(完整版)2017年成都市中考数学试题及答案

合集下载

2017年盘锦市中考数学试题(含答案和解释)

2017年盘锦市中考数学试题(含答案和解释)

2017年盘锦市中考数学试题(含答案和解释)一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的序号涂在答题卡上,每小题3分,共30分)1.﹣2的相反数是()A.2B..﹣D.﹣2 【答案】A.【解析】试题分析:﹣2的相反数是2,故选A.考点:相反数.2.以下分别是回收、节水、绿色包装、低碳四个标志,其中是中心对称图形的是()A.B..D.【答案】.考点:中心对称图形.3.下列等式从左到右的变形,属于因式分解的是()A.B..D.【答案】.【解析】试题分析:A.,故A不是因式分解;B.,故B不是因式分解;.,故正确;D.=a(x+1)(x﹣1),故D分解不完全.故选.考点:因式分解的意义.4.如图,下面几何体的俯视图是()A.B..D.【答案】D.【解析】试题分析:从上面可看到第一行有三个正方形,第二行最左边有1个正方形.故选D.考点:简单组合体的三视图..在我市举办的中学生“争做明盘锦人”演讲比赛中,有1名学生进入决赛,他们决赛的成绩各不相同,小明想知道自己能否进入前8名,不仅要了解自己的成绩,还要了解这1名学生成绩的()A.众数B.方差.平均数D.中位数【答案】D.考点:统计量的选择.6.不等式组的解集是()A.﹣1<x≤3B.1≤x<3.﹣1≤x<3D.1<x≤3【答案】.考点:解一元一次不等式组.7.样本数据3,2,4,a,8的平均数是4,则这组数据的众数是()A.2B.3.4D.8【答案】B.【解析】试题分析:a=4×﹣3﹣2﹣4﹣8=3,则这组数据为3,2,4,3,8;众数为3,故选B.考点:众数;算术平均数.8.十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进,结果每位同学比原少分摊4元车费.设原游玩的同学有x名,则可得方程()A.B..D.【答案】D.【解析】试题分析:由题意得:,故选D.考点:由实际问题抽象出分式方程.9.如图,双曲线(x<0)经过▱AB的对角线交点D,已知边在轴上,且A⊥于点,则▱AB的面积是()A.B..3D.6【答案】.考点:反比例函数系数的几何意义;平行四边形的性质.10.如图,抛物线与x轴交于点A(﹣1,0),顶点坐标(1,n),与轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①ab>0;②3a+b<0;③﹣≤a≤﹣1;④a+b≥a2+b(为任意实数);⑤一元二次方程有两个不相等的实数根,其中正确的有()A.2个B.3个.4个D.个【答案】B.【解析】试题分析:∵抛物线开口向下,∴a<0,∵顶点坐标(1,n),∴对称轴为直线x=1,∴=1,∴b=﹣2a>0,∵与轴的交点在(0,3),(0,4)之间(包含端点),∴3≤≤4,∴ab<0,故①错误;3a+b=3a+(﹣2a)=a<0,故②正确;∵与x轴交于点A(﹣1,0),∴a﹣b+=0,∴a﹣(﹣2a)+=0,∴=﹣3a,∴3≤﹣3a≤4,∴﹣≤a≤﹣1,故③正确;∵顶点坐标为(1,n),∴当x=1时,函数有最大值n,∴a+b+≥a2+b+,∴a+b≥a2+b,故④正确;一元二次方程有两个相等的实数根x1=x2=1,故⑤错误.综上所述,结论正确的是②③④共3个.故选B.考点:抛物线与x轴的交点;根的判别式;二次函数的性质.二、填空题(每小题3分,共24分)11.2016年我国对“一带一路”沿线国家直接投资14亿美元,将14亿用科学记数法表示为.【答案】14×1010.【解析】试题分析:将14亿用科学记数法表示为:14×1010.故答案为:14×1010.考点:科学记数法—表示较大的数.12.若式子有意义,则x的取值范围是.【答案】x>.考点:二次根式有意义的条.13.计算:= .【答案】.【解析】试题分析:原式= ,故答案为:.考点:整式的除法.14.对于▱ABD,从以下五个关系式中任取一个作为条:①AB=B;②∠BAD=90°;③A=BD;④A⊥BD;⑤∠DAB=∠AB,能判定▱ABD是矩形的概率是.【答案】.【解析】试题分析:由题意可知添加②③⑤可以判断平行四边形是矩形,∴能判定▱ABD是矩形的概率是,故答案为:.考点:概率公式;矩形的判定.1.如图,在△AB中,∠B=30°,∠=4°,AD是B边上的高,AB=4,分别以B、为圆心,以BD、D为半径画弧,交边AB、A于点E、F,则图中阴影部分的面积是2.【答案】.考点:扇形面积的计算;勾股定理.16.在平面直角坐标系中,点P的坐标为(0,﹣),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于轴,且AB=8,反比例函数(≠0)经过点B,则= .【答案】﹣8或﹣32.【解析】试题分析:设线段AB交轴于点,当点在点P的上方时,连接PB,如图,∵⊙P 与x轴相切,且P(0,﹣),∴PB=P=,∵AB=8,∴B=4,在Rt△PB 中,由勾股定理可得P= =3,∴=P﹣P=﹣3=2,∴B点坐标为(4,﹣2),∵反比例函数(≠0)经过点B,∴=4×(﹣2)=﹣8;当点在点P下方时,同理可求得P=3,则=P+P=8,∴B(4,﹣8),∴=4×(﹣8)=﹣32;综上可知的值为﹣8或﹣32,故答案为:﹣8或﹣32.考点:反比例函数图象上点的坐标特征;切线的性质;分类讨论.17.如图,⊙的半径A=3,A的垂直平分线交⊙于B、两点,连接B、,用扇形B围成一个圆锥的侧面,则这个圆锥的高为.【答案】.考点:圆锥的计算;线段垂直平分线的性质.18.如图,点A1(1,1)在直线=x上,过点A1分别作轴、x轴的平行线交直线于点B1,B2,过点B2作轴的平行线交直线=x于点A2,过点A2作x轴的平行线交直线于点B3,…,按照此规律进行下去,则点An的横坐标为.【答案】.考点:一次函数图象上点的坐标特征;规律型:点的坐标;综合题.三、解答题(19小题8分,20小题10分,共18分)19.先化简,再求值:,其中a= .【答案】,1.【解析】试题分析:根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.试题解析:原式===当a=1+2=3时,原式= =1.考点:分式的化简求值;零指数幂;负整数指数幂.20.如图,码头A、B分别在海岛的北偏东4°和北偏东60°方向上,仓库在海岛的北偏东7°方向上,码头A、B均在仓库的正西方向,码头B和仓库的距离B=0,若将一批物资从仓库用汽车运送到A、B两个码头中的一处,再用货船运送到海岛,若汽车的行驶速度为0/h,货船航行的速度为2/h,问这批物资在哪个码头装船,最早运抵海岛?(两个码头物资装船所用的时间相同,参考数据:≈14,≈17)【答案】这批物资在B码头装船,最早运抵海岛.由题意∠=7°,∠B=60°,∠=4°,∠=90°,∴∠=1°,∠B=30°,=A,∵∠B=∠+∠B,∴∠=∠B=1°,∴B=B=0(),在Rt△B中,= B=2(),B= = (),在Rt△A中,=A=2(),A= ≈3,∴AB=B﹣A≈17(),∴从A码头的时间= =34(小时),从B码头的时间= =3(小时),3<34.答:这批物资在B码头装船,最早运抵海岛.考点:解直角三角形的应用﹣方向角问题;勾股定理的应用.21.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.【答案】(1)0;(2)26;(3)104000元;(4).【解析】试题分析:(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出类型人数,即可补全条形图;(2)由各类的人数可得其总消费,进而可求出该班同学用于饮品上的人均花费是多少元;(3)用总人数乘以样本中的人均消费数额即可;(4)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一名男生和一名女生的结果数,根据概率公式求解可得.试题解析:(1)∵抽查的总人数为:20÷40%=0人,∴类人数=0﹣20﹣﹣1=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(×0+20×2+3×10+4×1)÷0=26元;(3)我市初中生每天用于饮品上的花费=40000×26=104000元.(4)列表得:或画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以P(恰好抽到一男一女)= = .考点:列表法与树状图法;用样本估计总体;扇形统计图;条形统计图;加权平均数.22.如图,在平面直角坐标系中,直线l:与x轴、轴分别交于点,N,高为3的等边三角形AB,边B在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B11,当点B1与原点重合时,解答下列问题:(1)求出点A1的坐标,并判断点A1是否在直线l上;(2)求出边A11所在直线的解析式;(3)在坐标平面内找一点P,使得以P、A1、1、为顶点的四边形是平行四边形,请直接写出P点坐标.【答案】(1)A1(,3),在直线上;(2);(3)P1(,3),P2(,﹣3),P3(﹣,3).试题解析:(1)如图作A1H⊥x轴于H.在Rt△A1H中,∵A1H=3,∠A1H=60°,∴H=A1H•tan30°= ,∴A1(,3),∵x= 时,=3,∴A1在直线上.(2)∵A1(,3),1(,0),设直线A11的解析式为=x+b,则有:,解得:,∴直线A11的解析式为.(3)∵(4 ,0),A1(,3),1(2 ,0),由图象可知,当以P、A1、1、为顶点的四边形是平行四边形时,P1(,3),P2(,﹣3),P3(﹣,3).考点:一次函数综合题;分类讨论.23.端午节前夕,三位同学到某超市调研一种进价为80元的粽子礼盒的销售情况,请根据小梅提供的信息,解答小慧和小杰提出的问题.(价格取正整数)【答案】小慧:定价为102元;小杰:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.=﹣10x2+2210x﹣112800,当=880时,﹣10x2+2210x﹣112800=880,整理,得:x2﹣221x+12138=0,解得:x=102或x=119,∵当x=102时,销量为1410﹣1020=390,当x=119时,销量为1410﹣1190=220,∴若要达到880元的利润,且薄利多销,∴此时的定价应为102元;小杰:=﹣10x2+2210x﹣112800= ,∵价格取整数,即x为整数,∴当x=110或x=111时,取得最大值,最大值为9300.答:880元的销售利润不是最多,当定价为110元或111元时,销售利润最多,最多利润为9300元.考点:二次函数的应用;二次函数的最值;最值问题.24.如图,在等腰△AB中,AB=B,以B为直径的⊙与A相交于点D,过点D作DE⊥AB交B延长线于点E,垂足为点F.(1)判断DE与⊙的位置关系,并说明理由;(2)若⊙的半径R=,tan= ,求EF的长.【答案】(1)直线DE是⊙的切线;(2).(2)过D作DH⊥B于H,∵⊙的半径R=,tan= ,∴B=10,设BD=,D=2,∴B= =10,∴=2 ,∴BD=2 ,D=4 ,∴DH= =4,∴H= =3,∵DE⊥D,DH⊥E,∴D2=H•E,∴E= ,∴BE= ,∵DE⊥AB,∴BF∥D,∴△BFE∽△DE,∴,即,∴BF=2,∴EF= = .考点:直线与圆的位置关系;等腰三角形的性质;解直角三角形;探究型.2.如图,在Rt△AB中,∠AB=90°,∠A=30°,点为AB中点,点P 为直线B上的动点(不与点B、点重合),连接、P,将线段P绕点P 顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段B上时,请直接写出线段BQ与P的数量关系.(2)如图2,当点P在B延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在B延长线上时,若∠BP=1°,BP=4,请求出BQ的长.【答案】(1)BQ=P;(2)成立:P=BQ;(3).(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.设E==a,则E=FP=2a,EF= a,在Rt△PE中,表示出P,根据P+B=4,可得方程,求出a即可解决问题;试题解析:(1)结论:BQ=P.理由:如图1中,作PH∥AB交于H.在Rt△AB中,∵∠AB=90°,∠A=30°,点为AB中点,∴=A=B,∠B=60°,∴△B是等边三角形,∴∠HP=∠B=60°,∠PH=∠B=60°,∴∠HP=∠PH=60°,∴△PH是等边三角形,∴P=PH=H,∴H=PB,∵∠PB=∠PQ+∠QPB=∠B+∠P,∵∠PQ=∠P=60°,∴∠PH=∠QPB,∵P=PQ,∴△PH≌△QPB,∴PH=QB,∴P=BQ.(3)如图3中,作E⊥P于E,在PE上取一点F,使得FP=F,连接F.∵∠P=1°,∠B=∠P+∠P,∴∠P=4°,∴E=E,设E==a,则E=FP=2a,EF= a,在Rt△PE中,P= = = ,∵P+B=4,∴,解得a= ,∴P= ,由(2)可知BQ=P,∴BQ= .考点:几何变换综合题;探究型;变式探究;压轴题.26.如图,直线=﹣2x+4交轴于点A,交抛物线于点B(3,﹣2),抛物线经过点(﹣1,0),交轴于点D,点P是抛物线上的动点,作PE⊥DB交DB所在直线于点E.(1)求抛物线的解析式;(2)当△PDE为等腰直角三角形时,求出PE的长及P点坐标;(3)在(2)的条下,连接PB,将△PBE沿直线AB翻折,直接写出翻折点后E的对称点坐标.【答案】(1);(2)PE=或2,P(2,﹣3)或(,3);(3)E的对称点坐标为(,﹣)或(36,﹣12).【解析】试题分析:(1)把B(3,﹣2),(﹣1,0)代入即可得到结论;(2)由求得D(0,﹣2),根据等腰直角三角形的性质得到DE=PE,列方程即可得到结论;(3)①当P点在直线BD的上方时,如图1,设点E关于直线AB 的对称点为E′,过E′作E′H⊥DE于H,求得直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论;②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE 于H,得到直线EE′的解析式为,设E′(,),根据勾股定理即可得到结论.(2)设P(,),在中,当x=0时,=﹣2,∴D(0,﹣2),∵B(3,﹣2),∴BD∥x轴,∵PE⊥BD,∴E(,﹣2),∴DE=,PE= ,或PE= ,∵△PDE为等腰直角三角形,且∠PED=90°,∴DE=PE,∴= ,或= ,解得:=,=2,=0(不合题意,舍去),∴PE=或2,P(2,﹣3)或(,3);②当P点在直线BD的下方时,如图2,设点E关于直线AB的对称点为E′,过E′作E′H⊥DE于H,由(2)知,此时,E(2,﹣2),∴DE=2,∴BE′=BE=1,∵EE′⊥AB,∴设直线EE′的解析式为,∴﹣2= ×2+b,∴b=﹣3,∴直线EE′的解析式为,设E′(,),∴E′H= = ,BH=﹣3,∵E′H2+BH2=BE′2,∴()2+(﹣3)2=1,∴=36,=2(舍去),∴E′(36,﹣12).综上所述,E的对称点坐标为(,﹣)或(36,﹣12).考点:二次函数综合题;动点型;翻折变换(折叠问题);分类讨论;压轴题.。

历年四川省成都市中考数学试卷(A卷)(含答案)

历年四川省成都市中考数学试卷(A卷)(含答案)

2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。

2017年江西省2017年中考数学试卷及答案

2017年江西省2017年中考数学试卷及答案

2017年江西省2017年中考数学试卷及答案机密★2017年6⽉19⽇江西省2017年初中毕业暨中等学校招⽣考试数学试题卷说明:1.本卷共有六个⼤题,25个⼩题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.⼀、选择题(本⼤题共8个⼩题,每⼩题3分,共24分)每⼩题只有⼀个正确选项. 1.下列各数中,最⼩的是().A. 0B. 1C.-1D.2.根据2017年第六次全国⼈⼝普查主要数据公报,江西省常住⼈⼝约为4456万⼈.这个数据可以⽤科学计数法表⽰为(). A.4.456×107⼈ B. 4.456×106⼈ C. 4456×104⼈ D. 4.456×103⼈3.将两个⼤⼩完全相同的杯⼦(如图甲)叠放在⼀起(如图⼄),则图⼄中的实物的俯视图是().4.下列运算正确的是().A.a +b =abC.a 2+2ab -b 2=(a -b )2D.3a -2a =1 5.已知⼀次函数y =x +b 的图象经过第⼀、⼆、三象限,则b 的值可以是( ).A .-2 B.-1 C. 0 D. 26.已知x =1是⽅程x 2+bx -2=0的⼀个根,则⽅程的另⼀个根是( ). A .1 B.2 C.-2 D.-17.如图,在下列条件中,不能..证明△ABD ≌△ACD 的是(). A.BD =DC , AB =AC B.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. ∠B =∠C ,BD =DC 8.时钟在正常运⾏时,分针每分钟转动6°,时针每分钟转动0.5°.在运⾏过程中,时针与分针的夹⾓会随着时间的变化⽽变化.设时针与分针的夹⾓为y (度),运⾏时间为t (分),当时间从12︰00开始到12︰30⽌,y 与 t 之间的函数图象是().y (度) A.(度)B.度) C.度) D.B.C. D.A. 第7题图甲⼆、填空题(本⼤题共8⼩题,每⼩题3分,共24分) 9.计算:-2-1=__________.10.因式分解:x 3-x =______________.11.函数y =x 的取值范围是 .12.⽅程组25,7x y x y +=??-=?的解是 .13.如图,在△ABC 中,点P 是△ABC 的内⼼,则∠PBC +∠PCA +∠P AB =__________度. 14.将完全相同的平⾏四边形和完全相同的菱形镶嵌成如图所⽰的图案.设菱形中较⼩⾓为x 度,平⾏四边形中较⼤⾓为y 度,则y 与x 的关系式是 .15.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是__________. 16.如图所⽰,两块完全相同的含30°⾓的直⾓三⾓板叠放在⼀起,且∠DAB =30°.有以下四个结论:①AF ⊥BC ②△ADG ≌△ACF ③O 为BC 的中点④AG ︰DE4,其中.三、(本⼤题共3⼩题,每⼩题6分,共18分) 17.先化简,再求值:2()11a aa a a+÷--,其中 1.a =18.甲、⼄、丙、丁四位同学进⾏⼀次乒乓球单打⽐赛,要从中选出两位同学打第⼀场⽐赛. (1)请⽤树状图法或列表法,求恰好选中甲、⼄两位同学的概率.(2)若已确定甲打第⼀场,再从其余三位同学中随机选取⼀位,求恰好选中⼄同学的概率.19.如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0). (1)求点D 的坐标;(2)求经过点C 的反⽐例函数解析式.ACB P第13题第14题AD CBEOG F 第16题第15题C DC图甲DC图⼄四、(本⼤题共2⼩题,每⼩题8分,共16分)20.有⼀种⽤来画圆的⼯具板(如图所⽰),⼯具板长21cm,上⾯依次排列着⼤⼩不等的五个圆(孔),其中最⼤圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最⼤圆的左侧距⼯具板左侧边缘1.5cm,最⼩圆的右侧距⼯具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.21.如图,已知⊙O的半径为2,弦BC的长为A为弦BC所对优弧上任意⼀点(B,C两点除外).(1)求∠BAC的度数;(2)求△ABC⾯积的最⼤值.(参考数据:sin60=,cos30 ,tan30=)五、(本⼤题共2⼩题,每⼩题9分,共18分)22.图甲是⼀个⽔桶模型⽰意图,⽔桶提⼿结构的平⾯图是轴对称图形,当点O到BC(或DE)的距离⼤于或等于⊙O的半径时(⊙O是桶⼝所在圆,半径为OA),提⼿才能从图甲的位置转到图⼄的位置,这样的提⼿才合格.现⽤⾦属材料做了⼀个⽔桶提⼿(如图丙A-B-C-D-E-F,C-D是 CD,其余是线段),O是AF的中点,桶⼝直径AF=34cm,AB=FE=5cm,∠ABC =∠FED =149°.请通过计算判断这个⽔桶提⼿是否合格.2,tan73.6°≈3.40,sin75.4°≈0.97.)图丙23.以下是某省2017年教育发展情况有关数据:全省共有各级各类学校25000所,其中⼩学12500所,初中2000所,⾼中450所,其它学校10050所;全省共有在校学⽣995万⼈,其中⼩学440万⼈,初中200万⼈,⾼中75万⼈,其它280万⼈;全省共有在职教师48万⼈,其中⼩学20万⼈,初中12万⼈,⾼中5万⼈,其它11万⼈.请将上述资料中的数据按下列步骤进⾏统计分析.(1)整理数据:请设计⼀个统计表,将以上数据填⼊表格中.(2)描述数据:下图是描述全省各级各类学校所数的扇形统计图,请将它补充完整. (3)分析数据:①分析统计表中的相关数据,⼩学、初中、⾼中三个学段的师⽣⽐,最⼩的是哪个学段?请直接写出.(师⽣⽐=在职教师数︰在校学⽣数)②根据统计表中的相关数据,你还能从其它⾓度分析得出什么结论吗?(写出⼀个即可)③从扇形统计图中,你得出什么结论?(写出⼀个即可)2010年全省教育发展情况统计表全省各级各类学校所数扇形统计图六、(本⼤题共2⼩题,每⼩题10分,共20分)24.将抛物线c1:y=2x轴翻折,得抛物线c2,如图所⽰.(1)请直接写出抛物线c2的表达式.(2)现将抛物线c1向左平移m个单位长度,平移后得到的新抛物线的顶点为M,与x轴的交点从左到右依次为A,B;将抛物线c2向右也平移m个单位长度,平移后得到的新抛物线的顶点为N,与x轴交点从左到右依次为D,E.①当B,D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A,N,E,M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.yxO备⽤图25.某数学兴趣⼩组开展了⼀次活动,过程如下:设∠BAC=θ(0°<θ<90°).现把⼩棒依次摆放在两射线之间,并使⼩棒两端分别落在射线AB,AC上.活动⼀:如图甲所⽰,从点A1开始,依次向右摆放⼩棒,使⼩棒与⼩棒在端点处互相垂直. (A1A2为第1根⼩棒)数学思考:(1)⼩棒能⽆限摆下去吗?答:.(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ=_________度;②若记⼩棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…),求出此时a2,a3的值,并直接写出a n(⽤含n的式⼦表⽰).活动⼆:如图⼄所⽰,从点A1开始,⽤等长的⼩棒依次向右摆放,其中A1A2为第⼀根⼩棒,且A1A2=AA1.数学思考:(3)若已经摆放了3根⼩棒,则θ1 =_________,θ2=________,θ3=________;(⽤含θ的式⼦表⽰)(4)若只能..摆放4根⼩棒,求θ的范围.A1A2BC图⼄A3A41θ2θ3θA1A2ABC A3A4A5A6a1a2a3图甲·机密2017年6⽉19⽇江西省2017年中等学校招⽣考试数学试题卷参考答案及评分意见说明:1.如果考⽣的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考⽣的解答中出现错误⽽中断对该题的评阅,当考⽣的解答在某⼀步出现错误,影响了后续部分时,如果该步以后的解答未改变这⼀题的内容和难度,则可视影响的程度决定后⾯部分的给分,但不得超过后⾯部分应给分数的⼀半,如果这⼀步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表⽰考⽣正确做到这⼀步应得的累加分数.4.只给整数分数.⼀、选择题(本⼤题共8个⼩题,每⼩题3分,共24分)1.D 2.A 3.C 4.B 5.D 6.C 7.D 8.A⼆、填空题(本⼤题共8个⼩题,每⼩题3分,共24分)9. 3-10.()()11x x x+-11.1x≤12.4,3xy==-13. 9014.2180y x-=(或1902y x=+)15.(0,1)16.①②③④说明:(1)第11题中若写成“1x<”的,得2分;(2)第16题,填了1个或2个序号的得1分,填了3个序号的得2分.三、(本⼤题共3个⼩题,每⼩题各6分,共18分)17.解:原式=2111111a a aaa a a a a-÷=?=----. ………………3分当1a=时,原式==………………6分18.解:(1)⽅法⼀画树状图如下:所有出现的等可能性结果共有12种,其中满⾜条件的结果有2种.∴P(恰好选中甲、⼄两位同学)=16. ………………4分甲⼄丙丁丙甲⼄丁⼄甲丙丁丁甲⼄丙第⼀次第⼆次⽅法⼆列表格如下:甲⼄丙丁甲甲、⼄甲、丙甲、丁⼄⼄、甲⼄、丙⼄、丁丙丙、甲丙、⼄丙、丁丁丁、甲丁、⼄丁、丙所有出现的等可能性结果共有12种,其中满⾜条件的结果有2种.∴P (恰好选中甲、⼄两位同学)=1 6. ………………4分(2)P (恰好选中⼄同学)=13. ………………6分19.解:(1)∵(0,4),(3,0)A B -,∴3,4,OB OA == ∴5AB =.在菱形ABCD 中,5AD AB ==, ∴1OD =, ∴()0,1D -. …………3分(2)∵BC ∥AD , 5BC AB ==,∴()3,5C --.设经过点C 的反⽐例函数解析式为ky x=. 把()3,5--代⼊k y x=中,得:53k -=-,∴15k =,∴15y x =. ……6分四、(本⼤题共2个⼩题,每⼩题8分,共16分)20.解:(1)其余四个圆的直径依次为:2.8cm, 2.6cm, 2.4cm, 2.2cm.………………4分(2)依题意得,4 1.5 1.53 2.8 2.6 2.4 2.221d +++++++=, ……………6分∴41621d += ∴54d =. ………………7分答:相邻两圆的间距为54cm. ………………8分21.解:(1) 解法⼀连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC =∴BE EC == ………………1分在Rt △OBE 中,OB =2,∵sin BE BOE OB ∠==,∴60BOE ∠= , ∴120BOC ∠= ,∴1602BAC BOC ∠=∠= . ………………4分解法⼆连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD =4,90DCB ∠= .在Rt △DBC 中,sin BC BDC BD ∠==,∴60BDC ∠= ,∴60BAC BDC ∠=∠= .………………4分(2) 解法⼀因为△ABC 的边BC 的长不变,所以当BC 边上的⾼最⼤时,△ABC 的⾯积最⼤,此时点A 落在优弧BC 的中点处.………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC ,1302BAE BAC ∠=∠= .在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ===,∴S △ABC=132=答:△ABC⾯积的最⼤值是 ………………8分解法⼆因为△ABC 的边BC 的长不变,所以当BC 边上的⾼最⼤时,△ABC 的⾯积最⼤,此时点A 落在优弧BC 的中点处.………………5分过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB =AC .∵60BAC ∠= , ∴△ABC 是等边三⾓形. ………………6分在Rt △ABE中,∵30BE BAE =∠= ,∴3tan 30BEAE ==,∴S △ABC=132=.答:△ABC⾯积的最⼤值是 ………………8分五、(本⼤题共2个⼩题,每⼩题9分,共18分). 22.解法⼀连接OB ,过点O 作OG ⊥BC 于点G . ………………1分在Rt △ABO 中,AB =5,AO =17,∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°,………………4分∴∠GBO =∠ABC -∠ABO =149°-73.6°=75.4°. ………………5分⼜∵17.72OB =, ………………6分∴在Rt △OBG 中,sin 17.720.9717.1917OG OB OBG =?∠=?≈>. ……………8分∴⽔桶提⼿合格. ……………9分解法⼆连接OB ,过点O 作OG ⊥BC 于点G . ……………1分在Rt △ABO 中,AB =5,AO =17,图丙CDE ∴ ta n ∠ABO =173.45AO AB ==,∴∠ABO =73.6°. ………………4分要使OG ≥OA ,只需∠OBC ≥∠ABO ,∵∠OBC =∠ABC -∠ABO =149°-73.6°=75.4°>73.6°,……8分∴⽔桶提⼿合格. ………………9分23.解:(1)2017年全省教育发展情况统计表(说明:“合计”栏不列出来不扣分) ……………3分(2)……………6分(3)①⼩学师⽣⽐=1︰22,初中师⽣⽐≈1︰16.7,⾼中师⽣⽐=1︰15,∴⼩学学段的师⽣⽐最⼩. ………7分②如:⼩学在校学⽣数最多等. ………8分③如:⾼中学校所数偏少等. ………9分说明:(1)第①题若不求出各学段师⽣⽐不扣分;(2)第②、③题叙述合理即给分. 六、(本⼤题共2个⼩题,每⼩题10分,共20分)24.解:(1)2y = ………………2分学校所数(所)在校学⽣数(万⼈)教师数(万⼈)⼩学12500 440 20 初中2000 200 12 ⾼中450 75 5 其它10050 280 11 合计25000 995 48 全省各级各类学校所数扇形统计图(2)①令20,得:121,1x x =-=,则抛物线c 1与x 轴的两个交点坐标为(-1,0),(1,0).∴A (-1-m ,0),B (1-m ,0). 同理可得:D (-1+m ,0),E (1+m ,0).当13AD AE =时,如图①,()()()()111113m m m m -+---=+---,∴12m =. ………………4分当13AB AE =时,如图②,()()()()111113m m m m ----=+---,∴2m =. ………………6分∴当12m =或2时,B ,D 是线段AE 的三等分点.②存在.………………7分⽅法⼀理由:连接AN 、NE 、EM 、MA .依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称,∴OM ON =.∵()()1,0,1,0A m E m --+,∴A ,E 关于原点O 对称,∴OA OE =,∴四边形ANEM 为平⾏四边形. ………………8分要使平⾏四边形ANEM 为矩形,必需满⾜OM OA =, 即()2221m m +=--,∴1m =.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分⽅法⼆理由:连接AN 、NE 、EM 、MA . 依题意可得:((,,M m N m -. 即M ,N 关于原点O 对称,∴OM ON =.∵()()1,0,1,0A m E m --+,∴A ,E 关于原点O 对称,∴OA OE =,∴四边形ANEM 为平⾏四边形. ………………8分∵222(1)4AM m m =-+++=,2222(1)444ME m m m m =+++=++,222(11)484AE m m m m =+++=++,若222AM ME AE +=,则224444484m m m m +++=++,∴1m =. 此时△AME 是直⾓三⾓形,且∠AME =90°.∴当1m =时,以点A ,N ,E ,M 为顶点的四边形是矩形. …………10分25.解: (1)能. ………………1分(2)① 22.5°. ………………2分②⽅法⼀∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 ⼜∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6,∴∠A =∠AA 2A 1=∠AA 4A 3=∠AA 6A 5,∴AA 3=A 3A 4,AA 5=A 5A 6∴a 2=A 3A 4=AA 3=1a 3=AA 3+ A 3A 5=a 2+ A 3A 5. ………………3分∵A 3A 52,∴a 3=A 5A 6=AA 5=)2221a =. ………………4分⽅法⼆∵A A 1=A 1A 2=A 2A 3=1,A 1A 2⊥A 2A 3,∴A 1A 3AA 3=1 ⼜∵A 2A 3⊥A 3A 4 ,∴A 1A 2∥A 3A 4.同理:A 3A 4∥A 5A 6.∴∠A 2A 3A 4=∠A 4A 5A 6=90°,∠A 2A 4A 3=∠A 4 A 6A 5,∴△A 2A 3A 4∽△A 4A 5A 6,∴2231a a a =,∴a 3=2221)1a =. ………………4分)11n n a -=………………5分(3)12θθ= ………………6分23θθ= ………………7分34θθ= ………………8分(4)由题意得:490,590,θθ?≥∴1822.5θ≤< . ………………10分。

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

2017年四川省成都市中考数学试题(含答案)

2017年四川省成都市中考数学试题(含答案)

成都市二O 一四年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。

考试结束,监考人员将试卷和答题卡一并收回。

3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。

4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。

5. 保持答题卡清洁,不得折叠、污染、破损等。

A 卷(共100分) 第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1.在-2,-1、0、2这四个数中,最大的数是( )(A)-2 (B)-1 (C)0 (D)2 2.下列几何体的主视图是三角形的是( )(A) (B) (C) (D)3.正在建设的成都第二绕城高速全长超过220公里,串起我市二、三圈层以及周边的广汉、简阳等地,总投资达290亿元,用科学计数法表示290亿元应为( ) (A )290×810 (B )290×910 (C )2.90×1010 (D )2.90×11104.下列计算正确的是( )(A )32x x x =+ (B )x x x 532=+ (C )532)(x x = (D )236x x x =÷ 5.下列图形中,不是..轴对称图形的是( )(A) (B) (C) (D) 6.函数5-=x y 中自变量x 的取值范围是( )(A )5-≥x (B )5-≤x (C )5≥x (D )5≤x 7.如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( )(A )60° (B )50° (C )40° (D )30°8.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下:则该办学生成绩的众数和中位数分别是( )(A )70分,80分 (B )80分,80分 (C )90分,80分 (D )80分,90分9.将二次函数322+-=x x y 化为k h x y +-=2)(的形式,结果为( ) (A )4)1(2++=x y (B )2)1(2++=x y (C )4)1(2+-=x y (D )2)1(2+-=x y10.在圆心角为120°的扇形AOB 中,半径OA =6cm ,则扇形AOB 的面积是( ) (A )π62cm (B )π82cm (C )π122cm (D )π242cm第Ⅱ卷(非选择题,共70分)二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.计算:=-2_______________.12.如图,为估计池塘两岸边A ,B 两点间的距离,在池塘的一侧选取点O ,分别去OA 、OB 的中点M ,N ,测的MN=32 m ,则A ,B 两点间的距离是_____________m.13.在平面直角坐标系中,已知一次函数12+=x y 的图像经过),(11y x P x ,),(222y x P两点,若21x x <,则1y ________2y .(填”>”,”<”或”=”)14.如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,连接AD ,若∠A =25°,则∠C =__________度.三.解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(本小题满分12分,每题6分)(1)计算202)2014(30sin 49--+-π .(2)解不等式组⎩⎨⎧+<+>-②① .,7)2(2513x x x16.(本小题满分6分)如图,在一次数学课外实践活动中,小文在点C 处测得树的顶端A 的仰角为37°,BC =20m ,求树的高度AB .(参考数据:60.037sin ≈,80.037cos ≈,75.037tan ≈)17.(本小题满分8分) 先化简,再求值:221ba b b a a -÷⎪⎭⎫⎝⎛--,其中13+=a ,13-=b .18.(本小题满分8分)第十五届中国“西博会”将于2017年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.19.(本小题满分10分)如图,一次函数5+=kx y (k 为常数,且0≠k )的图像与反比例函数xy 8-=的图像交于()b A ,2-,B 两点.(1)求一次函数的表达式;(2)若将直线AB 向下平移)0(>m m 个单位长度后与反比例函数的图像有且只有一个公共点,求m 的值.20.(本小题满分10分)如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG .(1)试判断四边形BFEG 的形状,并说明理由; (2)当a AB =(a 为常数),3=n 时,求FG 的长; (3)记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S , 当301721=S S 时,求n 的值.(直接写出结果,不必写出解答过程)CDGB 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上) 21. 在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据。

2009-2017年最新四川省成都市历年中考数学真题及解析汇总【9年真题】【中考直通车】

2009-2017年最新四川省成都市历年中考数学真题及解析汇总【9年真题】【中考直通车】

三、2011 年四川省成都市中考数学真题试卷及解析
四、2012 年四川省成都市中考数学真题试卷及解析
五、2013 年四川省成都市中考数学真题试卷及解析
六、2014 年四川省成都市中考数学真题试卷及解析
七、2015 年四川省成都市中考数学真题试卷及解析
八、2016 年四川省成都市中考数学真题试卷及解析
2 1 11.分式方程 的解是_________ 3x x 1
B A E A′ C D
12.如图,将矩形 ABCD 沿 BE 折叠,若∠CBA′=30°则∠BEA′ =_____. 13.改革开放 30 年以来,成都的城市化推进一直保持着快速、稳 定的发展态势.据统计,到 2008 年底,成都市中心五城区(不含高新
8. 若一个圆锥的底面圆的周长是 4πcm,母线长是 6cm,则该圆锥 的侧面展开图的圆心角的度数是 (A)40° (B)80° (C)120° (D)150°
9.
某航空公司规定,旅客乘机所携带行李的质量 x (kg)与其运费
y (元)由如图所示(A)20kg (C)28kg (B)25kg (D)30kg
三、 (第 15 题每小题 6 分,第 16 题 6 分,共 18 分) 15.解答下列各题: (1)计算: 8 2( 2009) 0 4sin 45。 (1) 3
(2)先化简,再求值: x 2 (3 x) x( x 2 2 x) 1 ,其中 x 3 。
3 x 1 2( x 1), 16.解不等式组 并在所给的数轴上表示出其解集。 x3 1, 2
1 3 1 2
(B) l
(C)一 2
(D) 2
1 中,自变量 x 的取值范围是 3x 1 1 1 1 (B) x (C) x (D) x 3 3 3

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。

2017年四川省泸州市中考数学试卷(附答案解析版)

2017年四川省泸州市中考数学试卷(附答案解析版)

2017年四川省泸州市中考数学试卷一、选择题(每题3分.共36分)1.(3分)﹣7的绝对值是()A.7 B.﹣7 C.D.﹣2.(3分)“五一”期间.某市共接待海内外游客约567000人次.将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×1063.(3分)下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x4.(3分)如图是一个由4个相同的正方体组成的立体图形.它的左视图是()A.B.C.D.5.(3分)已知点A(a.1)与点B(﹣4.b)关于原点对称.则a+b的值为()A.5 B.﹣5 C.3 D.﹣36.(3分)如图.AB是⊙O的直径.弦CD⊥AB于点E.若AB=8.AE=1.则弦CD的长是()A.B.2 C.6 D.87.(3分)下列命题是真命题的是()A.四边都是相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形8.(3分)下列曲线中不能表示y与x的函数的是()A.B.C.D.9.(3分)已知三角形的三边长分别为a、b、c.求其面积问题.中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron.约公元50年)给出求其面积的海伦公式S=.其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=.若一个三角形的三边长分别为2.3.4.则其面积是()A.B.C.D.11.(3分)如图.在矩形ABCD中.点E是边BC的中点.AE⊥BD.垂足为F.则tan∠BDE的值是()A.B.C.D.12.(3分)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0.2)的距离与到x轴的距离始终相等.如图.点M的坐标为(.3).P是抛物线y=x2+1上一个动点.则△PMF周长的最小值是()A.3 B.4 C.5 D.6二、填空题(本大题共4小题.每题3分.共12分)13.(3分)在一个不透明的袋子中装有4个红球和2个白球.这些球除了颜色外无其他差别.从袋子中随机摸出一个球.则摸出白球的概率是.14.(3分)分解因式:2m2﹣8= .(3分)若关于x的分式方程+=3的解为正实数.则实数m的取值范围是.15.16.(3分)在△ABC中.已知BD和CE分别是边AC、AB上的中线.且BD⊥CE.垂足为O.若OD=2cm.OE=4cm.则线段AO的长度为cm.三、解答题(每题6分.共18分)17.(6分)计算:(﹣3)2+20170﹣×sin45°.18.(6分)如图.点A、F、C、D在同一条直线上.已知AF=DC.∠A=∠D.BC∥EF.求证:AB=DE.19.(6分)化简:•(1+)四、本大题共2小题.每小题7分.共14分20.(7分)某单位750名职工积极参加向贫困地区学校捐书活动.为了解职工的捐数量.采用随机抽样的方法抽取30名职工作为样本.对他们的捐书量进行统计.统计结果共有4本、5本、6本、7本、8本五类.分别用A、B、C、D、E表示.根据统计数据绘制成了如图所示的不完整的条形统计图.由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?21.(7分)某中学为打造书香校园.计划购进甲、乙两种规格的书柜放置新购进的图书.调查发现.若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个.其中乙种书柜的数量不少于甲种书柜的数量.学校至多能够提供资金4320元.请设计几种购买方案供这个学校选择.五、本大题共2小题.每小题8分.共16分.(8分)如图.海中一渔船在A处且与小岛C相距70nmile.若该渔船由西向东航行30nmile 22.到达B处.此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.23.(8分)一次函数y=kx+b(k≠0)的图象经过点A(2.﹣6).且与反比例函数y=﹣的图象交于点B(a.4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0).l与反比例函数y2=的图象相交.求使y1<y2成立的x的取值范围.六、本大题共两个小题.每小题12分.共24分24.(12分)如图.⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D.与边BC相交于点F.OA与CD相交于点E.连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6.AB=10.求CG的长.25.(12分)如图.已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1.0)、B(4.0)、C (0.2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点.且满足∠DBA=∠CAO(O是坐标原点).求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点.连接PA分别交BC.y轴与点E、F.若△PEB、△CEF的面积分别为S1、S2.求S1﹣S2的最大值.2017年四川省泸州市中考数学试卷参考答案与试题解析一、选择题(每题3分.共36分)1.(3分)(2017•泸州)﹣7的绝对值是()A.7 B.﹣7 C.D.﹣【分析】根据绝对值的性质解答.当a是负有理数时.a的绝对值是它的相反数﹣a.【解答】解:|﹣7|=7.故选A.【点评】本题考查了绝对值的性质.如果用字母a表示有理数.则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.(3分)(2017•泸州)“五一”期间.某市共接待海内外游客约567000人次.将567000用科学记数法表示为()A.567×103B.56.7×104C.5.67×105D.0.567×106【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.确定n的值时.要看把原数变成a时.小数点移动了多少位.n的绝对值与小数点移动的位数相同.当原数绝对值>1时.n是正数;当原数的绝对值<1时.n是负数.【解答】解:567000=5.67×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式.其中1≤|a|<10.n为整数.表示时关键要正确确定a的值以及n的值.3.(3分)(2017•泸州)下列各式计算正确的是()A.2x•3x=6x B.3x﹣2x=x C.(2x)2=4x D.6x÷2x=3x【分析】各项计算得到结果.即可作出判断.【解答】解:A、原式=6x2.不符合题意;B、原式=x.符合题意;C、原式=4x2.不符合题意;D、原式=3.不符合题意.故选B【点评】此题考查了整式的混合运算.熟练掌握运算法则是解本题的关键.4.(2017•泸州)如图是一个由4个相同的正方体组成的立体图形.它的左视图是()(3分)A.B.C.D.【分析】根据左视图是从左边看到的图形解答.【解答】解:左视图有2行.每行一个小正方体.故选D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.5.(3分)(2017•泸州)已知点A(a.1)与点B(﹣4.b)关于原点对称.则a+b的值为()A.5 B.﹣5 C.3 D.﹣3【分析】根据关于原点的对称点.横纵坐标都变成相反数.可得a、b的值.根据有理数的加法.可得答案.【解答】解:由A(a.1)关于原点的对称点为B(﹣4.b).得a=4.b=﹣1.a+b=3.故选:C.【点评】本题考查了关于原点对称的点的坐标.利用了关于原点对称的点的坐标规律:关于原点的对称点.横纵坐标都变成相反数.6.(3分)(2017•泸州)如图.AB是⊙O的直径.弦CD⊥AB于点E.若AB=8.AE=1.则弦CD 的长是()A.B.2 C.6 D.8【分析】根据垂径定理.可得答案.【解答】解:由题意.得OE=OB﹣AE=4﹣1=3.CE=CD==.CD=2CE=2.故选:B.【点评】本题考查了垂径定理.利用勾股定理.垂径定理是解题关键.7.(3分)(2017•泸州)下列命题是真命题的是()A.四边都是相等的四边形是矩形B.菱形的对角线相等C.对角线互相垂直的平行四边形是正方形D.对角线相等的平行四边形是矩形【分析】根据矩形的判定定理.菱形的性质.正方形的判定判断即可得到结论.【解答】解:A、四边都相等的四边形是菱形.故错误;B、矩形的对角线相等.故错误;C、对角线互相垂直的平行四边形是菱形.故错误;D、对角线相等的平行四边形是矩形.正确.故选D.【点评】此题考查了命题与定理.正确的命题叫真命题.错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.(3分)(2017•泸州)下列曲线中不能表示y与x的函数的是()A.B.C.D.【分析】函数是在一个变化过程中有两个变量x.y.一个x只能对应一个y.【解答】解:当给x一个值时.y有唯一的值与其对应.就说y是x的函数.x是自变量.选项C中的图形中对于一个自变量的值.图象就对应两个点.即y有两个值与x的值对应.因而不是函数关系.故选C.【点评】考查了函数的概念.理解函数的定义.是解决本题的关键.9.(3分)(2017•泸州)已知三角形的三边长分别为a、b、c.求其面积问题.中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron.约公元50年)给出求其面积的海伦公式S=.其中p=;我国南宋时期数学家秦九韶(约1202﹣1261)曾提出利用三角形的三边求其面积的秦九韶公式S=.若一个三角形的三边长分别为2.3.4.则其面积是()A.B.C.D.【分析】根据题目中的秦九韶公式.可以求得一个三角形的三边长分别为2.3.4的面积.从而可以解答本题.【解答】解:∵S=.∴若一个三角形的三边长分别为 2.3.4.则其面积是:S==.故选B.【点评】本题考查二次根式的应用.解答本题的关键是明确题意.求出相应的三角形的面积.11.(3分)(2017•泸州)如图.在矩形ABCD中.点E是边BC的中点.AE⊥BD.垂足为F.则tan∠BDE的值是()A.B.C.D.【分析】证明△BEF∽△DAF.得出EF=AF.EF=AE.由矩形的对称性得:AE=DE.得出EF=DE.设EF=x.则DE=3x.由勾股定理求出DF==2x.再由三角函数定义即可得出答案.【解答】解:∵四边形ABCD是矩形.∴AD=BC.AD∥BC.∵点E是边BC的中点.∴BE=BC=AD.∴△BEF∽△DAF.∴=.∴EF=AF.∴EF=AE.∵点E是边BC的中点.∴由矩形的对称性得:AE=DE.∴EF=DE.设EF=x.则DE=3x.∴DF==2x.∴tan∠BDE===;故选:A.【点评】本题考查了相似三角形的判定和性质.矩形的性质.三角函数等知识;熟练掌握矩形的性质.证明三角形相似是解决问题的关键.12.(3分)(2017•泸州)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0.2)的距离与到x轴的距离始终相等.如图.点M的坐标为(.3).P是抛物线y=x2+1上一个动点.则△PMF周长的最小值是()A.3 B.4 C.5 D.6【分析】过点M作ME⊥x轴于点E.交抛物线y=x2+1于点P.由PF=PE结合三角形三边关系.即可得出此时△PMF周长取最小值.再由点F、M的坐标即可得出MF、ME的长度.进而得出△PMF周长的最小值.【解答】解:过点M作ME⊥x轴于点E.交抛物线y=x2+1于点P.此时△PMF周长最小值. ∵F(0.2)、M(.3).∴ME=3.FM==2.∴△PMF周长的最小值=ME+FM=3+2=5.故选C.【点评】本题考查了二次函数的性质以及三角形三边关系.根据三角形的三边关系确定点P 的位置是解题的关键.二、填空题(本大题共4小题.每题3分.共12分)13.(3分)(2017•泸州)在一个不透明的袋子中装有4个红球和2个白球.这些球除了颜色外无其他差别.从袋子中随机摸出一个球.则摸出白球的概率是.【分析】根据概率的求法.找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解;袋子中球的总数为:4+2=6.∴摸到白球的概率为:=.故答案为:.【点评】此题主要考查了概率的求法.如果一个事件有n种可能.而且这些事件的可能性相同.其中事件A出现m种结果.那么事件A的概率P(A)=.14.(3分)(2017•泸州)分解因式:2m2﹣8= 2(m+2)(m﹣2).【分析】先提取公因式2.再对余下的多项式利用平方差公式继续分解因式.【解答】解:2m2﹣8.=2(m2﹣4).=2(m+2)(m﹣2).故答案为:2(m+2)(m﹣2).【点评】本题考查了提公因式法与公式法分解因式.要求灵活使用各种方法对多项式进行因式分解.一般来说.如果可以先提取公因式的要先提取公因式.再考虑运用公式法分解.15.(3分)(2017•泸州)若关于x的分式方程+=3的解为正实数.则实数m的取值范围是m<6且m≠2 .【分析】利用解分式方程的一般步骤解出方程.根据题意列出不等式.解不等式即可.【解答】解:+=3.方程两边同乘(x﹣2)得.x+m﹣2m=3x﹣6.解得.x=.由题意得.>0.解得.m<6.∵≠2.∴m≠2.故答案为:m<6且m≠2.【点评】本题考查的是分式方程的解、一元一次不等式的解法.掌握解分式方程的一般步骤、分式方程无解的判断方法是解题的关键.16.(3分)(2017•泸州)在△ABC中.已知BD和CE分别是边AC、AB上的中线.且BD⊥CE.垂足为O.若OD=2cm.OE=4cm.则线段AO的长度为4cm.【分析】连接AO并延长.交BC于H.根据勾股定理求出DE.根据三角形中位线定理求出BC.根据直角三角形的性质求出OH.根据重心的性质解答.【解答】解:连接AO并延长.交BC于H.由勾股定理得.DE==2.∵BD和CE分别是边AC、AB上的中线.∴BC=2DE=4.O是△ABC的重心.∴AH是中线.又BD⊥CE.∴OH=BC=2.∵O是△ABC的重心.∴AO=2OH=4.故答案为:4.【点评】本题考查的是重心的概念和性质.掌握三角形的重心是三角形三条中线的交点.且重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.三、解答题(每题6分.共18分)17.(6分)(2017•泸州)计算:(﹣3)2+20170﹣×sin45°.【分析】首先计算乘方、开方、乘法.然后从左向右依次计算.求出算式的值是多少即可.【解答】解:(﹣3)2+20170﹣×sin45°=9+1﹣3×=10﹣3=7【点评】此题主要考查了实数的运算.要熟练掌握.解答此题的关键是要明确:在进行实数运算时.和有理数运算一样.要从高级到低级.即先算乘方、开方.再算乘除.最后算加减.有括号的要先算括号里面的.同级运算要按照从左到右的顺序进行.另外.有理数的运算律在实数范围内仍然适用.18.(6分)(2017•泸州)如图.点A、F、C、D在同一条直线上.已知AF=DC.∠A=∠D.BC∥EF.求证:AB=DE.【分析】欲证明AB=DE.只要证明△ABC≌△DEF即可.【解答】证明:∵AF=CD.∴AC=DF.∵BC∥EF.∴∠ACB=∠DFE.在△ABC和△DEF中..∴△ABC≌△DEF(ASA).∴AB=DE.【点评】本题考查全等三角形的判定和性质、平行线的性质等知识.熟练掌握全等三角形的判定方法是解决问题的关键.19.(6分)(2017•泸州)化简:•(1+)【分析】原式括号中两项通分并利用同分母分式的加法法则计算.约分即可得到结果.【解答】解:原式=•=.【点评】此题考查了分式的混合运算.熟练掌握运算法则是解本题的关键.四、本大题共2小题.每小题7分.共14分20.(7分)(2017•泸州)某单位750名职工积极参加向贫困地区学校捐书活动.为了解职工的捐数量.采用随机抽样的方法抽取30名职工作为样本.对他们的捐书量进行统计.统计结果共有4本、5本、6本、7本、8本五类.分别用A、B、C、D、E表示.根据统计数据绘制成了如图所示的不完整的条形统计图.由图中给出的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本数的平均数、众数和中位数;(3)估计该单位750名职工共捐书多少本?【分析】(1)根据题意列式计算得到D类书的人数.补全条形统计图即可;(2)根据次数出现最多的数确定众数.按从小到大顺序排列好后求得中位数;(3)用捐款平均数乘以总人数即可.【解答】解(1)捐D类书的人数为:30﹣4﹣6﹣9﹣3=8.补图如图所示;(2)众数为:6 中位数为:6平均数为:=(4×4+5×6+6×9+7×8+8×3)=6;(3)750×6=4500.即该单位750名职工共捐书约4500本.【点评】此题主要考查了中位数.众数.平均数的求法.条形统计图的画法.用样本估计总体的思想和计算方法;要求平均数只要求出数据之和再除以总个数即可;找中位数要把数据按从小到大的顺序排列.位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据.注意众数可以不止一个.21.(7分)(2017•泸州)某中学为打造书香校园.计划购进甲、乙两种规格的书柜放置新购进的图书.调查发现.若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个.其中乙种书柜的数量不少于甲种书柜的数量.学校至多能够提供资金4320元.请设计几种购买方案供这个学校选择.【分析】(1)设甲种书柜单价为x元.乙种书柜的单价为y元.根据:若购买甲种书柜3个、乙种书柜2个.共需资金1020元;若购买甲种书柜4个.乙种书柜3个.共需资金1440元列出方程求解即可;(2)设甲种书柜购买m个.则乙种书柜购买(20﹣m)个.根据:所需经费=甲图书柜总费用+乙图书柜总费用、总经费W≤1820且购买的甲种图书柜的数量≥乙种图书柜数量列出不等式组.解不等式组即可的不等式组的解集.从而确定方案.【解答】(1)解:设甲种书柜单价为x元.乙种书柜的单价为y元.由题意得:.解之得:.答:设甲种书柜单价为180元.乙种书柜的单价为240元.(2)解:设甲种书柜购买m个.则乙种书柜购买(20﹣m)个;由题意得:解之得:8≤m≤10因为m取整数.所以m可以取的值为:8.9.10即:学校的购买方案有以下三种:方案一:甲种书柜8个.乙种书柜12个.方案二:甲种书柜9个.乙种书柜11个.方案三:甲种书柜10个.乙种书柜10个.【点评】本题主要考查二元一次方程组、不等式组的综合应用能力.根据题意准确抓住相等关系或不等关系是解题的根本和关键.五、本大题共2小题.每小题8分.共16分.22.(8分)(2017•泸州)如图.海中一渔船在A处且与小岛C相距70nmile.若该渔船由西向东航行30nmile到达B处.此时测得小岛C位于B的北偏东30°方向上;求该渔船此时与小岛C之间的距离.【分析】过点C作CD⊥AB于点D.由题意得:∠BCD=30°.设BC=x.解直角三角形即可得到结论.【解答】解:过点C作CD⊥AB于点D.由题意得:∠BCD=30°.设BC=x.则:在Rt△BCD中.BD=BC•sin30°=x.CD=BC•cos30°=x;∴AD=30x.∵AD2+CD2=AC2.即:(30+x)2+(x)2=702.解之得:x=50(负值舍去).答:渔船此时与C岛之间的距离为50海里.【点评】此题考查了方向角问题.此题难度适中.注意能借助于方向角构造直角三角形.并利用解直角三角形的知识求解是解此题的关键.23.(8分)(2017•泸州)一次函数y=kx+b(k≠0)的图象经过点A(2.﹣6).且与反比例函数y=﹣的图象交于点B(a.4)(1)求一次函数的解析式;(2)将直线AB向上平移10个单位后得到直线l:y1=k1x+b1(k1≠0).l与反比例函数y2=的图象相交.求使y1<y2成立的x的取值范围.【分析】(1)根据点B的纵坐标利用反比例函数图象上点的坐标特征可求出点B的坐标.根据点A、B的坐标利用待定系数法即可求出直线AB的解析式;(2)根据“上加下减”找出直线l的解析式.联立直线l和反比例函数解析式成方程组.解方程组可找出交点坐标.画出函数图象.根据两函数图象的上下位置关系即可找出使y1<y2成立的x的取值范围.【解答】解:(1)∵反比例函数y=﹣的图象过点B(a.4).∴4=﹣.解得:a=﹣3.∴点B的坐标为(﹣3.4).将A(2.﹣6)、B(﹣3.4)代入y=kx+b中..解得:.∴一次函数的解析式为y=﹣2x﹣2.(2)直线AB向上平移10个单位后得到直线l的解析式为:y1=﹣2x+8.联立直线l和反比例函数解析式成方程组..解得:..∴直线l与反比例函数图象的交点坐标为(1.6)和(3.2).画出函数图象.如图所示.观察函数图象可知:当0<x<1或x>3时.反比例函数图象在直线l的上方.∴使y1<y2成立的x的取值范围为0<x<1或x>3.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式以及解方程组.解题的关键是:(1)根据点A、B的坐标利用待定系数法求出直线AB的解析式;(2)联立两函数解析式成方程组.通过解方程组求出两函数图象的交点坐标.六、本大题共两个小题.每小题12分.共24分24.(12分)(2017•泸州)如图.⊙O与Rt△ABC的直角边AC和斜边AB分别相切于点C、D.与边BC相交于点F.OA与CD相交于点E.连接FE并延长交AC边于点G.(1)求证:DF∥AO;(2)若AC=6.AB=10.求CG的长.【分析】(1)欲证明DF∥OA.只要证明OA⊥CD.DF⊥CD即可;(2)过点作EM⊥OC于M.易知=.只要求出EM、FM、FC即可解决问题;【解答】(1)证明:连接OD.∵AB与⊙O相切与点D.又AC与⊙O相切与点.∴AC=AD.∵OC=OD.∴OA⊥CD.∴CD⊥OA.∵CF是直径.∴∠CDF=90°.∴DF⊥CD.∴DF∥AO.(2)过点作EM⊥OC于M.∵AC=6.AB=10.∴BC==8.∴AD=AC=6.∴BD=AB﹣AD=4.∵BD2=BF•BC.∴BF=2.∴CF=BC﹣BF=6.OC=CF=3.∴OA==3.∵OC2=OE•OA.∴OE=.∵EM∥AC.∴===.∴OM=.EM=.FM=OF+OM=.∴===.∴CG=EM=2.【点评】本题考查切线的性质、直径的性质、切线长定理、勾股定理、平行线分线段成比例定理等知识.解题的关键是学会添加常用辅助线.灵活运用所学知识解决问题.25.(12分)(2017•泸州)如图.已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣1.0)、B(4.0)、C(0.2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点.且满足∠DBA=∠CAO(O是坐标原点).求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点.连接PA分别交BC.y轴与点E、F.若△PEB、△CEF的面积分别为S1、S2.求S1﹣S2的最大值.【分析】(1)由A、B、C三点的坐标.利用待定系数法可求得抛物线解析式;(2)当点D在x轴上方时.则可知当CD∥AB时.满足条件.由对称性可求得D点坐标;当点D在x轴下方时.可证得BD∥AC.利用AC的解析式可求得直线BD的解析式.再联立直线BD 和抛物线的解析式可求得D点坐标;(3)过点P作PH∥y轴交直线BC于点H.可设出P点坐标.从而可表示出PH的长.可表示出△PEB的面积.进一步可表示出直线AP的解析式.可求得F点的坐标.联立直线BC和PA的解析式.可表示出E点横坐标.从而可表示出△CEF的面积.再利用二次函数的性质可求得S1﹣S2的最大值.【解答】解:(1)由题意可得.解得.∴抛物线解析式为y=﹣x2+x+2;(2)当点D在x轴上方时.过C作CD∥AB交抛物线于点D.如图1.∵A、B关于对称轴对称.C、D关于对称轴对称.∴四边形ABDC为等腰梯形.∴∠CAO=∠DBA.即点D满足条件.∴D(3.2);当点D在x轴下方时.∵∠DBA=∠CAO.∴BD∥AC.∵C(0.2).∴可设直线AC解析式为y=kx+2.把A(﹣1.0)代入可求得k=2.∴直线AC解析式为y=2x+2.∴可设直线BD解析式为y=2x+m.把B(4.0)代入可求得m=﹣8.∴直线BD解析式为y=2x﹣8.联立直线BD和抛物线解析式可得.解得或. ∴D(﹣5.﹣18);综上可知满足条件的点D的坐标为(3.2)或(﹣5.﹣18);(3)过点P作PH∥y轴交直线BC于点H.如图2.设P(t.﹣t2+t+2).由B、C两点的坐标可求得直线BC的解析式为y=﹣x+2.∴H(t.﹣t+2).∴PH=y P﹣y H=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t.设直线AP的解析式为y=px+q.∴.解得.∴直线AP的解析式为y=(﹣t+2)(x+1).令x=0可得y=2﹣t.∴F(0.2﹣t).∴CF=2﹣(2﹣t)=t.联立直线AP和直线BC解析式可得.解得x=.即E点的横坐标为.∴S1=PH(x B﹣x E)=(﹣t2+2t)(5﹣).S2=••.∴S1﹣S2=(﹣t2+2t)(5﹣)﹣••=﹣t2+5t=﹣(t﹣)2+.∴当t=时.有S1﹣S2有最大值.最大值为.【点评】本题为二次函数的综合应用.涉及待定系数法、平行线的判定和性质、三角形的面积、二次函数的性质、方程思想伋分类讨论思想等知识.在(1)中注意待定系数法的应用.在(2)中确定出D点的位置是解题的关键.在(3)中用P点的坐标分别表示出两个三角形的面积是解题的关键.本题考查知识点较多.综合性较强.计算量大.难度较大.参与本试卷答题和审题的老师有:bjf;gbl210;sks;星期八;dbz1018;2300680618;王学峰;弯弯的小河;zgm666;家有儿女;曹先生;三界无我;知足长乐;放飞梦想;nhx600;Ldt(排名不分先后)菁优网2017年6月23日。

中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)

专题01 实数问题一、选择题目1.(2017浙江衢州市第1题)-2的倒数是A.B. C. -2 D. 2【答案】A 【解析】试题解析:根据倒数的定义得:﹣2的倒数是﹣. 故选A . 考点:倒数.2.(2017山东德州市第1题)-2的倒数是( )A .B .C .-2D .2【答案】A 【解析】试题分析:性质符号相同,分子分母位置颠倒的两个数称为互为倒数,所以-2的倒数是考点:互为倒数的定义.3.(2017山东德州市第2题)2016年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。

477万用科学记数法表示正确的是( )学*科网 A .4.77×105B . 47.7×105C .4.77×106D .0.477×105【答案】C 【解析】21211-2121-2试题分析:选项B 和D 中,乘号前面的a 都不对,应该1≤a<10;选项A 中指数错误,当原数当绝对值>1时,应该为原数的整数位数减去1。

考点:科学记数法的表示方法4.(2017浙江宁波市第112,0,2这四个数中,为无理数的是( )B.12 C.0 D.2-【答案】A. 【解析】12,0,2故选A. 考点:无理数.5.(2017浙江宁波市第3题) 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A.60.4510吨B.54.510吨C.44510吨D.44.510吨【答案】B.考点:科学记数法----表示较大的数.6.(2017浙江宁波市第4x 的取值范围是( ) A.3xB.3xC.3xD.3x【答案】D 【解析】试题解析:根据二次根式有意义的条件得:x-3≥0 解得:x≥3. 故选D.考点:二次根式有意义的条件.7.(2017重庆市A 卷第1题)在实数﹣3,2,0,﹣4中,最大的数是( )A .﹣3B .2C .0D .﹣4【答案】B. 【解析】试题解析:∵﹣4<﹣3<0<2, ∴四个实数中,最大的实数是2. 故选B .考点:有理数的大小比较.8.(2017重庆市A 卷第5+1的值应在( ) A .3和4之间 B .4和5之间C .5和6之间D .6和7之间【答案】B . 【解析】<4,+1<5. 故选B .考点:无理数的估算.9.(2017江苏徐州市第1题)的倒数是( )A .B .C .D .【答案】D . 【解析】试题解析:-5的倒数是-15;故选D . 考点:倒数10.(2017江苏徐州市第3题) 肥皂泡的泡壁厚度大约是米,数字用科学记数法表示为( )A .B .C .D .5-5-51515-0.000000710.0000007177.110⨯60.7110-⨯77.110-⨯87110-⨯【答案】C.【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,故选C.考点:科学记数法—表示较小的数.11.(2017甘肃平凉市第2题)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104 B.3.93×105 C.3.93×106 D.0.393×106【答案】B.考点:科学记数法—表示较大的数.12.(2017甘肃平凉市第3题)4的平方根是()A.16 B.2 C【答案】C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.13.(2017广西贵港市第1题)7的相反数是()A.7 B.7- C.17 D.17-【答案】B 【解析】试题解析:7的相反数是﹣7, 故选:B . 考点:相反数.14.(2017广西贵港市第4题)下列二次根式中,最简二次根式是( )A. BD【答案】A考点:最简二次根式.15.(2017贵州安顺市第1题)﹣2017的绝对值是( )A .2017B .﹣2017C .±2017 D.﹣【答案】A .学科网 【解析】试题解析:﹣2017的绝对值是2017. 故选A . 考点:绝对值.16.(2017贵州安顺市第2题)我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A .275×104B .2.75×104C .2.75×1012D .27.5×1011【答案】C . 【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.12017故选C .考点:科学记数法—表示较大的数.17.(2017湖北武汉市第1) A .6 B .-6 C .18 D .-18 【答案】A. 【解析】故选A.考点:算术平方根.18.(2017湖南怀化市第1题)2的倒数是( ) A.2B.2C.12D.12【答案】C 【解析】试题解析:﹣2得到数是12,故选C . 考点:倒数.19.(2017湖南怀化市第3题)为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )A.51.49710B.414.9710C.60.149710D.61.49710【答案】A. 【解析】试题解析:将149700用科学记数法表示为1.497×105, 故选A .考点:科学记数法—表示较大的数.20.(2017江苏无锡市第1题)﹣5的倒数是( )A .B .±5C .5D .﹣1515【解析】试题解析:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.考点:倒数21.(2017江苏盐城市第1题)-2的绝对值是()A.2 B.-2 C.D.−【答案】A.【解析】试题解析:-2的绝对值是2,即|-2|=2.故选A.考点:绝对值.22.(2017贵州黔东南州第1题)|﹣2|的值是()A.﹣2 B.2 C.﹣12D.12【答案】B.【解析】试题解析:∵﹣2<0,∴|﹣2|=2.故选B.考点:绝对值.23.(2017四川泸州市第1题)-7的绝对值是()A.7 B.-7 C.17 D.-1715151 21 2【解析】试题解析:|-7|=7.故选A.考点:绝对值.24.(2017四川泸州市第2题)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103 B.56.7×104 C.5.67×105 D.0.567×106【答案】C.【解析】试题解析:567000=5.67×105,故选C.考点:科学记数法—表示较大的数.25.(2017四川省宜宾市第1题)9的算术平方根是()A.3 B.﹣3 C.±3【答案】A.【解析】试题解析:∵32=9,∴9的算术平方根是3.故选A.考点:算术平方根.26.(2017四川省宜宾市第2题)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×107【答案】D.【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数27.(2017四川省自贡市第1题)计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.2017【答案】A【解析】试题解析:(﹣1)2017=﹣1,故选A.考点:有理数的乘方.28.(2017四川省自贡市第3题)380亿用科学记数法表示为()A.38×109B.0.38×1013C.3.8×1011 D.3.8×1010【答案】D【解析】试题解析:380亿=38 000 000 000=3.8×1010.故选D.考点:科学计数法----表示较大的数.29.(2017新疆建设兵团第1题)下列四个数中,最小的数是()A.﹣1 B.0 C. D.3【答案】A.【解析】试题解析:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选A.考点:有理数大小比较30.(2017浙江省嘉兴市第1题)2-的绝对值为()A.2B.2-C.12D.12-【答案】A. 【解析】1 21 2试题解析:-2的绝对值是2, 即|-2|=2. 故选A . 考点:绝对值.31.(2017山东烟台市第1题)下列实数中的无理数是( )A. B . C .0 D .【答案】B . 【解析】0,13是有理数,π是无理数,故选:B . 考点:无理数.32.(2017山东烟台市第3题)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为( )A .B .C .D .【答案】A . 【解析】试题解析:46亿=4600 000 000=4.6×109, 故选A .考点:科学记数法—表示较大的数.33.(2017山东烟台市第6题)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:9π319106.4⨯81046⨯101046.0⨯10106.4⨯则输出结果为( )A. B . C. D .【答案】C . 【解析】17=2.故选:C .考点:计算器—数的开方.二、填空题目1.(2017浙江衢州市第11题)二次根式中字母的取值范围是__________ 【答案】a≥2.考点:二次根式有意义的条件. 2.(2017山东德州市第2题) 计算:【答案】【解析】. 考点:无理数运算3.(2017浙江宁波市第4题)实数8的立方根是 . 【答案】-2 【解析】试题分析:∵(-2)3=-8212132172252 a a∴-8的立方根是-2.考点:立方根4.(2017重庆市A卷第13题)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.【答案】【解析】试题解析:11000=1.1×104.考点:科学记数法---表示较大的数.5.(2017重庆市A卷第14题)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】试题解析:|﹣3|+(﹣1)2=4考点:有理数的混合运算.6.(2017江苏徐州市第9题)的算术平方根是.【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.7.(2017江苏徐州市第11的取值范围是.【答案】x≥6.考点:二次根式有意义的条件.8.(2017甘肃平凉市第12与0.50.5.(填“>”、“=”、“<”)4x【答案】> 【解析】1-2, >0,>0. 考点:实数大小比较.9.(2017广西贵港第13题)计算:35--= . 【答案】-8 【解析】试题解析:﹣3﹣5=﹣8. 考点:有理数的减法.10.(2017广西贵港第14题)中国的领水面积为2370000km ,把370000用科学记数法表示为 . 【答案】3.7×105. 【解析】试题解析:370 000=3.7×105. 考点:科学记数法—表示较大的数.11.(2017湖北武汉市第11题)计算23(4)⨯+-的结果为 . 【答案】2. 【解析】试题解析:23(4)⨯+-=6-4=2. 考点:有理数的混合运算.12.(2017江苏无锡市第11的值是 .【答案】6. 【解析】⨯=6.考点:二次根式的乘除法.13.(2017江苏无锡市第13题)贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m 2,这个数据用科学记数法可表示为 . 【答案】2.5×105. 【解析】试题解析:将250000用科学记数法表示为:2.5×105. 考点:科学记数法—表示较大的数.14.(2017江苏无锡市第14题)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.考点:1.有理数大小比较;2.有理数的减法.15.(2017江苏盐城市第7题)请写出一个无理数 【解析】考点:无理数.⨯=16.(2017江苏盐城市第9题)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 【答案】5.7×104. 【解析】试题解析:将57000用科学记数法表示为:5.7×104. 考点:科学记数法—表示较大的数.17.(2017江苏盐城市第10在实数范围内有意义,则x的取值范围是 【答案】x≥3. 【解析】试题解析:根据题意得x-3≥0, 解得x≥3.考点:二次根式有意义的条件.18.(2017四川泸州市第17题)计算:(-3)2+20170 【答案】7. 【解析】考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.19.(2017四川省自贡市第13题)计算(﹣12)﹣1= .【答案】-2 【解析】试题解析:原式=11-2=﹣2.考点:负整数指数幂.20.(2017山东省烟台市第13题) .【答案】6. 【解析】试题解析:原式=1×4+2 =4+2 =6.考点:实数的运算;零指数幂;负整数指数幂.三、解答题1.(2017浙江衢州市第17题)计算:【答案】 【解析】试题分析:按照实数的运算法则依次进行计算即可得解. 试题解析:原式.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.2.(2017江苏徐州市第19(1)题)计算:;【答案】3.考点:1..实数的运算;2.零指数幂;3.负整数指数幂.3.(2017甘肃平凉市第193tan30°+(π-4)0-()-1.=-+⨯-|2|)21(320︒--⨯-+60tan 2)1(120π1201(2)20172-⎛⎫--+ ⎪⎝⎭121-.【解析】试题分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.试题解析:原式=312+-=12+-1-.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.二次根式的性质与化简;5.特殊角的三角函数值.4.(2017广西贵港市第19(1))计算:)20132cos602π-⎛⎫-+---⎪⎝⎭;【答案】-1.【解析】试题分析:根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;试题解析:原式=3+1-(-2)2-2×12=4-4-1=-1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.5.(2017贵州安顺市第19题)|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2017.【答案】3.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.6.(2017湖南怀化市第171031120173tan3084°.【答案】-2【解析】1是正数,所以它的绝对值是本身,任何不为0的零次幂都是1,11()4=4,tan30°=8的立方根,是2,分别代入计算可得结果.试题解析:原式1+1﹣4+2,4+2,=﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.7.(2017江苏无锡市第19(1)题)计算:|﹣6|+(﹣2)3+)0;【答案】-1.【解析】试题分析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.试题解析:原式=6﹣8+1=﹣1学*科网考点:实数的运算;单项式乘多项式;零指数幂.8.(江苏盐城市第17+()-1-20170.【答案】3.【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=2+2-1=3.考点:实数的运算;零指数幂;负整数指数幂.9.(2017贵州黔东南州第17题)计算:﹣1﹣2(π﹣3.14)012【答案】【解析】试题分析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=1++1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.10.(2017四川省宜宾市第17题(1))计算(2017﹣π)0﹣()﹣1+|﹣2|【答案】-1.【解析】试题分析:根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可. 试题解析:原式=1﹣4+2=﹣1;考点:实数的运算;零指数幂;负整数指数幂.11.(2017四川省自贡市第19题)计算:4sin45°+|﹣2|+(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.12.(2017新疆建设兵团第16题)计算:(12)﹣1﹣||(1﹣π)0.14【答案】【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2考点:实数的运算;零指数幂;负整数指数幂.13.(2017浙江省嘉兴市第17题(1))计算:212(4)--⨯-.【答案】5.【解析】试题分析:首先计算乘方和负指数次幂,计算乘法,然后进行加减即可.试题解析:原式=3-12×(-4)=3+2=5.考点:实数的运算;负整数指数幂.祝你考试成功!祝你考试成功!。

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2 【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32B .65C .1D .67【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DHBD=45,BD =5,∴DH =4,∴BH3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .学*科网 考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】A.考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.r << Br << C5r << D.5r <<【答案】B . 【解析】试题分析:给各点标上字母,如图所示. AB==,AC =AD==,AE==,AF==,AG =AM =AN5r <<A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题目.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 12【答案】A.【解析】试题分析:∵∠ACB=90°,AC=BC=1,∴AB,∴S扇形ABD=6π.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=6π.故选A.考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.学科*网8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于()A.2π3B.π3C.2√3π3D.√3π3【答案】A.【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为:602180π⨯ =2π3.故选A .考点:1.弧长的计算;2.圆周角定理. 二、填空题目10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC=F 是CD 的中点;②⊙O 的半径是2;③AE =92CE;④S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC=DF=3,∴F 是CD中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x -=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OHOG,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG=312(222-⨯⨯.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.学&科网13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;(2)若CF =2,DF =4,求⊙O 直径的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:(1)连接OD 、CD ,由AC 为⊙O 的直径知△BCD 是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:BF BDFC AC,得出结论.试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC=,Rt△ADB中,cos∠BAD=34=ADAB,∴34=8AD,∴AD=6,∴BD=,∵∠BDC=∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴BF BDFC AC=,∴103BF=,∴BF=考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DF A=45,AN=,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.学&科网【解析】试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,如图2所示.∵cos∠DF A=45,∠DF A=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=a=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE 2+(3DE )2=BD 2=4,∴DE=,∴BE=,设OB =OD =R ,∴OE =R﹣,∵OB 2=OE 2+BE 2,∴R 2=(R)2+2,解得:R=,∴⊙O的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC 与⊙O 相切;(2)23π.【解析】试题分析:(1)连接OD ,证明OD ∥AC ,即可证得∠ODB =90°,从而证得BC 是圆的切线;(2)设OF =OD =x ,则OB =OF +BF =x +2,由勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴S扇形AOB =604360π⨯ =23π,则阴影部分的面积为S △ODB ﹣S 扇形DOF =12×2×﹣23π=23π-.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D 作DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.【答案】(1)证明见解析;(2)11. 【解析】试题分析:(1)连接OD ,由D 为弧BC 的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE 平行,利用两直线平行同旁内角互补得到OD 与DE 垂直,即可得证;(2)解:过点O 作OF ⊥AC ,∵AC =10,∴AF =CF=12AC =5,∵∠OFE =∠DEF =∠ODE =90°,∴四边形OFED 为矩形,∴FE =OD =12AB ,∵AB =12,∴FE =6,则AE =AF +FE =5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)根据等角的余角相等证明即可; (2)欲证明CF =CE ,只要证明△ACF ≌△ACE 即可;(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,利用相似三角形的性质求出BM ,求出tan ∠BCM 的值即可解决问题;试题解析:(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM =,∴BM 2=CM •PM =3a 2,∴BM=a ,∴tan ∠BCM=BM CM =,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC =9++18=27+,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.学科*网22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(21112.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk b,解得24kb,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴12AD•OB=5,∴12(m+2)•m=5,即22100m m+-=,解得111m 或111m(舍去),∵∠BOD=90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.学#科网23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=QD的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC<8.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP =∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cos B =43382QB OB==,∴∠B =30°,∠BOQ =60°,∴OQ =12OB =4,∵∠COD =90°,∴∠QOD =90°+60°=150°,∴优弧QD 的长=2104180π⨯=143π;(3)∵△APO 的外心是OA 的中点,OA =8,∴△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A =43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)(3)16π或20π或32π.【解析】试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;(2)如图2,过点P作PH⊥AB于点H,连接BQ.∵tan∠A tan A=:3:2PH PHHB AH=,∴HB=3:2.而AB=10,∴AH=6,HB=4.在Rt△PHA中,PH=AH·tan A=8,∴PQ=PB==Rt△PQB中,QBPB=(3)①点Q在AD上时,如图3,由tan A=43得,PB=AB·sin A=8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt △HPB ≌Rt △KQP .∴KP =HB =10-x ,∴AP =53x,PD =()5104x -,AD =15=()551034x x +-,解得x =6.∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =,∴扇形面积为32π. 所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC 12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠P AB =90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=2PM,PB=2PN,∴22PC PB+=222()PM PN+ =222()AN PN+=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC ,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.祝你考试成功!祝你考试成功!。

(完整版)2017成都市中考数学试卷及答案详解

(完整版)2017成都市中考数学试卷及答案详解

2017年四川省成都市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为( )A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6。

47×109C.6.47×1010 D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是( )A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0= .12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y 1y2.(填“>”或“<").14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解"四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解"的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a= .23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P,则= .224.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点",直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k= .25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车"已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回(单位:分钟)是关家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1于x的一次函数,其关系如下表:地铁站 A B C D Ex(千米) 8 9 10 11。

2023年成都市中考数学试卷及答案

2023年成都市中考数学试卷及答案

2023年成都市中考数学试题A 卷(共100分) 第I 卷(选择题,共32分)一、选择题(本大题共有8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. 在3,7-,0,19四个数中,最大的数是( ) A. 3B. 7-C. 0D.192. 将数据3000亿用科学记数法表示为( ) A. 8310⨯B. 9310⨯C. 10310⨯D. 11310⨯3. 下列计算正确的是( ) A. 22(3)9x x -=- B. 27512x x x +=C. 22(3)69x x x -=-+D. 22(2)(2)4x y x y x y -+=+4. 近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数(AQI ):33,27,34,40,26,则这组数据的中位数是( ) A. 26B. 27C. 33D. 345. 如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AC BD =B. OA OC =C. AC BD ⊥D. ADC BCD ∠=∠ 6. 学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是( )A.12B.13C.14D.167. 《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为( )A. 1( 4.5)12x x +=- B.1( 4.5)12x x +=+ C. 1(1) 4.52x x +=-D. 1(1) 4.52x x -=+8. 如图,二次函数26y ax x =+-的图象与x 轴交于(3,0)A -,B 两点,下列说法正确的是( )A. 抛物线的对称轴为直线1x =B. 抛物线的顶点坐标为1,62⎛⎫-- ⎪⎝⎭C. A ,B 两点之间的距离为5D. 当1x <-时,y 的值随x 值的增大而增大第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 因式分解:m 2﹣3m =__________.10. 若点()()123,y ,1,A B y --都在反比例函数6y x=的图象上,则1y _______2y (填“>”或“<”).11. 如图,已知ABC DEF ≌△△,点B ,E ,C ,F 依次在同一条直线上.若85BC CE ==,,则CF 的长为___________.12. 在平面直角坐标系xOy 中,点()5,1P -关于y 轴对称的点的坐标是___________. 13. 如图,在ABC ∆中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;①以点D 为圆心,以AM 长为半径作弧,交DB 于点M ';①以点M '为圆心,以MN 长为半径作弧,在BAC ∠内部交前面的弧于点N ':①过点N '作射线DN '交BC 于点E .若BDE ∆与四边形ACED 的面积比为4:21,则BECE的值为___________.三、解答题(本大题共5个小题,共48分)14. (12sin 45(π3)2|︒--︒+.(2)解不等式组:()2254113x x x x ⎧+-≤⎪⎨+>-⎪⎩①② 15. 文明是一座城市的名片,更是一座城市的底蕴.成都市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.根据统计图信息,解答下列问题:(1)本次调查的师生共有___________人,请补全条形统计图; (2)在扇形统计图中,求“敬老服务”对应的圆心角度数:(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.16. 为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装避阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB 长为5米,与水平面的夹角为16︒,且靠墙端离地高BC 为4米,当太阳光线AD 与地面CE 的夹角为45︒时,求阴影CD 的长.(结果精确到0.1米;参考数据:sin160.28,cos160.96,tan160.29︒≈︒≈︒≈)17. 如图,以ABC ∆的边AC 为直径作O ,交BC 边于点D ,过点C 作CE AB ∥交O 于点E ,连接AD DE ,,B ADE ∠=∠.(1)求证:AC BC =;(2)若tan 23B CD ==,,求AB 和DE 的长.18. 如图,在平面直角坐标系xOy 中,直线5y x =-+与y 轴交于点A ,与反比例函数k y x=的图象的一个交点为(,4)B a ,过点B 作AB 的垂线l .(1)求点A 的坐标及反比例函数的表达式;(2)若点C 在直线l 上,且ABC ∆的面积为5,求点C 的坐标;(3)P 是直线l 上一点,连接P A ,以P 为位似中心画PDE ∆,使它与PAB ∆位似,相似比为m .若点D ,E 恰好都落在反比例函数图象上,求点P 的坐标及m 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 若23320ab b --=,则代数式22221ab b a b a a b⎛⎫---÷ ⎪⎝⎭的值为___________. 20. 一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有___________个.21. 为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳___________名观众同时观看演出.(π取 1.73)22. 如图,在Rt ABC △中,90ABC ∠=︒,CD 平分ACB ∠交AB 于点D ,过D 作DE BC ∥交AC 于点E ,将DEC ∆沿DE 折叠得到DEF ∆,DF 交AC 于点G .若73AG GE =,则tan A =__________.23. 定义:如果一个正整数能表示为两个正整数m ,n 的平方差,且1m n ->,则称这个正整数为“智慧优数”.例如,221653=-,16就是一个智慧优数,可以利用22()()m n m n m n -=+-进行研究.若将智慧优数从小到大排列,则第3个智慧优数是________;第23个智慧优数是________.二、解答题(本大题共3个小题,共30分)24. 2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A ,B 两种食材制作小吃.已知购买1千克A 种食材和1千克B 种食材共需68元,购买5千克A 种食材和3千克B 种食材共需280元. (1)求A ,B 两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A 种食材千克数不少于B 种食材千克数的2倍,当A ,B 两种食材分别购买多少千克时,总费用最少?并求出最少总费用. 25. 如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP ∆是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由. 26. 探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究. 在Rt ABC △中,90,C AC BC ∠=︒=,D 是AB 边上一点,且1AD BD n=(n 为正整数).E 是AC 边上的动点,过点D 作DE 的垂线交直线BC 于点F .【初步感知】(1)如图1,当1n =时,兴趣小组探究得出结论:2AE BF AB +=,请写出证明过程. 【深入探究】(2)①如图2,当2n =,且点F 在线段BC 上时,试探究线段AE BF AB ,,之间的数量关系,请写出结论并证明;①请通过类比、归纳、猜想,探究出线段AE BF AB ,,之间数量关系的一般结论(直接写出结论,不必证明) 【拓展运用】(3)如图3,连接EF ,设EF 的中点为M .若AB =求点E 从点A 运动到点C 的过程中,点M 运动的路径长(用含n 的代数式表示).2023年成都市中考数学试题答案A 卷(共100分)一、选择题.1. A2. D3. C4. C5. B6. B7. A8. C二、填空题.9. ()3m m - 10. > 11. 3 12. ()5,1-- 13.23解:根据作图可得BDE A ∠=∠ ①DE AC ∥ ①BDE BAC ∽△△①BDE 与四边形ACED 的面积比为4:21①24214BDC BACS BE SBC ⎛⎫== ⎪+⎝⎭①25BE BC = ①BE CE 23= 故答案为:23.三、解答题.14. (1)3 (2)41x -<≤15. (1)300,图见解析 (2)144︒ (3)360人 【小问1详解】解:依题意,本次调查的师生共有6020%300÷=人 ①“文明宣传”的人数为300601203090---=(人) 补全统计图,如图所示故答案为:300. 【小问2详解】在扇形统计图中,求“敬老服务”对应的圆心角度数为360120430014⨯︒=︒ 【小问3详解】估计参加“文明宣传”项目的师生人数为90150080%360300⨯⨯=(人). 16. 2.2米解:如图所示,过点A 作AG BC ⊥于点G ,AF CE ⊥于点F ,则四边形AFCG 是矩形依题意, 16BAG ∠=︒,5AB =(米)在Rt ABG △中,sin 5sin1650.28 1.4GB AB BAG =⨯∠=⨯︒≈⨯=(米)cos1650.96 4.8AG AB =⨯︒≈⨯=(米),则 4.8CF AG ==(米)①4BC =(米)①4 1.4 2.6AF CG BC BG ==-=-=(米) ①45ADF ∠=︒① 2.6DF AF ==(米)① 4.8 2.6 2.2CD CF DF =-=-=(米). 17. (1)略(2)AB =DE =【小问2详解】 解:设BD x =AC 是O 的直径90ADC ADB ∴∠=∠=︒tan 2B =2ADBD∴=,即2AD x = 根据(1)中的结论,可得3AC BC BD DC x ==+=+ 根据勾股定理,可得222AD DC AC +=,即()()222233x x +=+ 解得12x =,20x =(舍去)2BD ∴=,4=AD根据勾股定理,可得AB =; 如图,过点E 作DC 的垂线段,交DC 的延长线于点FCB CA =1802ACB B ∴∠=︒-∠(1)中已证明B ACE ∠=∠180ECF ACB ACE B ∴∠=︒-∠-∠=∠EF CF ⊥tan tan 2ECF B ∴∠=∠=,即2EF CF= 90B BAD ∠+∠=︒,90ADE EDF ∠+∠=︒,B ADE ∠=∠BAD EDF ∴∠=∠9090DEF EDF BAD B ∴∠=︒-∠=︒-∠=∠2DF EF∴= 设CF a =,则3DF DC CF a =+=+2EF a ∴= 可得方程322a a+=,解得1a = 2EF ∴=,4DF =根据勾股定理,可得DE =18. (1)点A 的坐标为(0,5),反比例函数的表达式为4y x =(2)点C 的坐标为(6,9)或(4,1)--(3)点P 的坐标为111,44⎛⎫- ⎪⎝⎭;m 的值为3 【小问1详解】解:令0x =,则55y x =-+=①点A 的坐标为(0,5)将点(,4)B a 代入5y x =-+得:45a =-+解得:1a =①(1,4)B将点(1,4)B 代入k y x =得:41k = 解得:4k =①反比例函数的表达式为4y x=; 【小问2详解】解:设直线l 于y 轴交于点M ,直线5y x =-+与x 轴得交点为N令50y x =-+=解得:5x =①(5,0)N①5OA ON ==又①90AON ∠=︒①45OAN ∠=︒①(0,5)A ,(1,4)B①AB ==又①直线l 是AB 的垂线即90ABM ∠=︒,45OAN ∠=︒①AB BM ==2AM ==①()0,3M设直线l 得解析式是:11y k x b =+将点()0,3M ,点(1,4)B 代入11y k x b =+得:11143k b b +=⎧⎨=⎩ 解得:1143k b =⎧⎨=⎩ ①直线l 的解析式是:3y x ,设点C 的坐标是()3t t +, ①1121522ABC B C S AM x x t △,(,B C x x 分别代表点B 与点C 的横坐标) 解得: 4t =-或6当4t =-时,31t +=-;当6t =时,39t +=①点C 的坐标为(6,9)或(4,1)--.【小问3详解】①位似图形的对应点与位似中心三点共线①点B 的对应点也在直线l 上,不妨设为点E ,则点A 的对应点是点D①点E 是直线l 与双曲线4y x=的另一个交点 将直线l 与双曲线的解析式联立得:43y x y x ⎧=⎪⎨⎪=+⎩解得:14x y =⎧⎨=⎩或41x y =-⎧⎨=-⎩ ①()4,1E --画出图形如下:又①D PAB P E △∽△①D PAB P E ∠=∠①AB DE ∥①直线AB 与直线DE 的解析式中的一次项系数相等设直线DE 的解析式是:2y x b =-+将点()4,1E --代入2y x b =-+得:()214b -=--+解得:25b =-①直线DE 的解析式是:=5y x --①点D 也在双曲线4y x=上 ①点D 是直线DE 与双曲线4y x =的另一个交点 将直线DE 与双曲线的解析式联立得:45y x y x ⎧=⎪⎨⎪=--⎩ 解得:14x y =-⎧⎨=-⎩或41x y =-⎧⎨=-⎩ ①()1,4D --设直线AD 的解析式是:33y k x b =+将点(0,5)A ,()1,4D --代入33y k x b =+得:33345k b b -+=-⎧⎨=⎩解得:1195k b =⎧⎨=⎩ ①直线AD 的解析式是:95y x =+又将直线AD 的解析式与直线l 的解析式联立得:953y x y x =+⎧⎨=+⎩解得:14114x y ⎧=-⎪⎪⎨⎪=⎪⎩①点P 的坐标为111,44⎛⎫- ⎪⎝⎭①BP ==EP ==①3EP m BP==. B 卷(共50分)一、填空题. 19. 23解:22221ab b a b a a b⎛⎫---÷ ⎪⎝⎭ 22222a b a ab b a a b ⎛⎫-+=⨯ ⎪-⎝⎭()222a b a b a a b⨯--= 2ab b =-23320ab b --=2332ab b ∴-=223ab b ∴-= 故原式的值为23 故答案为:23. 20. 6 解:根据主视图和俯视图可得第一列最多2个,第二列最多1个小正方形,如图所示①搭成这个几何体的小立方块最多有22116+++=故答案为:6.21. 184解:如图,过点O 作AB 的垂线段,交AB 于点C圆心O 到栏杆AB 的距离是5米5OC ∴=米OC AB ⊥1sin2OC OBC OB ∴∠==,22AB BC AC ====米 30OBC ∴∠=︒OA OB =1802120AOB OAB ∴∠=︒-∠=︒∴可容纳的观众=阴影部分面积()21201333105184.253602AOB AOB S S π︒⎛⎫⨯=⨯-=⨯⨯⨯-⨯≈ ⎪︒⎝⎭△扇形(人) ∴最多可容纳184名观众同时观看演出故答案为:184.22.解:如图所示,过点G 作GM DE ⊥于M①CD 平分ACB ∠交AB 于点D ,DE BC ∥①12∠=∠,23∠∠=①13∠=∠①ED EC =①折叠①3=4∠∠①14∠=∠又①DGE CGD ∠=∠①DGE CGD ∽ ①DG GE CG DG= ①2DG GE GC =⨯①90ABC ∠=︒,DE BC ∥,则AD DE ⊥①AD GM ∥ ①AG DM GE ME=,MGE A ∠=∠ ①73DM ME AG GE == 设3,7GE AG ==,3EM n =,则7DM n =,则10EC DE n ==①2DG GE GC =⨯①()23310930DG n n =⨯+=+ 在Rt DGM △中,222GM DG DM =-在Rt GME △中,222GM GE EM =-①2222DG DM GE EM -=-即()()222930733n n n +-=- 解得:34n =①94EM =,3GE =则4GM ===①9tan tan ME A EGM MG =∠===故答案为:7. 23. ①. 15 ①. 57解:依题意, 当3m =,1n =,则第1个一个智慧优数为22318-=当4m =,2n =,则第2个智慧优数为224214-=当4m =,1n =,则第3个智慧优数为224115-=当5m =,3n =,则第5个智慧优数为225316-=当5m =,2n =,则第6个智慧优数为225221-=当5m =,1n =,则第7个智慧优数为225324-=……6m =时有4个智慧优数,同理7m =时有5个,8m =时有6个12345621+++++=第22个智慧优数,当9m =时,7n =,第22个智慧优数为2297814932-=-=第23个智慧优数为9,6m n ==时,2296813657-=-=故答案为:15,57.二、解答题.24. (1)A 种食材单价是每千克38元,B 种食材单价是每千克30元(2)A 种食材购买24千克,B 种食材购买12千克时,总费用最少,为1272元【小问1详解】解:设A 种食材的单价为a 元,B 种食材的单价为b 元,根据题意得6853280a b a b +=⎧⎨+=⎩ 解得:3830a b =⎧⎨=⎩答:A 种食材的单价为38元,B 种食材的单价为30元;【小问2详解】解:设A 种食材购买x 千克,则B 种食材购买()36x -千克,根据题意()236x x ≤-解得:24x ≤设总费用为y 元,根据题意,()38303681080y x x x =+-=+①80>,y 随x 的增大而增大①当24x =时,y 最小①最少总费用为82410801272⨯+=(元).25. (1)2114y x =-+ (2)点B 的坐标为(4,3)--或(25----或(25-+-+ (3)存在,m 的值为2或23【小问1详解】解:①抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ①1631a c c +=-⎧⎨=⎩,解得141a c ⎧=-⎪⎨⎪=⎩ ①抛物线的函数表达式为2114y x =-+;【小问2详解】 解:设21,14B t t ⎛⎫-+ ⎪⎝⎭根据题意,ABP 是以AB 为腰的等腰三角形,有两种情况:当AB AP =时,点B 和点P 关于y 轴对称①()4,3P -,①()4,3B --;当AB BP =时,则22AB BP =①()()2222221101141344t t t t ⎛⎫⎛⎫-+-+-=-+-++ ⎪ ⎪⎝⎭⎝⎭ 整理,得24160t t +-=解得12t =--22t =-+当2t =--时,2114t -+(212154=-⨯--+=--则(25B ----当2t =-+,2114t -+(212154=-⨯-++=-+则(25B -+-+综上,满足题意的点B 的坐标为(4,3)--或(25----或(25-+-+;【小问3详解】解:存在常数m ,使得OD OE ⊥.根据题意,画出图形如下图设抛物线2114y x =-+与直线(0)y kx k =≠的交点坐标为(),B a ka ,(),C b kb 由2114y x kx =-+=得2440x kx +-= ①4a b k +=-,4ab =-;设直线AB 的表达式为y px q =+则1ap q ka q +=⎧⎨=⎩,解得11ka p a q -⎧=⎪⎨⎪=⎩ ①直线AB 的表达式为11ka y x a-=+ 令y m =,由11ka y x m a -=+=得()11a m x ka -=- ①()1,1a m D m ka -⎛⎫ ⎪-⎝⎭同理,可得直线AC 的表达式为11kb y x b -=+,则()1,1b m E m kb -⎛⎫ ⎪-⎝⎭过E 作EQ x ⊥轴于Q ,过D 作DN x ⊥轴于N则90EQO OND ∠=∠=︒,EQ ND m ==,()11b m QO kb -=--,()11a m ON ka -=- 若OD OE ⊥,则90EOD ∠=︒①90QEO QOE DON QOE ∠+∠=∠+∠=︒①QEO DON ∠=∠①EQO OND ∽①EQ QO ON ND= 则()()1111b m m kb a m mka ---=-- 整理,得()()()22111m ka kb ab m --=--即()()22211m abk k a b ab m ⎡⎤-++=--⎣⎦ 将4a b k +=-,4ab =-代入,得()()222244141mk k m -++=- 即()2241m m =-,则()21m m =-或()21m m =--解得12m =,223m = 综上,存在常数m ,使得OD OE ⊥,m 的值为2或23. 26. (1)见解析(2)①123AE BF AB +=,证明过程略 ①当点F 在射线BC 上时,11AE BF AB n n +=+,当点F 在CB 延长线上时1AE BF AB n -= (3证明:如图,连接CD当1n =时,1AD BD=,即AD BD = 90,C AC BC ∠=︒=∴45A B ∠=∠=︒,CD AB ⊥,1452FCD ACB ∠=∠=︒ CD AD ∴=,AB =,即2BC AB = DE FD ⊥90ADE EDC FDC EDC ∴∠+∠=∠+∠=︒CDF ADE ∠=∠∴在ADE ∆与CDF ∆中ADE CDF DA DCDAE DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ADE CDF ∴≌AE CF ∴=2BC CF BF AE BF AB ∴=+=+=; 【小问2详解】①123AE BF AB += 证明:如图,过BD 的中点G 作BC 的平行线,交DF 于点J ,交AC 于点H当2n =时,12AD DB =,即2AD DB =G 是DB 的中点AD DG ∴=,23AG AB =HG BC ∥90AHG C ∴∠=∠=︒,45HGA B ∠=∠=︒45A ∠=︒∴AHG 是等腰直角三角形,且DJG DBF △∽△12JG DG FB DB ∴==根据(1)中的结论可得2AE JG AG +=1223AE JG AE FB AG AB AB ∴+=+===;故线段AE BF AB ,,之间的数量关系为123AE BF AB +=; ①解:当点F 在射线BC 上时 如图,在DB 上取一点G 使得AD DG =,过G 作BC 的平行线,交DF 于点J ,交AC 于点H同①,可得2AE JG AG += 1AD BD n =,AD DG = 1DG BD n ∴=,21AG AB n =+ 同①可得1JG DG FB DB n==121AE JG AE FB AG AB AB n n ∴+=+===+即线段AE BF AB ,,之间数量关系为11AE BF AB n n +=+; 当点F 在CB 延长线上时如图,在DB 上取一点G 使得AD DG =,过G 作BC 的平行线,交DF 于点J ,交AC 于点H ,连接HD同(1)中原理,可证明()ASA DHE DGJ △≌△可得2AE GJ AG -= 1AD BD n =,AD DG = 1DG BD n ∴=,21AG AB n =+ 同①可得1JG DG FB DB n==121AE JG AE FB AG AB AB n n ∴-=-===+即线段AE BF AB ,,之间数量关系为11AE BF AB n n -=+综上所述,当点F 在射线BC 上时,11AE BF AB n n +=+;当点F 在CB 延长线上时,11AE BF AB n n -=+; 【小问3详解】 解:如图,当1E 与A 重合时,取11E F 的中点1M ,当2E 与C 重合时,取22E F 的中点2M .可得M 的轨迹长度即为12M M 的长度.如图,以点D 为原点,1DF 为y 轴,DB 为x 轴建立平面直角坐标系,过点2E 作AB 的垂线段,交AB 于点G ,过点2F 作AB 的垂线段,交AB 于点H .12AD AB DB n ==1AD n ∴=+,1DB n =+11E n ⎛⎫∴- ⎪ ⎪+⎝⎭145F BD ∠=︒1F D BD ∴=1F ⎛∴ ⎝⎭1M 是11E F 的中点1M ⎛∴ ⎝⎭12GB GC AB ===1DG DB BG n ∴=-=+21E n ⎛∴ +⎝根据(2)中的结论221AE BF AB n -=2222211n n BF n AE AB n n ⎛⎫-∴=-= ⎪ ⎪++⎝⎭22221BH F H BF n ∴===+DH DB BH ∴=+=22,1F n ⎫∴-⎪⎪+⎭2222M n ⎛+∴ +⎝⎭12M M ∴=。

2017年四川省成都市武侯区中考数学一诊试卷

2017年四川省成都市武侯区中考数学一诊试卷

2017年四川省成都市武侯区中考数学一诊试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在实数﹣2、0、2、3中,绝对值最小的实数是()A.﹣2B.0C.2D.32.(3分)在下面四个几何体中,俯视图是三角形的是()A.B.C.D.3.(3分)未来3到5年时间里,双流县将全力推进“四改六治理”各项工作,预计将完成130万平方米老住宅小区综合整治工作,130万这个数用科学记数法可表示为()A.1.3×105B.1.3×106C.13×105D.13×106 4.(3分)下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x2 5.(3分)如图,把一块直角三角板的30°角的顶点放在直尺的一边上,若∠2=100°,则∠1的度数为()A.40°B.80°C.50°D.45°6.(3分)已知点A(﹣3,y1)和B(﹣2,y2)都在直线y=上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定7.(3分)分式方程=1的解为()A.x=1B.x=﹣1C.x=﹣2D.x=﹣38.(3分)某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)3 3.54 4.5人数1121A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.89.(3分)若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=510.(3分)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为()A.B.C.D.π二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:a2b﹣b=.12.(4分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于度.13.(4分)已知反比例函数y=的图象过点A(﹣2,1),若点B(m1,n1)、C (m2,n2)页在该反比例函数图象上,且m1<m2<0,比较n1n2(填“<”、“>”或“=”).14.(4分)如图,边长为1的小正方形网格中,⊙O的半径为1,点O及点A、B、C、E都在格点上,则∠AED的正弦值是.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:﹣(2017﹣π)0+(﹣)﹣3﹣6tan30°(2)已知关于x的一元二次方程x2﹣(m﹣3)x+m2=0有实数根,求实数m 的取值范围.16.(6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据≈1.414,≈1.73)18.(8分)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形,把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果(用A、B、C、D 表示);(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形对称轴条数之和为奇数的概率.19.(10分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.20.(10分)如图,AC是⊙O的直径,弦BE⊥AC于H,F为⊙O上的一点,过F 的直线与AC延长线交于点D,与BE的延长线交于点M,连接AF交BM于G,且MF=MG.(1)求证:MD为⊙O的切线;(2)若MD∥AB,写出FG、EG、MF之间的关系,并说明理由;(3)在(2)的条件下,若cosM=,FD=6,求AG的长.四、填空题(每小题4分,共20分)21.(4分)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有人.22.(4分)一元二次方程x2﹣5x﹣4=0的两根为x1和x2,则x12+5x2+3=.23.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.24.(4分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2),点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当四边形CDBF 的面积最大时,E点的坐标为.25.(4分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.五、解答题(共3小题,共30分)26.(8分)某文具店经销甲、乙两种不同的笔记本,已知;两种笔记本的进价之和为10元,每个笔记本的利润均为1元,小王同学买4本甲种笔记本和3本乙种笔记本共用了43元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过295元,并且购买甲种笔记本的数量大于乙种笔记本数量的,则问该文具店有哪几种购买方案?(3)店主经统计发现平均每天可售出甲种笔记本300本和乙种笔记本150本.如果两种笔记本的售价各提高1元,则每天将少售出50本甲种笔记本和40本乙种笔记本.为使每天获取的利润更多,店主决定把两种笔记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少时,才能使该文具店每天销售甲、乙笔记本获取的利润最大?27.(10分)(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB货其延长线于点G,求证:EF=EG.(2)如图2,将(1)中的“正方形ABCD”改为“矩形ABCD”,其他条件不变,若AB=m、BC=n,求的值.(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD、CB于点F、G,且EC平分∠FEG.若AB=6,BC=10,求EG、EF的长.28.(12分)如图,抛物线C1:y=﹣(x+3)2与x,y轴分别相交于点A,B,将抛物线C1沿对称轴向上平移,记平移后的抛物线为C2,抛物线C2的顶点是D,与y轴交于点C,射线DC与x轴相交于点E,(1)求A,B点的坐标;(2)当CE:CD=1:2时,求此时抛物线C2的顶点坐标;(3)若四边形ABCD是菱形.①此时抛物线C2的解析式;②点F在抛物线C2的对称轴上,且点F在第三象限,点M在抛物线C2上,点P是坐标平面内一点,是否存在以A,F,P,M为顶点的四边形与菱形ABCD相似,并且这个菱形以A为顶点的角是钝角,若存在求出点F的坐标,若不存在请说明理由.2017年四川省成都市武侯区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在实数﹣2、0、2、3中,绝对值最小的实数是()A.﹣2B.0C.2D.3【分析】先求得各数的绝对值,然后再进行判断即可.【解答】解:∵|﹣2|=2,|0|=0,|2|=2,|3|=3,∴绝对值最小的实数是0.故选:B.【点评】本题主要考查的是绝对值的性质、比较实数的大小,熟练掌握绝对值的性质是解题的关键.2.(3分)在下面四个几何体中,俯视图是三角形的是()A.B.C.D.【分析】根据从上面看到的图形是俯视图,可得答案.【解答】解:从上面看A是圆,B是三角形,C是圆,D是正方形,故选:B.【点评】本题考查了简单组合体的三视图,从上面看到的图形是俯视图.3.(3分)未来3到5年时间里,双流县将全力推进“四改六治理”各项工作,预计将完成130万平方米老住宅小区综合整治工作,130万这个数用科学记数法可表示为()A.1.3×105B.1.3×106C.13×105D.13×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1.3×106.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.x+x2=x3B.2x+3x=5x C.(x2)3=x5D.x6÷x3=x2【分析】根据同底数幂的乘法,可判断A,根据合并同类项,可判断B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、系数相加字母部分不变,故B正确;C、底数不变指数相乘,故C错误;D、底数不变指数相减,故D错误;故选:B.【点评】本题考查了幂的运算,根据法则计算是解题关键.5.(3分)如图,把一块直角三角板的30°角的顶点放在直尺的一边上,若∠2=100°,则∠1的度数为()A.40°B.80°C.50°D.45°【分析】根据平行线的性质和平角的定义即可得到结论.【解答】解:∵a∥b,∴∠3=∠2=100°,∴∠1=180°﹣100°﹣30°=50°,故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.6.(3分)已知点A(﹣3,y1)和B(﹣2,y2)都在直线y=上,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.大小不确定【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<﹣2即可得出结论.【解答】解:∵一次函数y=﹣x﹣1中,k=﹣<0,∴y随x的增大而减小,∵﹣3<﹣2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键7.(3分)分式方程=1的解为()A.x=1B.x=﹣1C.x=﹣2D.x=﹣3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解,故选:D.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.(3分)某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时)3 3.54 4.5人数1121A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.8【分析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选:C.【点评】本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.9.(3分)若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()A.x1=0,x2=4B.x1=1,x2=5C.x1=1,x2=﹣5D.x1=﹣1,x2=5【分析】根据对称轴方程﹣=2,得b=﹣4,解x2﹣4x=5即可.【解答】解:∵对称轴是经过点(2,0)且平行于y轴的直线,∴﹣=2,解得:b=﹣4,解方程x2﹣4x=5,解得x1=﹣1,x2=5,故选:D.【点评】本题主要考查二次函数的对称轴和二次函数与一元二次方程的关系,难度不大.10.(3分)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则的长为()A.B.C.D.π【分析】连接OA,OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可.【解答】解:连接OA,OB,∵多边形ABCDEF为正六边形,∴∠AOB=360°×=60°,∴的长==,故选:B.【点评】本题考查了正多边形和圆的位置关系以及弧长公式的运用,此题将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)分解因式:a2b﹣b=b(a+1)(a﹣1).【分析】首先提取公因式b,进而利用平方差公式分解因式得出答案.【解答】解:a2b﹣b=b(a2﹣1)=b(a+1)(a﹣1).故答案为:b(a+1)(a﹣1).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式是解题关键.12.(4分)如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于35度.【分析】根据旋转的意义,找到旋转角∠BOD;再根据角相互间的和差关系即可求出∠AOD的度数.【解答】解:∵△OAB绕点O逆时针旋转80°到△OCD的位置,∴∠BOD=80°,∵∠AOB=45°,则∠AOD=80°﹣45°=35°.故填35.【点评】本题考查了图形的旋转变化,学生主要要看清是顺时针还是逆时针旋转,旋转多少度,难度不大,但易错.注意∠AOD=∠BOD﹣∠AOB.13.(4分)已知反比例函数y=的图象过点A(﹣2,1),若点B(m1,n1)、C (m2,n2)页在该反比例函数图象上,且m1<m2<0,比较n1<n2(填“<”、“>”或“=”).【分析】先把A(﹣2,1)代入y=,得到k=﹣2,再根据反比例函数的图象性质:当k<0时,在每一象限内,y随x的增大而增大求解即可.【解答】解:∵反比例函数y=的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∵k<0,∴在每一象限内,y随x的增大而增大,而B(m1,n1)、C(m2,n2)在该反比例函数图象上,且m1<m2<0,∴n1<n2.故答案为<.【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,反比例函数的图象性质,掌握性质是解题的关键.14.(4分)如图,边长为1的小正方形网格中,⊙O的半径为1,点O及点A、B、C、E都在格点上,则∠AED的正弦值是.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出sin∠ABC的值,即为sin∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则sin∠AED=sin∠ABC==,故答案是:.【点评】本题主要考查了圆周角定理、锐角三角函数的定义.解答网格中的角的三角函数值时,一般是将所求的角与直角三角形中的等角联系起来,通过解直角三角形中的三角函数值来解答问题.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:﹣(2017﹣π)0+(﹣)﹣3﹣6tan30°(2)已知关于x的一元二次方程x2﹣(m﹣3)x+m2=0有实数根,求实数m 的取值范围.【分析】(1)将=3、(2017﹣π)0=1、(﹣)﹣3=﹣8、tan30°=代入原式,计算后即可得出结论;(2)根据方程的系数结合根的判别式,即可得出△=﹣6m+9≥0,解之即可得出结论.【解答】解:(1)原式=3﹣1﹣8﹣6×=﹣9.(2)∵方程x2﹣(m﹣3)x+m2=0有实数根,∴△=[﹣(m﹣3)]2﹣4×1×m2=﹣6m+9≥0,解得:m≤.∴实数m的取值范围为m≤.【点评】本题考查了根的判别式、零指数幂、负整数指数幂以及特殊角的三角函数值,解题的关键是:(1)找出=3、(2017﹣π)0=1、(﹣)﹣3=﹣8、tan30°=;(2)根据方程的系数结合根的判别式,找出△=﹣6m+9≥0.16.(6分)先化简,再求值:÷(a+2﹣),其中a2+3a﹣1=0.【分析】首先通分,并根据同分母分式的加法法则,化简小括号内的算式;然后计根据分式的除法化成最简结果,再把a2+3a﹣1=0变形代入化简后的式子,求出化简后式子的值即可.【解答】解:÷(a+2﹣)===,∵a2+3a﹣1=0,∴a2+3a=1,∴3a2+9a=3,故原式=.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,解答此题的关键是要明确:先把分式化简后,再把分式中未知数对应的值代入求出分式的值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母能约分要约分.17.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD是多少?(结果保留整数,测角仪忽略不计,参考数据≈1.414,≈1.73)【分析】设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD 中,根据正切的概念列出方程求出x的值即可.【解答】解:由题意得,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137米,答:山高AD约为137米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.18.(8分)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形,把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果(用A、B、C、D 表示);(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形对称轴条数之和为奇数的概率.【分析】(1)列出图表即可得到所有的可能情况;(2)根据轴对称的定义确定两次抽取的正多边形对称轴条数之和为奇数的结果,然后根据概率公式列式计算即可得解.【解答】解:(1)列表得:B C DAA BA CA DAB AB CB DBC AC BC DCD AD BD CD所有出现的结果共有12种;(2)∵两次抽取的正多边形对称轴条数之和为奇数的情况有8种,∴P==.(两次抽取的正多边形对称轴条数之和为奇数)【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.(10分)如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)(1)求反比例函数的解析式;(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.【分析】(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;(2)设点B的坐标为(n,),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.【解答】解:(1)∵点A(4,1)在反比例函数y=的图象上,∴m=4×1=4,∴反比例函数的解析式为y=.(2)∵点B在反比例函数y=的图象上,∴设点B的坐标为(n,).将y=kx+b代入y=中,得:kx+b=,整理得:kx2+bx﹣4=0,∴4n=﹣,即nk=﹣1①.令y=kx+b中x=0,则y=b,即点C的坐标为(0,b),=bn=3,∴S△BOC∴bn=6②.∵点A(4,1)在一次函数y=kx+b的图象上,∴1=4k+b③.联立①②③成方程组,即,解得:,∴该一次函数的解析式为y=﹣x+3.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数系数k的几何意义、三角形的面积公式以及根与系数的关系,解题的关键是:(1)利用反比例函数系数k的几何意义求出m的值;(2)根据各关系量找出关于k、b、n的三元一次方程组.本题属于中档题,难度不大,但考到的知识点较多,解决该题型题目时,综合根与系数的关系、三角形的面积公式以及一次函数上点的坐标特征得出方程组是关键.20.(10分)如图,AC是⊙O的直径,弦BE⊥AC于H,F为⊙O上的一点,过F 的直线与AC延长线交于点D,与BE的延长线交于点M,连接AF交BM于G,且MF=MG.(1)求证:MD为⊙O的切线;(2)若MD∥AB,写出FG、EG、MF之间的关系,并说明理由;(3)在(2)的条件下,若cosM=,FD=6,求AG的长.【分析】(1)根据已知条件得到∠MFG=∠MGF=∠AGB,连接FO,根据等腰三角形的性质得到∠AFH=∠GAH,得到∠MFO=90°,于是得到结论;(2)根据平行线的性质得到∠M=∠B,连接EF,根据相似三角形的性质即可得到结论;(3)设AH=3k,AB=5k,HB=4k,连接OB,根据已知条件得到FO=8=OB=OA,求得OH=8﹣3k根据勾股定理列方程得到k=,根据等腰三角形的性质得到AB=GB=5k,于是得到结论.【解答】(1)证明:∵MF=MG,∴∠MFG=∠MGF=∠AGB,连接FO,∵OF=AO,∴∠AGH=∠GAH=90°,∴∠MFO=90°,∴MD为⊙O的切线;(2)解:FG2=EG•MF,理由:∵MD∥AB,∴∠M=∠B,连接EF,∵∠EFG=∠B,∴∠M=∠EFG,∵∠MGF=∠FGE,∴△MGF∽△FGE,∴,即FG2=MF•EG;(3)解:∵∠M=∠B,cosM=,∴设AH=3k,AB=5k,HB=4k,连接OB,∵∠FOD=∠M,FD=6,∴FO=8=OB=OA,∴OH=8﹣3k,∵OH2+HB2=OB2,∴(4k)2+(8﹣3k)2=82,解得:k=,∵MG∥AB,∴∠MFG=∠BAF,∴∠BGA=∠BAG,∴AB=GB=5k,∴GH=k,∴AG=k,∴AG=.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了等腰三角形的性质、相似三角形的判定与性质和锐角三角函数的定义.四、填空题(每小题4分,共20分)21.(4分)某学校计划开设A、B、C、D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门,为了了解各门课程的选修人数.现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有240人.【分析】根据样本的数据,可得样本C占样本的比例,根据样本的比例,可C 占总体的比例,根据总人数乘以C占得比例,可得答案.【解答】解:C占样本的比例,C占总体的比例是,选修C课程的学生有1200×=240(人),故答案为:240.【点评】本题考查了用样本估计总体,先求出样本所占的比例,估计总体中所占的比例.22.(4分)一元二次方程x2﹣5x﹣4=0的两根为x1和x2,则x12+5x2+3=32.【分析】根据根与系数的关系即可求出答案.【解答】解:由根与系数的关系可知:x1+x2=5,∵x12﹣5x1=4,∴x12+5x2+3=x12﹣5x1+5x1+5x2+3=4+5×5+3=32故答案为:32【点评】本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.23.(4分)如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE 沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为或.【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【解答】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.故答案为:或.【点评】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.24.(4分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2),点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当四边形CDBF 的面积最大时,E点的坐标为(2,1).【分析】由于四边形CDBF的面积等于△CDB的面积与△BCF的面积之和,当四边形CDBF的面积最大时,即△BCF最大,设点E的坐标为(x,y),利用点E 的坐标表示出△BCF的面积即可求出点E的坐标.【解答】解:过点E作EG⊥x轴于点G,交抛物线于F,将A(﹣1,0),C(0,2)代入y=﹣x2+mx+n解得:∴抛物线的解析式为:y=﹣x2+x+2令y=0代入y=﹣x2+x+2,∴0=﹣x2+x+2解得:x=﹣1或x=4∴B(4,0)∴OB=4设直线BC的解析式为y=kx+b,把B(4,0)和C(0,2)代入y=kx+b∴解得:∴直线BC的解析式为:y=﹣x+2,设E的坐标为:(x,﹣x+2)∴F(x,﹣x2+x+2)∴EF=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∴△BCF的面积为:EF•OB=2(﹣x2+2x)=﹣x2+4x=﹣(x﹣2)2+4四边形CDBF的面积最大时,只需要△BCF的面积最大即可,∴当x=2时,△BCF的面积可取得最大值,此时E的坐标为(2,1)【点评】本题考查二次函数的综合问题,解题的关键是求出△BCF的面积的表达式,本题属于中等题型.25.(4分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=2,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为﹣1.【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=2,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的⊙O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC 中利用勾股定理计算出OC=,从而得到CE的最小值为﹣1.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=2,∴AB=AC=2,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为1,连接OE,OC,∴OE=AB=1在Rt△AOC中,∵OA=2,AC=4,∴OC==,由于OC=,OE=1是定值,点E在线段OC上时,CE最小,如图2,∴CE=OC﹣OE=﹣1,即线段CE长度的最小值为﹣1.故答案为﹣1.【点评】本题考查了等腰直角三角形的性质,圆的有关知识,勾股定理计算线段的长,解决本题的关键是确定E点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.五、解答题(共3小题,共30分)26.(8分)某文具店经销甲、乙两种不同的笔记本,已知;两种笔记本的进价之和为10元,每个笔记本的利润均为1元,小王同学买4本甲种笔记本和3本乙种笔记本共用了43元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过295元,并且购买甲种笔记本的数量大于乙种笔记本数量的,则问该文具店有哪几种购买方案?(3)店主经统计发现平均每天可售出甲种笔记本300本和乙种笔记本150本.如果两种笔记本的售价各提高1元,则每天将少售出50本甲种笔记本和40本乙种笔记本.为使每天获取的利润更多,店主决定把两种笔记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少时,才能使该文具店每天销售甲、乙笔记本获取的利润最大?【分析】(1)设甲种笔记本的进价为m元/本,则乙种笔记本的进价为(10﹣m)元/本,根据总价=单价×数量,即可得出关于m的一元一次方程,解之即可得出结论;(2)设购入甲种笔记本n本,则购入乙种笔记本(60﹣n)本,根据“花费不超过295元,并且购买甲种笔记本的数量大于乙种笔记本数量的”,即可得出关于n的一元一次不等式组,解之即可得出n的取值范围,再结合n为正整数,即可得出各购入方案;(3)设把两种笔记本的价格都提高x元的总利润为w元,根据总利润=单本利润×销售数量,即可得出w关于x的函数关系式,利用配方法结合二次函数的性质即可解决最值问题.【解答】解:(1)设甲种笔记本的进价为m元/本,则乙种笔记本的进价为(10﹣m)元/本,根据题意得:4(m+1)+3(10﹣m+1)=43,解得:m=6,∴10﹣m=4.答:甲种笔记本的进价为6元/本,乙种笔记本的进价为4元/本.(2)设购入甲种笔记本n本,则购入乙种笔记本(60﹣n)本,根据题意得:,解得:24<n≤27.5.∵n为正整数,∴m=25、26、27,∴共有三种购入方案:方案一、购入甲种笔记本25本,乙种笔记本35本;方案二、购入甲种笔记本26本,乙种笔记本34本;方案三、购入甲种笔记本27本,乙种笔记本33本.(3)设把两种笔记本的价格都提高x元的总利润为w元,根据题意得:w=(1+x)(300﹣50x)+(1+x)(150﹣40x)=﹣90(x﹣2)2+810,∵在w=﹣90(x﹣2)2+810中,a=﹣90<0,∴当x=2时,w取最大值,最大值为810.答:当x定为2元时,才能使该文具店每天销售甲、乙笔记本获取的利润最大,最大利润为810元.【点评】本题考查了一元一次方程的应用、二次函数的应用、二次函数的性质以及一元一次不等式组的应用,解题的关键是:(1)根据总价=单价×数量,列出关于m的一元一次方程;(2)找准等量关系,列出关于n的一元一次不等式组;(3)根据总利润=单本利润×销售数量,找出w关于x的函数关系式.27.(10分)(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB货其延长线于点G,求证:EF=EG.(2)如图2,将(1)中的“正方形ABCD”改为“矩形ABCD”,其他条件不变,若AB=m、BC=n,求的值.(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD、CB于点F、G,且EC平分∠FEG.若AB=6,BC=10,求EG、EF的长.【分析】(1)作EH⊥BC于H,EI⊥CD于I,证明△GEH≌△FEI,根据全等三角形的性质证明;(2)证明△GEH∽△FEI,△CEH∽△CAB,根据相似三角形的性质计算;(3)作GM⊥EC于M,FN⊥EC于N,根据相似三角形的性质、等腰直角三角形的性质计算.【解答】(1)证明:如图1,作EH⊥BC于H,EI⊥CD于I,∵∠GEF=90°,∠HEI=90°,∴∠GEH=∠FEI,∵CA平分∠BCD,EH⊥BC,EI⊥CD,∴EH=EI,在△GEH和△FEI中,。

成都市2007-2013年中考数学试题及答案

成都市2007-2013年中考数学试题及答案

成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数 学全卷分A卷和B卷,A卷满分100分,B卷满分50分,考试时间120分钟.A卷分 第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题.A卷第Ⅰ卷(选择题)注意事项:1.第Ⅰ卷共2页.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上.请注意机读答题卡的横竖格式. 一、选择题:1.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( ) A.26-℃ B.22-℃ C.18-℃ D.16-℃ 2.下列运算正确的是( ) A.321x x -= B.22122xx--=-C.236()a a a -=·D.236()a a -=-3表示该位置上小立方块的个数,那么该几何体的主视图为(4.下列说法正确的是( )A.为了了解我市今夏冰淇淋的质量,应采用普查的调查方式进行 B.鞋类销售商最感兴趣的是所销售的某种品牌鞋的尺码的平均数 C.明天我市会下雨是可能事件D.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 5.在函数3y x=中,自变量x 的取值范围是( ) A.2x -≥且0x ≠B.2x ≤且0x ≠A .B .C .D .C.0x ≠D.2x -≤6.下列命题中,真命题是( ) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形 D.两条对角线互相平分的四边形是平行四边形7.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A.240x += B.24410x x -+= C.230x x ++=D.2210x x +-=8.如图,O 内切于ABC △,切点分别为D E F ,,. 已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,, 那么EDF ∠等于( ) A.40° B.55°C.65° D.70°9.如图,小“鱼”与大“鱼”是位似图形, 已知小“鱼”上一个“顶点”的坐标为()a b ,, 那么大“鱼”上对应“顶点”的坐标为( )A.(2)a b --, B.(2)a b --, C.(22)a b --,D.(22)b a --,10.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cm B. C .8cmD.第Ⅱ卷(非选择题)注意事项:1.A 卷的第Ⅱ卷和B 卷共10页,用蓝、黑钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目填写清楚. 二、填空题将答案直接写在该题目的横线上.112(5)0b +=,那么a b +的值为 .D12.已知小明家五月份总支出共计1200元,各项支出如图所示, 那么其中用于教育上的支出是 元.13.如图,把一张矩形纸片ABCD 沿EF 折叠后,点C D , 分别落在C D '',的位置上,EC '交AD 于点G .已知58EFG ∠=°,那么BEG ∠= °.14.如图,已知AB 是O 的直径,弦CD AB ⊥,AC =1BC =,那么sin ABD ∠的值是.15.如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 . 三、16.解答下列各题: (11223sin 30--°.(2)解不等式组331213(1)8x x x x -⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.(3)解方程:32211x x x +=-+. 四、17.如图,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的AB ECDFGC 'D 'AB仰角α为30°,测得乙楼底部B 点的俯角β为60°,求甲、乙两栋高楼各有多高?(计算过程和结果都不取近似值)18.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.五、19.小华与小丽设计了A B ,两种游戏:游戏A 的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.20.已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;(2)求证:12CE BF =; (3)CE 与BG 的大小关系如何?试证明你的结论.B 卷一、填空题: 将答案直接写在该题目中的横线上.21.如图,如果要使ABCD成为一个菱形, 需要添加一个条件,那么你添加的条件是.22.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)那么该班学生一周做家务劳动所用时间的平均数为 小时,中位数为 小时.23.已知x 是一元二次方程2310x x +-=的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为 .24.如图,将一块斜边长为12cm ,60B ∠=°的 直角三角板ABC ,绕点C 沿逆时针方向旋转90° 至A B C '''△的位置,再沿CB 向右平移,使点B ' 刚好落在斜边AB 上,那么此三角板向右平移的 距离是cm .25.在平面直角坐标系xOy 中,已知一次函数(0)y kx b k =+≠的图象过点(11)P ,,与x 轴交于点A ,与y 轴交于点B ,且tan 3ABO ∠=,那么点A 的坐标是 . 二、D AE FCHGBD C B A '()C C '26.某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支? (2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的12,但又不少于红梅牌钢笔的数量的14.如果他们买了锦江牌钢笔x 支,买这两种笔共花了y 元.①请写出y (元)关于x (支)的函数关系式,并求出自变量x 的取值范围;②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?27.如图,A 是以BC 为直径的O 上一点,AD BC ⊥于点D ,过点B 作O 的切线,与CA 的延长线相交于点E G ,是AD 的中点,连结CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P .(1)求证:BF EF =;(2)求证:PA 是O 的切线; (3)若FG BF =,且O的半径长为求BD 和FG 的长度.28.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(23),和(312)--,.(1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.C成都市二○○七年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案A 卷 第Ⅰ卷一、选择题 1.C ; 2.D ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.B ;9.C ;10.B .A 卷 第Ⅱ卷二、填空题:11.3-; 12.216;13.64;14.3; 15.1-三、16.(1)解:原式112322=+-⨯13222=+= (2)解:解不等式3312x x -++≥,得1x ≤. 解不等式13(1)8x x --<-,得2x >-.∴原不等式组的解集是21x -<≤. ∴原不等式组的整数解是101-,,.(3)解:去分母,得3(1)2(1)2(1)(1)x x x x x ++-=-+. 去括号,得22332222x x x x ++-=-. 解得5x =-.经检验5x =-是原方程的解. ∴原方程的解是5x =-. 四、17.解:作CE AB ⊥于点E .CE DB CD AB ∵∥,∥,且90CDB ∠=°, ∴四边形BECD 是矩形. CD BE CE BD ==∴,.在Rt BCE △中,60β=°,90CE BD ==米.tan BECEβ=∵, tan 90tan 60BE CE β==⨯∴·°=(米).CD BE ==∴。

成都市中考数学模拟试题(3)(解析版)

成都市中考数学模拟试题(3)(解析版)

成都市中考数学模拟试题(3)A卷(共100分)第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在有理数2,0,﹣1,﹣3中,任意取两个数相加,和最小是()A.2 B.﹣1 C.﹣3 D.﹣4【答案】D【解析】(﹣1)+(﹣3)=﹣4.故选:D.2.(3分)八个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【答案】C【解析】从正面看,共有三列,每列的小正方形个数分别为2、1、2,故选:C.3.(3分)据央视网消息,全国广大共产党员积极响应党中央号召,踊跃捐款,表达对新冠肺炎疫情防控工作的支持.据统计,截至2020年3月26日,全国已有7901万多名党员自愿捐款,共捐款82.6亿元.82.6亿用科学记数法可表示为()A.0.826×1010B.8.26×109C.8.26×108D.82.6×108【答案】B【解析】82.6亿=8 260 000 000=8.26×109,故选:B.4.(3分)将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是()A.(﹣1,﹣1)B.(﹣1,3)C.(5,﹣1)D.(5,3)【答案】B【解析】将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(﹣1,3).故选:B.5.(3分)一块含有45°的直角三角板和直尺如图放置,若∠1=55°,则∠2的度数是()A.30°B.35°C.40°D.45°【答案】B【解析】如图,延长ME,交CD于点F,∵AB∥CD,∠1=55°,∴∠MFC=∠1=55°,在Rt△NEF中,∠NEF=90°,∴∠3=90°﹣∠MFC=35°,∴∠2=∠3=35°,故选:B.6.(3分)下列计算正确的是()A.(a﹣b)(﹣a﹣b)=a2﹣b2B.2a3+3a3=5a6C.6x3y2÷3x=2x2y2D.(﹣2x2)3=﹣6x6【答案】C【解析】(a﹣b)(﹣a﹣b)=b2﹣a2,故选项A错误;2a3+3a3=5a3,故选项B错误;6x3y2÷3x=2x2y2,故选项C正确;(﹣2x2)3=﹣8x6,故选项D错误;故选:C.7.(3分)方程=的解为()A.﹣2 B.﹣1 C.1 D.2【答案】A【解析】方程两边都乘以2x(x﹣2),得:2x=x﹣2,移项,得:2x﹣x=﹣2,合并同类项,得:x=﹣2.经检验,x=﹣2是原方程的根.所以,原方程的根为x=﹣2.故选:A.8.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如图所示,则这些运动员成绩的中位数为()A.160 B.165 C.170 D.175【答案】B【解析】把这些数从小到大排列,中位数是第8个数,则这些运动员成绩的中位数为165cm.故选:B.9.(3分)如图,⊙O是正六边形ABCDEF的外接圆,P是弧AB上一点,则∠CPD的度数是()A.30°B.40°C.45°D.60°【答案】A【解析】连接OC,OD,∵六边形ABCDEF是正六边形,∴∠COD==60°,∴∠CPD=COD=30°,故选:A.10.(3分)抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①b=2a;②4a+2b+c>0;③若n>m>0,则x=1+m时的函数值小于x=1﹣n时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】C【解析】∵抛物线的对称轴为直线x=1,∴﹣=1,∴b=﹣2a,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∵抛物线开口向下,∴当x=2时,y>0,∴4a+2b+c>0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若n>m>0,∴1+n>1+m,∴x=1+m时的函数值大于x=1﹣n时的函数值,故③错误;∵b=﹣2a,∴抛物线为y=ax2﹣2ax+c,∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x﹣3和1﹣4x互为相反数,则x的值是________.【答案】﹣1.【解析】∵2x﹣3和1﹣4x互为相反数,∴2x﹣3+1﹣4x=0,解得:x=﹣1.12.(4分)一个等腰三角形一腰上的高与另一腰的夹角为36°,则此三角形顶角度数为________.【答案】54°或126°【解析】当△ABC是锐角三角形时,∠ACD=36°,∠ADC=90°,∴∠A=54°,当△ABC是钝角三角形时,∴∠ACD=36°,∠ADC=90°,∴∠BAC=∠ADC+∠ACD=126°13.(4分)已知直线y=(k﹣2)x+k经过第一、二、四象限,则k的取值范围是________.【答案】0<k<2.【解析】∵一次函数y=(k﹣2)x+k的图象经过第一、二、四象限,∴k﹣2<0且k>0;∴0<k<2,14.(4分)如图,在▱ABCD中,CD=2,∠B=60°,BE:EC=2:1,依据尺规作图的痕迹,则▱ABCD的面积为________.【答案】3.【解析】如图,过点A作AH⊥BC于H,由作图可知,EF垂直平分线段AB∴EA=EB,∵∠B=60°,∴△ABE是等边三角形,∴AB=BE=AE,∵四边形ABCD是平行四边形,∴AB=CD=2,∴BE=AB=2,∵AH⊥BE,∴BH=EH=1,∴AH===,∵BE:EC=2:1,∴EC=1,BC=BE+EC=3,∴平行四边形ABCD的面积=BC•AH=3,三.解答题(共6小题,满分54分)15.(12分)(1)计算:+(1+π)0﹣2cos45°+|1﹣|.(2)解不等式组:.【答案】见解析【解析】(1)原式=2+1﹣2×+﹣1=2+1﹣+﹣1=2;(2)由①得:x>2.5,由②得:x≤4,则不等式组的解集为2.5<x≤4.16.(6分)先化简,再求值:(+)÷,其中m=9.【答案】见解析【解析】原式=×=,当m=9时,原式==.17.(8分)新学期,某校开设了“防疫宣传”“心理疏导”等课程,为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B 级为良好,C级为及格,D级为不及格.将测试结果绘制了两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生400名,如果全部参加这次测试,估计优秀的人数为多少?【答案】见解析【解析】(1)本次抽样测试的学生人数是:12÷30%=40(名),故答案为:40;(2)扇形统计图中表示A级的扇形圆心角α的度数是:360°×=54°,故答案为:54°,C级的人数为:40×35%=14,补充完整的条形统计图如右图所示;(3)400×=60(人),即优秀的有60人.18.(8分)如图,某办公楼AB的右边有一建筑物CD,在建设物CD离地面2米高的点E处观测办公楼顶A点,测得的仰角∠AEM=22°,在离建设物CD25米远的F点观测办公楼顶A点,测得的仰角∠AFB=45°(B,F,C在一条直线上).(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离.(参考数据:)【答案】见解析【解析】(1)如图,过点E作EM⊥AB于点M,设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,,则,解得:x=20.即办公楼的高20m;(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE===48,即A、E之间的距离约为48m.19.(10分)如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为________;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为________.【答案】见解析【解析】(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2, 故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).20.(10分)如图,过点P作P A,PB,分别与以OA为半径的半圆切于A,B,延长AO交切线PB于点C,交半圆与于点D.(1)若PC=5,AC=4,求BC的长;(2)设DC:AD=1:2,求的值.【答案】见解析【解析】(1)∵P A,PB是⊙O的切线∴P A=PB,∠P AC=90°∴AP==3∴PB=AP=3∴BC=PC﹣PB=2(2)连接OB,∵CD:AD=1:2,AD=2OD∴CD=OD=OB∴CO=2OB∵PB是⊙O切线∴OB⊥PC∴∠OBC=90°=∠P AC,且∠C=∠C∴△OBC∽△P AC∴∴PC=2P A,∴=B卷(共50分)一.填空题(共5小题,满分20分,每小题4分)21.(4分)估算:≈________.(结果精确到1)【答案】7.【解析】≈7;22.(4分)设x1、x2是方程x2+mx﹣5=0的两个根,且x1+x2﹣x1x2=1,则m=________.【答案】4.【解析】∵x1、x2是方程x2+mx﹣5=0的两个根,∴x1+x2=﹣m,x1x2=﹣5.∵x1+x2﹣x1x2=1,即﹣m﹣(﹣5)=1,∴m=4.23.(4分)一个密码箱的密码,每个位数上的数都是从0到9的自然数,若要使不知道密码的一次就拨对密码的概率小于,则密码的位数至少需要________位.【答案】3.【解析】因为取一位数时一次就拨对密码的概率为,取两位数时一次就拨对密码的概率为,取三位数时一次就拨对密码的概率为,故密码的位数至少需要3位.24.(4分)如图,在边长为2的菱形ABCD中,∠ABC=60°,将△BCD沿直线BD平移得到△B′C′D′,连接AC′、AD′,则AC′+AD′的最小值为________.【答案】2.【解析】如图,连接BC',连接直线CC',∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵将△BCD沿直线BD平移得到△B′C′D′,∴AB∥C'D',AB=C'D',∴四边形ABC'D'是平行四边形,∴AD'=BC',∴AC′+AD′=AC'+BC',∵点C′在过点C且平行于BD的定直线CC'上,∴作点B关于定直线CC'的对称点E,连接AE,连接BE交CC'于H,则AE的长度即为AC′+AD′的最小值,在Rt△BHC中,∠BCH=∠DBC=30°,AD=2,∴∠CBH=60°,BH=EH=BC=1,∴BE=2,∴BE=AB,∵∠ABE=∠EBB′+∠DBA=90°+30°=120°,∴∠E=∠BAE=30°,∴AE=2×AB=2.25.(4分)如图,在平面直角坐标系中,A(3,0),B(0,4),C(2,0),D(0,1),连接AD、BC交于点E,则三角形ABE的面积为________.【答案】.【解析】连接OE,如图,∵A(3,0),B(0,4),C(2,0),D(0,1),∴AO=3,OB=4,OC=2,OD=1,设E(m,n),∵S△OAD=,∴S△OAD=S△OED+S△OAE=;∵S△OCB==4,∴S△OEB+S△OEC=2m+n=4;解方程组得,,∴S△BEA=S△BCA﹣S△AEC==.二.解答题(共3小题,满分30分)26.(8分)某汽车清洗店,清洗一辆汽车定价20元时每天能清洗45辆,定价25元时每天能清洗30辆,假设清洗汽车辆数y(辆)与定价x(元)(x取整数)是一次函数关系(清洗每辆汽车成本忽略不计).(1)求y与x之间的函数表达式;(2)若清洗一辆汽车定价不低于15元且不超过50元,且该汽车清洗店每天需支付电费、水和员工工资共计200元,问:定价为多少时,该汽车清洗店每天获利最大?最大获利多少?【答案】见解析【解析】(1)设y与x的一次函数式为y=kx+b,由题意可知:,解得:,∴y与x之间的函数表达式为y=﹣3x+105;(2)设汽车美容店每天获利润为w元,由题意得:w=xy﹣200=x(﹣3x+105)﹣200=﹣3(x﹣17.5)2+718.75,∵15≤x≤50,且x为整数,∴当x=17或18时,w最大=718(元).∴定价为17元或18元时,该汽车清洗店每天获利最大,最大获利是718元.27.(10分)【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD中,EF⊥GH,EF分别交AD、BC于点E、F,GH分别交AB、DC于点G、H,求证:=;【结论应用】(2)如图②,将矩形ABCD沿EF折叠,使得点B和点D重合,若AB=2,BC=3.求折痕EF的长;【拓展运用】(3)如图③,将矩形ABCD沿EF折叠.使得点D落在AB边上的点G处,点C落在点P处,得到四边形EFPG,若AB=2,BC=3,EF=,请求BP的长.【答案】见解析【解析】(1):如图①,过点A作AP∥EF,交BC于P,过点B作BQ∥GH,交CD于Q,BQ交AP于T.∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BGHQ都是平行四边形, ∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠BAT+∠ABT=90°.∵四边形ABCD是矩形,∴∠ABP=∠C=90°,AD=BC,∴∠ABT+∠CBQ=90°,∴∠BAP=∠CBQ,∴△ABP∽△BCQ,∴=,∴=.(2)如图②中,连接BD.∵四边形ABCD是矩形,∴∠C=90°,AB=CD=2,∴BD===,∵D,B关于EF对称,∴BD⊥EF,∴=,∴=,∴EF=.(3)如图③中,过点F作FH⊥EG于H,过点P作PJ⊥BF于J.∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=3,∠A=90°,∴=,∴DG=,∴AG===1,由翻折可知:ED=EG,设ED=EG=x,在Rt△AEG中,∵EG2=AE2+AG2,∴x2=AG2+AE2,∴x2=(3﹣x)2+1,∴x=,∴DE=EG=,∵FH⊥EG,∴∠FHG=∠HGP=∠GPF=90°,∴四边形HGPF是矩形,∴FH=PG=CD=2,∴EH===,∴GH=FP=CF=EG﹣EH=﹣=1,∵PF∥EG,EA∥FB,∴∠AEG=∠IPF,∵∠A=∠FJP=90°,∴△AEG∽△JFP,∴==,∴==,∴FJ=,PJ=,∴BJ=BC﹣FJ﹣CF=3﹣﹣1=,在Rt△BJP中,BP===.解法二:作PH垂直AB于H,证△AEG∽△HGP,求出GH,HP,然后在直角三角形BPH,勾股定理求出BP.28.(12分)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)直接写出抛物线的解析式为:________;(2)点D为第一象限内抛物线上的一动点,作DE⊥x轴于点E,交BC于点F,过点F作BC的垂线与抛物线的对称轴和y轴分别交于点G,H,设点D的横坐标为m.①求DF+HF的最大值;②连接EG,若∠GEH=45°,求m的值.【答案】见解析【解析】(1)将点A(﹣1,0),B(3,0)代入抛物线y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3;(2)①当x=0时,y=﹣x2+2x+3=3,∴点C(0,3),又∵B(3,0),∴直线BC的解析式为:y=﹣x+3,∵OB=OC=3,∴∠OBC=∠OCB=45°,作FK⊥y轴于点K,又∵FH⊥BC,∴∠KFH=∠KHF=45°,∴FH=KF=OE,∴DF+HF=DE﹣EF+OE=(﹣m2+2m+3)﹣(﹣m+3)+m=﹣m2+(3+)m,由题意有0<m<3,且0<﹣=<3,﹣1<0,∴当m=时,DF+HF取最大值,DF+HF的最大值为:﹣+(3+)×=;②作GM⊥y轴于点M,记直线FH与x轴交于点N,∵FK⊥y轴,DE⊥x轴,∠KFH=45°,∴∠EFH=∠ENF=45°,∴EF=EN,∵∠KHF=∠ONH=45°,∴OH=ON,∵y=﹣x2+2x+3的对称轴为直线x=1,∴MG=1,∵HG=MG=,∵∠GEH=45°,∴∠GEH=∠EFH,又∠EHF=∠GHE,∴△EHG∽△FHE,∴HE:HG=HF:HE, ∴HE2=HG•HF=×m=2m,在Rt△OEH中,OH=ON=|OE﹣EN|=|OE﹣EF|=|m﹣(﹣m+3)|=|2m﹣3|,OE=m,∴HE2=OE2+OH2=m2+(2m﹣3)2=5m2﹣12m+9,∴5m2﹣12m+9=2m, 解得:m=1或.。

2024年四川省成都市中考数学真题卷及答案解析

2024年四川省成都市中考数学真题卷及答案解析

2024年四川省成都市中考数学A 卷(共100分)第I 卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15- D. 152. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是( )A. B. C. D.3. 下列计算正确的是( )A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4--B. ()1,4-C. ()1,4D. ()1,4-5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 646. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB AD =B. AC BD ⊥C. AC BD =D.ACB ACD∠=∠7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩ D.142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C DE DF = D. 53BE EF =第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.10. 分式方程132x x=-解是____.11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______..的12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48的园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.21. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD中点,的连接BE .若BE BC =,2CD =,则BD =______.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.26.数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将的其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.2024年四川省成都市中考数学A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 如图所示的几何体是由5个大小相同的小立方块搭成,它的主视图是()A. B. C. D.【答案】A【解析】【分析】本题考查简单几何体的三视图,根据主视图是从正面看到的图形求解即可.【详解】解:该几何体的主视图为,故选:A.3. 下列计算正确的是()A. ()2233x x = B. 336x y xy +=C. ()222x y x y +=+ D. ()()2224x x x +-=-【答案】D【解析】【分析】本题主要考查了积的乘方运算,同类项的合并,完全平方公式以及平方差公式,根据积的乘方运算法则,同类项的合并法则以及完全平方公式以及平方差公式一一计算判断即可.【详解】解:A .()2239x x =,原计算错误,故该选项不符合题意;B .3x 和3y 不是同类项,不能合并,故该选项不符合题意;C .()2222x y x y xy +=++,原计算错误,故该选项不符合题意;D .()()2224x x x +-=-,原计算正确,故该选项符合题意;故选:D .4. 在平面直角坐标系xOy 中,点()1,4P -关于原点对称的点的坐标是( )A. ()1,4-- B. ()1,4- C. ()1,4 D. ()1,4-【答案】B【解析】【分析】本题考查了求关于原点对称的点的坐标.关于原点对称的两点,则其横、纵坐标互为相反数,由点关于原点对称的坐标特征即可求得对称点的坐标.【详解】解:点()1,4P -关于原点对称的点的坐标为()1,4-;故选:B .5. 为深入贯彻落实《中共中央、国务院关于学习运用“千村示范、万村整治”工程经验有力有效推进乡村全面振兴的意见》精神,某镇组织开展“村BA ”、村超、村晚等群众文化赛事活动,其中参赛的六个村得分分别为:55,64,51,50,61,55,则这组数据的中位数是( )A. 53B. 55C. 58D. 64【答案】B【解析】【分析】本题主要考查了中位数的定义,根据中位数的定义求解即可.【详解】解:参赛的六个村得分分别为:55,64,51,50,61,55,把这6个数从小到大排序:50,51,55,55,61,64,∴这组数据的中位数是:5555552+=,故选:B .6. 如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A AB AD = B. AC BD ⊥ C. AC BD = D. ACB ACD∠=∠【答案】C【解析】【分析】本题考查矩形的性质,根据矩形的性质逐项判断即可.【详解】解:∵四边形ABCD 是矩形,∴AB CD =,AC BD =,AD BC ∥,则ACB DAC ∠=∠,∴选项A 中AB AD =不一定正确,故不符合题意;选项B 中AC BD ⊥不一定正确,故不符合题意;选项C 中AC BD =一定正确,故符合题意;选项D 中ACB ACD ∠=∠不一定正确,故不符合题意,故选:C .7. 中国古代数学著作《九章算术》中记载了这样一个题目:今有共买琎,人出半,盈四;人出少半,不足三.问人数,琎价各几何?其大意是:今有人合伙买琎石,每人出12钱,会多出4钱;每人出13钱,又差了3钱.问人数,琎价各是多少?设人数为x ,琎价为y ,则可列方程组为( )A. 142133y x y x ⎧=+⎪⎪⎨⎪=+⎪⎩ B. 142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩ C. 142133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩D. .142133y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩【答案】B【解析】【分析】本题主要考查了列二元一次方程组,根据题意列出二元一次方程组即可.【详解】解:设人数为x ,琎价为y ,根据每人出12钱,会多出4钱可得出1y x 42=-,每人出13钱,又差了3钱.可得出133y x =+,则方程组为:142133y x y x ⎧=-⎪⎪⎨⎪=+⎪⎩,故选:B .8. 如图,在ABCD Y 中,按以下步骤作图:①以点B 为圆心,以适当长为半径作弧,分别交BA ,BC 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在ABC ∠内交于点O ;③作射线BO ,交AD 于点E ,交CD 延长线于点F .若3CD =,2DE =,下列结论错误的是( )A. ABE CBE∠=∠ B. 5BC =C. DE DF = D. 53BE EF =【答案】D【解析】【分析】本题考查角平分线的尺规作图、平行四边形的性质、等腰三角形的判定以及相似性质与判定的综合.先由作图得到BF 为ABC ∠的角平分,利用平行线证明AEB ABE ∠=∠,从而得到3AE AB CD ===,再利用平行四边形的性质得到325BC AD AE ED ==+=+=,再证明AEB DEF △∽△,分别求出32BE EF =,2DF =,则各选项可以判定.【详解】解:由作图可知,BF 为ABC ∠的角平分,∴ABE CBE ∠=∠,故A 正确;∵四边形ABCD 为平行四边形,∴,,AD BC AB CD AD BC == ,∵AD BC∥∴AEB CBE ∠=∠,∴AEB ABE ∠=∠,∴3AE AB CD ===,∴325BC AD AE ED ==+=+=,故B 正确;∵AB CD =,∴ABE F ∠=∠,∵AEB DEF ∠=∠,∴AEB DEF △∽△,∴BE AB AE EF DF ED==,∴332BE EF DF ==,∴32BE EF =,2DF =,故D 错误;∵2DE =,∴DE DF =,故C 正确,故选:D .第II 卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9. 若m ,n 为实数,且()240m +=,则()2m n +的值为______.【答案】1【解析】【分析】本题考查非负数的性质,根据平方式和算术平方数的非负数求得m 、n 值,进而代值求解即可.【详解】解:∵()240m ++=,∴40m +=,50n -=,解得4m =-,5n =,∴()()22451m n +=-+=,故答案为:1.10. 分式方程132x x=-的解是____.【答案】x=3【解析】【详解】试题分析:分式方程去分母转化为整式方程x=3(x ﹣2),求出整式方程的解得到x=3,经检验x=3是分式方程的解,即可得到分式方程的解.考点:解分式方程11. 如图,在扇形AOB 中,6OA =,120AOB ∠=︒,则 AB 的长为______.【答案】4π【解析】【分析】此题考查了弧长公式,把已知数据代入弧长公式计算即可.【详解】解:由题意得 AB 的长为π120π64π180180n r ⨯==,故答案为:4π12. 盒中有x 枚黑棋和y 枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x y的值为______.【答案】35【解析】【分析】本题考查简单的概率计算、比例性质,根据随机取出一枚棋子,它是黑棋的概率是38,可得38x x y =+,进而利用比例性质求解即可.【详解】解:∵随机取出一枚棋子,它是黑棋的概率是38,∴38x x y =+,则35x y =,故答案为:35.13. 如图,在平面直角坐标系xOy 中,已知()3,0A ,()0,2B ,过点B 作y 轴的垂线l ,P 为直线l 上一动点,连接PO ,PA ,则PO PA +的最小值为______.【答案】5【解析】【分析】本题考查轴对称—最短问题以及勾股定理和轴对称图形的性质.先取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,得到AC A C '=,A A l '⊥,再由轴对称图形的性质和两点之间线段最短,得到当,,O P A '三点共线时,PO PA +的最小值为A O ',再利用勾股定理求A O '即可.【详解】解:取点A 关于直线l 的对称点A ',连A O '交直线l 于点C ,连AC ,则可知AC A C '=,A A l '⊥,∴PO PA PO PA A O ''+=+≥,即当,,O P A '三点共线时,PO PA +的最小值为A O ',∵直线l 垂直于y 轴,∴A A x '⊥轴,∵()3,0A ,()0,2B ,∴3,4AO AA '==,∴在Rt A AO ' 中,5A O '===,故答案为:5三、解答题(本大题共5个小题,共48分)14. (1()02sin60π20242+︒---.(2)解不等式组:2311123x x x +≥-⎧⎪⎨--<⎪⎩①②【答案】(1)5;(2)29x -≤<【解析】【分析】本题考查实数的混合运算、解一元一次不等式组,熟练掌握相关运算法则并正确求解是解答的关键.(1)先计算算术平方根、特殊角的三角函数值、零指数幂、化简绝对值,然后加减运算即可;(2)先求得每个不等式的解集,再求得它们的公共部分即为不等式组的解集.【详解】解:(1()02sin6020242π︒--4212=+-+-5=+-5=;(2)解不等式①,得2x ≥-,解不等式②,得9x <,∴该不等式组的解集为29x -≤<.15. 2024年成都世界园艺博览会以“公园城市美好人居”为主题,秉持“绿色低碳、节约持续、共享包容”的理念,以园艺为媒介,向世界人民传递绿色发展理念和诗意栖居的美好生活场景.在主会场有多条游园线路,某单位准备组织全体员工前往参观,每位员工从其中四条线路(国风古韵观赏线、世界公园打卡线、亲子互动慢游线、园艺小清新线)中选择一条.现随机选取部分员工进行了“线路选择意愿”的摸底调查,并根据调查结果绘制成如下统计图表.游园线路人数国风古韵观赏线44世界公园打卡线x 亲子互动慢游线48园艺小清新线y根据图表信息,解答下列问题:(1)本次调查的员工共有______人,表中x 的值为______:(2)在扇形统计图中,求“国风古韵观赏线”对应的圆心角度数;(3)若该单位共有2200人,请你根据调查结果,估计选择“园艺小清新线”的员工人数.【答案】(1)160,40(2)99︒(3)385【解析】【分析】本题考查统计表和扇形统计图的关联、用样本估计总体,理解题意,能从统计图中获取有用信息 是解答的关键.(1)根据选择“亲子互动慢游线”人数及其所占的百分比可求得调查总人数,再根据选择“世界公园打卡线”对应的圆心角是90︒可求解x 值;(2)由360︒乘以选择“国风古韵观赏线”所占的百分比可得答案;(3)先求得选择“园艺小清新线”的人数,再由单位总人数乘以样本中选择“园艺小清新线”所占的比例求解即可.的【小问1详解】解:调查总人数为4830160÷%=(人),选择“世界公园打卡线”的人数为9016040360⨯=(人),故答案为:160,40;【小问2详解】解:“国风古韵观赏线”对应的圆心角度数为4436099160︒⨯=︒;【小问3详解】解:选择“园艺小清新线”的人数为16044404828---=(人),∴该单位选择“园艺小清新线”的员工人数为282200385160⨯=(人).16. 中国古代运用“土圭之法”判别四季.夏至时日影最短,冬至时日影最长,春分和秋分时日影长度等于夏至和冬至日影长度的平均数.某地学生运用此法进行实践探索,如图,在示意图中,产生日影的杆子AB 垂直于地面,AB 长8尺.在夏至时,杆子AB 在太阳光线AC 照射下产生的日影为BC ;在冬至时,杆子AB 在太阳光线AD 照射下产生的日影为BD .已知73.4ACB ∠=︒,26.6ADB ∠=︒,求春分和秋分时日影长度.(结果精确到0.1尺;参考数据:sin26.60.45︒≈,cos26.60.89︒≈,tan26.60.50︒≈,sin73.40.96︒≈,cos73.40.29︒≈,tan73.4 3.35︒≈)【答案】9.2尺【解析】【分析】本题主要考查解直角三角形和求平均数,利用正切分别求得BC 和BD ,结合题意利用平均数即可求得春分和秋分时日影长度.【详解】解:∵73.4ACB ∠=︒,杆子AB 垂直于地面,AB 长8尺.∴tan ∠=AB ACB BC ,即8 2.393.35BC ≈≈,∵26.6ADB ∠=︒,∴tan AB ADB BD ∠=,即8160.50BD ≈=,∵春分和秋分时日影长度等于夏至和冬至日影长度的平均数.∴春分和秋分时日影长度为2.39169.22+≈.答:春分和秋分时日影长度9.2尺.17. 如图,在Rt ABC △中,90C ∠=︒,D 为斜边AB 上一点,以BD 为直径作O ,交AC 于E ,F 两点,连接BE ,BF ,DF .(1)求证:BC DF BF CE ⋅=⋅;(2)若A CBF ∠=∠,tan BFC ∠=,AF =CF 的长和O 的直径.【答案】(1)见详解;(2.【解析】【分析】(1)先证明EBC DBF ∽,然后利用对应边成比例,即可证明;(2)利用EBC DBF ∽,知道EBC DBF ∠=∠,从而推出CBF EBA ∠=∠,结合A CBF ∠=∠,知道A EBA ∠=∠,推出AE BE =,接下来证明BFC ABC ∠=∠,那么有tan tan BFC ∠=∠,即CB AC CF BC==不妨设CF x =,代入求得CF 的长度,不妨设EF y =,在Rt CEB △和Rt CFB △中利用勾股定理求得EF 和BF 的长度,最后利用tan tan CEB FDB ∠=∠,求得DF 的长度,然后在利用勾股定理求得BD 的长度.【小问1详解】BD Q 是O 的直径90BFD C∴∠=︒=∠又CEB FDB∠∠=EBC DBF∴ ∽EC CBDF FB∴=BC DF BF CE⋅=⋅∴【小问2详解】由(1)可知,EBC DBF∽EBC DBF ∴∠=∠EBC FBE DBF FBE∴∠-∠=∠-∠CBF EBA∴∠=∠A CBF∠=∠ A EBA∴∠=∠AE BE∴=A CBF∠=∠ 9090A CBF∴︒-∠=︒-∠ABC CFB∴∠=∠tan BFC ∠=tan tan BFC ∠∴=∠CBACCF BC ∴==不妨设CF x =,那么CB =AF ==x ∴=CF ∴=5CB ===不妨设EF y =,那么AE AF EF y BE=-=-=在Rt CEB △中,CE EF CF y =+=+5CB =,BE y=-222(5)y y ∴+=-y ∴=EF ∴=在Rt CFB △中,CF =,5BC =BF ∴===CEB FDB∠∠= tan tan CEB FDB∴∠=∠CB BF CE DF∴==DF ∴=BD ∴===∴O 的直径是故答案为:CF =,O 直径是【点睛】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,三角形相似的判定与性质,勾股定理,解直角三角形,等腰三角形的性质,二次根式的化简,熟练掌握以上知识点是解题的关键.18. 如图,在平面直角坐标系xOy 中,直线y x m =-+与直线2y x =相交于点()2,A a ,与x 轴交于点(),0B b ,点C 在反比例函数()0k y k x=<图象上.(1)求a ,b ,m 的值;(2)若O ,A ,B ,C 为顶点的四边形为平行四边形,求点C 的坐标和k 的值;(3)过A ,C 两点的直线与x 轴负半轴交于点D ,点E 与点D 关于y 轴对称.若有且只有一点C ,使得ABD △与ABE 相似,求k 的值.【答案】(1)4a =,6m =,6b =(2)点C 的坐标为()4,4-或()4,4-,16k =- (3)1-【解析】【分析】(1)利用待定系数法求解即可;(2)设(),C t s ,根据平行四边形的性质,分当OA 为对角线时,当OB 为对角线时,当OC 为对角线时三种情况,分别利用中点坐标公式列方程组求解即可;(3)设点(),0D x ,则(),0E x -,0x <,利用相似三角形的性质得2AB BE BD =⋅,进而解方程得2x =-,则()2,0D -,利用待定系数法求得直线AC 的表达式为2y x =+,联立方程组得220x x k +-=,根据题意,方程220x x k +-=有且只有一个实数根,利用根的判别式求解即可.【小问1详解】解:由题意,将()2,A a 代入2y x =中,得224a =⨯=,则()2,4A ,将()2,4A 代入y x m =-+中,得42m =-+,则6m =,∴6y x =-+,将(),0B b 代入6y x =-+中,得06b =-+,则6b =;【小问2详解】解:设(),C t s ,由(1)知()2,4A ,()6,0B 若O ,A ,B ,C 为顶点的四边形为平行四边形,分以下情况:当OA 为对角线时,则026040t s +=+⎧⎨+=+⎩,解得44t s =-⎧⎨=⎩,∴()4,4C -,则4416k =-⨯=-;当OB 为对角线时,则062004ts +=+⎧⎨+=+⎩,解得44t s =⎧⎨=-⎩,∴()4,4C -,则4416k =-⨯=-;当OC 为对角线时,依题意,这种情况不存在,综上所述,满足条件的点C 的坐标为()4,4-或()4,4-,16k =-;【小问3详解】解:如图,设点(),0D x ,则(),0E x -,0x <,若ABD EBA △∽△,则AB BDBE AB=,即2AB BE BD =⋅,∴()()()()22264066x x -+-=+-,即24x =,解得2x =±,∵0x <,∴2x =-,则()2,0D -,设直线AC 的表达式为y px q =+,则2420p q p q +=⎧⎨-+=⎩,解得12p q =⎧⎨=⎩,∴直线AC 的表达式为2y x =+,联立方程组2y x ky x =+⎧⎪⎨=⎪⎩,得220x x k +-=,∵有且只有一点C ,∴方程220x x k +-=有且只有一个实数根,∴2402k +==∆,解得1k =-;由题意,ABD ABE ∽V V 不存在,故满足条件的k 值为1-.【点睛】本题考查一次函数与反比例函数的综合、反比例函数与几何的综合,涉及待定系数法、相似三角形的性质、平行四边形的性质、坐标与图形、一元二次方程根的判别式等知识,熟练掌握相关知识的联系与运用,利用分类讨论思想求解是解答的关键.B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19. 如图,ABC CDE △≌△,若35D ∠=︒,45ACB ∠=︒,则DCE ∠的度数为______.【答案】100︒##100度【解析】【分析】本题考查了三角形的内角和定理和全等三角形的性质,先利用全等三角形的性质,求出45CED ACB ∠=∠=︒,再利用三角形内角和求出DCE ∠的度数即可.【详解】解:由ABC CDE △≌△,35D ∠=︒,∴45CED ACB ∠=∠=︒,∵35D ∠=︒,∴1801803545100DCE D CED ∠=︒-∠-∠=︒-︒-︒=︒,故答案为:100︒20. 若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为______.【答案】7【解析】【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n -+=,5bm n a+=-=,从而得到252n n =-,再将原式利用完全平方公式展开,利用252n n =-替换2n 项,整理后得到m n 2++,再将5m n +=代入即可.【详解】解:∵m ,n 是一元二次方程2520x x -+=的两个实数根,∴2520n n -+=,5bm n a+=-=,则252n n =-∴()22m n +-244m n n =+-+5244m n n =+--+2m n =++52=+7=故答案为:721. 在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为______;若24n =,则k 的值为______.【答案】 ①. 9②. 144【解析】【分析】本题考查数字类规律探究,理解题意,能够从特殊到一般,得到当n 为偶数或奇数时的不同取法是解答的关键.先根据前几个n 值所对应k 值,找到变化规律求解即可.【详解】解:当2n =时,只有{}1,2一种取法,则1k =;当3n =时,有{}1,3和{}2,3两种取法,则2k =;当4n =时,有{}1,4,{}2,4,{}3,4,{}2,3四种取法,则243144k =+==;故当5n =时,有{}1,5,{}2,5,{}3,5,{}4,5,{}2,4,{}3,4六种取法,则426k =+=;当6n =时,有{}1,6,{}2,6,{}3,6,{}4,6,{}5,6,{}2,5,{}3,5,{}4,5,{}3,4九种取法,则2653194k =++==;依次类推,当n 为偶数时,()()2135314n k n n =-+-++++= ,故当24n =时,2242321195311444k =++++++== ,故答案为:9,144.22. 如图,在Rt ABC △中,90C ∠=︒,AD 是ABC 的一条角平分线,E 为AD 中点,连接BE .若BE BC =,2CD =,则BD =______.【解析】【分析】连接CE ,过E 作EF CD ⊥于F ,设BD x =,EF m =,根据直角三角形斜边上的中线性质和等腰三角形的性质证得112CF DF CD ===,EAC ECA =∠∠,ECD EDC BEC ∠=∠=∠,进而利用三角形的外角性质和三角形的中位线性质得到2CED CAE ∠=∠,22AC EF m ==,证明CBE CED ∽,利用相似三角形的性质和勾股定理得到232m x =+;根据角平分线的定义和相似三角形的判定与性质证明CAB FBE ∽得到()()2212m x x =++,进而得到关于x 的一元二次方程,进而求解即可.【详解】解:连接CE ,过E 作EFCD ⊥于F ,设BD x =,EF m =,∵90ACB ∠=︒,E 为AD 中点,∴CE AE DE ==,又2CD =,∴112CF DF CD ===,EAC ECA =∠∠,ECD EDC ∠=∠,∴2CED CAE ∠=∠,22AC EF m ==,∵BE BC =,∴BEC ECB ∠=∠,则BEC EDC ∠=∠,又BCE ECD ∠=∠,∴CBE CED ∽,∴CE CBCD CE=,2CBE CED CAE ∠=∠=∠,∴()22242CE CD CB x x =⋅=+=+,则222232m EF CE CF x ==-=+;∵AD 是ABC 的一条角平分线,∴2CAB CAE CBE ∠=∠=∠,又90ACB BFE ∠=∠=︒,∴CAB FBE ∽,∴AC BCBF EF =∴221m x x m+=+,则()()2212m x x =++,∴()()()23212x x x +=++,即240x x --=,解得x =,【点睛】本题考查了相似三角形的判定与性质、直角三角形的性质、等腰三角形的性质、三角形的中位线性质、三角形的外角性质、角平分线的定义以及解一元二次方程等知识,是一道填空压轴题,有一定的难度,熟练掌握三角形相关知识是解答的关键.23. 在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =-+-图象上三点.若101x <<,24x >,则1y ______2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是______.【答案】 ①.> ②. 112m -<<【解析】【分析】本题考查二次函数的性质、不等式的性质以及解不等式组,熟练掌握二次函数的性质是解答的关键.先求得二次函数的对称轴,再根据二次函数的性质求解即可.【详解】解:由()224123y x x x =-+-=--+得抛物线对称轴为直线2x =,开口向下,∵101x <<,24x >,∴1222x x -<-,∴12y y >;∵12m m m <+<+,11m x m <<+,212m x m +<<+,323m x m +<<+,∴123x x x <<, ∵存在132y y y <<,∴12x <,32x >,且()11,A x y 离对称轴最远,()22,B x y 离对称轴最近,∴132222x x x ->->-,即134x x +<,且234x x +>,∵132224m x x m +<+<+,232325m x x m +<+<+,∴224m +<且254m +>,解得112m -<<,故答案为:>;112m -<<.二、解答题(本大题共3个小题,共30分)24. 推进中国式现代化,必须坚持不懈夯实农业基础,推进乡村全面振兴.某合作社着力发展乡村水果网络销售,在水果收获的季节,该合作社用17500元从农户处购进A ,B 两种水果共1500kg 进行销售,其中A 种水果收购单价10元/kg ,B 种水果收购单价15元/kg .的(1)求A ,B 两种水果各购进多少千克;(2)已知A 种水果运输和仓储过程中质量损失4%,若合作社计划A 种水果至少要获得20%的利润,不计其他费用,求A 种水果的最低销售单价.【答案】(1)A 种水果购进1000千克,B 种水果购进500千克 (2)A 种水果的最低销售单价为12.5元/kg 【解析】【分析】本题主要考查一元二次方程的应用和一元一次不等式的应用,(1)设A 种水果购进x 千克, B 种水果购进y 千克,根据题意列出二元一次方程组求解即可.(2)根据题意列出关于利润和进价与售价的不等式求解即可.【小问1详解】解:设A 种水果购进x 千克, B 种水果购进y 千克,根据题意有:1500101517500x y x y +=⎧⎨+=⎩,解得:1000500x y =⎧⎨=⎩,∴A 种水果购进1000千克,B 种水果购进500千克【小问2详解】设A 种水果的销售单价为a 元/kg ,根据题意有:()()100014%120%100010a -≥+⨯⨯,解得12.5a ≥,故A 种水果的最低销售单价为12.5元/kg25. 如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.【答案】(1)4AB = (2)10tan 3ABD ∠=(3)抛物线L '与L 交于定点()3,0【解析】【分析】(1)根据题意可得2230ax ax a --=,整理得2230x x --=,即可知()()1,0,3,0,A B -则有4AB =;(2)由题意得抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,可求得2246ABD S n n =-++△,结合题意可得直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,即可求得21ACD S n =- ,进一步解得点720,39D ⎛⎫- ⎪⎝⎭,过D 作DH AB ⊥于点H ,则220,39BH DH ==,即可求得tan DHABD BH ∠=;(3)设()2,23,D n an an a --可求得直线AD 解析式为()()31y a n x =-+,过点D 作DM AB ⊥,可得21,23AM n DM an an a =+=-++,结合题意得1,EM n =+()2,23,A n an an a -++'()24,23,B n an an a '+-++设抛物线L '解析式为是()20y ax bx c a =++>,由于过点A ',B '可求得抛物线L '解析式为()22463y ax an a x an a =+--++,根据()22232463ax ax a ax an a x an a--=+--++解得3x =,即可判断抛物线L '与L 交于定点()3,0.【小问1详解】解:∵抛物线L :()2230y ax ax a a =-->与x 轴交于A ,B 两点,∴2230ax ax a --=,整理得2230x x --=,解得121,3,x x =-=∴()()1,0,3,0,A B -则()314AB =--=;【小问2详解】当1a =时,抛物线L :()222314y x x x =--=--,则()1,4,C -设()2,23,D n n n --()03n <<,则()221142324622ABD D S AB y n n n n =⋅=-⨯⨯--=-++ ,设直线AD 解析式为()1y k x =+,∵点D 在直线AD 上,∴()2231n n k n --=+,解得3k n =-,则直线AD 解析式为()()31y n x =-+,设直线AD 与抛物线对称轴交于点E ,则()1,26E n -,∴()()()2112641122ACD D A S CE x x n n n ⎡⎤=⋅-=⨯---⨯+=-⎣⎦ ,∵ACD 的面积与ABD △的面积相等,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fpg成都市2017年中考數學試題一、選擇題(本大題共10小題,每小題3分,共30分)1.《九章算術》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數若其意義相反,則分別叫做正數與負數,若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.如圖所示の幾何體是由4個大小相同の小立方體組成,其俯視圖是()A.B.C.D.3.總投資647億元の西域高鐵預計2017年11月竣工,屆時成都到西安只需3小時,上午遊武侯區,晚上看大雁塔將成為現實,用科學記數法表示647億元為()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.二次根式中,xの取值範圍是()A.x≥1 B.x>1 C.x≤1 D.x<15.下列圖示中,既是軸對稱圖形,又是中心對稱圖形の是()A.B.C.D.6.下列計算正確の是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.學習全等三角形時,數學興趣小組設計並組織了“生活中の全等”の比賽,全班同學の比賽結果統計如下表:得分(分)60708090100人數(人)7121083則得分の眾數和中位數分別為()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.如圖,四邊形ABCD和A′B′C′D′是以點O為位似中心の位似圖形,若OA:OA′=2:3,則四邊形ABCD與四邊形A′B′C′D′の面積比為()A.4:9 B.2:5 C.2:3 D.:9.已知x=3是分式方程﹣=2の解,那麼實數kの值為()A.﹣1 B.0 C.1 D.210.在平面直角坐標系xOy中,二次函數y=ax2+bx+cの圖象如圖所示,下列說法正確の是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0 C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空題(本大題共4小題,每小題4分,共16分)11.(﹣1)0=.12.在△ABC中,∠A:∠B:∠C=2:3:4,則∠Aの度數為.13.如圖,正比例函數y1=k1x和一次函數y2=k2x+bの圖象相交於點A(2,1),當x<2時,y1y2.(填“>”或“<”).14.如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD於點M,N;②分別以M,N為圓心,以大於MNの長為半徑作弧,兩弧相交於點P;③作AP 射線,交邊CD於點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為.三、解答題(本大題共6小題,共54分)15.(12分)(1)計算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式組:.Fpg 16.(6分)化簡求值:÷(1﹣),其中x=﹣1.17.(8分)隨著經濟の快速發展,環境問題越來越受到人們の關注,某校學生會為了解節能減排、垃圾分類知識の普及情況,隨機調查了部分學生,調查結果分為“非常瞭解”“瞭解”“瞭解較少”“不了解”四類,並將檢查結果繪製成下麵兩個統計圖.(1)本次調查の學生共有人,估計該校1200名學生中“不了解”の人數是人;(2)“非常瞭解”の4人有A1,A2兩名男生,B1,B2兩名女生,若從中隨機抽取兩人向全校做環保交流,請利用畫樹狀圖或列表の方法,求恰好抽到一男一女の概率.18.(8分)科技改變生活,手機導航極大方便了人們の出行,如圖,小明一家自駕到古鎮C遊玩,到達A地後,導航顯示車輛應沿北偏西60°方向行駛4千米至B地,再沿北偏東45°方向行駛一段距離到達古鎮C,小明發現古鎮C恰好在A地の正北方向,求B,C兩地の距離.19.(10分)如圖,在平面直角坐標系xOy中,已知正比例函數y=xの圖象與反比例函數y=の圖象交於A(a,﹣2),B兩點.(1)求反比例函數の運算式和點Bの座標;(2)P是第一象限內反比例函數圖象上一點,過點P作y軸の平行線,交直線AB於點C,連接PO,若△POCの面積為3,求點Pの座標.Fpg20.(12分)如圖,在△ABC 中,AB=AC ,以AB 為直徑作圓O ,分別交BC 於點D ,交CA の延長線於點E ,過點D 作DH ⊥AC 於點H ,連接DE 交線段OA 於點F .(1)求證:DH 是圓O の切線;(2)若A 為EH の中點,求の值;(3)若EA=EF=1,求圓O の半徑.四、填空題(本大題共5小題,每小題4分,共20分)21.如圖,數軸上點A表示の實數是.22.已知x 1,x 2是關於x の一元二次方程x 2﹣5x +a=0の兩個實數根,且x 12﹣x 22=10,則a= . 23.已知⊙O の兩條直徑AC ,BD 互相垂直,分別以AB ,BC ,CD ,DA 為直徑向外作半圓得到如圖所示の圖形,現隨機地向該圖形內擲一枚小針,記針尖落在陰影區域內の概率為P 1,針尖落在⊙O 內の概率為P 2,則= .24.在平面直角坐標系xOy 中,對於不在坐標軸上の任意一點P (x ,y ),我們把點P′(,)稱為點P の“倒影點”,直線y=﹣x +1上有兩點A ,B ,它們の倒影點A′,B′均在反比例函數y=の圖象上.若AB=2,則k= .25.如圖1,把一張正方形紙片對折得到長方形ABCD ,再沿∠ADC の平分線DE 折疊,如圖2,點C 落在點C′處,最後按圖3所示方式折疊,使點A 落在DE の中點A′處,折痕是FG ,若原正方形紙片の邊長為6cm ,則FG= cm .五、解答題(本大題共3小題,共30分)26.(8分)隨著地鐵和共用單車の發展,“地鐵+單車”已成為很多市民出行の選擇,李華從文化宮站出發,先乘坐地鐵,準備在離家較近のA ,B ,C ,D ,E 中の某一站出地鐵,再騎共用單車回家,設他出地鐵の站點與文化宮距離為x (單位:千米),乘坐地鐵の時間y 1(單位:分鐘)是關於x の一次函數,其關係如下表: 地鐵站A B C D E x (千米) 8 9 10 11.5 13 y 1(分鐘)1820222528(1)求y 1關於x の函數運算式;(2)李華騎單車の時間(單位:分鐘)也受x の影響,其關係可以用y 2=x 2﹣11x +78來描述,請問:李華應選擇在那一站出地鐵,才能使他從文化宮回到家所需の時間最短?並求出最短時間.Fpg27.(10分)問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC於點D,則D為BCの中點,∠BAD=∠BAC=60°,於是==;遷移應用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點在同一條直線上,連接BD.①求證:△ADB≌△AEC;②請直接寫出線段AD,BD,CD之間の等量關係式;拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內作射線BM,作點C關於BMの對稱點E,連接AE並延長交BM於點F,連接CE,CF.①證明△CEF是等邊三角形;②若AE=5,CE=2,求BFの長.28.(10分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交於A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸の正半軸上一點,將拋物線C繞點F旋轉180°,得到新の拋物線C′.(1)求拋物線Cの函數運算式;(2)若拋物線C′與拋物線C在y軸の右側有兩個不同の公共點,求mの取值範圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸の距離相等,點P在拋物線C′上の對應點P′,設M是C上の動點,N是C′上の動點,試探究四邊形PMP′N能否成為正方形?若能,求出m の值;若不能,請說明理由.Fpg2017年成都中考數學參考答案與試題解析1.B.2.C.3.C.4.A5.D.6.B.7.C.8.A.9.D10.B.二、11.1.12.40°.13.<.14.15.三、15.解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化簡為2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化簡為2x≤1﹣3,則x≤﹣1.不等式の解集是﹣4<x≤﹣1.16.解:÷(1﹣)=•=,∵x=﹣1,∴原式==.17.解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案為:50,360;(2)畫樹狀圖,共有12根可能の結果,恰好抽到一男一女の結果有8個,∴P(恰好抽到一男一女の)==.18.解:過B作BD⊥AC於點D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C兩地の距離是2千米.19.解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函數の運算式為y=,∵點B與點A關於原點對稱,∴B(4,2);(2)如圖所示,過P作PE⊥x軸於E,交AB於C,設P(m,),則C(m,m),∵△POCの面積為3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).20.證明:(1)連接OD,如圖1,∵OB=OD,∴△ODB是等腰三角形,Fpg∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圓Oの切線;(2)如圖2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且點A是EH中點,設AE=x,EC=4x,則AC=3x,連接AD,則在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BCの中點,∴OD是△ABCの中位線,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如圖2,設⊙Oの半徑為r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,則∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),綜上所述,⊙Oの半徑為.Fpg四、21..22..23..24.解:設點A(a,﹣a+1),B(b,﹣b+1)(a<b),則A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵點A′,B′均在反比例函數y=の圖象上,∴,解得:k=﹣.故答案為:﹣.25.解:作GM⊥AC′於M,A′N⊥AD於N,AA′交EC′於K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1.5cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案為.五、26.解:(1)設y1=kx+b,將(8,18),(9,20),代入得:,解得:,故y1關於xの函數運算式為:y1=2x+2;(2)設李華從文化宮回到家所需の時間為y,則y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴當x=9時,y有最小值,y min==39.5,答:李華應選擇在B站出地鐵,才能使他從文化宮回到家所需の時間最短,最短時間為39.5分鐘.27.遷移應用:①證明:如圖②∵∠BAC=∠ADE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:結論:CD=AD+BD.理由:如圖2﹣1中,作AH⊥CD於H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,Fpg∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①證明:如圖3中,作BH⊥AE於H,連接BE.∵四邊形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等邊三角形,∴BA=BD=BC,∵E、C關於BM對稱,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四點共圓,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等邊三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BHF=30°,∴=cos30°,∴BF==3.28.解:(1)由題意拋物線の頂點C(0,4),A(2,0),設拋物線の解析式為y=ax2+4,把A(2,0)代入可得a=﹣,∴拋物線Cの函數運算式為y=﹣x2+4.(2)由題意拋物線C′の頂點座標為(2m,﹣4),設拋物線C′の解析式為y=(x﹣m)2﹣4,由,消去y得到x2﹣2mx+2m2﹣8=0,由題意,拋物線C′與拋物線C在y軸の右側有兩個不同の公共點,則有,解得2<m<2,∴滿足條件のmの取值範圍為2<m<2.(3)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸於E,MH⊥x軸於H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在y=﹣x2+4上,∴m﹣2=﹣(m+2)2+4,解得m=﹣3或﹣﹣3(捨棄),∴m=﹣3時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),Fpg把M(m﹣2,2﹣m)代入y=﹣x2+4中,2﹣m=﹣(m﹣2)2+4,解得m=6或0(捨棄),∴m=6時,四邊形PMP′N是正方形.。

相关文档
最新文档