2018年6浙江省数学学考试题及答案
(完整版)2018年浙江省数学高考真题试卷(含答案解析)
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 ()()()P A B P A P B +=+若事件A ,B 相互独立,则()()()P AB P A P B =若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率()C (1)(0,1,2,,)k kn k n n P k p p k n -=-= 台体的体积公式121()3V S S h=++其中分别表示台体的上、下底面积,12,S S 表示台体的高h 柱体的体积公式V Sh=其中表示柱体的底面积,表示柱体的高S h 锥体的体积公式13V Sh=其中表示锥体的底面积,表示锥体的高S h 球的表面积公式24S R =π球的体积公式343V R =π其中表示球的半径R 一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则C A=U A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}∅2.双曲线的焦点坐标是221 3=x y -A .,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是侧侧侧侧侧侧A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是21i-A .1+iB .1−i C .−1+iD .−1−i5.函数y =sin2x 的图象可能是||2xA B C D6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的⊄⊂A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是ξ012P12p -122p 则当p 在(0,1)内增大时,A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·bπ3+3=0,则|a −b |的最小值是( )A B C .2D .10.已知成等比数列,且.若,则( )1234,,,a a a a 1234123ln()a a a a a a a +++=++11a >A .B .C .D .1324,a a a a <<1324,a a a a ><1324,a a a a <>1324,a a a a >>非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。
浙江学考数学真题试卷和答案解析[wold版]新
2018年4月浙江省学考数学试卷及答案满分100分,考试卷时间80分钟一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分。
) 1.已知集合{}{}01,23P x x Q x x =≤<=≤<记M PQ =,则A.{}M ⊆2,1,0B.{}M ⊆3,1,0C.{}M ⊆3,2,0D.{}M ⊆3,2,1 2. 函数xx x f 1)(+=的定义域是 A.{}0>x x B.{}0≥x x C.{}0≠x x D.R 3. 将不等式组⎩⎨⎧≥-+≥+-0101y x y x ,表示的平面区域记为Ω,则属于Ω的点是A.(3,1)-B.)3,1(-C.)3,1(D.)1,3( 4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA.1B.6log 2C.3D.9log 25. 双曲线1322=-y x 的渐近线方程为 A.x y 31±= B.x y 33±= C.x y 3±= D.x y 3±= 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A.31B.33C.32D.367. 若锐角α满足53)2πsin(=+α,则=αsinA.52 B.53 C.43 D.548.在三棱锥ABC O -中,若D 为BC 的中点,则=ADA.1122OA OC OB +- B. 1122OA OB OC ++ C.1122OB OC OA +- D. 1122OB OC OA ++9. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是A.{}n n a b ⋅B.{}n n a b +C.{}1n n a b ++D.{}1n n a b +- ABC D 1A1D 1C 1B(第6题图)A. ⎭⎬⎫⎩⎨⎧<<-313x x B. ⎭⎬⎫⎩⎨⎧<<-331x x C. ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D. ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或11.用列表法将函数)(x f 表示为 ,则A.)2(+x f 为奇函数B. )2(+x f 为偶函数C.)2(-x f 为奇函数D. )2(-x f 为偶函数 12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是A.01222=++-+y x y x B.012222=+-++y x y x C.01222=-+-+y x y x D.012222=-+-+y x y x 13. 设a 为实数,则“21aa >”是“a a 12>”的 A.充分不必要条件 B. 必要不充分条件C.充分必要条件D. 既不充分也不必要条件14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=aA.14 B.34 C.1 D.4315. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A.乙甲乙甲,V V S S >>B. 乙甲乙甲,V V S S <>C.乙甲乙甲,V V S S ><D. 乙甲乙甲,V V S S <<22y x ABCDxy oa a a a正视图a a 侧视图俯视图 15题图①)aa a aaa 侧视图15题图②)点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB 的积是△OPF 面积的52倍,则该椭圆的离心率是 A.52或53B.51或54C. 510或515D.55或55217.设a 为实数,若函数a x x x f +-=22)(有零点,则函数)]([x f f y =零点的个数是A.1或3B. 2或3C. 2或4D.3或4 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC ,若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A. C AB F --B. D EF B --C. C BF A --D. D AF B --二、填空题(本大题共4小题,每空3分,共15分.) 19.已知函数()sin(2)13f x x π=++,则()f x 的最小正周期是 ▲ ,的最大值是 ▲ . 20. 若平面向量,a b 满足()21,6a b +=,2(4,9)a b +=-,则a b ⋅= ▲ .21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ .22.若不等式()2220x x a x a ----≥对任意x R ∈恒成立,则实数a 的最小值是 ▲ .三、解答题(本大题共3小题,共31分.)23. (本题满分10分) 在等差数列{}(N )n a n *∈中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.ABCDEF(第18题图)xyO ABPD(第24题图)24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物线上位于第一象限内的点.(1) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(2)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分)如图,在直角坐标系xoy 中,已知点(2,0),)3A B ,直线()02x t t =<<,将△OAB 分成两部分,记左侧部分的多边形为Ω,设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g .(1) 分别求函数)(t f 和)(t g 的解析式;(2)是否存在区间(,)a b ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b -的最大值;若不存在,说明理由. ABxoyt x =(第25题图)2018年4月浙江学考数学原卷参考答案一、选择题(本大题共18小题,每小题3分,共54分.)二、填空题(本大题共4小题,每空3分,共15分.) 19. π,3 20. 2- 21.)1,35[ 22. 3 三、解答题(本大题共3小题,共31分.)23.解:(1)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (2)将(1)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(1)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(2)由直线AD PA ,的位置关系知:t k k AD -=-=11. 因为PB AD ⊥,所以, 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S .25.解:(1)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为t t t 2,3,;(第25题图②) 所以,⎩⎨⎧<<+-≤<=,21,20208,10,8)(22ttttttf⎪⎪⎩⎪⎪⎨⎧<<+-+-+≤<+=.21,21)1(21)2(311,10,1)3323()(tttttttg(Ⅱ)由(1)中)(tf的解析式可知,函数)(tf的单调递减区间是)45,1(,所以)45,1(),(⊆ba.另一方面,任取)45,1(,21∈tt,且21tt<,则)()(21tgtg-])2)(2(31)1)(1(211)[(21212112ttttt ttt-----+-=.由45121<<<tt知,1625121<<t t,81)1)(1(221<--<tt,1639)2)(2(321>--tt.从而<--<)1)(1(221tt)2)(2(321tt--,即0)2)(2(31)1)(1(212121>-----tttt所以0)()(21>-tgtg,得)(tg在区间)45,1(上也单调递减,证得)45,1(),(=ba.所以,存在区间)45,1(,使得函数)(tf和)(tg在该区间上均单调递减,且ab-的最大值为41.。
2018年6月浙江省数学学考试卷及答案
2018 年 6 月浙江省数学学考试卷及答案一 选择题1. 已知会集 A {1,2} , B{2,3} ,则 A B ()A. {1}B.{2}C.{1,2}D.{1,2,3}答案: B由会集 A {1,2} ,会集 B {2,3} ,得 A B {2} .2.函数 y log 2 ( x 1) 的定义域是()A.(1, )B.[1, )C.(0, )D.[0, )答案: A∵ ylog 2 (x 1) ,∴ x 1 0 , x 1 ,∴函数 y log 2 ( x 1) 的定义域是 ( 1,) .3.设R ,则 sin() ()2A.sin B.sinC.cos D.cos答案: C依据引诱公式可以得出sin() cos .24. 将一个球的半径扩大到本来的2 倍,则它的体积扩大到本来的()A.2 倍 B. 4倍C.6倍D.8倍答案: D设球本来的半径为r ,则扩大后的半径为2r ,球本来的体积为 4 r 3 ,球此后的体积为34 (2 r )3 32 r 332 r 3,球此后的体积与球本来的体积之比为3 8 .3 3 r 3435.双曲线 x2y 2 1 的焦点坐标是()169A.( 5,0) , (5,0)B.(0,5) , (0,5)C. (7,0) , (7,0) D. (0,7), (0, 7)答案: A由于 a 4 , b 3 ,因此 c 5 ,因此焦点坐标为( 5,0) , (5,0) .6.已知向量 a ( x,1) , b (2, 3) ,若 a / /b ,则实数 x 的值是()2233A.3 B.3 C.2 D.2答案: Aa( x,1) ,b(2,3) ,利用 a / /b 的坐标运算公式获取3x 2 0 ,因此解得x 2 . 37.设实数 x ,y满足x y0y 的最大值为()2x y,则 x3 0A.1B.2C.3D. 4答案: B作出可行域,如图:当 z x y 经过点A(1,1)时,有z max x y 2 .8.在ABC 中,角 A , B ,C 的对边分别为a,b ,c,已知B45 ,C30 ,c 1 ,则 b()A.23C.2D.3 2B.2答案: Cb c c sin B 1 sin 452由正弦定理22 .可得 bsin C sin 301sin B sin C29.已知直线 l ,m和平面, m,则“ l m ”是“ l”的()A.充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件答案: B由于“直线和平面垂直,垂直与平面上全部直线”,但是“直线垂直于平面上一条直线不可以判断垂直于整个平面”因此是必需不充足条件。
2018年度6月浙江地区学业水平考试数学
1. 已知集合{1,2}A =,{2,3}B =,则A B =I ( ) A. {1} B. {2} C. {1,2} D. {1,2,3} 答案: B解答:由集合{1,2}A =,集合{2,3}B =,得{2}A B =I . 2. 函数2log (1)y x =+的定义域是( ) A. (1,)-+∞ B. [1,)-+∞ C. (0,)+∞ D. [0,)+∞ 答案: A解答:∵2log (1)y x =+,∴10x +>,1x >-,∴函数2log (1)y x =+的定义域是(1,)-+∞. 3. 设R α∈,则sin()2πα-=( )A. sin αB. sin α-C. cos αD. cos α- 答案: C解答:根据诱导公式可以得出sin()cos 2παα-=.4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( )B. 4倍C. 6倍D. 8倍 答案: D解答:设球原来的半径为r ,则扩大后的半径为2r ,球原来的体积为343r π,球后来的体积为334(2)3233r r ππ=,球后来的体积与球原来的体积之比为33323843r r ππ=.5. 双曲线221169x y -=的焦点坐标是( ) A. (5,0)-,(5,0) B. (0,5)-,(0,5) C.(, D.(0,, 答案: A解答:因为4a =,3b =,所以5c =,所以焦点坐标为(5,0)-,(5,0).6. 已知向量(,1)a x =r ,(2,3)b =-r,若//a b r r ,则实数x 的值是( )A. 23- B.23 C. 32-D. 32答案: A解答:Q (,1)a x =r ,(2,3)b =-r ,利用//a b r r 的坐标运算公式得到320x --=,所以解得23x =-.7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )A. 1B. 2C. 3D. 4 答案: B解答:作出可行域,如图:当z x y =+经过点(1,1)A 时,有ax 2m z x y =+=.8. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =o,30C =o,1c =,则b =( ) A.2 B.C.D.答案: C解答:由正弦定理sin sin b cB C=可得sin 1sin 4521sin sin 302c B b C ⋅︒====︒9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 答案: B解答:因为“直线和平面垂直,垂直与平面上所有直线”,但是“直线垂直于平面上一条直线不能判断垂直于整个平面”所以是必要不充分条件。
浙江省数学学考试题及答案
2
2
3
3
A.3b.
3
C.2d.
2
7.设实数x,
y满足
x y 0nt
,则X
2x y 3 0
y
的最大值为()
A.1B.
2
C.3D.4
8.在ABC中,角A,B,C的对边分别为a,b,c,已知B
45O,C 30o,c 1,
则b()
¥丰c.血dV3
A.2B.2D.
9.已知直线l,m和平面,m,则“1 m”是“1
6
OE平分
A.3B.
2
C.3
D.3
15.三棱柱各面所在平面将空间分为(
A.14部分
B.18部分
C.21部分
16.函数f(x)
C的正切值为(
1(a b0)的右顶
)
D.24部分
(其中e为自然对数的底数)的图象如图所示,则(
(Xn)2
eF
A.
B.
C.
D.
17.数列{an}是公差不为0的等差数列,Sn为其前n项和•若对任意的n N,有SnS3,
D.
与m无关,但与n有关
12.在如图所示的几何体中,正方形DCEF与梯形
ABCD
BC2,则该几何体的正视图为()
13.在第12题的几何体中,二面角E AB
A.3
B.
C.1
2方
D.3
14.如图,
B分别为椭圆
2 2
x
C :-
a
点和上顶点, 上的射影,若
O为坐标原点,E为线段AB的中点,H为O在AB
HOA,则该椭圆的离心率为(
22.已知动点P在直线l :2x y2上,过点P作互相垂直的直线PA,PB分别交x轴、
20186月浙江省数学学考试题(卷)与答案解析
2018年6月省数学学考试题一 选择题(每小题3分,共54分)1. 已知集合{1,2}A =,{2,3}B =,则A B =( )A .{1} B.{2} C.{1,2} D.{1,2,3}2. 函数2log (1)y x =+的定义域是( )A.(1,)-+∞B.[1,)-+∞C.(0,)+∞D.[0,)+∞3. 设R α∈,则sin()2πα-=( )A.sin αB.sin α-C.cos αD.cos α-4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( )A.2倍B.4倍C.6倍D.8倍5. 双曲线221169x y -=的焦点坐标是( )A.(5,0)-,(5,0)B.(0,5)-,(0,5)C.(0),D.(0,,6. 已知向量(,1)a x =,(2,3)b =-,若//a b ,则实数x 的值是( ) A.23-B.23C.32-D.32 7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( ) A.1 B.2 C.3 D.48. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =,30C =,1c =, 则b =( )A. B. 9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件10. 要得到函数()sin(2)4f x x π=-的图象,只需将函数()sin 2g x x =的图象( ) A.向右平移8π个单位 B.向左平移8π个单位 C.向右平移4π个单位 D.向左平移4π个单位 11. 若关于x 的不等式2x m n -<的解集为(,)αβ,则βα-的值( )A.与m 有关,且与n 有关B.与m 有关,但与n 无关C.与m 无关,且与n 无关D.与m 无关,但与n 有关12. 在如图所示的几何体中,正方形DCEF 与梯形ABCD 所在的平面互相垂直,N ,6AB =,2AD DC ==,23BC =,则该几何体的正视图为( )A B C D13. 在第12题的几何体中,二面角E AB C --的正切值为( )A.33B.32C.1D.233 14. 如图,A ,B 分别为椭圆22:1(0)x y C a b a b+=>>的右顶点和上顶点,O 为坐标原点,E 为线段AB 的中点,H 为O 在AB上的射影,若OE 平分HOA ∠,则该椭圆的离心率为( )A. 13B.33C.23D.6315. 三棱柱各面所在平面将空间分为( )A.14部分B.18部分C.21部分D.24部分16. 函数2()()x n m f x e -=(其中e 为自然对数的底数)的图象如图所示,则( )A. 0m >,01n <<B.0m >,10n -<<C.0m <,01n <<D.0m <,10n -<<17. 数列{}n a 是公差不为0的等差数列,n S 为其前n 项和.若对任意的n N *∈,有3n S S ≥,则65a a 的值不可能为( ) A.43 B.32 C.53D.2 18. 已知x ,y 是正实数,则下列式子中能使x y >恒成立的是( )A.21x y y x +>+ B.112x y y x +>+ C.21x y y x ->- D.112x y y x->- 二 填空题(每空3分)19. 圆22(3)1x y -+=的圆心坐标是_______,半径长为_______.20. 如图,设边长为4的正方形为第1个正方形,将其各边相邻的中点相连, 得到第2个正方形,再将第2个正方形各边相邻的中点相连,得到第3个正方形,依此类推,则第6个正方形的面积为____ __.21. 已知lg lg lg()a b a b -=-,则实数a 的取值围是_______.22. 已知动点P 在直线:22l x y +=上,过点P 作互相垂直的直线PA ,PB 分别交x 轴、y 轴于A 、B 两点,M 为线段AB 的中点,O 为坐标原点,则OM OP ⋅的最小值为_______. 三 解答题23. (本题10分)已知函数13()sin cos 2f x x x =+,x R ∈. (Ⅰ)求()6f π的值;(Ⅱ)求函数()f x 的最大值,并求出取到最大值时x 的集合.24.(10分)如图,直线l 不与坐标轴垂直,且与抛物线2:C y x =有且只有一个公共点P . (Ⅰ)当点P 的坐标为(1,1)时,求直线l 的方程;(Ⅱ)设直线l 与y 轴的交点为R ,过点R 且与直线l 垂直的直线m 交抛物线C 于A ,B 两点.当2RA RB RP ⋅=时,求点P 的坐标.24. (11分)设函数2()3()f x ax x a =-+,其中a R ∈.(Ⅰ)当1a =时,求函数()f x 的值域;(Ⅱ)若对任意[,1]x a a ∈+,恒有()1f x ≥-,数a 的取值围.2018年6月省数学学考试卷答案一 选择题1.B2.A3.C4.D5.A6.A7.B8.C9.B 10.A 11.D 12.C13.D 14.D 15.C 16.C 17.A 18.B二 填空题 19.(3,0);1. 20, 12. 21. [4,)+∞. 22. 25. 三 解答题23解答:(Ⅰ)1313()sin cos 1626644f πππ=+=+=.(Ⅱ)因为()cossin sin cos sin()333f x x x x πππ=+=+,所以,函数()f x 的最大值为1,当232x k πππ+=+,即2()6x k k Z ππ=+∈时,()f x 取到最大值,所以,取到最大值时x 的集合为{|2,}6x x k k Z ππ=+∈.24.答案:(Ⅰ)210x y -+=;(Ⅱ)11(,)42±.解答:(Ⅰ)设直线l 的斜率为(0)k k ≠,则l 的方程为1(1)y k x -=-,联立方程组21(1)y k x y x-=-⎧⎨=⎩,消去x ,得210ky y k -+-=,由已知可得14(1)0k k ∆=--=,解得12k =,故,所求直线l 的方程为210x y -+=. (Ⅱ)设点P 的坐标为2(,)t t ,直线l 的斜率为(0)k k ≠,则l 的方程为2()y t k x t -=-,联立方程组22()y t k x t y x⎧-=-⎪⎨=⎪⎩,消去x ,得220ky y t kt -+-=,由已知可得214()0k t kt ∆=--=,得1(0)2k t t =≠,所以,点R 的纵坐标22t t kt -=,从而,点R 的纵坐标为(0,)2t ,由m l ⊥可知,直线m 的斜率为2t -,所以,直线m 的方程为22t y tx =-+.设11(,)A x y ,22(,)B x y ,将直线m 的方程代入2y x =,得22224(21)04t t x t x -++=,所以2242(21)4410t t t ∆=+-=+>,12116x x =,又1RA =,2RB =,24214RP t t =+,由2RA RB RP ⋅=,得242121(14)4t x x t t +=+,即24211(14)164t t t +=+,解得12t =±,所以,点P 的坐标为11(,)42±. 25.解答:(Ⅰ)当1a =时,2251,0()1,0x x x f x x x x ⎧---≤⎪=⎨-+->⎪⎩, (ⅰ)当0x ≤时,2521()()24f x x =-++,此时21()(,]4f x ∈-∞; (ⅱ)当0x >时,213()()24f x x =---,此时3()(,]4f x ∈-∞-, 由(ⅰ)(ⅱ),得()f x 的值域为21(,]4-∞. (Ⅱ)因为对任意[,1]x a a ∈+,恒有()1f x ≥-,所以()1(1)1f a f a ≥-⎧⎨+≥-⎩,即2223413(1)(21)1a a a a a ⎧-≥-⎪⎨+-+≥-⎪⎩,解得10a -≤≤. 下面证明,当[1,0]a ∈-,对任意[,1]x a a ∈+,恒有()1f x ≥-,(ⅰ)当0a x ≤≤时,22()f x x ax a =-+-,2()(0)1f a f a ==-≥-,故()min{(),(0)}1f x f a f ≥≥-成立;(ⅱ)当01x a ≤≤+时,22()5f x x ax a =---,(1)1f a +≥-,(0)1f ≥-,故()min{(1),(0)}1f x f a f ≥+≥-成立.由此,对任意[,1]x a a ∈+,恒有()1f x ≥-.. 所以,实数a的取值围为[1,0]。
2018年高考(浙江省)真题数学(理)试题及答案解析
2018年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同一直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )。
2018年浙江学考数学真题试卷及答案wold版新
2018年4月浙江省学考数学试卷及答案满分100分,考试卷时间80分钟一、选择题(本大题共18小题,每小题3分,共54分。
每小题列出的四个选项中只有一个是符合题目要求的,不选、多选、错选均不得分。
) 1.已知集合{}{}01,23P x x Q x x =≤<=≤<记M PQ =,则A .{}M ⊆2,1,0B .{}M ⊆3,1,0C .{}M ⊆3,2,0D .{}M ⊆3,2,1 2. 函数xx x f 1)(+=的定义域是 A .{}0>x x B .{}0≥x x C .{}0≠x x D .R 3. 将不等式组⎩⎨⎧≥-+≥+-0101y x y x ,表示的平面区域记为Ω,则属于Ω的点是A .(3,1)-B .)3,1(-C .)3,1(D .)1,3( 4. 已知函数)3(log )3(log )(22x x x f -++=,则=)1(fA .1B .6log 2C .3D .9log 25. 双曲线1322=-y x 的渐近线方程为 A .x y 31±= B .x y 33±= C .x y 3±= D .x y 3±= 6. 如图,在正方体1111D C B A ABCD -中,直线C A 1与平面ABCD 所成角的余弦值是A .31B .33C .32D .367. 若锐角α满足53)2πsin(=+α,则=αsinA .52 B .53 C .43 D .548.在三棱锥ABC O -中,若D 为BC 的中点,则= A .1122OA OC OB +- B . 1122OA OB OC ++ C .1122OB OC OA +- D . 1122OB OC OA ++9. 设{}n a ,{}n b )N (*∈n 是公差均不为零的等差数列.下列数列中,不构成等差数列的是A .{}n n a b ⋅B .{}n n a b +C .{}1n n a b ++D .{}1n n a b +- 10.不等式1112<+--x x 的解集是(第6题图)A . ⎭⎬⎫⎩⎨⎧<<-313x x B . ⎭⎬⎫⎩⎨⎧<<-331x x C . ⎭⎬⎫⎩⎨⎧>-<31,3x x x 或 D . ⎭⎬⎫⎩⎨⎧>-<3,31x x x 或11.用列表法将函数)(x f 表示为 ,则 A .)2(+x f 为奇函数 B . )2(+x f 为偶函数C .)2(-x f 为奇函数D . )2(-x f 为偶函数 12.如图,在直角坐标系xOy 中,坐标轴将边长为4的正方形ABCD 分割成四个小正方形.若大圆为正方形ABCD 的外接圆,四个小圆分别为四个小正方形的内切圆,则图中某个圆的方程是A .01222=++-+y x y x B .012222=+-++y x y x C .01222=-+-+y x y x D .012222=-+-+y x y x 13. 设a 为实数,则“21aa >”是“a a 12>”的 A .充分不必要条件 B . 必要不充分条件C .充分必要条件D . 既不充分也不必要条件14. 在直角坐标系xOy 中,已知点)1,0(-A ,)0,2(B ,过A 的直线交x 轴于点)0,(a C ,若直线AC 的倾斜角是直线AB 倾斜角的2倍,则=aA .14B .34C .1D .4315. 甲、乙两个几何体的三视图分别如图①、图②所示,分别记它们的表面积为乙甲,S S ,体积为乙甲,V V ,则A .乙甲乙甲,V V S S >>B .乙甲乙甲,V V S S <>C .乙甲乙甲,V V S S ><D . 乙甲乙甲,V V S S <<正视图俯视图 15题图①)侧视图15题图②)16.如图,设F 为椭圆)0(12222>>=+b a by a x 的右焦点,过F 作x 轴的垂线交椭圆于点P ,点B A ,分别为椭圆的右顶点和上顶点,O 为坐标原点.若△OAB 的积是△OPF 面积的52倍,则该椭圆的离心率是A .52或53B .51或54C . 510或515D .55或55217.设a 为实数,若函数a x x x f +-=22)(有零点,则函数)]([x f f y =零点的个数是A .1或3B . 2或3C . 2或4D .3或4 18.如图,设矩形ABCD 所在平面与梯形ACEF 所在平面相交于AC ,若3,1==BC AB ,1===EC FE AF ,则下列二面角的平面角的大小为定值的是A . C AB F -- B . D EF B --C . C BF A --D . D AF B -- 二、填空题(本大题共4小题,每空3分,共15分.) 19.已知函数()sin(2)13f x x π=++,则()f x 的最小正周期是 ▲ ,的最大值是 ▲ . 20. 若平面向量,a b 满足()21,6a b +=,2(4,9)a b +=-,则a b ⋅= ▲ .21. 在△ABC 中,已知2=AB ,3=AC ,则C cos 的取值范围是 ▲ .22.若不等式()2220x x a x a ----≥对任意x R ∈恒成立,则实数a 的最小值是 ▲ .三、解答题(本大题共3小题,共31分.)23. (本题满分10分) 在等差数列{}(N )n a n *∈中,已知21=a ,65=a .(Ⅰ)求{}n a 的公差d 及通项n a ;(Ⅱ)记)N (2*∈=n b n an ,求数列{}n b 的前n 项和.24. (本题满分10分) 如图,已知抛物线12-=x y 与x 轴相交于点A ,B 两点,P 是该抛物线上位于第一象限内的点.(1) 记直线PB PA ,的斜率分别为21,k k ,求证12k k -为定值;(2)过点A 作PB AD ⊥,垂足为D .若D 关于x 轴的对称点恰好在直线PA 上,求△PAD 的面积.25. (本题满分11分)如图,在直角坐标系xoy 中,已知点(2,0),)3A B ,直线()02x t t =<<,将△OAB 分成两部(第18题图)分,记左侧部分的多边形为Ω,设Ω各边长的平方和为)(t f ,Ω各边长的倒数和为)(t g . (1) 分别求函数)(t f 和)(t g 的解析式;(2)是否存在区间(,)a b ,使得函数)(t f 和)(t g 在该区间上均单调递减?若存在,求a b -的最大值;若不存在,说明理由.(第25题图)2018年4月浙江学考数学原卷参考答案一、选择题(本大题共18小题,每小题3分,共54分.) 二、填空题(本大题共4小题,每空3分,共15分.) 19. π,20. 2-)1,35[21.22. 3三、解答题(本大题共3小题,共31分.)23.解:(1)因为d a a 415+=,将21=a ,65=a 代入,解得数列{}n a 的公差1=d ; 通项1)1(1+=-+=n d n a a n . (2)将(1)中的通项n a 代入 122+==n a n nb .由此可知{}n b 是等比数列,其中首项41=b ,公比2=q .所以数列{}n b 的前n 项和421)1(21-=--=+n n n qq b S 24. 解:(1)由题意得点B A ,的坐标分别为)0,1(-A ,)0,1(B .设点P 的坐标为)1,(2-t t P ,且1>t ,则11121-=+-=t t t k ,11122+=--=t t t k , 所以212=-k k 为定值.(2)由直线AD PA ,的位置关系知:t k k AD -=-=11. 因为PB AD ⊥,所以, 1)1)(1(2-=+-=⋅t t k k AD , 解得 2±=t .因为P 是第一象限内的点,所以2=t .得点P 的坐标为)1,2(P . 联立直线PB 与AD 的方程 ⎩⎨⎧+-=-+=),1)(21(,)1)(21(x y x y 解得点D 的坐标为)22,22(-D . 所以△PAD 的面积22121+=-⋅⋅=D P y y AB S . 25.解:(1)当10≤<t 时,多边形Ω是三角形(如图①),边长依次为t t t 2,3,; 当21<<t ,边2),1(2-t长依次所以⎩⎨⎧<<+-≤<=,21,20208,10,8)(22t t t t t t f(Ⅱ)由(1)中)(t f 的解析式可知,函数)(t f 的单调递减区间是)45,1(,所以 )45,1(),(⊆b a .另一方面,任取)45,1(,21∈t t ,且21t t <,则)()(21t g t g -])2)(2(31)1)(1(211)[(21212112t t t t t t t t -----+-=. 由 45121<<<t t 知,1625121<<t t , 81)1)(1(2021<--<t t ,1639)2)(2(321>--t t .从而<--<)1)(1(2021t t )2)(2(321t t --,即0)2)(2(31)1)(1(212121>-----t t t t 所以 0)()(21>-t g t g ,得)(t g 在区间)45,1(上也单调递减,证得 )45,1(),(=b a .所以,存在区间)45,1(,使得函数)(t f 和)(t g 在该区间上均单调递减,且a b -的最大值为41.。
20186月浙江省数学学考试卷和答案
2018年6月浙江省数学学考试卷及答案一 选择题1. 已知集合{1,2}A =,{2,3}B =,则AB =( )A. {1}B.{2}C.{1,2}D.{1,2,3} 答案:B 由集合{1,2}A =,集合{2,3}B =,得{2}A B =.2. 函数2log (1)y x =+的定义域是( )A. (1,)-+∞B.[1,)-+∞C.(0,)+∞D.[0,)+∞ 答案:A∵2log (1)y x =+,∴10x +>,1x >-,∴函数2log (1)y x =+的定义域是(1,)-+∞. 3. 设R α∈,则sin()2πα-=( )A. sin αB.sin α-C.cos αD.cos α- 答案:C 根据诱导公式可以得出sin()cos 2παα-=.4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( ) A. 2倍 B.4倍 C.6倍 D.8倍 答案:D设球原来的半径为r ,则扩大后的半径为2r ,球原来的体积为343r π,球后来的体积为334(2)3233r r ππ=,球后来的体积与球原来的体积之比为33323843r r ππ=.5. 双曲线221169x y -=的焦点坐标是( ) A. (5,0)-,(5,0) B.(0,5)-,(0,5)C.(0),D.(0,, 答案:A因为4a =,3b =,所以5c =,所以焦点坐标为(5,0)-,(5,0). 6. 已知向量(,1)a x =,(2,3)b =-,若//a b ,则实数x 的值是( )A. 23-B.23C.32-D.32答案:A(,1)a x =,(2,3)b =-,利用//a b 的坐标运算公式得到320x --=,所以解得23x =-.7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )A. 1B.2C.3D.4 答案:B作出可行域,如图:当z x y =+经过点(1,1)A 时,有ax 2m z x y =+=.8. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =,30C =,1c =,则b =( ) A.2B.答案:C由正弦定理sin sin b cB C=可得sin 1sin 4521sin sin 302c B b C ⋅︒====︒9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )A. 充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 答案:B因为“直线和平面垂直,垂直与平面上所有直线”,但是“直线垂直于平面上一条直线不能判断垂直于整个平面”所以是必要不充分条件。
2018年高考数学真题试卷(浙江卷)含逐题详解
2018年普通高等学校招生全国统一考试(浙江卷)数 学本试卷卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名,准考证号用黑色字迹的签字笔或钢笔分别填在试卷卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试卷卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 若事件A ,B 相互独立,则 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率台体的体积公式其中分别表示台体的上,下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高 锥体的体积公式其中表示锥体的底面积,表示锥体的高 球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一,选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}2.双曲线的焦点坐标是A .,0)B .(−2,0),(2,0)C .)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是()()()P A B P A P B +=+()()()P AB P A P B =()C (1)(0,1,2,,)k k n kn n P k p p k n -=-=121()3V S S h =12,S S h V Sh =S h 13V Sh =S h 24S R =π343V R =πR =UA ∅221 3=x y -A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时. A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小 8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则俯视图正视图21i-||2x ⊄⊂A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ19.已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为,向量b满足b2−4e·b+3=0,则|a−b|的最小值是A1B+1 C.2 D.210.已知成等比数列,且.若,则A.B.C.D.非选择题部分(共110分)二,填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
浙江省2018年高中学业水平考试数学试题解析
2018年6月浙江高中学业水平考试数学1. 已知集合{1,2}A =,{2,3}B =,则A B =( )A.{1}B.{2}C.{1,2}D.{1,2,3}【答案】:B【解析】:由集合{1,2}A =,集合{2,3}B =,得{2}AB =. 2. 函数2log (1)y x =+的定义域是( )A.(1,)-+∞B.[1,)-+∞C.(0,)+∞D.[0,)+∞【答案】:A【解析】:∵2log (1)y x =+,∴10x +>,1x >-,∴函数2log (1)y x =+的定义域是(1,)-+∞.3. 设R α∈,则sin()2πα-=( )A.sin αB.sin α-C.cos αD.cos α-【答案】:C 【解析】:根据诱导公式可以得出sin()cos 2παα-=.4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( )A.2倍B.4倍C.6倍D.8倍【答案】:D【解析】:设球原来的半径为r ,则扩大后的半径为2r ,球原来的体积为343r π,球后来的体积为334(2)3233r r ππ=,球后来的体积与球原来的体积之比为33323843r rππ=.5. 双曲线221169x y -=的焦点坐标是( ) A.(5,0)-,(5,0) B.(0,5)-,(0,5)C.(,D.(0,,【答案】:A【解析】:因为4a =,3b =,所以5c =,所以焦点坐标为(5,0)-,(5,0).6. 已知向量(,1)a x =,(2,3)b =-,若//a b ,则实数x 的值是( ) A.23- B.23 C.32- D.32【答案】:A 【解析】:(,1)a x =,(2,3)b =-,利用//a b 的坐标运算公式得到320x --=,所以解得23x =-. 7. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )A.1B.2C.3D.4【答案】:B【解析】:作出可行域,如图:当z x y =+经过点(1,1)A 时,有ax 2m z x y =+=.8. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =,30C =,1c =,则b =( )。
最新6月浙江省数学学考试题及答案
2018年6月浙江省数学学考试题 1一 选择题(每小题3分,共54分) 21. 已知集合{1,2}A =,{2,3}B =,则A B =( ) 3A .{1} B.{2} C.{1,2} D.{1,2,3}4 2. 函数2log (1)y x =+的定义域是( )5 A.(1,)-+∞ B.[1,)-+∞ C.(0,)+∞ D.[0,)+∞ 63. 设R α∈,则sin()2πα-=( ) 7A.sin αB.sin α-C.cos αD.cos α- 84. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( ) 9A.2倍B.4倍C.6倍D.8倍10 5. 双曲线221169x y -=的焦点坐标是( ) 11A.(5,0)-,(5,0)B.(0,5)-,(0,5)C.(0),D.(0,,1213 6. 已知向量(,1)a x =,(2,3)b =-,若//a b ,则实数x 的值是( )14 A.23- B.23 C.32- D.32 157. 设实数x ,y 满足0230x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )16 A.1 B.2 C.3 D.4 178. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =,30C =,181c =, 则b =( )19 A.22 B.32 2 3209. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( ) 21A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也22不必要条件 232410. 要得到函数()sin(2)4f x x π=-的图象,只需将函数()sin 2g x x =的图象( ) 25 A.向右平移8π个单位 B.向左平移8π个单位 26 C.向右平移4π个单位 D.向左平移4π个单位 27 11. 若关于x 的不等式2x m n -<的解集为(,)αβ,则βα-的值( ) 28A.与m 有关,且与n 有关B.与m 有关,但与n 无关 29C.与m 无关,且与n 无关D.与m 无关,但与n 有关 3012. 在如图所示的几何体中,正方形DCEF 与梯31形 ABCD 所在的平面互相垂直,N ,6AB =,322AD DC ==,23BC =,则该几何体的正视图为( ) 33 3435 A B C 36 D 37 13. 在第12题的几何体中,二面角E AB C --的正切值为38( ) 3940 A.3 B.3 C.1 D.23 4114. 如图,A ,B 分别为椭圆22:1(0)x y C a b a b +=>>的42右顶点和上顶点,O 为坐标原点,E 为线段AB 的中点,H 43为O 在AB 上的射影,若OE 平分HOA ∠,则该椭圆的离44心率为( )45 A.13 B.33 C.23 D.63 46 15. 三棱柱各面所在平面将空间分为( ) 47A.14部分B.18部分C.21部分D.24部分48 16. 函数2()()x n m f x e -=(其中e 为自然对数的底数)的图象如图所示,则( )4950A. 0m >,01n <<B.0m >,10n -<<51 C.0m <,01n << D.0m <,10n -<<52 17. 数列{}n a 是公差不为0的等差数列,n S 为其前n 项和.若对任意的53 n N *∈,有3n S S ≥,则65a a 的值不可能为( ) 54 A.43 B.32 C.53D.2 55 18. 已知x ,y 是正实数,则下列式子中能使x y >恒成立的是( )56 A.21x y y x +>+ B.112x y y x +>+ C.21x y y x ->- D.112x y y x ->- 57二 填空题(每空3分) 5819. 圆22(3)1x y -+=的圆心坐标是_______,半径长为59_______. 6020. 如图,设边长为4的正方形为第1个正方形,将其各边61相邻的中点相连, 得到第2个正方形,再将第2个正方形各62边相邻的中点相连,得到第3个正方形,依此类推,则第6个正方形的面积为____ 63__. 646521. 已知lg lg lg()a b a b -=-,则实数a 的取值范围是_______.66 22. 已知动点P 在直线:22l x y +=上,过点P 作互相垂直的直线PA ,PB 分67别交x 轴、y 轴于A 、B 两点,M 为线段AB 的中点,O 为坐标原点,则OM OP⋅68的最小值为_______. 69三 解答题70 23. (本题10分)已知函数13()sin cos 2f x x x =+,x R ∈. 71(Ⅰ)求()6f π的值;(Ⅱ)求函数()f x 的最大值,并求出取到最大值时x 的72集合. 737475767778798081828324.(10分)如图,直线l 不与坐标轴垂直,且与抛物线2:C y x =有且只有一84个公共点P . 85(Ⅰ)当点P 的坐标为(1,1)时,求直线l 的方程;86 (Ⅱ)设直线l 与y 轴的交点为R ,过点R 且与直线l 垂直的直线m 交抛物线C 87于A ,B 两点.当2RA RB RP ⋅=时,求点P 的坐标. 888990919293949596979899100101102 24. (11分)设函数2()3()f x ax x a =-+,其中a R ∈.103 (Ⅰ)当1a =时,求函数()f x 的值域;104 (Ⅱ)若对任意[,1]x a a ∈+,恒有()1f x ≥-,求实数a 的取值范围. 105106107108109110111112113114115116117 2018年6月浙江省数学学考试卷答案118 一 选择题119 1.B 2.A 3.C 4.D 5.A 6.A 7.B 8.C 9.B 10.A 120 11.D 12.C121 13.D 14.D 15.C 16.C 17.A 18.B122二 填空题123 19.(3,0);1. 20, 12. 21. [4,)+∞. 22. 25. 124 三 解答题125 23解答:(Ⅰ)1313()sin cos 16262644f πππ=+=+=.126 (Ⅱ)因为()cossin sin cos sin()333f x x x x πππ=+=+,所以,函数()f x 的最大127 值为1,当232x k πππ+=+,即2()6x k k Z ππ=+∈时,()f x 取到最大值,所以,128取到最大值时x 的集合为{|2,}6x x k k Z ππ=+∈.129 24.答案:(Ⅰ)210x y -+=;(Ⅱ)11(,)42±. 130解答: 131(Ⅰ)设直线l 的斜率为(0)k k ≠,则l 的方程为1321(1)y k x -=-,联立方程组21(1)y k x y x -=-⎧⎨=⎩,消去x ,得133210ky y k -+-=,由已知可得14(1)0k k ∆=--=,解得12k =,故,所求直线l 的134方程为210x y -+=.135 (Ⅱ)设点P 的坐标为2(,)t t ,直线l 的斜率为(0)k k ≠,则l 的方程为1362()y t k x t -=-,联立方程组22()y t k x t y x ⎧-=-⎪⎨=⎪⎩,消去x ,得220ky y t kt -+-=,137由已知可得214()0k t kt ∆=--=,得1(0)2k t t =≠,所以,点R 的纵坐标22t t kt -=,138从而,点R 的纵坐标为(0,)2t ,由m l ⊥可知,直线m 的斜率为2t -,所以,直线139m 的方程为22t y tx =-+.设11(,)A x y ,22(,)B x y ,将直线m 的方程代入2y x =,140 得22224(21)04t t x t x -++=, 141所以2242(21)4410t t t ∆=+-=+>,12116x x =,又1RA =,1422RB =,24214RP t t =+,由2RA RB RP ⋅=,得242121(14)4t x x t t +=+,143 即24211(14)164t t t +=+,解得12t =±,所以,点P 的坐标为11(,)42±. 144 25.解答:145 (Ⅰ)当1a =时,2251,0()1,0x x x f x x x x ⎧---≤⎪=⎨-+->⎪⎩, 146(ⅰ)当0x ≤时,2521()()24f x x =-++,此时21()(,]4f x ∈-∞; 147 (ⅱ)当0x >时,213()()24f x x =---,此时3()(,]4f x ∈-∞-, 148由(ⅰ)(ⅱ),得()f x 的值域为21(,]4-∞. 149 (Ⅱ)因为对任意[,1]x a a ∈+,恒有()1f x ≥-,所以()1(1)1f a f a ≥-⎧⎨+≥-⎩,即150 2223413(1)(21)1a a a a a ⎧-≥-⎪⎨+-+≥-⎪⎩,解得10a -≤≤. 151 下面证明,当[1,0]a ∈-,对任意[,1]x a a ∈+,恒有()1f x ≥-, 152 (ⅰ)当0a x ≤≤时,22()f x x ax a =-+-,2()(0)1f a f a ==-≥-,故153()min{(),(0)}1f x f a f ≥≥-成立;154 (ⅱ)当01x a ≤≤+时,22()5f x x ax a =---,(1)1f a +≥-,(0)1f ≥-,故155156()min{(1),(0)}1f x f a f≥+≥-成立.157由此,对任意[,1]f x≥-.∈+,恒有()1x a a所以,实数a的取值范围为[1,0]158-.159160。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年6月浙江省数学学考试题
一 选择题(每小题3分,共54分)
1. 已知集合{1,2}A =,{2,3}B =,则A B =I ( )
A .{1} B.{2} C.{1,2} D.{1,2,3}
2. 函数2log (1)y x =+的定义域是( )
A.(1,)-+∞
B.[1,)-+∞
C.(0,)+∞
D.[0,)+∞
3. 设R α∈,则sin()2π
α-=( )
A.sin α
B.sin α-
C.cos α
D.cos α-
4. 将一个球的半径扩大到原来的2倍,则它的体积扩大到原来的( )
A.2倍
B.4倍
C.6倍
D.8倍
5. 双曲线22
1169
x y -=的焦点坐标是( ) A.(5,0)-,(5,0) B.(0,5)-,(0,5)
C.(0)
,
D.(0,
,
6. 已知向量(,1)a x =r ,(2,3)b =-r ,若//a b r r ,则实数x 的值是( ) A.23- B.23 C.32- D.32
7. 设实数x ,y 满足0230
x y x y -≥⎧⎨+-≤⎩,则x y +的最大值为( )
A.1
B.2
C.3
D.4
8. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知45B =o ,30C =o ,1c =, 则b =( )
A.2
B.
9. 已知直线l ,m 和平面α,m α⊂,则“l m ⊥”是“l α⊥”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
10. 要得到函数()sin(2)4f x x π=-
的图象,只需将函数()sin 2g x x =的图象( ) A.向右平移8π个单位 B.向左平移8
π个单位 C.向右平移4π个单位 D.向左平移4
π个单位 11. 若关于x 的不等式2x m n -<的解集为(,)αβ,则βα-的值( )
A.与m 有关,且与n 有关
B.与m 有关,但与n 无关
C.与m 无关,且与n 无关
D.与m 无关,但与n 有关
12. 在如图所示的几何体中,正方形DCEF 与梯形 ABCD 所在的平面互相垂直,N ,6AB =,2AD DC ==
,BC =,则该几何体的正视图为( )
A B C D
13. 在第12题的几何体中,二面角E AB C --的正切值为( )
A.
B. C.1
D.
14. 如图,A ,B 分别为椭圆22
:1(0)x y C a b a b
+=>>的右顶点和上顶点,O 为坐标原点,E 为线段AB 的中点,H 为O 在AB 上的射影,若OE 平分HOA ∠,则该椭圆的离心率为( )
A. 13
B.3
C.23
D.3
15. 三棱柱各面所在平面将空间分为( )
A.14部分
B.18部分
C.21部分
D.24部分
16. 函数2()()x n m f x e
-=(其中e 为自然对数的底数)的图象如图所示,则( )
A. 0m >,01n <<
B.0m >,10n -<<
C.0m <,01n <<
D.0m <,10n -<<
17. 数列{}n a 是公差不为0的等差数列,n S 为其前n 项和.若对任意的n N *∈,有3n S S ≥,
则65
a a 的值不可能为( ) A.43 B.32 C.53
D.2 18. 已知x ,y 是正实数,则下列式子中能使x y >恒成立的是( ) A.21x y y x +
>+ B.112x y y x +>+ C.21x y y x ->- D.112x y y x
->- 二 填空题(每空3分)
19. 圆22
(3)1x y -+=的圆心坐标是_______,半径长为_______.
20. 如图,设边长为4的正方形为第1个正方形,将其各边相邻的中点相连, 得到第2个正方形,再将第2个正方形各边相邻的中点相连,得到第3个正方形,依此类推,则第6个正方形的面积为____ __.
21. 已知lg lg lg()a b a b -=-,则实数a 的取值范围是_______.
22. 已知动点P 在直线:22l x y +=上,过点P 作互相垂直的直线PA ,PB 分别交x 轴、y 轴于A 、B 两点,
M 为线段AB 的中点,O 为坐标原点,则OM OP ⋅u u u u r u u u r 的最小值为_______. 三 解答题
23. (本题10
分)已知函数1()sin cos 22
f x x x =+,x R ∈. (Ⅰ)求()6
f π
的值;(Ⅱ)求函数()f x 的最大值,并求出取到最大值时x 的集合.
24.(10分)如图,直线l 不与坐标轴垂直,且与抛物线2
:C y x =有且只有一个公共点P .
(Ⅰ)当点P 的坐标为(1,1)时,求直线l 的方程;
(Ⅱ)设直线l 与y 轴的交点为R ,过点R 且与直线l 垂直的直线m 交抛物线C 于A ,B 两点.当2
RA RB RP ⋅=时,求点P 的坐标.
24. (11分)设函数2()3()f x ax x a =-+,其中a R ∈.
(Ⅰ)当1a =时,求函数()f x 的值域;
(Ⅱ)若对任意[,1]x a a ∈+,恒有()1f x ≥-,求实数a 的取值范围.
2018年6月浙江省数学学考试卷答案
一 选择题
二 填空题
19.(3,0);1. 20,
12. 21. [4,)+∞. 22. 25. 三 解答题
23解答:(Ⅰ)113()sin cos 16262644f π
ππ=+=+=.
(Ⅱ)因为()cos
sin sin cos sin()333f x x x x πππ=+=+,所以,函数()f x 的最大值为1,当232x k π
π
π+=+,即2()6x k k Z π
π=+
∈时,()f x 取到最大值,所以,取到最大值时x 的集合为{|2,}6x x k k Z π
π=+∈.
24.答案:(Ⅰ)210x y -+=;(Ⅱ)1
1(,)42±.
解答:
(Ⅰ)设直线l 的斜率为(0)k k ≠,则l 的方程为1(1)y k x -=-,联立方程组
21(1)y k x y x
-=-⎧⎨=⎩,消去x ,得210ky y k -+-=,由已知可得14(1)0k k ∆=--=,解得12
k =,故,所求直线l 的方程为210x y -+=. (Ⅱ)设点P 的坐标为2(,)t t ,直线l 的斜率为(0)k k ≠,则l 的方程为2()y t k x t -=-,
联立方程组22()y t k x t y x
⎧-=-⎪⎨=⎪⎩,消去x ,得220ky y t kt -+-=,由已知可得214()0k t kt ∆=--=,得1(0)2k t t =
≠,所以,点R 的纵坐标22
t t kt -=,从而,点R 的纵坐标为(0,)2t ,由m l ⊥可知,直线m 的斜率为2t -,所以,直线m 的方程为22t y tx =-+.设11(,)A x y ,22(,)B x y ,将直线m 的方程代入2y x =,得2
222
4(21)04t t x t x -++=,
所以2242(21)4410t t t ∆=+-=+>,12116
x x =,又1RA =,
2RB =,24214RP t t =+,由2RA RB RP ⋅=,得242121(14)4
t x x t t +=+,
即24211(14)164t t t +=+,解得12t =±,所以,点P 的坐标为11(,)42
±. 25.解答:
(Ⅰ)当1a =时,2251,0()1,0
x x x f x x x x ⎧---≤⎪=⎨-+->⎪⎩, (ⅰ)当0x ≤时,2521()()24f x x =-++,此时21()(,]4
f x ∈-∞; (ⅱ)当0x >时,213()()24f x x =---,此时3()(,]4
f x ∈-∞-, 由(ⅰ)(ⅱ),得()f x 的值域为21(,]4-∞. (Ⅱ)因为对任意[,1]x a a ∈+,恒有()1f x ≥-,所以()1(1)1
f a f a ≥-⎧⎨
+≥-⎩,即2223413(1)(21)1a a a a a ⎧-≥-⎪⎨+-+≥-⎪⎩,解得10a -≤≤. 下面证明,当[1,0]a ∈-,对任意[,1]x a a ∈+,恒有()1f x ≥-,
(ⅰ)当0a x ≤≤时,22()f x x ax a =-+-,2
()(0)1f a f a ==-≥-,故()min{(),(0)}1f x f a f ≥≥-成立;
(ⅱ)当01x a ≤≤+时,22
()5f x x ax a =---,(1)1f a +≥-,(0)1f ≥-,故()min{(1),(0)}1f x f a f ≥+≥-成立.
由此,对任意[,1]x a a ∈+,恒有()1f x ≥-.
所以,实数a 的取值范围为[1,0]-.。