第七章分子系统发育分析 进化树
第七章 系统发育与进化树
马尔萨斯
反达尔文学说-理论上
智慧设计理论 • 詹腓力 Philip Johnson • 《Darwin on Trial》 • 仅适用于生物种范围之内 • 能否制造新的物种? 复杂的器官如何进化而来?
• 英国天文学家 弗雷德.霍伊尔 • ……相当于一阵旋风吹到一片充满各种 破铜烂铁的废物堆之后, 突然组成了一架波 音747客机.
细胞色素C在不同物种间的差别
• 从序列保守性上可以用生物分子序列进行 进化树分析 • 从序列变异性分析其变异性是否跟时间相 关
分子钟!!!!!!!
• 某一蛋白在不同物种间的取代数与所研 究物种间的分歧时间接近正线性关系, 有很好的相关性,分子中这种恒速变异 成为“分子钟”
• 分子进化速率在不同种系中恒定
共同祖先进化
• • • • • 系统分类 生物地理 比较解剖 比较胚胎 古生物
共同祖先学说
• 第一,物种是可变的,生物是进化的。当时绝大 部分读了《物种起源》的生物学家都很快地接受 了这个事实,进化论从此取代神创论,成为生物 学研究的基石。即使是在当时,有关生物是否进 化的辩论,也主要是在生物学家和基督教传道士 之间,而不是在生物学界内部进行的。 • 第二,自然选择是生物进化的动力。当时的生物 学家对接受这一点犹豫不决,因为自然选择学说 在当时存在着几大难题。
进化树
• 在研究生物进化和系统分类中,常用一种类似 树状分支的图形来概括各种(类)生物之间的 亲缘关系,这种树状分支的图形成为系统发育 树(phylogenetic tree)。 • 通过比较生物大分子序列差异的数值构建的系 统树称为分子系统树(molecular phylogenetic tree)。
第四章 系统发育分析与进化树
什么是系统生物学?
系统发育进化树构建
系统发育进化树构建【实用版】目录一、什么是系统发育进化树二、系统发育进化树的构建方法三、系统发育进化树的应用四、总结正文一、什么是系统发育进化树系统发育进化树是一种用来表示物种或基因间亲缘关系的树状图,它可以利用树状分支图形来展示生物之间的进化关系。
系统发育进化树主要用于研究物种或序列的进化和系统分类,其研究对象通常包括碱基序列或氨基酸序列。
二、系统发育进化树的构建方法系统发育进化树的构建过程称为分支系统发育分析,它通过数理统计算法来计算生物间的进化距离,并以此为基础构建进化树。
以下是构建系统发育进化树的主要步骤:1.选择研究对象:首先需要选择合适的研究对象,例如碱基序列或氨基酸序列。
2.获取数据:搜集研究对象的相关数据,这通常需要通过实验或数据库获取。
3.计算进化距离:利用数理统计算法(如距离法、最大似然法等)计算不同生物间的进化距离。
4.构建进化树:根据进化距离构建树状分支图,通常使用聚类方法或最小生成树算法。
5.检验树状图:对构建好的进化树进行检验,以确保其符合生物学实际情况。
三、系统发育进化树的应用系统发育进化树在生物学研究中有广泛的应用,主要包括:1.物种分类和演化关系研究:通过构建进化树,可以了解不同物种之间的亲缘关系和演化历史。
2.基因功能预测:根据基因在进化树上的位置,可以推测基因的功能和作用。
3.基因调控关系分析:进化树可以帮助研究者了解基因之间的调控关系,从而揭示生物过程的调控机制。
4.病原体演化研究:对于病原体,进化树可以揭示其演化历程,有助于疫苗设计和疾病防治。
四、总结系统发育进化树是一种重要的生物学研究方法,它可以帮助研究者揭示物种或基因间的亲缘关系和演化历史。
分子进化的推导与系统发育树构建研究
分子进化的推导与系统发育树构建研究分子进化的推导和系统发育树构建研究是现代生物学领域中一项重要的研究课题。
它通过分析生物体内的分子遗传信息,来推导物种间的进化关系,并进一步构建系统发育树。
本文将介绍分子进化的推导过程以及系统发育树的构建方法。
在分子进化的推导过程中,研究者通常会选择一段具有较高变异性的DNA、RNA或蛋白质序列作为研究对象。
这些序列在不同物种之间的差异反映了它们的进化关系。
首先,研究者需要对所选序列进行测序,并通过生物信息学方法对序列进行比对和分析。
比对可以揭示序列中的共有特征与差异,而分析则可以计算序列之间的相似性和进化距离。
为了推导物种之间的进化关系,研究者可以利用不同的进化模型进行分析,例如Jukes-Cantor模型、Kimura两参数模型和最大似然法等。
这些模型基于一系列假设和统计方法,可以估计序列的演化速率和进化关系。
通过计算进化距离矩阵,研究者可以建立物种之间的相似性网络图,并利用聚类算法将物种进行分类和分组。
系统发育树是推导物种间进化关系的重要工具。
它是一种图形化的表示方式,用树状结构展示不同物种之间的演化关系。
构建系统发育树的方法有多种,例如最简原则、最大拟然法和贝叶斯推断等。
最简原则是一种直观且简单的构建方法,它假设进化关系中的分支数目最少。
最大拟然法则基于最大似然估计原理,通过计算相似性矩阵的概率分布来确定最优的拓扑结构。
贝叶斯推断则是一种统计推断方法,它通过考虑先验概率和后验概率来推测系统发育树的结构。
在构建系统发育树的过程中,研究者还需要对结果进行评估和验证。
常用的评估指标包括支持率和置信度。
支持率可以评估进化树的可靠性,它通过重复计算获得统计学意义上的支持度。
而置信度则通过随机重抽样验证树的一致性和稳定性。
综上所述,分子进化的推导和系统发育树构建是研究生物进化关系的重要方法。
通过分析分子遗传信息和构建系统发育树,我们可以更好地了解不同物种之间的进化历程和亲缘关系。
分子进化与系统发育
分子进化
• 1964年,Linus Pauling提出分子进化理论; • 从物种的一些分子特性出发,从而了解物种之间的 生物系统发生的关系。 • 发生在分子层面的进化过程:DNA, RNA和蛋白质分 子 • 基本假设:核苷酸和氨基酸序列中含有生物进化历 史的全部信息。
分子进化的模式
• DNA突变的模式:替代,插入,缺失,倒位;
分子进化与系统发育
——分子系统进化树
动物生态分子研究组
内容介绍
• 分子进化分析介绍 • 系统发育树构建方法
• 构建发育树的相关软件
• 文献——分子系统进化
一、分子进化分析
除非在进化的角度来观察,否则 任何生物学现象都将毫无意义。
—— 杜布赞斯基 (T.Dobzhansky,1900~1975)
研究生物进化历史的途径 • 1. 最确凿证据是:生物化石!—— 零 散、不完整 • 2.比较形态学、比较解剖学和生理学等: 确定大致的进化框架 —— 细节存很多 的争议
• 1. 理论基础为奥卡姆剃刀 (Ockham)原则:计算所需 替代数最小的那个拓扑结构,作为最优树 • 2. 在分析的序列位点上没有回复突变或平行突变, 且被检验的序列位点数很大的时候,最大简约法能够 推导获得一个很好的进化树 • 3. 优点:不需要在处理核苷酸或者氨基酸替代的时 候引入假设 (替代模型) • 4.缺点:分析序列上存在较多的回复突变或平行突变, 而被检验的序列位点数又比较少的时候,可能会给出 一个不合理的或者错误的进化树推导结果
相关软件
软件 说明
ClustalX
GeneDoc
图形化的多序列比对工具;构建N-J系统树 http://bips.u-strasbg.fr/fr/Documentation/ClustalX/
进化树
bioinformatics
Bioinformatics
Liaoning University
系统发育树
张力
Bioinformatics
Liaoning University
什么是系统发育进化树?
系统发育进化树(Phylogenetic tree)是用一种类似 树状分支的图形来概括各种生物tics
Liaoning University
系统发育树的主要构成
节点(node):每个节点表示一个分类单元(属、种群 )。 进化分支(clade):由同一生物进化而来的单一进化 系统群。
Bioinformatics
进化树的结构
进化拓扑结构: 进化树中不同枝的拓扑图形。
Liaoning University
构建进化树
点击Data,Phylogenetic Analysis
然后回到程序主界面,点击Analysis, Phelogeny,选择 构建进化树的方法,这里我们使用N-J法构建进化树, 选择第二个选项。
Bioinformatics
Liaoning University
Bioinformatics
Liaoning University
多序列比对
将未知蛋白的氨基酸序列和BLAST搜索下载到的 Thioredoxin序列合并为一个FASTA文件 使用MEGA打开此文件,使用ClustalW进行多序列比对。 (方法参照多序列比对章节)
Bioinformatics
构建进化树
建树参数的设置
按照右图修改参数 其中Test of Phylogeny代表 的是评估进化树可信度的方 法,这里选择Bootstrap metod,一般设置重复次数 1000次 设置完成后点击Compute
浅谈系统发育分析及进化树制作课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 系统发育分析简介 • 进化树基本概念 • 进化树的制作方法 • 系统发育分析的挑战与未来发展 • 实践案例分享 • 总结与展望
01
系统发育分析简介
定义与重要性
定义
系统发育分析是一种研究生物种群进化历程和亲缘关系的方法,通过比较不同 物种间的基因、蛋白质等分子序列差异,构建进化树来揭示生物的演化关系。
重复构建
为确保结果的稳定性,对同一数据集进行多次重复构 建进化树。
01
系统发育分析的挑 战与未来发展
当前面临的主要问题
数据获取与整合
系统发育分析需要大量的基因序 列数据,如何高效获取和整合这 些数据是一个挑战。
算法复杂度与计算
资源
随着数据量的增长,传统的系统 发育分析算法面临计算效率和资 源消耗的挑战。
物种间基因序列差
异
不同物种的基因序列存在较大差 异,如何准确识别和比较这些差 异是系统发育分析的关键。
未来发展方向与趋势
Байду номын сангаас
01
大数据技术的应用
利用大数据技术对海量基因序列 数据进行处理和分析,提高系统 发育分析的效率和准确性。
02
算法优化和并行计 算
通过算法优化和并行计算技术, 降低系统发育分析的计算复杂度 ,提高计算效率。
基于已知物种的进化关系 ,构建一棵假设树,常用 软件如RAxML。
贝叶斯法
基于贝叶斯统计理论,模 拟基因序列的进化过程, 常用软件如MrBayes。
参数设置与优化
模型选择
根据基因序列的特点选择合适的进化模型,如GTR、 GTR+I+G等。
生物信息学第七章分子进化与系统发育分析2
生物信息学第七章分子进化与系统发育分析(2)同义与非同义的核苷酸替代❒同义替代:编码区的DNA序列,核苷酸的改变不改变编码的氨基酸的组成❒非同义替代:核苷酸改变,从而改变编码氨基酸的组成❒计算方法:进化通径法Kimura两参数法采用密码子替代模型的最大似然法SdS❒Ka/Ks ~ 1: 中性进化❒Ka/Ks << 1: 阴性选择,净化选择❒Ka/Ks >> 1: 阳性选择,适应性进化❒多数基因为中性进化,约1%的基因受到阳性选择->决定物种形成、新功能的产生❒PAML, MEGA等工具:计算Ka/Ks及统计显著性进化通径法:Nei-Gojobori❒首先需要考虑:潜在的同义(S )和非同义位点数(N )❒基本假设:所有核苷酸的替代率相等❒用f i 表示某一个密码子第i 位的核苷酸上发生同义替代的比例;(i=1,2,3)❒所有密码子潜在的同义和非同义替代的位点数定义如下:,n=3-s∑==31i i f s潜在的同义和非同义位点数的估计❒例如对于Phe, 密码子TTT, 第三位T变成C时为同义替代,变成A/G为非同义替代❒因此:❒s=0+0+1/3❒n=3-1/3=8/3❒终止密码子忽略不计;如Cys的TGT, s=0.5整个序列的同义与非同义估计❒和N=3C-S; Sj 为第j 位密码子的s 值,C 为所有密码子的总数❒S+N=3C :所比较的核苷酸的总数∑==C j j S S 1S d 与N d 的计算:进化通径❒当一对密码子仅存在一个差异时,可以立即判断是同义还是非同义,进化通径只有一种可能;例如对于GTT(Val)和GTA(Val),s d =1,n d =0;而对于ATT(I)和ATG(M),s d =0,n d =1❒一对密码子存在两个差异时:两种进化通径(简约法,即最少需要)。
例如:比较TTT(Phe)和GTA(Val): (1) TTT(Phe)<->GTT(Val)<->GTA(Val)(2) TTT(Phe)<->TTA(Leu)<->GTA(Val)❒s d =1/2=0.5,n d =3/2=1.5❒同样,终止密码子不予考虑一对密码子存在三个差异时:六种进化通径。
分子进化分析讲解
—— 寻找这棵正确的树
+ 分子进化分析介绍 + 系统发育树重建方法 + 常用分子进化与系统发育分析的软件
选择数据(核酸/蛋白质,外围支) 多序列比对(自动比对,手工比对)
选择建树方法及取代模型 建立进化树 进化树评估
+ 从多重序列比对到构建进化树有多种算法, 可分两大类:
+ 基于距离的方法
– Tree 1长4,Tree 2& 3长2
+ 同理,综合所有信息位点:
– Tree 1长4,Tree 2长5,Tree 3长6
+ 计算结果:MP tree的最优结果为Tree 1
+ 又称距离矩阵法,首先通过各个物种之间的 比较,根据一定的假设(进化距离模型)推 导得出分类群之间的进化距离,构建一个进 化距离矩阵。进化树的构建则是基于这个矩 阵中的进计化算距序离列关的距系离,建立距离矩阵
– 首先通过各个序列之间的比较,根据一定的假 设(进化距离模型)推导出分类群之间的进化 距离,构建一个进化距离矩阵。进化树的构建 则是基于这个矩阵中的进化距离。
+ 基于特征的方法
– 不计算序列之间的距离,而是将序列中有差异 的位点作为单独的特征,并依据这些特征来建
+ 基于距离的方法
– 非加权分组平均法(UPGMA) – 最小近乎距离(ME) – 邻近法(NJ)
真细菌 真核生物
古生菌
随着距非洲距离越来越长, 遗传多样性的衰退程度, 正好沿着人类早期迁徙的 路线慢慢增大。
53个人的线粒体基因组 (16,587bp)
非洲人相对其他大陆上的 人类在基因上极为多样化
人类迁移的路线
一、系统发育树(Phylogenetic tree)
分子进化与系统发育分析PPT演示课件
eukaryote
eukaryote
bacteria outgroup 外围支
archaea archaea archaea
eukaryote eukaryote
eukaryote
22
eukaryote
无根树和有根树:潜在的数目
#Taxa
3 4 5 6 7 … 30
无根树
1 3 15 105 945
同一基因,一般具有相同的功能。 并系同源(paralogs):同源基因在同一物种
中,通过至少一次基因复制的
16
paralogs
orthologs
Erik L.L. Sonnhammer Orthology,paralogy and proposed classification for paralog subtypes
19
异源基因或水平转移基因
(xenologous or horizontally transferred genes)
由某一个水平基因转移事件而得到的同源序列
20
2.进化分支图,进化树
Bacterium 1
Bacterium 2
Bacterium 3 Eukaryote 1 Eukaryote 2
TRENDS in Genetics Vol.18 No.12 December 2002
http://tig.trends.co m 0168-9525/02/$ – see front matter © 2002 Elsevier 17 Science Ltd. All rights reserved.
有根树
3 15 105 945 10,395
~3.58X1036 ~2.04X1038
分子进化学中的进化树构建方法
分子进化学中的进化树构建方法随着科技的进步和生物技术的广泛应用,分子生物学的研究逐渐深入,成为生物学、生物技术和医药学等领域的重要研究方向。
而分子进化学作为分子生物学中的一个重要分支,研究物种间的分子差异和进化关系。
其中,构建进化树是分子进化学研究中的重要工作,下面我们来了解一下进化树构建的方法。
一、进化树的基本概念进化树是描述不同物种、不同基因或不同蛋白质之间进化关系的图形化表示。
在进化树中,每一个分支代表了一个物种、一个基因或一个蛋白质序列,分支的长度表示了物种、基因或序列的进化距离,而进化距离则是衡量不同物种或不同序列之间关系的基本参数。
而构建进化树的过程则是根据分子序列数据的重构得到物种或基因的进化树。
二、进化树的构建方法构建进化树有多种方法,主要有距离矩阵法、系统发育学法、最大似然法和贝叶斯法等。
下面我们逐一介绍这些方法的基本原理。
1.距离矩阵法距离矩阵法是最早采用的一种构建进化树的方法,它基于序列之间的距离矩阵计算和聚类方法来得到进化树。
该方法首先计算所有分子序列之间的距离(距离可由序列相似性计算得出),然后根据聚类方法构建进化树。
聚类方法包括单链接聚类、均链接聚类和最大链接聚类等。
距离矩阵法的优点是构建速度快、适用性广,但是对于高变异的序列来说,该方法可能会产生误导性的结果。
2.系统发育学法系统发育学法是基于系统学原理,采用系统发生学的理论和方法来构建进化树。
该方法主要是通过分子序列的相似性构建系统发育分析矩阵,然后利用不同的计算方法(如UPGMA、NJ和ML等)推断进化树。
系统发育学法的优点是能够更准确地反映分子序列的演化,并且可以通过不同的方法比较结果,但是该方法需要大量的计算资源和长时间的计算。
3.最大似然法最大似然法是一种统计学上的方法,通过最大化序列数据与观测数据的相似度,来推断出最可能的进化树。
该方法需要整合进化模型和数据,然后计算不同进化模型下数据的似然函数,最终选择似然度最大的进化树。
系统发育进化树作用-概述说明以及解释
系统发育进化树作用-概述说明以及解释1.引言1.1 概述系统发育进化树是生物学领域一个重要的概念和工具。
它通过对物种之间的遗传关系和演化历史进行系统分析和分类,构建出一颗树状结构,用以揭示物种之间的进化关系。
这种树状结构可以帮助我们更好地理解物种之间的演化历史以及它们之间的亲缘关系。
系统发育进化树的构建方法经历了长期的发展和完善,目前主要包括分子系统学和形态系统学两种方法。
分子系统学通过比对物种之间的DNA 或蛋白质序列,来推断它们之间的遗传关系;而形态系统学则是通过对物种的形态、生理学特征等进行比较和分类。
这些方法的结合可以更准确地揭示物种之间的演化关系。
系统发育进化树在生物学领域有着广泛的应用,不仅可以帮助我们解答物种起源、分化等基础科学问题,还可以指导生物分类学、生物地理学等实际应用领域的研究。
因此,系统发育进化树的建立和应用具有重要的理论和实践价值。
1.2 文章结构本文将分为三个主要部分来探讨系统发育进化树的作用。
首先,我们将在引言部分对本文的内容进行概述,介绍系统发育的基本概念以及文章的目的。
接下来,在正文部分,我们将详细介绍系统发育和进化树的构建方法,以及系统发育进化树在生物学研究中的应用。
最后,在结论部分,我们将强调系统发育进化树的重要性,并展望未来其在科学研究中的发展前景。
通过以上结构的安排,我们希望读者能够更全面地了解系统发育进化树的作用及其在生物学领域的重要性。
1.3 目的在本文中,我们的主要目的是探讨系统发育进化树在生物学研究中的重要作用。
我们将首先介绍系统发育的概念,探讨进化树的构建方法,然后详细讨论系统发育进化树在生物学领域中的应用。
通过对这些内容的分析和探讨,我们旨在揭示系统发育进化树在生物学研究中的重要性,为今后更深入的研究提供参考和启示。
同时,我们也将展望未来系统发育进化树在生物学领域的发展潜力,希望能为相关研究提供一定的借鉴和指导。
最终,我们将对本文进行总结,强调系统发育进化树在生物学研究中的重要性和必要性。
分子进化树
(2)-(3)+(1)
d=4,e=6
dD eE
=> C最接近DE!
分成三组:C, DE, 以及AB
c+g+(e+d)/2=19 (1) c+f+(a+b)/2=40 (2) (e+d)/2+(a+b)/2+f+g=41 (2) (1)+(2)-(3) => c=9 => g=5
由:(a+b)/2+f+g+(d+e)/2=41 得:f=20 由:a+f+c=39 得:a=10,则b=12
最大简约法(maximumparsimony,MP)
根据信息位点提供的各序列间的 替换情况,在所有可能的树中筛 选含最小替换数的树的方法。
最大简约法(MP)
该方法的理论基础是奥卡姆剃刀原理,即如无必要,勿 增实体(解释一个过程的最好的理论是所需假设数目最 少的那一个)。
主要思想:构造一个反映分类单元之间最小变化的系统 发育树,即选择核苷酸序列全部位点最小核苷酸替代数 之和最小的树作为最优树。
– 可用于任何相关序列集合
• 计算速度:
– 距离法 >最大简约法 >最大似然法
2.1 距离法
• 又称距离矩阵法,首先通过各个物种之间 的比较,根据一定的假设(进化距离模型 )推导得出分类群之间的进化距离,构建 一个进化距离矩阵。再依据进化距离,分 别依次将序列合并聚类,构建进化树。
简单的距离矩阵
• Tree 1最为简约 • MP tree的最优结果为tree 1
最大简约法
如:用最大简约法构建下面4组序列的系统树 AAG AAA GGA AGA
分子进化与系统发育分析
2. 阴性选择,净化选择:DNA分子的同义
替代显著,较少改变蛋白质的氨基酸组成,其 原来的功能高度保守;
3. 中性进化:同义替代与非同义替代比例相
当,突变不好不坏,不改变或轻微改变蛋白质 的功能。
基因的编码区和非编码区
基因的DNA由编码区(Coding region)和 非编码区(Non-coding region)构成;
➢B. 非编码区:~100%的中性进化
编码区:密码子
1. 对于同义的密码子,第一位少部分可以允许不 同,例如,编码Ser的六个密码子:TCT, TCC, TCA, TCG, AGT, AGC
2. 第二位必须相同 3. 第三位绝大多数可以不同 近似随机; 4. 因此:
➢ A. 第一位:阴性进化占大部分,中性进化占小部分 ➢ B. 第二位:阴性进化 ➢ C. 第三位:阴性进化占小部分,中性进化占大部分
种可以相互替换;
(4)结构相似; (5)组织特异性与亚细胞分布相似。
鉴定直系同源的实际操作标准(practical criteria)为:
进化树分析
paralogs
orthologs
paralogs orthologs
Erik L.L, et al TRENDS in Genetics, 2002
异同源(xenology)
系统发育树术语
分支/世系 末端节点
A B C D
祖先节点/ 树根
内部节点/分歧点,该 分支可能的祖先结点
E
代表最终 分类,可 以是物种 ,群体, 或者蛋白 质、DNA、 RNA分子等
二、系统发育树重建分析步骤
多序列比对(自动比对,手工校正) 确定替换模型 建立进化树 进化树评估
2.1多序列比对
序列多重比对的结果反映了序列之间的相似性, 为系统发育树的构建提供了有价值的信息。为提 高模型估算的精确性,不仅需要选择合适的比对 方法和参数,还需要对后续比对结果进行合理修 正,从中提取有意义的数据集用于系统发育树的 构建。
单系类群 包含一个 祖先类群所有子裔, 存在共同祖先 并系类群 非单系类 群,存在共同祖先 复系类群 非单系类 群,不存在共同衍生 祖先
内类群 研究所涉及的 某一特定类群 外类群 不包括在 内类群中又与之有一 定关系 姐妹群 与某一类 群关系最为密切的类 群
无根树,有根树,外群
archaea archaea archaea eukaryote eukaryote eukaryote
经典系统发育学局限性
表型有时候会误导我们,表型相似并不总是反映 基因相似。关系很远的物种也能进化出相似的表 型,这是由趋同进化的过程造成的。 用表型来判定进化关系的另一个问题是,对于许 多生物体很难检测到可用来进行比较的表型特征。 比较关系较远的生物体,什么样的表型特征能用 来比较呢?
系统发育树:三种类型
第七章分子系统发育分析进化树
D C F GA B E†
系统进化树的概念
直系同源(orthol。
旁系同源(paralogs): 同源的基因是由于基因复制产生的。 用于分子进化分析中的序列必须是直系同源的,才能真实
反映进化过程。
旁系同源
直系同源
系统进化树的种类
Eukaryote 4
系统进化树的种类
——物种树、基因树
物种树:代表一个物种或 群体进化历史的系统进化 树,两个物种分歧的时间 为两个物种发生生殖隔离 的时间
基因树:由来自各个物种 的一个基因构建的系统进 化树(不完全等同于物种 树),表示基因分离的时 间。
基因分裂
基因分裂 基因分裂 物种分裂
关于分子钟的讨论和争议
1、对长期进化而言,不存在以恒定速率替换的生物大分子 一级结构;(基因功能的改变、基因数目的增加)
2、不存在通用的分子钟;
3、争议: 分子钟的准确性 中性理论(分子钟成立的基础)
第一节 生物进化的分子机制
分子途经研究生物进化的可行性 分子进化的模式 分子进化的特点 研究分子进化的作用
末端节点:代表最终分类, 可以是物种,群体,或者蛋 白质、DNA、RNA分子等
A
B
C
D 祖先节点/树根
内部节点/分歧点,该
E
分支可能的祖先节点
系统进化树的概念
进化树分支的图像称为进化的拓扑结构 理论上,一个DNA序列在物种形成或基因复制时,
分裂成两个子序列,因此系统进化树一般是二歧 的。
A BC D F G E†
氨基酸
例:血红蛋白分子的外区的功能要次于内区的功能,外区的进化速率 是内区进化速率的10倍。
核苷酸
例:DNA密码子的同义替代频率高于非同义替代频率;内含子上的核 苷酸替代频率较高。
进化树分析
二、系统发育树重建分析步骤
多序列比对(自动比对,手工校正) 确定替换模型 建立进化树 进化树评估
2.1多序列比对
序列多重比对的结果反映了序列之间的相似性, 为系统发育树的构建提供了有价值的信息。为提 高模型估算的精确性,不仅需要选择合适的比对 方法和参数,还需要对后续比对结果进行合理修 正,从中提取有意义的数据集用于系统发育树的 构建。
分子系统发育分析
一、分子进化的基本理论
系统发育(或种系发育、系统发生,phylogeny) 是指生物形成或进化的历史。 系统发育学(phylogenetics)研究物种之间的进化 关系,其基本思想是比较物种的特征,并认为特 征相似的物种在遗传学上接近。
一、分子进化的基本理论
系统发育学是进化生物学的一个重要研究领域, 系统发育分析早在达尔文时代就已经开始。从那 时起,科学家们就开始寻找物种的源头,分析物 种之间的进化关系,给各个物种分门别类。
一、分子进化的基本理论
所有的生物都可以追溯到共同的祖先,生物的产 生和分化就像树一样地生长、分叉,以树的形式 来表示生物之间的进化关系是非常自然的事。可 以用树中的各个分支点代表一类生物起源的相对 时间,两个分支点靠得越近,则对应的两群生物 进化关系越密切。
经典系统发育学
经典系统发育学 主要是物理或表型特征 如生物体的大小、颜色、触角个数 通过表型比较来推断生物体的基因型 (genotype),研究物种之间的进化关系
系统发育树:三种类型
分支图
Taxon B Taxon C Taxon A Taxon D
1 1
进化树
6
时间度量树
Taxon B Taxon B Taxon C Taxon A Taxon D
分子系统发育分析进化树
分子系统发育分析进化树在生命科学的广袤领域中,分子系统发育分析进化树宛如一座指引我们探寻物种起源和演化历程的灯塔。
它不仅是一种强大的研究工具,更是帮助我们揭示生物多样性和进化关系的关键密码。
那么,究竟什么是分子系统发育分析进化树呢?简单来说,它是基于生物大分子(如 DNA、RNA 或蛋白质)的序列信息构建而成的树形图。
这些大分子在生物的遗传过程中相对稳定,并且会随着时间的推移发生一定的变异。
通过对这些变异的分析和比较,我们能够推断出不同物种之间的亲缘关系远近。
想象一下,每种生物的大分子序列就像是一本独特的“遗传密码书”。
而分子系统发育分析就是要解读这些密码书中的相似之处和差异之处。
当我们收集到多个物种的密码书,并将它们放在一起比较时,就能发现其中的规律。
构建分子系统发育分析进化树的第一步是获取生物大分子的序列数据。
这通常需要从各种生物样本中提取 DNA 或 RNA,然后通过特定的技术手段进行测序。
一旦获得了序列数据,接下来就要运用一系列复杂的算法和计算方法来对这些数据进行处理和分析。
在这个过程中,相似性的度量是至关重要的一环。
我们需要找到一种合适的方法来衡量不同序列之间的相似程度。
常用的方法包括计算序列之间的碱基差异、氨基酸差异,或者使用一些特定的数学模型来评估它们的相似度。
然后,根据这些相似性的度量结果,利用特定的软件和算法来构建进化树。
进化树的形状和结构可以有多种形式,比如二叉树、多叉树等。
树枝的长度通常代表着物种之间的进化距离,也就是说,树枝越长,说明两个物种在进化过程中分离的时间越早,亲缘关系越远;反之,树枝越短,亲缘关系越近。
分子系统发育分析进化树在生物学的多个领域都有着广泛的应用。
在分类学中,它可以帮助我们重新审视和修正传统的物种分类体系。
有时候,基于形态特征的分类方法可能会存在一些偏差或不确定性,而进化树则能够从分子层面提供更准确、更客观的依据。
在生态学研究中,进化树可以帮助我们了解不同物种在生态系统中的地位和相互关系,进而预测它们对环境变化的响应。
分子进化分析ppt课件
Eukaryote 4
Phylograms show
Bacterium 1
branch order and
Bacterium 2
branch lengths
Bacterium 3
进化树,有分支和支长
Eukaryote 1
信息
Eukaryote 2
Eukaryote 3
Eukaryote 4
ppt课件.
homologous from analogous proteins. Syst. Zool. 19,
99–113)
ppt课件.
11
paralogs
orthologs
ppt课件.
12
ppt课件.
paralogs
orthologs
Erik L.L. Sonnhammer Orthology,paralogy and proposed classification for paralog subtypes
ppt课件.
19
系统发育树重建分析步骤
多序列比对(自动比对,手工比对) 建立取代模型(建树方法) 建立进化树 进化树评估
ppt课件.
20
系统发育树重建的基本方法
• 最大简约法(maximum parsimony,MP) • 距离法(distance) • 最大似然法(maximum likelihood,ML) • Bayes法
9
分子钟理论
从一个分歧数据可以推测其他
y
x
序列分歧度
分歧p时pt课间件.
10
直系同源与旁系同源
• 直系同源(orthologs): 同源的基因是由于
共同的祖先基因进化而产生的.
分子进化:系统树的构建_图文(精)
计:ˆ1 + v ˆ 2 = K 12 v ˆ1 + v ˆ3 = K 13 v ˆ2 + v ˆ3 = K 23 v 估值为 1 ( K 12 + K 13 − K 23 2 1 ˆ2 = ( K 12 + K 23 − K 13 v 2 1 ˆ3 = (K 13 + K 23 − K 12 v 2 实际序列并非具有相等的碱基频率,因而 Jukes-Cantor 距离不会使似然值最大,但它们的确为迭代法提供了很好的初始值。
Newton-Raphson 迭代法为找 -vi 到最大似然值的数值解提供了直接的方法,且从寻求 pi=1-e 的估值来看,这一方法在描述上是最为简单的。
表 5.7 给出了图 5.4 中人类(1、大猩猩(2、长臂猿(3线粒体序列收敛过程的例子。
三个序列间的平均碱基频率用作模型中的概率项πi。
ˆ1 = v 表 5.7 图 5.4 中人类、大猩猩和长臂猿线粒体序列非约束型最大似然树分枝长度的连续迭代 v2 v3 迭代 v1 初始值 0.0423 0.0174 0.2215 1 0.0420 0.0196 0.2230 2 0.0420 0.01990.2299 3 0.0420 0.0199 0.2299 标准差 0.0297 0.0218 0.0600 用几个序列作为树端来构建系统树时,可采用以上所述的一般方法。
先指定一种系统树,然后对来自该系统树似然函数的方程进行 Newton-Raphson 迭代来估计分枝长度。
在理论上,应研究所有可能的系统树来寻找具有最大似然值的系统树。
Fukami 和 Tateno(1989证实至多存在一组对于 L 给出平稳值的分枝长度,且这组分枝长度提供了所需的最大似然估计。
将这一方法应用于图 5.4 所列的 5 种线粒体序列,获得了图 5.16 所示的无根树状图。
117人类 0.015 0.030 1 0.000 黑猩猩大猩猩 0.000 0.051 0.045 2 3 0.138 猩猩长臂猿图 5.16 利用 Felsenstein 的 PHYLIP 软件构建的图 5.4 线粒体序列资料的最大似然树四.对系统树 Bootstrap 抽样在任一特定的树状拓扑结构内,已知最大似然值提供了分枝长度的一致估计值,这意味着随着资料量的增加,估计值逐渐接近真值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论 分子进化速率恒定。 分子钟:物种的同源基因之间的差异程度与它们的共同祖先 的存在时间(即两者的分歧时间)有一定的数量关系。
发生在分子层面的进化过程:DNA, RNA和蛋白质分子
引言
分子钟成立的证据:
1、至少某些生物大分子(如珠蛋白)的进化速率在相 当长的地质时间内的相对稳定、均匀;
d
a
b
d
c
考虑4个分类群时,共有3种可能的无根树
系统进化树的种类
——有根树、无根树
#Taxa
3 4 5 6 7 … 30
无根树
1 3 15 105 945
有根树
3 15 105 945 10,395
~3.58X1036 ~,选出真实树的拓扑结构十分困 难,因此,目前算法都为优化算法,不能保证最优解。
53个人的线粒体基因组(16,587bp)
人类迁移的路线
第二节 系统进化树及其构建
系统进化树的概念 系统进化树的种类 系统进化树的构建
系统进化树的概念
所有生物都可以追溯 到共同的祖先,生物 的产生和分化就像树 一样生长、分叉,以 树的形式来表示生物 之间的进化关系是非 常自然的事。
eukaryote
a b c da c b da d b c a b c da c b d a d b c b a c db c a d b a a c c a b dc b a d c d a b d a b cd b a c d c a b
考虑4个分类群时,共有15种可能的有根树
a
ca
b
b
dc
Inferred pairwise nucleotide substitutions among 17 mammal species from seven gene products, as estimated from protein studies, plotted against date of divergence, as estimated from the fossil record. The line is drawn from the origin through the oldest point (marsupial / placental divergence at 125 MYBP). The strong linear relationship suggests that molecular differences between pairs of species are proportional to the time of their separation, rather than the degree of organismal difference. Therefore, measures of genetic divergence can be used to date the time of divergence for species pairs for which no fossil data are available: genes function as Molecular Clocks. (from A. C. Wilson 1976)
系统进化树的种类
——标度树、非标度树
标度树:分支的 长度表示变化的 程度
Bacterium 1
Bacterium 2
一个单位
Bacterium 3
Eukaryote 1
Eukaryote 2
Eukaryote 3
Eukaryote 4
非标度树:分支 只表示进化关系, 支长无意义
Bacterium 1 Bacterium 2 Bacterium 3 Eukaryote 1 Eukaryote 2 Eukaryote 3
2、许多不同物种的多种同源大分子在相当长时间内的 平均进化速率近似恒定。
建立分子钟的大致步骤
1、选择所要比较的生物大分子种类
根据具体研究目标和已掌握的资料,选择进化速率相对恒定、速率 大小合适、分布范围能涵盖各待比较物种的生物大分子。
2、选择所要比较的物种,确定各比较组合及其所代表的进 化事件
D C F GA B E†
系统进化树的概念
直系同源(orthologs): 同源的基因是由于共同的祖先基因 进化而产生的。
旁系同源(paralogs): 同源的基因是由于基因复制产生的。 用于分子进化分析中的序列必须是直系同源的,才能真实
反映进化过程。
旁系同源
直系同源
系统进化树的种类
A. 单个基因复制 – 重组或者逆转录 B. 染色体片断复制 C. 基因组复制
(1) DNA突变
替代
插入
Thr Tyr Leu Leu
Thr Tyr Leu Leu
ACC TAT TTG CTG
ACC TAT TTG CTG
ACC TCT TTG CTG Thr Ser Leu Leu
人、马——0.810-9/AA.a 人、鲤鱼——0.610-9/AA.a
分子进化速率远远比表型进化速率稳定
生物大分子进化的保守性
保守性
功能上重要的大分子或大分子的局部在进化速率上明显低于那些在功 能上不重要的大分子或者大分子局部。
(引起表型发生显著改变的突变发生的频率要低于无明显表型发生显 著改变得突变发生的频率。)
拓扑结构:
有根树: 反映时间顺序
——有根树、无根树
bacteria outgroup外围支
root
archaea archaea archaea
eukaryote eukaryote
eukaryote eukaryote
无根树: 反映距离
archaea
archaea
archaea
eukaryote
eukaryote eukaryote
系统进化树的概念
phylogenetic tree/evolutionary tree 系统进化树/生物进化树/系统发育树/系统发生树/系统
树/进化树/演化树 是表明被认为具有共同祖先的各物种相互间进化关系的
树形图。
系统进化树的概念——术语
分支/世系:长度对应 演化距离(如估计的 演化时间)
末端节点:代表最终分类, 可以是物种,群体,或者蛋 白质、DNA、RNA分子等
A
B
C
D 祖先节点/树根
内部节点/分歧点,该
E
分支可能的祖先节点
系统进化树的概念
进化树分支的图像称为进化的拓扑结构 理论上,一个DNA序列在物种形成或基因复制时,
分裂成两个子序列,因此系统进化树一般是二歧 的。
A BC D F G E†
最理想的方法:化石!—— 零散、不完整
引言
梦想走进现实:How?
比较形态学和比较生理学:确定大致的进化框架 —— 细节存很多的争议
引言
梦想走进现实:How?
第三种方案:分子进化
1964年,美国进化生物学家 E. Zuckerkandl和 量子化学家 Linus Pauling提出分子进化理论
缺失 Thr Tyr Leu Leu ACC TAT TTG CTG
ACC TAT TGC TGThr Tyr Cys -
ACC TAC TTT GCT G Thr Tyr Phe Ala
倒位 Thr Tyr Leu Leu ACC TAT TTG CTG
ACC TTT ATG CTG Thr Phe Met Leu
3、获得生物大分子一级结构的资料
4、获得有关的代表性进化事件发生的地质时间数据
5、通过比较大分子一级结构,选择合适的数学模型,计算 得到进化产生的分子差异d,通过回归分析等统计方法得到 大分子的进化速率r(t)
6、由此可以推断未知进化事件的发生时间
Example: Molecular clock for 17 mammal species
适用序列有很高相似性时
2. 距离法 (distance)
适用序列有较高相似性时
3. 最大似然法 (maximum likelihood, ML)
可用于任何相关序列集合
计算速度:
距离法 >最大简约法 >最大似然法
构建系统进化树的方法 ——最大简约法(MP)
理论基础为奥卡姆 (Ockham)原则:计算所需替代数最小 的那个拓扑结构,作为最优树
核苷酸替代:转换 & 颠换
1. 转换:嘌呤被嘌呤 替代,或者嘧啶被嘧 啶替代
2. 颠换:嘌呤被嘧啶 替代,或者嘧啶被嘌 呤替代
(2)基因复制:单个基因复制
重组 逆转录
(2)基因复制:染色体片段复制
狒狒 人
(2)基因复制:基因组复制
S. Cerevisiae (酿酒酵母) K. Waltii (克鲁雄酵母)
Eukaryote 4
系统进化树的种类
——物种树、基因树
物种树:代表一个物种或 群体进化历史的系统进化 树,两个物种分歧的时间 为两个物种发生生殖隔离 的时间
基因树:由来自各个物种 的一个基因构建的系统进 化树(不完全等同于物种 树),表示基因分离的时 间。
基因分裂
基因分裂 基因分裂 物种分裂
分子途径研究生物进化的可行性
普适性
由4种核酸组成
分子水平的进化表现为:DNA序列的演化、氨基酸序列演化、 蛋白质结构及功能的演化
可比较性
比较不同物种的有关DNA序列
建立DNA序列的演化模型、氨基酸序列的演化模型
蛋白质结构的演化模型
基因组包含丰富的编码信息
与形态、性状包含的信息相比,基因组序列、蛋白质序 列包含更多、更复杂的信息结构