(完整版)传热学知识点总结

合集下载

传热学知识整理1-4章

传热学知识整理1-4章

绪论一、概念1. 传热学: 研究热量传递规律的科学。

2. 热量传递的基本方式: 热传导、热对流、热辐射。

3. 热传导(导热): 物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。

(纯粹的导热只能发生在不透明的固体之中。

)4. 热流密度:通过单位面积的热流量(W/m2)。

5.热对流: 由于流体各部分之间发生相对位移而产生的热量传递现象。

热对流只发生在流体之中, 并伴随有导热现象。

6. 自然对流: 由于流体密度差引起的相对运功c7. 强制对流: 出于机械作用或其他压差作用引起的相对运动。

8. 对流换热:流体流过固体壁面时, 由于对流和导热的联合作用, 使流体与固体壁面间产生热量传递的过程。

9. 辐射: 物体通过电磁波传播能量的方式。

10.热辐射: 由于热的原因, 物体的内能转变成电磁波的能量而进行的辐射过程。

11. 辐射换热:不直接接触的物体之间, 出于各自辐射与吸收的综合结果所产生的热量传递现象。

12. 传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。

13.传热系数: 表征传热过程强烈程度的标尺, 数值上等于冷热流体温差1时所产生的热流密度。

14. 单位面积上的传热热阻:单位面积上的导热热阻: 。

单位面积上的对流换热热阻:对比串联热阻大小就可以找到强化传热的主要环节。

15. 导热系数是表征材料导热性能优劣的系数, 是一种物性参数, 不同材料的导热系数的数值不同, 即使是同一种材料, 其值还与温度等参数有关。

对于各向异性的材料, 还与方向有关。

常温下部分物质导热系数: 银: 427;纯铜: 398;纯铝: 236;普通钢: 30-50;水: 0.599;空气: 0.0259;保温材料: <0.14;水垢: 1-3;烟垢: 0.1-0.3。

16. 表面换热系数不是物性参数, 它与流体物性参数、流动状态、换热表面的形状、大小和布置等因素都有关。

17. 稳态传热过程(定常过程):物体中各点温度不随时间而变。

传热学基本知识

传热学基本知识

导热分为两类
稳定导热:温度不随时间而变化的导热 不稳定导热:温度随时间而变化的导热
知识回顾
1
传热学基本知识
热传导
2、傅里叶导热定律
热传导的速率与垂直于热流方向的表面积成正比,与壁面两侧的温差成正比,与壁厚成反比。
QAt1t2
q
Q A
t
Q
t
t R
A
Q 导热量,传热速率 , W;
q 热流密度,W m2
2)流速的影响 流体流速增高时,对流传热系数就大。
3)流体的物理性质对给热系数的影响 导热系数、比热容c、密度越大,动力粘度越小,对流传 热系数越大
1
传热学基本知识
热对流
2)流体有相变发生时
蒸汽的冷凝 液体的沸腾
膜状冷凝 滴状冷凝(传热系数大)
自然对流
泡状沸腾或泡核沸腾(传热系数大)
膜状沸腾
1
蒸汽冷凝时的对流传热
传热学基本知识
热传导
4、导热计算
1)单层平壁的稳定热传导
计算公式:
Q A t
Q t R
热阻:
R A
当壁面两侧的温度不等时,且热量只沿垂直 于壁面的方向发生变化

q t
1
传热学基本知识
热传导
4、导热计算
2)多层平壁的稳定热传导
多层平壁是指由几层不同厚度、不同导热系数的材料组成 且其间接触良好的平壁
Q=qm热r热 Q=qm冷r冷 此法仅适于有相变过程
三、平均温度差
用传热速率方程式计算换热器的传 热速率时,因传热面各部位的传热温 度差不同,必须算出平均传热温度差 ⊿t均代替⊿t,
QKAt均
1
1、恒温传热时的平均温度差

(完整版)传热学知识点总结

(完整版)传热学知识点总结

Φ-=BA c t t R 1211k R h h δλ=++传热学与工程热力学的关系:a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律,传热学研究过程和非平衡态热量传递规律。

b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。

c 传热学以热力学第一定律和第二定律为基础。

传热学研究内容传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。

热传导a 必须有温差b 直接接触c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移d 没有能量形式的转化热对流a 必须有流体的宏观运动,必须有温差;b 对流换热既有对流,也有导热;c 流体与壁面必须直接接触;d 没有热量形式之间的转化。

热辐射:a 不需要物体直接接触,且在真空中辐射能的传递最有效。

b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。

c .只要温度大于零就有.........能量..辐射。

...d .物体的...辐射能力与其温度性质..........有关。

...传热热阻与欧姆定律在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2)第二章温度场:描述了各个时刻....物体内所有各点....的温度分布。

稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变非稳态温度场:工作条件变动的温度场,温度分布随时间而变。

等温面:温度场中同一瞬间相同各点连成的面等温线:在任何一个二维的截面上等温面表现为肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0之比接触热阻Rc :壁与壁之间真正完全接触,增加了附加的传递阻力三类边界条件第一类:规定了边界上的温度值第二类:规定了边界上的热流密度值第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度.....。

传热学知识点总结

传热学知识点总结

传热学知识点总结本文将围绕传热学的基本概念、传热方式、传热方程、传热实验和应用等方面进行详细的介绍和总结,以便读者更好地了解传热学的相关知识。

一、传热学的基本概念1. 热量传递热量传递是指物体内部或物体之间由于温度差异而产生的热量的传递过程。

热量的传递方式主要有传导、对流和辐射三种。

2. 传热方程传热方程描述了物体内部或物体之间热量传递的数学关系,是传热学的基础理论。

传热方程一般包括传热率、温度差和传热面积等参数,可以用来计算热量传递的速率和大小。

3. 传热系数传热系数是描述物体材料对热量传递率影响的重要参数,通常用符号h表示。

在物质传热过程中,传热系数的大小直接影响热量的传递速率。

4. 传热表面积传热表面积是指在热量传递过程中热量流经的表面积,是计算热传递速率的重要参数。

传热表面积的大小与物体的形状和大小有关,也与传热方式和传热系数有关。

5. 热传导热传导是一种物质内部热量传递的方式,指的是热量通过物质内部原子、分子之间相互作用的传递过程。

热传导是传热学的基本概念之一。

6. 热对流热对流是一种物体表面热量传递的方式,指的是热量通过流体传递到物体表面,然后再由物体表面传递到其它介质的传热过程。

7. 热辐射热辐射是一种通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。

热辐射是传热学的另一个基本概念之一。

二、传热方式1. 传导传热传导传热是指热量通过物质内部的原子、分子的直接作用而传递的方式。

在传导传热过程中,热量的传递是从高温区向低温区进行的,其传热速率与温度差和物质的传热系数有关。

2. 对流传热对流传热是指流体传热传递的方式,包括自然对流和强制对流两种。

在对流传热过程中,流体的流动是热量传递的主要形式,其传热速率与流体的流速、温度差和传热面积有关。

3. 辐射传热辐射传热是通过电磁波传递热量的方式,是物体之间没有接触的情况下进行热量传递的重要方式。

在辐射传热过程中,热量的传递不依赖于介质,而是通过电磁波的辐射进行的。

传热学复习资料(全)

传热学复习资料(全)

传热学复习资料(全)0.2.1、导热(热传导) 1 、概念定义:物体各部分之间不发⽣相对位移或不同物体直接接触时,依靠分⼦、原⼦及⾃由电⼦等微观粒⼦的热运动⽽产⽣的热量传递称导热。

如:固体与固体之间及固体内部的热量传递。

3、导热的基本规1 )傅⽴叶定律 1822 年,法国数学家如图所⽰的两个表⾯分别维持均匀恒定温度的平板,是个⼀维导热问题。

考察x ⽅向上任意⼀个厚度为dx 的微元层律根据傅⾥叶定律,单位时间内通过该层的热流量与温度变化率及平板⾯积A 成正⽐,即式中是⽐例系数,称为热导率,⼜称导热系数,负号表⽰热量传递的⽅向与温度升⾼的⽅向式中是⽐例系数,称为热导率,⼜称导热系数,负号表⽰热量传递的⽅向与温度升⾼的⽅向相反式中是⽐例系数,称为热导率,⼜称导热系数,负号表⽰热量传递的⽅向与温度升⾼的⽅向相反。

2 )热流量单位时间内通过某⼀给定⾯积的热量称为热流量,记为,单位 w 。

3 )热流密度单位时间内通过单位⾯积的热量称为热流密度,记为 q ,单位 w/ ㎡。

当物体的温度仅在 x ⽅向发⽣变化时,按傅⽴叶定律,热流密度的表达式为:说明:傅⽴叶定律⼜称导热基本定律,式(1-1)、(1-2)是⼀维稳态导热时傅⽴叶定律的数学表达式。

通过分析可知:(1)当温度 t 沿 x ⽅向增加时,>0⽽ q <0,说明此时热量沿 x 减⼩的⽅向传递;(2)反之,当 <0 时, q > 0 ,说明热量沿 x 增加的⽅向传递。

4 )导热系数λ表征材料导热性能优劣的参数,是⼀种物性参数,单位: w/(m ·℃ )。

不同材料的导热系数值不同,即使同⼀种材料导热系数值与温度等因素有关。

5) ⼀维稳态导热及其导热热阻如图1-3所⽰,稳态 ? q = const ,于是积分Fourier 定律有:dxdt Aλ-=Φ⽓体液体⾮⾦属固体⾦属λλλλ>>>导热热阻,K/W 单位⾯积导热热阻,m2· K/W 0.2.2、热对流1 、基本概念1) 热对流:流体中(⽓体或液体)温度不同的各部分之间,由于发⽣相对的宏观运动⽽把热量由⼀处传递到另⼀处的现象。

传热学基本知识总结

传热学基本知识总结

传热学基本知识总结传热学是研究热能在物质中传递的科学,是物体内部的热平衡和热不平衡的原因和规律的研究。

传热学的基本知识涵盖了传热的基本概念、传热方式、传热导率与传热过程的数学描述等内容。

以下是对传热学基本知识的总结。

一、传热的基本概念1.温度:物体内部分子运动的程度的度量。

温度高低决定了热能的传递方向。

2.热量:物体之间由于温度差异而传递的能量。

热量沿温度梯度从高温区向低温区传递。

3.热平衡:物体内部各点的温度相等,不存在热量传递的状态。

4.热不平衡:物体内部存在温度差异,热量从高温区传递到低温区。

二、传热方式1.热传导:固体内部的分子传递热量的方式,通过分子的碰撞传递热量。

2.对流传热:液体或气体中,由于温度差异而产生的流动传递热量的方式。

3.辐射传热:热能通过电磁波的传播传递热量的方式,无需介质参与。

三、热导率热导率是物体传导热量的能力,用导热系数λ来衡量。

热导率取决于物质本身的性质,与物质的材料、温度有关。

热导率越大,物体传热能力越强。

四、传热数学描述1.热量传递方程:描述物体内部传热过程的数学方程,根据物体内部各点之间的温度差和传热方式的不同可以分为热传导方程、热对流方程和热辐射方程。

2.热导率公式:用来计算物体传热量的数学公式,通常与热导率、温度差、传热面积等物理量相关。

五、传热实例1.热传导:例如铁棒的两端被加热,热量通过铁棒内部分子的传递向另一端传递。

2.对流传热:例如空气中的对流传热,空气受热后变热上升,形成了对流传热。

3.辐射传热:太阳的辐射热量通过空间传递到地球表面,为地球提供能量。

在工程中,传热学常常运用于热工系统的设计和优化。

工程师可以通过对传热方式的研究和对材料热导率的了解,提高传热效率,减少能量损耗。

例如,在电子设备的设计中,通过优化散热结构和选择高热导率的材料,可以有效降低设备的温度,提高设备的工作效率和寿命。

传热学也广泛应用于暖通空调系统、汽车引擎、核反应堆等领域。

(完整word版)传热学基本概念知识点,推荐文档

(完整word版)传热学基本概念知识点,推荐文档

传热学基本概念知识点1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率2集总参数法:忽略物体内部导热热阻的简化分析方法3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值5效能:表示换热器的实际换热效果与最大可能的换热效果之比6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。

对流仅能发生在流体中,而且必然伴随有导热现象。

对流两大类:自然对流与强制对流。

影响换热系数因素:流体的物性,换热表面的形状与布置,流速7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的?蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。

不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。

蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。

因此,不凝结气体层的存在增加了传递过程的阻力。

8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。

首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。

主要分为两个阶段:非正规状况阶段和正规状况阶段9灰体有什么主要特征?灰体的吸收率与哪些因素有关?灰体的主要特征是光谱吸收比与波长无关。

灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。

10气体与一般固体比较其辐射特性有什么主要差别?气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别?平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。

传热学总结

传热学总结

传热学总结1.热流量:单位时间内通过某一给定面积的热量。

2.热流密度:单位面积的热流密度。

3.热传导:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热能传递。

4.热对流:由物体的宏观运动和冷热流体的混合引起的流体各部分之间的相对位移引起的传热过程。

5.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合作用的热量传递过程。

6.传热系数:单位传热面积上冷热流体温差为1℃时的热流值。

7.辐射传热:物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递。

8.传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程。

1.温度场:物体某一时刻各点温度分布的总称。

它是空间和时间坐标的函数。

2.等温面(线):在温度场中,在同一时刻由相同温度的点连接的表面(或线)。

3.温度梯度:等温表面法向上的最大温度变化率。

4.稳态导热:物体中各点温度不随时间而改变的导热过程。

5.非稳态热传导:物体中每个点的温度随时间变化的热传导过程。

6.傅里叶导热定律:在导热过程中,单位时间内通过给定截面的导热量,正比于垂直于该截面方向上的温度变化率和截面面积,而热量传递的方向与温度升高的方向相反。

7.热导系数:物性参数,热流密度矢量与温度梯度的比值,数值上等单位温度梯度作用下产生的热流密度矢量的模。

8.保温材料:平均温度不高于350℃时λ≤ 0.12W/(MK)。

9.定解条件(单值性条件):使微分方程获得适合某一特定问题解的附加条件,包括初始条件和边界条件。

初始条件:初始时刻的温度分布。

第一类边界条件:物体边界上的温度。

第二类边界条件:物体边界上的热流密度。

第三类边界条件:物体边界与周围流体间的表面传热系数h及周围流体的温度tf。

10.肋效率:肋的实际散热量与假设整个肋表面处于肋底温度时的散热量之比。

肋面总效率:肋侧表面实际散热量与肋侧壁温均为肋基温度的理想散热量之比。

传热学 总结

传热学 总结

第一章绪论1.热流量:单位时间内所传递的热量。

2.热流密度:单位传热面上的热流量。

3.导热:物体粒子微观的热运动而产生的热量传递现象。

4.对流传热:流体流过固体壁时的热传递过程。

热对流:流体个部分之间发生宏观相对位移级领热流体的相互掺混。

5.辐射传热:由于热运动产生的,以电磁波形式传递能量的现象。

6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。

10.总传热系数:总传热过程中热量传递能力的大小。

数值上表示传热温差为1K时,单位传热面积在单位时间内的传热量。

11.稳态传热过程:物体中各点温度不随时间而改变的热量传递过程。

第二章热传导1.温度场:某一瞬间物体内各点温度分布的总称。

2.等温面(线):由物体内温度相同的点所连成的面(或线)。

3.温度梯度:在等温面法线方向上最大温度变化率。

4.导热系数:物性参数,热流密度矢量与温度降度的比值,数值上等于1 K/m的温度梯度作用下产生的热流密度。

导热系数是材料固有的热物理性质,表示物质导热能力的大小。

5.导温系数:材料传播温度变化能力大小的指标。

材料的导热能力与吸热能力之比导温系数不但与材料的导热系数有关,还与材料的热容量(或储热能力)也有关;从物理意义看,导热系数表征材料导热能力的强弱,导温系数表征材料传播温度变化的能力的大小,两者都是物性参数。

6.傅里叶定律:在各向同性均质的导热物体中,通过某导热面积的热流密度正比于该导热面法向温度变化率。

7.保温(隔热)材料:λ≤0.12 W/(m·K)(平均温度不高于350℃时)的材料。

8.接触热阻:材料表面由于存在一定的粗糙度使相接触的表面之间存在间隙,给导热过程带来额外热阻。

使两个导热壁面之间出现温差。

接触热阻主要与表面粗糙度、表面所受压力、材料硬度、温度及周围介质的物性等有关,因此可以从这些方面考虑减少接触热阻的方法,此外,也可在固体接触面之间衬以导热系数大的铜箔或铝箔等以减少接触热阻。

传热学知识点概念总结

传热学知识点概念总结

传热学知识点概念总结传热学是物理学的一个重要分支,研究物质内部或不同物质之间的热量传递现象。

传热学在工程领域中有着广泛的应用,能够帮助我们有效地控制和利用热量。

传热学主要包括传导、对流和辐射这三种传热方式。

下面将对这三种传热方式的概念和主要知识点进行总结。

1.传导传导是物质内部热量传递的一种方式,其基本原理是分子间的碰撞和能量传递。

传导的速率受到物质的导热性质和温度梯度的影响。

-热传导定律:热传导定律是研究传导过程中温度梯度与热流密度(传导热通量)之间的关系。

常用的热传导定律有傅里叶热传导定律和傅科定律。

-导热性:导热性是物质传导能力的度量,常用的导热性指标是热导率或导热系数。

不同物质的导热性质会影响传导速率。

2.对流对流是液体或气体中热量传递的方式,其基本原理是通过流体的对流运动传递热量。

对流通常分为自然对流和强制对流两种方式。

-对流换热公式:对流换热公式是研究对流传热速率的表达式。

常用的对流换热公式有纳塔数(Nu),贝奥数(Bo)和雷诺数(Re)等。

-边界层:对流过程中,流体与物体表面之间形成了一个边界层,边界层内的速度和温度分布与边界层外的流体有明显区别。

3.辐射辐射是通过电磁波传递热量的一种方式,其基本原理是由热源发出热辐射,然后被其他物体吸收。

辐射可以在真空中传播,无需传热介质。

-辐射传热公式:辐射传热公式是研究辐射传热速率的表达式。

斯特藩-玻尔兹曼定律和维恩位移定律是辐射传热的重要基础理论。

-黑体辐射:黑体是指能够吸收所有入射辐射的物体,它具有良好的辐射能力。

黑体辐射是研究辐射传热的基准。

此外,还有一些其他的传热学知识点值得关注和研究:-热导方程:热导方程是描述传导传热过程的偏微分方程,可用于求解物体内部的温度分布。

-热传导与传热系数:热传导与传热系数是研究传导传热速率的重要指标,反映了物质对传热的阻力。

-热传递:热传递是研究热量从一个物体传递到另一个物体的过程。

热传递包括传导、对流和辐射这三种方式的综合作用。

传热学知识点

传热学知识点

传热学1.热传导方式传热在固体液体气体中发生2.传热方式为热传导,热对流,热辐射3.等温面的特点:(1) 温度不同的等温面或线彼此不能相交;(2) 在连续的温度场中,等温面不会中断(3) 若温度间隔相等时,等温线的疏密可反映出不同区域导热热流密度(单位面积的热流量)的大小。

4.热量方向与温度梯度方向相反5.热量传递方向不止能从高温处传向低温处6.复合传热是指既有对流换热,又有辐射换热的换热现象7.热传导1.热传导定义:物体内部或相互接触的表面间,由于分子、原子及自由电子等微观粒子的热运动及相互碰撞而产生的热量传递现象称为热传导( 简称导热)2.特点:物质各部分不会发生相对位移3.热导率特点:1)对于同种物质,其固态的热导率值最大,气态的热导率值最小2)一般金属的热导率大于非金属的热导率3)导电性能好的金属,其导热性能也好4)纯金属的热导率大于它的合金5)对于各向异性物体,热导率的数值与方向有关5)对于同种物质,其晶体的热导率要大于非晶体的热导率热对流1.热对流:指流体的宏观运动使温度不同的流体相对位移而产生的热量传递的现象,显然,热对流只能发生在流体之中,而且必然伴随有微观微粒热运动产生的导热。

2.流动原因:一自然对流:温度不同引起密度差,轻者上浮,重者下沉;二强制对流:风机、泵或搅拌等外力所致流体质点的运动。

3.强制对流引起的热量传递远大于自然对流热量传递4.热辐射1.热射线主要有有红外线,可见光2.热辐射特点:(1) 热辐射总是伴随着物体的内热能与辐射能这两种能量形式之间的相互转化。

(2) 热辐射不依靠中间媒介,可以在真空中传播因此,又称其为非接触性传热。

(3) 物体间以热辐射的方式进行的热量传递是双向的。

即不仅高温物体向低温物体辐射热能,而且低温物体向高温物体辐射热能。

3.布鲁布鲁对流换热1.对流换热:流体与固体表面之间的热量传递是热对流和导热两种基本传热方式共同作用,不是基本传热方式2.特点:(1) 导热与热对流同时存在的热传递过程(2) 必须有直接接触(流体与壁面)和宏观运动;也必须有温差(3) 由于流体粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层3.对流换热是指流体流经固体时流体与固体表面之间的热量传递现象4.圆管壁稳定传热时,温度呈对数曲线分布5.某管道采用两种不同的材料组成保温层,如果内外保温层厚度相等,将导热系数小的材料放置在外层,保温效果更好(错误)6.提高对流传热系数的途径:①使流动从层流转变为湍流②增加流速③增大管径④选用螺纹管,短管,弯管(5). 在管外流动,应加折流板7.沸腾三个阶段:自然对流、核状沸腾、膜状沸腾,工业上采用核状沸腾8.边界层的分离增强了流体的扰动,h 增大/ 流体在圆管外的换热,为避免层流,底层对对流换热的影响会设置障碍物,促使边界层的分离形成,为增强传热效果9.空气在圆管内做湍流运动,当其他条件不变,空气流速提高一倍时,对流传热h为原来对流传热系数的1.74倍10.某管道采用两种不同的材料组成保温层,如果内外保温层厚度相等,将导数系数小的材料放置在外层,保温效果更好(错误)11.蒸汽冷凝时,定期排放不凝性气体。

(完整版)传热学知识点

(完整版)传热学知识点

(完整版)传热学知识点传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2. 导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3. 对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。

4 对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。

q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。

a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。

7. 导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差1 度时、每单位壁面面积上、单位时间内所传递的热量。

影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

第一章导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律(导热基本定律):q ' = -k ?dT q ' = -k ?T = -k (i ?T + j ?T + k ?T) x ?dx ?x ?y ?zq ' = -k ?T n ?nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

传热学概念整理

传热学概念整理

传热学第一章、绪论1.导热:物体的各个部分之间不发生相对位移时,依靠分子,原子及自由电子等微观粒子的热运动而产生的热能传递称为热传导,简称导热。

2.热流量:单位时间内通过某一给定面积的热量称为热流量。

3.热流密度:通过单位面积的热流量称为热流密度。

4.热对流:由于流体的宏观运动而引起的流体各部分之间发生相对位移、冷热流体相互掺混所导致的热量传递过程。

5.对流传热:流体流过一个物体表面时流体与物体表面间的热量传递过程。

6.热辐射:因热的原因而发出的辐射的想象称为热辐射。

7.传热系数:传热系数树枝上等于冷热流体见温差℃1=∆t ,传热面积21m A =时的热流量值,是表征传热过程强度的标尺。

8.传热过程:我们将热量由壁面一侧流体通过壁面传递到另一侧流体的过程。

第二章、导热基本定律及稳态导热1.温度场:各个时刻物体中各点温度所组成的集合,又称为温度分布。

2.等温面:温度场中同一瞬间温度相同的各点连成的面。

3.傅里叶定律的文字表达:在导热过程中,单位时间内通过给定截面积的导热量,正比于垂直该界面方向上的温度变化率和截面面积,而热量的传递方向则与温度升高的方向相反。

4.热流线:热流线是一组与等温面处处垂直的的曲线,通过平面上人一点的热流线与改点热流密度矢量相切。

5.内热源:内热源值表示在单位时间内单位体积中产生或消耗的热量。

6.第一类边界条件:规定了边界点上的温度值。

第二类边界条件:规定了边界上的热流密度值。

.第三类边界条件:规定了边界上物体与周围流体间的表面传热系数h 及周围流体的温度ft 7.热扩散率a :ca ρλ=,a 越大,表示物体内部温度扯平的能力越大;a 越大,表示材料中温度变化传播的越迅速。

8.肋片:肋片是依附于基础表面上的扩展表面。

第三章、非稳态导热1.非稳态导热:物体的温度随时间的变化而变化的导热过程称为非稳态导热。

2.非正规状况阶段:温度分布主要受出事温度分布的控制,称为非稳态导热。

(完整版)传热学知识点

(完整版)传热学知识点

传热学主要知识点1. 热量传递的三种基本方式。

热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2. 导热的特点。

a 必须有温差;b 物体直接接触;c 依靠分子、原子及自由电子等微观粒子 热运动而传递热量;d 在引力场下单纯的导热一般只发生在密实的固体中。

3. 对流(热对流)(Convection)的概念。

流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把 热量由一处传递到另一处的现象。

4 对流换热的特点。

当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下 特点:a 导热与热对流同时存在的复杂热传递过程b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差c 壁面处会形成速度梯度很大的边界层5. 牛顿冷却公式的基本表达式及其中各物理量的定义。

q ' = h (t w - t ∞ )(w)= q 'A = Ah (t w - t ∞ )w / m 2h 是对流换热系数单位 w/(m 2 k) q ' 是热流密度(导热速率),单位(W/m 2)是导热量 W6. 热辐射的特点。

a 任何物体,只要温度高于 0 K ,就会不停地向周围空间发出热辐射;b 可以在真空中传播;c 伴随能量形式的转变;d 具有强烈的方向性;e 辐射能与温度和波长均有关;f 发射辐射取决于温度的 4 次方。

7. 导热系数, 表面传热系数和传热系数之间的区别。

导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。

表面传热系数:当流体与壁面温度相差 1 度时、每单位壁面面积上、单位时间内所传递的热量。

影响 h 因素:流速、流体物性、壁面形状大小等传热系数: 是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。

第一章 导热理论基础1 傅立叶定律的基本表达式及其中各物理量的意义。

傅立叶定律(导热基本定律):q ' = -k ∂dT q ' = -k ∇T = -k (i ∂T + j ∂T + k ∂T) x ∂dx ∂x ∂y ∂zq ' = -k ∂T n ∂nT(x,y,z)为标量温度场圆筒壁表面的导热速率 q r= -kA dTdr = -k (2rL ) dT dr垂直导过等温面的热流密度,正比于该处的温度梯度,方向与温度梯度相反。

传热学基本知识

传热学基本知识

导热
导热定义 导热是指热量在物质内部由高温 区域向低温区域传递的过程。
导热方式 主要包括热传导、热对流和热辐 射。
导热基本定律 傅里叶导热定律,表示在单位时 间内通过某一截面的热量与垂直 于该截面的温度变化率及该截面 的面积成正比。
导热系数 描述物质导热性能的参数,其值 越大,物质的导热性能越好。
谢谢您的聆听
THANKS
04
对流换热
对流换热的基本概念
总结词
对流换热是指流体与固体表面之间的热量传递过程,是传热学中的一种基本形 式。
详细描述
对流换热涉及到流体和固体之间的温度差异,当流体流过固体表面时,由于温 差的作用,流体会从固体表面吸收热量或向其释放热量,从而导致热量传递。
对流换热的分类
总结词
根据流体流动的性质和状态,对流换 热可以分为强制对流、自然对流和混 合对流三种类型。
01
辐射定律
02 斯蒂芬-玻尔兹曼定律、普朗克定 律和维恩位移定律等。
辐射系数
描述物质发射和吸收辐射能力的
参数,其值越大,物质发射和吸
03
收辐射的能力越强。
辐射方式
04
包括物体表面之间的辐射、太阳
辐射和红外辐射等。
热传导、对流和辐射的比较
热量传递方式
热传导、对流和辐射是三 种不同的热量传递方式, 它们在热量传递过程中有
三维热传导是指热量在三维空间中传递的过程。
详细描述
三维热传导是最常见的传热现象,发生在固体、液体和气体中。在三维热传导中,热量 在三个方向上传播和扩散,即长度、宽度和高度。三维热传导的数学模型通常采用三维 偏微分方程来描述,需要考虑热量在各个方向上的扩散和传递。三维热传导在工程和自

(完整版)传热学简答题归纳

(完整版)传热学简答题归纳

传热学简答题归纳问题1 冬天,经过在白天太阳底下晒过的棉被,晚上盖起来为什么感到很暖和?并且经过拍打以后,为什么效果更加明显?回答:棉被经过晾晒以后,可使棉花的空隙里进入更多的空气。

而空气在狭小的棉絮空间里的热量传递方式主要是导热,由于空气的导热系数较小,具有良好的保温性能。

而经过拍打的棉被可以让更多的空气进入,因而效果更明显。

问题2 冬天,在相同的室外温度条件下,为什么有风比无风时感到更冷些?回答:假定人体表面温度相同时,人体的散热在有风时相当于强制对流换热,而在无风时属自然对流换热(不考虑热辐射或假定辐射换热量相同时)。

而空气的强制对流换热强度要比自然对流强烈。

因而在有风时从人体带走的热量更多,所以感到更冷一些。

讨论:读者应注意的是人对冷暖感觉的衡量指标是散热量的大小而不是温度的高低,即当人体散热量低时感到热,散热量高时感到冷,经验告诉我们,当人的皮肤散热热流为58W/㎡时感到热,为232W/㎡时感到舒服,为696W/㎡时感到凉快,而大于为928W/㎡时感到冷。

问题3 夏季在维持20℃室内工作,穿单衣感到舒适,而冬季保持在22℃的室内工作时,为什么必须穿绒衣才觉得舒服?回答:首先,冬季和夏季的最大区别是室外温度不同。

夏季室外温度比室内温度高,因此通过墙壁的热量传递方向是由室外传向室内。

而冬季室外气温比室内气温低,通过墙壁的热量传递方向是由室内传向室外。

因此冬季和夏季墙壁内表面温度不同,夏季高而冬季低。

因此,尽管冬季室内温度22℃比夏季略高20℃,但人体在冬季通过辐射与墙壁的散热比夏季高很多。

根据上题人体对冷暖的感受主要是散热量的原理,在冬季散热量大,因此要穿厚一些的绒衣。

问题4 利用同一冰箱储存相同的物质时,试问结霜的冰箱耗电量大还是未结霜的冰箱耗电量大?回答:当其它条件相同时,冰箱的结霜相当于在冰箱蒸发器和冰箱冷冻室(或冷藏室)之间增加了一个附加热阻,因此,要达到相同的制冷室温度,必然要求蒸发器处于更低的温度。

传热知识点总结

传热知识点总结

传热知识点总结一、传热的基本概念1. 热传递方式热传递是指热能从高温物体传递到低温物体的过程。

在自然界中,热传递有三种方式:传导、对流和辐射。

1)传导:是指热量在固体或液体内部通过分子的传递而进行传热的现象。

传导的速度取决于物体的热导率和温度梯度。

2)对流:是指热量通过流体内部的流动而进行传热的现象。

对流传热是一种辐射传热和传导传热的耦合方式。

3)辐射:是指热能在真空和空气中通过电磁波传递而进行传热的现象。

辐射传热不需要介质,能够在真空中进行传递。

2. 热传递规律根据热传递方式的不同,热传递规律也有所不同。

在传导传热中,热流密度与温度梯度成正比;在对流传热中,热流密度与温度差、流体性质和流体速度有关;在辐射传热中,表面辐射率与物体表面性质、温度和波长有关。

3. 热传递计算在工程设计中,通常需要计算物体的传热过程。

传热计算需要考虑传热方式、传热系数、温度梯度等因素,并且可以利用传热方程进行计算。

二、传热的机制1. 传导传热传导传热是通过颗粒内部的分子振动而进行热传递的过程。

传导传热取决于介质的热导率和温度梯度。

传导传热的传热率与温度梯度成正比,与距离成反比,通常可以用傅立叶传热定律进行描述。

2. 对流传热对流传热是通过流体内部的流动而进行热传递的过程。

对流传热的传热率与温度差、流体性质和流体速度有关。

对流传热还与流体的黏度、密度、导热系数等物性参数有关。

3. 辐射传热辐射传热是通过电磁波在真空或空气中进行热传递的过程。

辐射传热的传热率与物体的表面性质、温度和波长有关。

辐射传热的计算通常需要考虑黑体辐射、灰体辐射等因素。

三、传热的数学模型1. 一维传热在一维情况下,传热可以用傅立叶传热方程进行描述。

该方程包括传热导数和传热系数两个物理量,并可以用来描述传导传热、对流传热和辐射传热。

2. 二维传热在二维情况下,传热可以用拉普拉斯传热方程进行描述。

该方程可以用来描述平板、圆柱、球体等形状的传热过程,并可以通过适当的边界条件进行求解。

传热学知识点总结

传热学知识点总结

第一章§1-1 “三个W”§1-2 热量传递的三种基本方式§1-3 传热过程和传热系数要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。

作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。

本章重点:1.传热学研究的基本问题物体内部温度分布的计算方法热量的传递速率增强或削弱热传递速率的方法2.热量传递的三种基本方式(1).导热:依靠微观粒子的热运动而产生的热量传递。

传热学重点研究的是在宏观温差作用下所发生的热量传递。

傅立叶导热公式:(2).对流换热:当流体流过物体表面时所发生的热量传递过程。

牛顿冷却公式:(3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。

由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。

黑体热辐射公式:实际物体热辐射:3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。

最简单的传热过程由三个环节串联组成。

4.传热学研究的基础傅立叶定律能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律四次方定律本章难点1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。

2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。

思考题:1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。

为什么?2.试分析室内暖气片的散热过程。

3.冬天住在新建的居民楼比住旧楼房感觉更冷。

试用传热学观点解释原因。

4.从教材表1-1给出的几种h数值,你可以得到什么结论?5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Φ-=B
A c t t R 1211k R h h δλ=++传热学与工程热力学的关系:
a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律, 传热学研究过程和非平衡态热量传递规律。

b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。

c 传热学以热力学第一定律和第二定律为基础。

传热学研究内容
传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。

热传导
a 必须有温差
b 直接接触
c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移
d 没有能量形式的转化
热对流
a 必须有流体的宏观运动,必须有温差;
b 对流换热既有对流,也有导热;
c 流体与壁面必须直接接触;
d 没有热量形式之间的转化。

热辐射:
a 不需要物体直接接触,且在真空中辐射能的传递最有效。

b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。

c .只要温度大于零就有.........能量..辐射。

...
d .物体的...辐射能力与其温度性质..........有关。

...
传热热阻与欧姆定律
在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2) 第二章 温度场:描述了各个时刻....物体内所有各点....
的温度分布。

稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变
非稳态温度场:工作条件变动的温度场,温度分布随时间而变。

等温面:温度场中同一瞬间相同各点连成的面
等温线:在任何一个二维的截面上等温面表现为
肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....
时的理想散热量ф0 之比 接触热阻 Rc :壁与壁之间真正完全接触,增加了附加的传递阻力 三类边界条件
第一类:规定了边界上的温度值
第二类:规定了边界上的热流密度值
第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度.....。

导热微分方程所依据的基本定理
傅里叶定律和能量守恒定律
傅里叶定律及导热微分方程的适用范围
适用于:热流密度不是很高,过程作用时间足够长,过程发生的空间尺度范围足够大
不适用的:a 当导热物体温度接近0k 时b 当过程作用时间极短时c 当过成发生的空间尺度极小,与微观粒子的平均自由程相接近时
22F l o l a τ==换热时间边界热扰动扩散到面积上所需的时间非正规状况阶段和正规状况阶段
非正规状况阶段:温度分布主要受初始温度分布的控制
正规状况阶段:当过程进行到一定深度时,物体初始温度的分布的影响逐渐消失,此后不同 时刻的温度分布主要受热边界条件的影响。

Bi 数、Fo 数定义及物理意义
Bi 数:固体内部导热热阻与界面上换热热阻之比Bi=&h/入
Fo 数:表征非稳态过程进行深度的无量纲时间。

集中参数法定义及应用范围
答:忽略物体内部导热热阻的简化分析方法称为集中参数发。

当Bi 数很小时可以采用集中
参数法。

第四章
导热问题数值求解的基本思想
把原来在时间、空间坐标系中连续的物理量的场,如导热物体的温度场等,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值
作业4-9
第五章
对流传热的定义和影响因素
流体流经固体时流体与固体表面之间的热量传递现象。

a流体流动的起因b流体有无相变c流体的流动状态d换热表面的几何因素e流体的物理性质
流动边界层:在固体表面附近流体速度发生剧烈变化的薄层称为流动边界层。

热边界层:固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。

普朗特数的基本意义
Pr数表征了流动边界层与热边界层的相对大小。

从传热观点看,为什么暖气片一般放在窗户下面?
答窗户附近的温度较低,容易和暖气产生的热空气产生空气对流,这样室内的温度能较快提升(高温与低温引起的空气对流)
温度同为20摄氏度的水,假设流动速度相同,当你将两只手分别放到水和空气中,为什么感觉不同
尽管水和空气的流速和温度相同,由于水的密度约为空气的一千倍,而动力粘度则相差不大,所以收放入水中的雷诺数要远大于手放入空气中的雷诺数,因此手放入水中的努塞尔数大,另一方面水的传热系数比空气的大。

第六章
相似分析法、量纲分析法
答:相似分析法:物理现象相似的性质;相似准数间的关系;判断相似的充分必要条件量纲分析法:在已知相关物理量的前提下,采用量纲分析获得无量纲量。

相似原理的基本内容
1、物理现象相似的性质;
2、相似准数间的关系;
3、判断相似的充分必要条件
复习题1、9
物理量相似是指两现象在空间相似的前提下,各对应参量在空间的对应点和时间的对应间隔
上互成比例。

Nu:对流换热的强弱。

Pr:流体动量扩散能力和热量扩散能力的相对大小。

Gr:浮升力和粘性力的相对大小反映了自然对流换热的强弱。

第七章
凝结传热:蒸汽遇冷凝结并伴随有相变的对流传热
膜装凝结:凝结液体很好的湿润壁面并在壁面上形成膜,
珠状凝结:当凝结液体不能很好的湿润壁面时,凝结液体在壁面上形成一个个的液珠
大容器沸腾的4个阶段:1自然对流2核态沸腾3过渡沸腾4稳定膜态沸腾
膜状凝结的影响因素和其传热强化
影响因素:1、不凝结气体2、管子排数3、管内冷凝4、蒸汽流速
5、蒸汽过热度
6、液膜过冷度及温度分布的非线性
传热强化:增加尖突物、及时排液、减薄液膜厚度
沸腾传热的影响因素及其强化:
影响因素:1、不凝结气体2、过冷度3、液位高度4、重力加速度
1、管内沸腾6、沸腾表面结构
强化:1、强化大容器沸腾的表面结构2、强化管内沸腾的表面结构内螺纹管, 内肋管
什么是沸腾传热的临界热流密度?当沸腾传热达到临界热流密度时,在什么条件下才会对设备产生危害?为什么?
答:热流密度的峰值Q max被称为临界热流密度。

当临界热流密度一旦超过峰值△t将猛升1000℃,可能导致设备烧毁。

试对水平管外膜装凝结及水平管外膜态沸腾传热的过程异同
第八章
热辐射:由于热的原因而产生的电磁波辐射称为热辐射
辐射力:单位时间内,物体的单位表面积向半球空间发射的所有波长的能量总和
光谱辐射力:单位辐射面积半球空间辐射出去的包含波长λ在内的单位波长间隔内的辐射能定向辐射强度:从黑体单位可见面积发射出去的落到空间任意方向立体角中的能量
普朗特定律:黑体光谱辐射力随波长及温度的变化规律
兰贝特:黑体辐射能量按空间方向的分布规律
韦恩位移定律:给出份额最大的光谱辐射能的波长。

斯特凡-玻尔兹曼定律:描述黑体辐射力的定律
黑体:能够全部吸收各种波长的辐射能的物体叫做黑体
灰体:热辐射分析中,光谱吸收比与波长的无关
光谱发射率:实际物体的光谱辐射力与黑体的光谱辐射力之比
光谱吸收比:物体吸收某一特定波长的辐射能的百分数
第九章
角系数:表面1发出的辐射能中落到表面2的百分数
有效辐射:单位时间
....的总辐射能
....内离开表面单位面积
投入辐射:单位时间内投入到单位面积上的总辐射能
重辐射面
遮热板:插入两个辐射传热表面之间用以削弱辐射传热的薄板
辐射传热的强化和削弱的方法措施:
答:1、控制表面热阻2、控制表面的空间热阻3、使用遮热板
角系数有哪些特性,这些特性的物理背景是什么
答:1、相对性2、完整性3、可加性
1.在两物体处于热平衡时,静辐射换热量为零
2.封闭系统中,任一表面发生的辐射能必全部落在封闭系统各表面上
3.从表面1出发落到表面2上的总能量,等于落到表面2上各部分辐射能之和角系数是一个几何因子是在什么样的前提下得出的
物体表面性质及表面温度均匀,物体辐射服从蓝贝特定律
第十章
传热过程:热量从壁面一侧的流体通过壁面传到另一侧流体的过程
肋化系数:加肋后的总表面积与内测未加肋时的表面积之比。

换热器效能:换热器的实际传热量与最大可能传热量之比
换热器主要类型:1、间壁式2、混合式3、蓄热式
1、顺流式
2、逆流式
3、交叉流式
提高换热器紧凑性的途径
1、减小管径
2、采用板式结构
3、采用各种肋化表面
4、采用丝网状材料
热量传递过程的强化和削弱
1、增大传热系数
2、增大温差
3、面积,遮热板,材料
复习题2、10。

相关文档
最新文档