验一、实验目的本次红外光谱实验的主要目的是学习和掌握红外光谱的基本原理、仪器操作方法,以及通过对样品的红外光谱分析,确定样品的化学结构和官能团信息。

二、实验原理红外光谱是基于分子振动和转动能级跃迁产生的吸收光谱。

当红外光照射到分子时,分子中的化学键会吸收特定频率的红外光,从而引起分子振动和转动能级的跃迁。

不同的化学键具有不同的振动频率,因此通过测量样品对不同频率红外光的吸收情况,可以得到样品的红外光谱图。

根据量子力学理论,分子的振动可以近似地看作是简谐振动。

对于双原子分子,其振动频率可以用以下公式计算:\\nu =\frac{1}{2\pi}\sqrt{\frac{k}{\mu}}\其中,\(\nu\)为振动频率,\(k\)为化学键的力常数,\(\mu\)为折合质量。

对于多原子分子,其振动形式更加复杂,但可以将其分解为不同的振动模式,如伸缩振动和弯曲振动等。

红外光谱图通常以波数(\(cm^{-1}\))为横坐标,表示红外光的频率;以吸光度(或透光率)为纵坐标,表示样品对红外光的吸收程度。

三、实验仪器与试剂1、仪器傅里叶变换红外光谱仪(FTIR)压片机玛瑙研钵干燥器2、试剂溴化钾(KBr,光谱纯)待测样品(如苯甲酸、乙醇等)四、实验步骤1、样品制备固体样品:采用 KBr 压片法。

称取约 1-2mg 待测样品于玛瑙研钵中,加入约 100-200mg 干燥的 KBr 粉末,充分研磨混合均匀。

将混合好的粉末转移至压片机模具中,在一定压力下压制成透明的薄片,放入干燥器中备用。

液体样品:采用液膜法。

将待测液体滴在两氯化钠晶片之间,形成均匀的液膜。

2、仪器操作打开红外光谱仪和计算机,预热 30 分钟。

进入仪器操作软件,设置实验参数,如扫描范围、分辨率、扫描次数等。

将制备好的样品放入样品室,进行光谱扫描。

3、数据处理对扫描得到的原始光谱图进行基线校正、平滑处理等。

对处理后的光谱图进行峰位识别和归属,确定样品中的官能团。

红外吸收光谱实验报告

红外吸收光谱实验报告

红外吸收光谱实验报告红外吸收光谱实验报告引言:红外吸收光谱是一种重要的分析技术,广泛应用于有机化学、材料科学、环境监测等领域。

本实验旨在通过红外吸收光谱仪,对苯酚、苯甲酸和苯酚甲醛三种有机化合物进行光谱分析,探究它们的结构和性质。

实验方法:首先,我们准备了苯酚、苯甲酸和苯酚甲醛三种有机化合物的样品。

然后,将样品制成固态片,放置在红外吸收光谱仪的样品槽中。

接下来,选择适当的波数范围,进行红外光谱扫描,记录吸收峰的位置和强度。

实验结果与分析:在红外吸收光谱图中,我们观察到苯酚、苯甲酸和苯酚甲醛三种有机化合物的吸收峰分布。

苯酚的红外光谱图中,出现了一个宽而强烈的吸收峰,位于3500~3200 cm^-1的区域,这是由于苯酚中的羟基(-OH)所引起的。

苯甲酸的红外光谱图中,出现了一个锐利的吸收峰,位于1700~1600 cm^-1的区域,这是由于苯甲酸中的羧基(-COOH)所引起的。

苯酚甲醛的红外光谱图中,出现了多个吸收峰,分别位于1700~1600 cm^-1和3000~2800 cm^-1的区域,这是由于苯酚甲醛中的羧基和醛基(-CHO)所引起的。

通过对红外吸收光谱图的分析,我们可以得出以下结论:1. 苯酚中的羟基(-OH)使其在红外光谱中出现宽而强烈的吸收峰;2. 苯甲酸中的羧基(-COOH)使其在红外光谱中出现锐利的吸收峰;3. 苯酚甲醛中的羧基和醛基(-CHO)使其在红外光谱中出现多个吸收峰。

结论:通过红外吸收光谱分析,我们成功确定了苯酚、苯甲酸和苯酚甲醛三种有机化合物的结构和性质。

红外吸收光谱是一种非常有效的分析工具,可以帮助我们了解化合物的官能团和结构。

在今后的研究和应用中,红外吸收光谱将继续发挥重要作用。

实验心得:通过本次实验,我对红外吸收光谱的原理和应用有了更深入的了解。

红外吸收光谱可以快速、准确地分析有机化合物的结构,对于化学研究和工业生产具有重要意义。

在实验过程中,我也学会了操作红外吸收光谱仪,掌握了样品制备和光谱扫描的技巧。

红外吸收实验报告分析

红外吸收实验报告分析

一、实验目的本次实验旨在通过红外吸收光谱法对样品进行定性分析,了解红外光谱的基本原理和操作方法,掌握样品制备、仪器操作、数据记录与分析等基本技能。

同时,通过分析红外光谱图,对样品的化学结构进行初步判断。

二、实验原理红外吸收光谱法是利用物质对不同波长的红外辐射吸收程度不同而对物质进行分析的方法。

当一定频率(能量)的红外光照射分子时,如果分子中某个基团的振动频率和外界红外辐射频率一致时,光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。

将分子吸收红外光的情况用仪器记录就得到该试样的红外吸收光谱图,利用光谱图中吸收峰的波长、强度和形状来判断分子中的基团,对分子进行结构分析。

三、实验仪器与试剂1. 仪器:- 傅里叶变换红外光谱仪(FTIR)- 样品研磨仪- 红外光谱附件- KBr压片机- 干燥器2. 试剂:- 样品(有机物)- KBr(光谱纯)- 无水乙醇- 干燥剂(硅胶)四、实验步骤1. 样品制备:- 将样品研磨成粉末状,过筛,取适量粉末置于干燥器中干燥。

- 称取适量干燥的样品粉末,与KBr粉末按一定比例混合,搅拌均匀。

- 将混合物放入KBr压片机中,压成薄片。

2. 仪器操作:- 打开傅里叶变换红外光谱仪,预热仪器。

- 设置扫描参数:波数范围4000-500cm-1,分辨率4cm-1,扫描次数32次。

- 将压片放入样品室,进行扫描。

3. 数据记录与分析:- 将扫描得到的红外光谱图导入数据处理软件,进行基线校正、平滑处理等操作。

- 根据红外光谱图中的吸收峰,对照标准谱图,分析样品的化学结构。

五、实验结果与分析1. 样品A:- 红外光谱图显示,在3425cm-1处有宽而强的吸收峰,属于-OH伸缩振动;在2920cm-1和2850cm-1处有中等强度的吸收峰,属于C-H伸缩振动;在1720cm-1处有强吸收峰,属于C=O伸缩振动;在1230cm-1处有中等强度的吸收峰,属于C-O伸缩振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

仪器分析实验
实验名称:红外光谱分析(IR)实验
学院:化学工程学院
专业:化学工程与工艺
班级:
姓名:
学号:指导教师:
日期:
一、实验目的
1、掌握溴化钾压片法制备固体样品的方法;
2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法;
3、初步学会对红外吸收光谱图的解析。

二、实验原理
红外光是一种波长介于可见光区和微波区之间的电磁波谱。

波长在0.75~1000μm。

通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在 2.5~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。

其中中红外区是研究、应用最多的区域。

红外区的光谱除用波长λ表征外,更常用波数σ表征。

波数是波长的倒数,表示单位厘米波长内所含波的数目。

其关系式为:
根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。

因此,特征吸收谱带的数目、位置、形状及强度取决于分子中各基团(化学键)的振动形式和所处的化学环境。

只要掌握了各种基团的振动频率(基团频率)及其位移规律,即可利用基团振动频率与分子结构的关系,来确定吸收谱带的归属,确定分子中所含的基团或键,并进而由其特征振动频率的位移、谱带强度和形状的改变,来推定分子结构。

红外光谱仪可分为色散型和干涉型。

色散型红外光谱仪又有棱镜分光型和光栅分光型,干涉型为傅立叶变换红外光谱仪(FTIR),最主要的区别是FTIR没有色散元件。

本实验所演示的是傅立叶变换红外光谱仪(FTIR)。

所得的红外谱图的横坐标是波数(或波长),纵坐标是吸光度。

三、仪器和试剂
1、仪器:美国尼高立IR-6700
2、试剂:溴化钾,聚乙烯,苯甲酸
3、傅立叶红外光谱仪(FTIR)的构造及工作原理
−→


−→
−→

样品室
计算机
检测器
干涉仪
光源−→

图1 FTIR工作原理框图
四、实验步骤
1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。

2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。

然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。

3、测绘苯甲酸的红外吸收光谱——溴化钾压片法
取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。

取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。

将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。

然后将所得的谱图与计算机上的标准谱图进行匹配。

4、结束实验,关闭工作站和红外光谱仪。

五、注意事项
1、实验室环境应该保持干燥;
2、确保样品与药品的纯度与干燥度;
3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果;
4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。

5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明
薄片厚度要适当。

六、实验结果与讨论
图聚乙烯,峰的归属
聚乙烯的红外光谱图
聚乙烯红外吸收光谱图上主要吸收峰的归属如下:
谱带位置/1-
cm吸收基团的振动形式
2849
ν(—C—(CH2)n—C—n≤3)
C-
H
1472
δ(面内)
C-
H
729
δ(面外)
H
C-
苯甲酸的红外光谱图
苯甲酸红外光谱图主要吸收峰的归属如下:
谱带位置/1-
cm吸收基团的振动形式
1686 νC = O
1424 νC = C
1291
δ(面内)
C-
H
934
δ(面外)
O-
H
707
δ(面外)
H
C-
1、由图谱发现,由于分子间氢键的存在,不同分子之间发生了缔合,使振动频
率减少导致吸收峰低移,谱带变宽。

2、与所查图谱相比,绘制的红外光谱图吸光度较弱,是因为CO2 浓度高,样品
受潮湿影响,压片薄膜的薄厚程度产生的影响。

3、对特征峰及其特征频率要有一定的识记,例如羰基(C=O)的伸缩振动吸收峰在各种化合物中总是出现在1880~1660cm-1之间。

再如,当化合物中有C≡C 键时,其吸收峰总是出现在2500~2000cm-1之间。

而羟基(O-H)在3650-3200 cm-1之间,胺、酰胺(N-H)在3300 cm-1附近有尖锐特征峰等等。

相关文档
最新文档