动态路由协议RIP、OSPF配置
通信系统实验网络路由协议配置实验报告
网络路由协议配置实验报告实验目的1.把握RIP动态路由协议的配置和测试方式。
2.把握OSPF路由协议配置和测试方式。
实验原理动态路由协议动态路由是网络中的路由器之间彼此通信,传递路由信息,利用收到的路由信息更新路由器表的进程。
它能实时地适应网络结构的转变。
若是路由更新信息说明发生了网络转变,路由选择软件就会从头计算路由,并发出新的路由更新信息。
这些信息通过各个网络,引发各路由重视新启动其路由算法,并更新各自的路由表以动态地反映网络拓扑转变。
动态路由适用于网络规模大、网络拓扑复杂的网络。
固然,各类动态路由协议会不同程度地占用网络带宽和CPU资源。
依照是不是在一个自治域内部利用,动态路由协议分为内部网关协议(IGP)和外部网关协议(EGP)。
那个地址的自治域指一个具有统一治理机构、统一路由策略的网络。
自治域内部采纳的路由选择协议称为内部网关协议,经常使用的有RIP、OSPF;外部网关协议要紧用于多个自治域之间的路由选择,经常使用的是BGP和BGP-4。
RIP1RIP1是一种内部网关协议。
RIP1要紧用在利用同类技术与大小适度的网络。
因此通过速度转变不大的接线连接,RIP1比较适用于简单的校园网和区域网,但并非适用于复杂网络的情形。
RIP1特点:1.仅和相邻的路由器互换信息。
若是两个路由器之间的通信不通过另外一个路由器,那么这两个路由器是相邻的。
RIP1协议规定,不相邻的路由器之间不互换信息。
2.路由器互换的信息是当前本路由器所明白的全数信息。
即自己的路由表。
3.按固按时刻互换路由信息,如,每隔30秒,然后路由器依照收到的路由信息更新路由表。
4. RIP1消息通过广播地址进行发送,利用UDP 协议的520端口。
5. RIP1是一种有类路由协议,不支持不持续子网设计。
RIP1的气宇制度:距离确实是通往目的站点所需通过的链路数,取值为1~15,数值16表示无穷大。
RIP2RIP2由RIP1 而来,属于RIP1 协议的补充协议,具有RIP1协议的大体特性。
rip协议与ospf协议
rip协议与ospf协议协议名称:RIP协议与OSPF协议协议概述:RIP(Routing Information Protocol)和OSPF(Open Shortest Path First)是两种常用的动态路由协议,用于在计算机网络中实现路由选择和数据包转发。
本协议旨在详细介绍RIP协议和OSPF协议的定义、特点、工作原理、应用场景以及优缺点。
一、RIP协议1. 定义:RIP协议是一种距离向量路由协议,用于在小型网络中实现动态路由选择。
它通过交换路由信息来确定最佳路径,并使用跳数(hop count)作为度量标准。
2. 特点:- RIP协议使用UDP协议进行路由信息的交换,使用端口号520。
- RIP协议支持最大15跳的路由,超过15跳的路由会被认为是不可达。
- RIP协议每30秒广播一次路由表,以更新网络中的路由信息。
- RIP协议使用跳数作为度量标准,即选择跳数最少的路径作为最佳路径。
3. 工作原理:- RIP协议通过路由器之间的RIP消息交换来更新路由表。
- 路由器会周期性地广播自己的路由表给相邻的路由器,同时接收相邻路由器发送的路由表。
- 路由器根据接收到的路由表更新自己的路由表,并选择最佳路径。
- 当网络拓扑发生变化时,路由器会重新计算路由表。
4. 应用场景:- RIP协议适用于小型网络环境,如家庭网络、办公室网络等。
- 由于RIP协议的简单性和易于配置,它在一些简单的网络中仍然广泛使用。
5. 优缺点:- 优点:RIP协议配置简单,适用于小型网络环境,具有较好的兼容性。
- 缺点:RIP协议的收敛速度较慢,对于大型网络环境不适用,且容易产生路由环路。
二、OSPF协议1. 定义:OSPF协议是一种链路状态路由协议,用于在大型网络中实现动态路由选择。
它通过交换链路状态信息来确定最佳路径,并使用带宽、延迟等作为度量标准。
2. 特点:- OSPF协议使用IP协议进行路由信息的交换,使用标准的IP协议号89。
动态路由配置实验报告
1. 了解动态路由协议的基本原理和工作机制;2. 掌握RIP和OSPF两种动态路由协议的配置方法;3. 通过实验,提高网络配置和故障排查能力。
二、实验环境1. 路由器:2台Cisco 2960系列路由器;2. 计算机客户端:2台PC机;3. 网线:2根直通网线,2根交叉网线;4. 路由器配置软件:Tera Term或PuTTY。
三、实验拓扑实验拓扑图如下:```+------+ +------+ +------+| PC1 |---->| R1 |---->| R2 |---->| PC2 |+------+ +------+ +------+```四、实验步骤1. 配置PC1和PC2的IP地址、子网掩码和默认网关;2. 配置R1和R2的接口IP地址、子网掩码和默认网关;3. 配置R1和R2的RIP动态路由协议;4. 验证PC1和PC2之间的连通性;5. 配置OSPF动态路由协议,验证网络连通性;6. 修改R1或R2的配置,观察网络连通性变化,分析故障原因。
1. 配置PC1和PC2的IP地址、子网掩码和默认网关PC1的IP地址:192.168.1.1,子网掩码:255.255.255.0,默认网关:192.168.1.2PC2的IP地址:192.168.2.1,子网掩码:255.255.255.0,默认网关:192.168.2.22. 配置R1和R2的接口IP地址、子网掩码和默认网关R1的接口配置如下:R1(config)#interface FastEthernet0/0R1(config-if)#ip address 192.168.1.2 255.255.255.0R1(config-if)#no shutdownR1的接口配置如下:R2(config)#interface FastEthernet0/0R2(config-if)#ip address 192.168.2.2 255.255.255.0R2(config-if)#no shutdown3. 配置R1和R2的RIP动态路由协议R1的RIP配置如下:R1(config)#router ripR1(config-router)#network 192.168.1.0R1(config-router)#network 192.168.2.0R2的RIP配置如下:R2(config)#router ripR2(config-router)#network 192.168.1.0R2(config-router)#network 192.168.2.04. 验证PC1和PC2之间的连通性在PC1上ping PC2的IP地址,发现无法ping通。
动态路由-----OSPF协议原理与单区域实验配置
动态路由-----OSPF协议原理与单区域实验配置⼀.OSPF协议的介绍1.OSPF的概述OSPF(Open Shortest Path First)是⼀个内部⽹关协议(Interior Gateway Protocol,简称IGP)。
与RIP相对,OSPF是链路状态路协议,⽽RIP是距离向量路由协议。
链路是路由器接⼝的另⼀种说法,因此OSPF也称为接⼝状态路由协议。
OSPF通过路由器之间通告⽹络接⼝的状态来建⽴链路状态数据库,⽣成最短路径树,每个OSPF路由器使⽤这些最短路径构造路由表。
⽹络,OSPFv3⽤在⽹络。
可⽤于⼤型⽹络。
OSPF路由器收集其所在⽹络区域上各路由器的连接状态信息,即链路状态信息(Link-State),⽣成链路状态数据库(Link-State Database)。
路由器掌握了该区域上所有路由器的链路状态信息,也就等于了解了整个⽹络的拓扑状况。
OSPF路由器利⽤“最短路径优先算法(Shortest Path First, SPF)”,独⽴地计算出到达任意⽬的地的路由。
在OSPF协议下的路由器⼯作流程:2.OSPF的区域简介外部AS:⼀般来讲是运⾏另⼀个路由选择协议的区域,⽐如RIP,EIGRP等。
⾻⼲区域:Area 0,所有区域都必须(⼀般情况下)通过⾻⼲区域进⾏区域间的路由。
标准区域:同上,即最普通的区域。
末梢区域:Stub Area,不接收外部AS(AS代表同⼀路由协议下的路由区域)的路由信息。
完全末梢区域:Totally Stub Area,不接收外部AS的路由信息,同时也不接收本AS中其他Area的。
⾮纯末梢区域:NSSA(Not-So-Stub-Area),允许接收外部AS中以类型7的LSA发送的路由信息,并且ABR将类型7的LSA转换成类型5的LSA 在本AS内进⾏发送...3.OSPF的五种路由器DR:指定路由器,⼀个区域中的主路由器,当其他路由发数据给它时,指定路由器负责通知所有路由器。
动态路由协议:RIP与OSPF
动态路由协议:RIP 与OSPF1. 动态路由特点:减少管理任务、增加网络带宽。
2. 动态路由协议概述:路由器之间用来交换信息的语言。
3. 度量值:带宽、跳数、负载、时延、可靠性、成本。
4. 收敛:使所有路由表都达到一致状态的过程动态路由分类:自治系统(AS )内部网关协议(EIGRP 、RIP 、OSPF 、IGP )外部网关协议(EGP )按照路由执行的算法分类:距离矢量路由协议(RIP )链路状态路由协议(OSPF )两种结合(EIFRP )RIP :RIP 是距离矢量路由协议。
RIP 基本概念:定期更新(30秒)、邻居、广播更新、全路由表更新 RIP 最大跳数为15跳,16跳为不可达RIP 使用水平分割,防止路由环路:从一个接口学习到的路由信息,不再从这个接口发出去RIPv1:有类路由、RIPv2:无类路由OSPF :OSPF 是链路状态路由协议。
Router ID 是OSPF 区域内唯一标识路由器的IP 地址。
Router ID 选取规则:先选取路由器lookback 接口上最高的IP 地址,如果没有lookback 接口,就选取物理接口上的最高IP 地址。
也可以使用Router-id 命令手动指定。
OSPF 有三张表:邻接关系表、链路状态数据库、路由表》》首先建立邻接关系,然后建立链路数据库,最后通过SPF 算法算出最短路径树,最终形成路由表 OSPF 的度量值为COST (代价):COST=10^8/BW接口类型 代价(108/BW )Fast Ethernet 1Ethernet 1056K 1785OSPF 和RIP 的比较:OSPF RIP v1 RIP v2链路状态路由协议 距离矢量路由协议没有跳数的限制 RIP 的15跳限制,超过15跳的路由被认为不可达支持可变长子网掩码 (VLSM ) 不支持可变长子网掩码(VLSM ) 支持可变长子网掩码(VLSM )收敛速度快 收敛速度慢使用组播发送链路状态更新,在链路状态变化时使用触发更新,提高了带宽的利周期性广播整个路由表,在低速链路及广域网中应用将产生很大问题用率OSPF区域:为了适应大型的网络,OSPF在AS内划分多个区域,每个OSPF路由器只维护所在区域的完整链路状态信息。
IPV4静态路由,动态rip,ospf配置实验报告
一、实验目的了解静态路由和动态路由(RIP、OSPF)的配置与运行过程,会运用静态路由、动态路由配置与连接多台路由器。
二、实验内容(一)实验资源、工具和准备工作。
(二)按照5.2、5.3的配置步骤,设置路由器名称、IP地址、静态路由、动态路由(RIP、OSPF)。
保存配置文件。
重新启动路由器,调试网络,直至3台路由器互连成功。
三、实验步骤IPV4静态路由配置:Router>enableRouter#conf tRouter(config)#hostname R1R1(config)#interface fa0/0R1(config-if)#ip address 192.168.1.1 255.255.255.0R1(config-if)#exitR1(config)#interface Se2/0R1(config-if)#ip address 172.16.1.1 255.255.255.252R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#interface Se3/0R1(config-if)#ip address 172.16.3.2 255.255.255.252R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#ip route 192.168.2.0 255.255.255.0 172.16.1.2 R1(config)#ip route 192.168.3.0 255.255.255.0 172.16.3.1 R1(config)#exitR1#wrRouter>enableRouter#conf tRouter(config)#hostname R2R2(config)#interface fa0/0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#exitR2(config)#interface Se2/0R2(config-if)#ip address 172.16.1.2 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#interface Se3/0R2(config-if)#ip address 172.16.2.1 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#ip route 192.168.1.0 255.255.255.0 172.16.1.1 R2(config)#ip route 192.168.3.0 255.255.255.0 172.16.2.2 R2(config)#exitR2#wrRouter>enableRouter#conf tRouter(config)#hostname R3R3(config)#interface fa0/0R3(config-if)#ip address 192.168.3.1 255.255.255.0R3(config-if)#exitR3(config)#interface Se2/0R3(config-if)#ip address 172.16.3.1 255.255.255.252R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#interface Se3/0R3(config-if)#ip address 172.16.2.2 255.255.255.252R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#ip route 192.168.1.0 255.255.255.0 172.16.3.2 R3(config)#ip route 192.168.2.0 255.255.255.0 172.16.2.1 R3(config)#exitR3#wrIPV4动态RIP协议配置:Router>enableRouter#conf tRouter(config)#hostname R1R1(config)#interface fa0/0R1(config-if)#ip address 192.168.1.1 255.255.255.0R1(config-if)#exitR1(config)#interface Se2/0R1(config-if)#ip address 172.16.1.1 255.255.255.252R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#interface Se3/0R1(config-if)#ip address 172.16.3.2 255.255.255.252R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#router ripR1(config-router)#network 192.168.1.0R1(config-router)#network 172.16.1.0R1(config-router)#network 172.16.3.0R1(config-router)#exitR1(config)#exitR1#wrRouter>enableRouter#conf tRouter(config)#hostname R2R2(config)#interface fa0/0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#exitR2(config)#interface Se2/0R2(config-if)#ip address 172.16.1.2 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#interface Se3/0R2(config-if)#ip address 172.16.2.1 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#router ripR2(config-router)#network 192.168.2.0R2(config-router)#network 172.16.1.0R2(config-router)#network 172.16.2.0R2(config-router)#exitR2(config)#exitR2#wrRouter>enableRouter#conf tRouter(config)#hostname R3R3(config)#interface fa0/0R3(config-if)#ip address 192.168.3.1 255.255.255.0 R3(config-if)#exitR3(config)#interface Se2/0R3(config-if)#ip address 172.16.3.1 255.255.255.252 R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#interface Se3/0R3(config-if)#ip address 172.16.2.2 255.255.255.252 R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#router ripR3(config-router)#network 192.168.3.0R3(config-router)#network 172.16.3.0R3(config-router)#network 172.16.2.0R3(config-router)#exitR3(config)#exitR3#wrIPV4动态ospf协议配置:Router>enableRouter#conf tRouter(config)#hostname R1R1(config)#interface fa0/0R1(config-if)#ip address 192.168.1.1 255.255.255.0 R1(config-if)#exitR1(config)#interface Se2/0R1(config-if)#ip address 172.16.1.1 255.255.255.252 R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#interface Se3/0R1(config-if)#ip address 172.16.3.2 255.255.255.252 R1(config-if)#clock rate 64000R1(config-if)#exitR1(config)#router ospf 100R1(config-router)#router-id 192.168.1.0R1(config-router)#network 192.168.1.0 255.255.255.0 area 0 R1(config-router)#network 172.16.1.0 255.255.255.252 area 0 R1(config-router)#network 172.16.3.0 255.255.255.252 area 0 R1(config-router)#exitR1(config)#exitR1#wrRouter>enableRouter#conf tRouter(config)#hostname R2R2(config)#interface fa0/0R2(config-if)#ip address 192.168.2.1 255.255.255.0R2(config-if)#exitR2(config)#interface Se2/0R2(config-if)#ip address 172.16.1.2 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#interface Se3/0R2(config-if)#ip address 172.16.2.1 255.255.255.252R2(config-if)#clock rate 64000R2(config-if)#exitR2(config)#router ospf 100R2(config-router)#router-id 192.168.2.0R2(config-router)#network 192.168.2.0 255.255.255.0 area 0 R2(config-router)#network 172.16.1.0 255.255.255.252 area 0 R2(config-router)#network 172.16.2.0 255.255.255.252 area 0 R2(config-router)#exitR2(config)#exitR2#wrRouter>enableRouter#conf tRouter(config)#hostname R3R3(config)#interface fa0/0R3(config-if)#ip address 192.168.3.1 255.255.255.0R3(config-if)#exitR3(config)#interface Se2/0R3(config-if)#ip address 172.16.3.1 255.255.255.252R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#interface Se3/0R3(config-if)#ip address 172.16.2.2 255.255.255.252R3(config-if)#clock rate 64000R3(config-if)#exitR3(config)#router ospf 100R3(config-router)#router-id 192.168.3.0R3(config-router)#network 192.168.3.0 255.255.255.0 area 0 R3(config-router)#network 172.16.2.0 255.255.255.252 area 0 R3(config-router)#network 172.16.3.0 255.255.255.252 area 0 R3(config-router)#exitR3(config)#exitR3#wr四、体会和总结。
实训十六、RIP、OSPF动态路由协议的配置
OSPF缺点
配置相对复杂,需要一定的网络知识;对路由器的性能要 求较高。
不同场景下协议选择建议
小型网络
对于规模较小、结构简单的 网络,可以选择RIP协议, 因为其配置简单,易于实现 和维护。
中大型网络
对于规模较大、结构复杂的 网络,建议选择OSPF协议 。OSPF协议能够避免路由 环路问题,支持多区域划分 和多种路由类型,适用于大 型网络。
OSPF特点:无环路、收敛快、扩展性强、支持VLSM和CIDR、支持认证 等。
OSPF区域:OSPF协议通过将自治系统划分为不同的区域(Area)来优 化网络性能,减少资源消耗。
OSPF工作原理
建立邻居关系
OSPF路由器通过发送Hello报文 来发现、建立和维护邻居关系。
交换链路状态信息
每台OSPF路由器都会生成一条 LSA(链路状态广播),包含路 由器上所有直连网段的信息。这 些LSA会被泛洪到整个OSPF区域
RIP报文使用UDP进行传输,目的 端口号为520。在传输过程中, RIP报文会被封装在IP数据报中, 并通过互联网进行传输。
03 OSPF动态路由协议
OSPF协议概述
OSPF(Open Shortest Path First,开放最短路径优先)协议:是一种 基于链路状态的内部网关协议(IGP),用于在单一自治系统(AS)内 决策路由。
LSR(Link State Request)报文:用 于向邻居路由器请求 特定的LSA信息。
LSU(Link State Update)报文:用于 向邻居路由器发送 LSA信息或对LSR报文 的响应。
LSAck(Link State Acknowledgment) 报文:用于对收到的 LSA信息进行确认。
交换机动态路由RIPOSPF实验报告
交换机动态路由RIPOSPF实验报告一、引言动态路由协议是计算机网络中的重要组成部分,它负责实现网络之间的路由选择和转发功能。
RIPOSPF(Routing Information Protocol Open Shortest Path First)动态路由协议是一种基于开放最短路径优先算法的协议,用于在交换机网络中实现动态路由功能。
本实验旨在通过搭建网络拓扑,配置RIPOSPF协议并进行实际测试,验证其性能和可行性。
二、实验环境1.硬件环境:使用3台交换机,每台交换机具有4个端口,用于连接不同网络设备。
2.软件环境:搭建基于RIPOSPF协议的动态路由实验环境,使用Tcl脚本进行配置和控制。
三、实验步骤1.网络拓扑设计根据实验需求,设计一个适当的网络拓扑,包括多台交换机和端设备,使其形成一个较复杂的网络结构。
确保每台交换机都能与其他交换机进行通信。
2.配置RIPOSPF协议在每个交换机上配置RIPOSPF协议,包括路由器ID、网络连接、接口地址等。
确保配置的信息准确无误。
3.启动RIPOSPF协议使用Tcl脚本进行RIPOSPF协议的启动和控制,确保协议能够正常运行。
观察控制台输出,确保没有错误消息。
4.测试网络连通性在实验环境中添加一些端设备,通过ping命令测试不同网络设备之间的连通性。
观察ping结果,验证RIPOSPF协议是否能够正确选择路由。
5.模拟故障状况在实验过程中,模拟网络故障,例如断开某个网络连接或关闭某台交换机。
观察RIPOSPF协议的表现,验证其具备故障恢复和自适应能力。
6.性能评估通过实际测试和观察,评估RIPOSPF协议在实验环境中的性能。
可以统计路由更新时间、网络收敛时间等指标,分析协议的可靠性和实用性。
四、实验结果与分析在本次实验中,成功搭建了基于RIPOSPF协议的动态路由网络,实现了交换机之间的路由选择和通信功能。
经过测试,RIPOSPF协议表现出较好的性能和稳定性。
实验六 RIP动态路由信息协议配置
实验六RIP动态路由信息协议配置1.实验目的●理解通过传播、分析、挑选路由, 来实现路由发现、路由选择、路由切换等功能;●掌握RIP——路由信息协议配置方法;2。
实验前的准备●Internet上现在大量运行的路由协议有RIP、OSPF和BGP。
RIP、OSPF是内部网关协议,适用于单个ISP的统一路由协议的运行,由一个ISP运营的网络称为一个自治系统(AS)。
BGP是自治系统间的路由协议,是一种外部网关协议。
RIP是推出时间最长的路由协议,也是最简单的路由协议。
它是“路由信息协议”的缩写,主要传递路由信息(路由表)来广播路由:每隔30秒,广播一次路由表,维护相邻路由器的关系,同时根据收到的路由表计算自己的路由表。
RIP运行简单,适用于小型网络,Internet上还在部分使用着RIP。
OSPF协议是“开放式最短路优先”的缩写。
“开放”是针对当时某些厂家的“私有”路由协议而言,而正是为协议开放性,才造成OSPF今天强大的生命力和广泛的用途。
它通过传递链路状态(连接信息)来得到同网络信息,维护一张网络有向拓朴图,利用最小生成树算法(SPF算法)得到路由表。
OSPF是一种相对复杂的路由协议。
总的来说,OSPF、RIP都是自治系统内部的路由协议,适用于单一的ISP(自治系统)使用。
一般说来,整个Internet并不适合跑路由协议,因为各ISP有自己的利益,不愿意提供自身网络详细的路由信息。
为了保证各ISP利益,标准化组织制定了ISP间的路由协议BGP。
BGP是“边界网关协议”的缩写,处理各ISP之间的路由传递。
其特点是有丰富的路由策略,这是RIP、OSPF等协议无法做到的,因为它们需要全局的信息计算路由表。
BGP 通过ISP边界的路由器加上一定的策略,选择过滤路由,把RIP、OSPF、BGP等的路由发送对方。
全局范围的、广泛的Internet是BGP处理多个ISP间的路由的实例。
BGP的出现,引起了Internet的重大变革,它把多个ISP有机的连接起来,真正成为全球范围内的网络。
动态路由RIP与OSPF配置实验报告
郑州轻工业学院本科生实验报告实验条件1、以图1中路由器的组网实例,或自行设计组网用例,构建网络配置连接图,标识出网段、接口IP地址。
进行RIP路由协议配置、测试连通性、观察路由表、观察接口。
进行OSPF路由协议配置、测试连通性、观察路由表、观察接口。
比较两种动态路由协议配置中的不同。
图1 实验组网示例2、使用思科模拟器构建网络拓扑图,标识出网段和IP地址。
然后进行RIP 路由协议配置、测试连通性、最后观察路由表和接口。
完成之后,进行OSPF路由协议配置、测试连通性,观察路由表和接口,比较这两种协议配置的不同。
实验内容与步骤实验方法:(RIP)1.启动思科路由器配置模拟器(Cisco Packet Tracer);2.参考图1(与课本图11-17相近)选取网络设备,构建网络。
图1 实验组网示例3.依据IP配置规则配置网络IP地址;(可依据图中设置或自行设置IP地址,网络号计算有难度的可依据课本图11-17配置)示例:ip add 100.100.100.11 255.255.240.04.配置RIP路由协议,并测试网络连通性,查看路由表、接口等。
Router(config)#router rip;Router(config-router)#version 2 (配置RIPv2)Router(config-router)#network network(网络号)实验方法:(OSPF)1.参考图1选取网络设备,构建网络。
2.依据IP配置规则配置网络IP地址;(可依据图中设置或自行设置IP地址,网络号计算有难度的可依据课本图11-17配置)3.配置OSPF路由协议,并测试网络连通性;!启用OSPF协议:Router(config)#router OSPF process-number(路由进程编号,路由器内部起作用);!指定与该路由器连接的子网:Router(config-router)#network network-address wildcard-mask area area-number;wildcard-mask通配符掩码子网掩码反码;实验内容:写出RIP路由协议配置过程,说明配置中的关键步骤、需要注意的问题。
配置OSPF路由协议
配置OSPF路由协议在网络中配置OSPF(Open Shortest Path First)路由协议,可以实现动态路由的选择和更新,增加网络的可靠性和灵活性。
下面将介绍如何配置OSPF路由协议。
1.确定OSPF区域划分:在OSPF中,网络被划分为不同的区域(Area),每个区域都有一个唯一的标识符。
根据网络拓扑和需求,确定需要划分的区域数量和标识符。
2.配置路由器接口:将路由器的各个接口与网络连接,并进行必要的IP地址配置。
每个接口的IP地址应属于同一区域,并通过命令“router ospf area 区域编号”将接口连接到对应的区域。
3.配置区域边界路由器(ABR):ABR是连接不同区域的路由器,需要进行特殊的配置。
在ABR上,通过命令“router ospf area 区域编号”将接口连接到对应的区域,并使用命令“area 区域编号 range 网络地址子网掩码”将其连接的网络范围标记为该区域。
4.配置自治系统边界路由器(ASBR):ASBR是连接不同自治系统(AS)的路由器,需要进行特殊的配置。
在ASBR上,使用命令“router ospf”进入OSPF配置模式,并使用命令“re distribute 子网号子网掩码”将其连接的网络添加到OSPF路由表中。
5.配置OSPF路由协议:在每台路由器上,使用命令“router ospf 进程号”进入OSPF配置模式,并使用命令“network 子网号子网掩码 area 区域编号”将该路由器的接口添加到OSPF路由表中。
6.配置路由器的优先级:OSPF通过区域的优先级来选择区域内的DR(Designated Router)和BDR(Backup Designated Router)。
可以通过命令“priority 数字”设置路由器的优先级(默认为1),数字越大优先级越高。
7.验证OSPF配置:使用命令“show ip ospf”来验证OSPF路由协议的配置情况。
动态路由协议RIPOSPFEIGRP
动态路由协议RIPOSPFEIGRP动态路由协议是用于在计算机网络中自动选择最佳路径来传送数据的一种协议。
它们能自动探测网络中的路由器,并且将网络中的路由表信息分享给其他路由器。
在这篇文章中,我们将讨论三种常见的动态路由协议:RIP、OSPF和EIGRP。
1. RIP(Routing Information Protocol)是一种最早出现的动态路由协议,它基于距离向量算法。
RIP使用跳数作为衡量路径距离的指标。
当路由器收到其他路由器发送的路由表信息时,它会将这些信息保存在本地路由表中,并选择距离最短的路径作为下一跳。
RIP协议使用了限制性距离,使得在选择路径时可以避免出现问题,最大跳数为15、RIP协议的优点是简单易用,但是它的网络收敛速度较慢,且对大型网络的支持较弱。
2. OSPF(Open Shortest Path First)是一种基于链路状态算法的动态路由协议。
与RIP协议不同,OSPF通过收集路由器通告的网络拓扑信息来计算最短路径。
OSPF协议使用了不同的度量标准,包括带宽、延迟、可靠性等,来决定最佳路径。
OSPF协议的一个重要特点是将网络划分为不同的区域,每个区域内部的路由器仅需知道到达其他区域的最佳路径即可。
这种划分可以减少网络的复杂性,提高网络的扩展性以及收敛速度。
3. EIGRP(Enhanced Interior Gateway Routing Protocol)是一种由思科系统开发的高级路由协议。
EIGRP结合了距离向量和链路状态算法的优点。
与RIP和OSPF协议不同,EIGRP协议使用带宽、延迟、可靠性和负载等多个度量标准来选择最佳路径。
EIGRP协议还具有快速收敛、低带宽消耗和有效负载分担等特点。
EIGRP协议只能在思科设备之间使用,因此它适用于只使用思科设备的网络环境。
总结来说,RIP、OSPF和EIGRP是三种常见的动态路由协议。
RIP协议简单易用,适用于小型网络;OSPF协议通过链路状态算法提供更高的网络扩展性和收敛速度;EIGRP协议是一种高级路由协议,具有快速收敛、低带宽消耗和有效负载分担等特点。
如何在路由器上配置OSPF协议?
如何在路由器上配置OSPF协议?OSPF协议(Open Shortest Path First,开放最短路径优先协议)是一种常用的动态路由协议,它能够自动发现网络中的路由器并建立路由表。
下面介绍如何在路由器上配置OSPF协议。
1.启用OSPF首先,需要启用OSPF协议。
打开路由器的命令行界面,使用以下命令启用OSPF:Router(config)# router ospf [process-id]其中[process-id]是OSPF进程的ID,可以是一个1到65535之间的整数。
通常,您可以使用默认值1。
2.配置OSPF区域接着,需要配置OSPF区域。
在OSPF进程下,使用以下命令指定区域:Router(config-router)# area [area-id]其中[area-id]是OSPF区域的ID,可以是一个0到4294967295之间的整数或点分十进制表示的IP地址。
例如,如果您想将区域设置为0.0.0.0,可以使用以下命令:Router(config-router)# area 0.0.0.03.配置接口现在,需要将接口添加到OSPF区域。
在路由器接口下,使用以下命令指定OSPF区域:Router(config-if)# ospf [process-id] area [area-id]其中[process-id]是OSPF进程的ID,[area-id]是OSPF区域的ID。
例如,如果您想将接口FastEthernet0/0添加到区域0.0.0.0,并使用进程ID为1,可以使用以下命令:Router(config-if)# ospf 1 area 0.0.0.04.配置OSPF参数您可以在OSPF进程下配置各种参数,如路由器ID、网络类型、接口开销等。
以下是一些常见参数的配置命令:设置路由器ID:Router(config-router)# router-id [router-id]其中[router-id]是路由器。
RIP协议和OSPF协议的对比
RIP协议和OSPF协议的对比RIP(Routing Information Protocol)和OSPF(Open ShortestPath First)都是用于动态路由的网络协议,但在一些关键方面有所不同。
以下是RIP协议和OSPF协议的对比。
1.性能:-RIP是基于距离向量原理的协议,每30秒广播一次路由表信息。
这种周期性的广播会占用大量带宽和资源,并在网络中产生许多无谓的路由更新。
另外,RIP的最大跳数限制(15跳)对于大型网络来说可能不够用。
- OSPF是基于链路状态原理的协议,只有在网络发生变化时才会发送路由更新。
它使用SPF(Shortest Path First)算法来计算最短路径,并且没有最大跳数的限制。
因此,OSPF在大型网络中表现更好,具有更好的性能。
2.拓扑结构:-RIP协议是基于单区域的网络,不支持多区域功能。
所有的路由器都在同一个区域中,因此RIP适用于较小的网络拓扑。
-OSPF协议支持多区域功能,使得可以灵活地划分和组织网络。
这种多区域结构允许更好的伸缩性和容错性,使得OSPF适用于中型和大型网络。
3.安全性:-RIP协议的认证功能较弱,只支持基本的密码认证,容易受到攻击。
另外,RIP协议是通过UDP广播路由信息,因此容易被中间人攻击篡改路由信息。
-OSPF协议提供了更强大的安全性。
它支持多种认证方式,包括MD5、SHA-1等加密算法,可以保证路由信息的完整性和可信性。
此外,OSPF还使用单播方式传递路由信息,减少了中间人攻击的风险。
4.管理和配置:-RIP协议的配置相对简单,只需在每个路由器上配置RIP协议,并启用自动学习和更新路由表的功能即可。
-OSPF协议的配置更加复杂一些,需要为每个路由器配置OSPF进程ID、区域ID、接口等参数。
同时,还需要指定OSPF路由器之间的邻居关系。
由于OSPF协议支持多区域和多路由器之间的连接,因此需要更多的管理和配置工作。
总体而言,RIP协议适用于较小的、简单的网络,而OSPF协议则适用于中型和大型的复杂网络。
动态路由实验实训报告
一、实验目的1. 理解动态路由协议的基本原理和功能。
2. 掌握OSPF和RIP两种动态路由协议的配置方法。
3. 学会使用Packet Tracer软件进行网络拓扑搭建和配置。
4. 通过实验验证动态路由协议在网络通信中的应用。
二、实验环境1. 软件环境:Packet Tracer 7.22. 硬件环境:4台路由器、2台PC机、交换机等网络设备三、实验内容1. 网络拓扑搭建2. OSPF动态路由协议配置3. RIP动态路由协议配置4. 动态路由协议验证四、实验步骤1. 网络拓扑搭建(1)打开Packet Tracer软件,创建一个新的网络拓扑。
(2)在拓扑中添加4台路由器、2台PC机和交换机等设备。
(3)根据实验需求,配置设备端口和连接。
2. OSPF动态路由协议配置(1)在R1上创建环回接口,并配置IP地址192.168.1.1/24。
(2)在R2上创建环回接口,并配置IP地址192.168.2.1/24。
(3)在R3上创建环回接口,并配置IP地址192.168.3.1/24。
(4)在R4上创建环回接口,并配置IP地址192.168.4.1/24。
(5)在R1和R2之间建立OSPF邻居关系,并配置OSPF区域ID为0。
(6)在R2和R3之间建立OSPF邻居关系,并配置OSPF区域ID为0。
(7)在R3和R4之间建立OSPF邻居关系,并配置OSPF区域ID为0。
3. RIP动态路由协议配置(1)在R1上配置RIP协议,并指定192.168.1.0/24网段。
(2)在R2上配置RIP协议,并指定192.168.2.0/24网段。
(3)在R3上配置RIP协议,并指定192.168.3.0/24网段。
(4)在R4上配置RIP协议,并指定192.168.4.0/24网段。
4. 动态路由协议验证(1)在PC1上ping PC2的IP地址,验证RIP动态路由协议是否正常工作。
(2)在PC2上ping PC1的IP地址,验证RIP动态路由协议是否正常工作。
rip协议与ospf协议
rip协议与ospf协议协议撰写专家回复:RIP协议与OSPF协议RIP协议(Routing Information Protocol)和OSPF协议(Open Shortest Path First)是两种常见的路由协议,用于在计算机网络中进行路由选择和转发。
本文将详细介绍这两种协议的标准格式及其特点。
一、RIP协议1. 协议概述:RIP协议是一种基于距离向量的内部网关协议(IGP),用于在小型网络中实现动态路由。
其主要特点是简单、易于配置和实现,但对网络规模较大的复杂网络效果较差。
2. 协议格式:RIP协议的消息格式如下:- 命令:请求(Request)或响应(Response)- 版本:RIP协议版本号- 域数:路由器所知道的网络数目- 路由表项:包含目标网络、距离和下一跳路由器等信息3. 工作原理:RIP协议基于距离向量算法,使用跳数(hop count)作为路由选择的度量值。
每个路由器通过周期性的路由表更新消息来了解网络拓扑,并根据最小跳数来选择最佳路径。
4. 优缺点:RIP协议的优点在于简单易用,适用于小型网络。
但其缺点是收敛慢、路由环路问题严重,且无法支持大规模网络。
二、OSPF协议1. 协议概述:OSPF协议是一种链路状态协议(Link State Protocol),用于在大型网络中实现动态路由。
其主要特点是灵活、可扩展,适用于复杂网络环境。
2. 协议格式:OSPF协议的消息格式如下:- 类型:Hello、Database Description、Link State Request、Link State Update、Link State Acknowledgement等- 版本:OSPF协议版本号- 区域ID:标识路由器所在区域- 路由表项:包含目标网络、度量值、下一跳路由器等信息3. 工作原理:OSPF协议基于链路状态数据库,每个路由器通过交换链路状态信息来建立网络拓扑图,并计算出最短路径树。
动态路由配置的基本步骤
动态路由配置的基本步骤
动态路由配置是一种在网络中自动学习和传播路由信息的方法,它可以根据网络的变化自动调整路由表,以确保数据能够高效地传输到目的地。
以下是动态路由配置的基本步骤:
1. 确定网络拓扑结构:在配置动态路由之前,需要了解网络的拓扑结构,包括路由器的数量、位置、连接方式等。
2. 选择动态路由协议:根据网络的规模、性能要求、安全性等因素,选择适合的动态路由协议,如 RIP、OSPF、BGP 等。
3. 配置路由器接口:在路由器上配置接口的 IP 地址、子网掩码、网关等参数,确保路由器之间能够相互通信。
4. 启用动态路由协议:在路由器上启用选择的动态路由协议,并配置相关的参数,如网络地址、路由优先级、度量值等。
5. 传播路由信息:路由器通过动态路由协议将自己的路由信息传播给其他路由器,其他路由器也会将自己的路由信息传播给其他路由器,从而形成一个路由表。
6. 监测和调整:在配置动态路由后,需要监测网络的性能和状态,并根据需要进行调整,如修改路由优先级、添加或删除路由等。
需要注意的是,动态路由配置需要一定的网络知识和技能,如果不熟悉相关知识,建议先进行学习或咨询专业人士。
同时,在配置动态路由时,需要谨慎操作,避免出现错误导致网络故障。
动态路由协议RIP、OSPF配置
实验二动态路由协议RIP、OSPF配置一、实验目的(1)掌握RIP、OSPF协议的配置方法(2)掌握查看RIP、OSPF协议产生的路由(3)熟悉广域网电缆的连接方式二、实验内容:(一)动态路由协议RIP配置-三层交换机1绘制拓扑图2配置PC的IP、掩码、网关分别:PC1 192.168。
1.2 255。
255.255。
0 192.168。
1。
1PC2 192。
168。
2。
2 255。
255.255。
0 192。
168.2。
13.三层交换机配置(1)划分VLAN,将接口划分到对应的VLAN中(2)配置每个虚接口(VLAN)的IP(3)配置RIP4 R1上的配置(1)配置配置两个接口的IP和串口时钟(2)配置RIP协议:发布直连路由5。
R2上的配置(1)配置配置两个接口的IP(2)配置RIP协议:发布直连路由6测试1、分别在R1R2上查看路由表2、在PC1中ping PC2三、实验步骤1绘制拓扑图2配置PC的IP、掩码、网关分别:PC1 192.168。
1。
2 255.255。
255。
0 192.168。
1.1PC2 192。
168。
2.2 255。
255。
255.0 192。
168。
2。
13。
三层交换机配置(1)划分VLAN,将接口划分到对应的VLAN中(2)配置每个虚接口(VLAN)的IP(3)配置RIP(3)配置RIP协议:发布直连路由4 R1上的配置(1)配置配置两个接口的IP和串口时钟(2)配置RIP协议:发布直连路由5.R2上的配置(1)配置配置两个接口的IP (2)配置RIP协议:发布直连路由6测试四、实验感想这次试验掌握了RIP、OSPF协议的配置方法,同时也熟悉了广域网电缆的连接方式。
老师通过课堂演示和详细的讲解,再结合发的视频解析,我们对这次的实验掌握的比较好。
这让我体会到,只要认真去做,肯下功夫,对问题仔细分析,拿出不懂就问的精神,自己遇到的问题都可以解决.。
动态路由协议知识及BGP,IS-IS,OSPF,RIP知识
本章目录
>路由协议概述 >RIP路由协议原理及基础配置 >OSPF路由协议原理及基础配置 >ISIS路由协议原理及基础配置 >BGP路由协议原理及基础配置
引入
路由可以静态配置,也可以通过路由协议来自动生成
路由协议能够自动发现和计算路由,并在拓扑变化时
自动更新,无需人工维护,适用于复杂的网络
TCP
IP
UDP 链路层
物理层
• RIP基于UDP,端口号520 • OSPF基于IP,协议号89 • BGP基于TCP,端口号179
动态路由协议的基本原理
• •
网络中所有路由器须实现相同的某种路由协议并已 经启动该协议 邻居发现
–
路由器通过发送广播报文或发送给指定的路由器邻居以主动把自己介 绍给网段内的其它路由器。 每台路由器将自己已知的路由相关信息发给相邻路由器。 每台路由器运行某种算法,计算出最终的路由来。 路由器之间通过周期性地发送协议报文来维护邻居信息。
拓扑变 化引起 路由表 的更新 向RTB传 送更新 的路由 表
RTB
RTA
更新路由表
更新路由表
Байду номын сангаас
RIPv1的缺点
RTA
10.0.0.0/24
E1/0 S0/0 10.0.0.0, Metric 1
RTB
S0/0
E1/0
192.0.0.0/24
Routing Table
目标网络/掩码 10.0.0.0/8 接口 S0/0 度量值 1
传递信息
Router ID 1.1.1.1 Router ID 2.2.2.2 10.1.0.1/24 10.1.0.2/24
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二动态路由协议RIP、OSPF配置
一、实验目的
(1)掌握RIP、OSPF协议的配置方法
(2)掌握查看RIP、OSPF协议产生的路由
(3)熟悉广域网电缆的连接方式
二、实验内容:
(一)动态路由协议RIP配置-三层交换机
1绘制拓扑图
2配置PC的IP、掩码、网关
分别:PC1 192.168.1.2 255.255.255.0 192.168.1.1
PC2 192.168.2.2 255.255.255.0 192.168.2.1
3.三层交换机配置
(1)划分VLAN,将接口划分到对应的VLAN中
(2)配置每个虚接口(VLAN)的IP
(3)配置RIP
4 R1上的配置
(1)配置配置两个接口的IP和串口时钟
(2)配置RIP协议:发布直连路由
5.R2上的配置
(1)配置配置两个接口的IP
(2)配置RIP协议:发布直连路由
6测试
1、分别在R1R2上查看路由表
2、在PC1中ping PC2
三、实验步骤
1绘制拓扑图
2配置PC的IP、掩码、网关
分别:PC1 192.168.1.2 255.255.255.0 192.168.1.1
PC2 192.168.2.2 255.255.255.0 192.168.2.1
3.三层交换机配置
(1)划分VLAN,将接口划分到对应的VLAN中(2)配置每个虚接口(VLAN)的IP
(3)配置RIP
(3)配置RIP协议:发布直连路由
4 R1上的配置
(1)配置配置两个接口的IP和串口时钟
(2)配置RIP协议:发布直连路由
5.R2上的配置
(1)配置配置两个接口的IP (2)配置RIP协议:发布直连路由
6测试
四、实验感想
这次试验掌握了RIP、OSPF协议的配置方法,同时也熟悉了广域网电缆的连接方式。
老师通过课堂演示和详细的讲解,再结合发的视频解析,我们对这次的实验掌握的比较好。
这让我体会到,只要认真去做,肯下功夫,对问题仔细分析,拿出不懂就问的精神,自己遇到的问题都可以解决。