初中三角函数练习题及答案
初三数学三角函数(含答案)

初中数学三角函数1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边c 的平方。
a 2b 2c 24、任意锐角的正切值等于它的余角的余切值; 任意锐角的余切值等于它的余角的正切值。
tan A cot B cot A tan Bcot-1 ~3~6、 正弦、余弦的增减性:当0°w < 90°时,sin 随 的增大而增大,cos 随 的增大而减小7、 正切、余切的增减性:当0° < <90°时,tan 随 的增大而增大,cot 随 的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)一所有未知的 边和角。
依据:①边的关系: a 2b 2c 2;②角的关系:A+B=90 °;③边角关系:三角函数的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; 俯角:视线在水平线下方的角(2)坡面的铅直高度 h 和水平宽度I 的比叫做坡度(坡比)。
用字母i 表示,即i y 。
坡度一 般写成1: m 的形式,如i 1:5等。
把坡面与水平面的夹角记作 (叫做坡角),那么h + i tan 。
l3、 从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图 3, OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、 指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30° (东北方向), 南 偏东45° (东南方向),南偏西60° (西南方向), 北偏西60° (西北方向)。
铅垂线*视线 ‘ 仰角水平线俯角1*视线初三数学三角函数综合试题一、填空题: 1、在 Rt △ ABC 中/C = 90°, a = 2, b = 3,则 cosA =_, sinB =_ , tanB = ___ 2、直角三角形 3、已知tan ABC 的面积为24cm 2,直角边AB 为6cm , / A 是锐角,则sinA = =—, 是锐角,贝U sin 12 + ) + cos 2(40 ° 4、 cos 2(50° — _______ ? 5、 如图1,机器人从A 点,沿着西南方向,行了个4,:2单位,至U 达 60°的方向上,贝U 原来 )—tan(30)tan(60 ° + 到原点O 在它的南偏东 保留根号).A 的坐标为B 点后观察 _ (结果 NMNC 0(2)10cm 周长为36cm 则一底角的正切值为_、3的山坡走了 50米,则他离地面 米高。
初三数学三角函数(含答案)

则电线杆的高度为 ( A.9 米 B.28 米
)
C. 7 3米
D. 14 2 3 米
19、如图 6,两建筑物的水平距离为 am,从 A 点测得 D 点的俯角为 a,测得 C 点的
俯角为β,则较低建筑物 CD 的高为 ( )
A.a m
B.(a·tanα)m
C. a m tan
D.a(tanα-tanβ)m
24、已知 Rt△ABC 的斜边 AB 的长为 10cm , sinA、sinB 是方程 m(x2-2x)+5(x2+x)+12=0 的两根。 (1)求 m 的值 (2)求 Rt△ABC 的内切圆的面积
25、如图,△ABC 是等腰三角形,∠ACB=90°,过 BC 的中点 D 作 DE⊥AB,垂足为 E,连结 CE,求 sin∠ACE 的值.
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的 边和角。
依据:①边的关系: a2 b2 c2 ;②角的关系:A+B=90°;③边角关系:三角函
数的定义。(注意:尽量避免使用中间数据和除法)
2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
A.(cosα,1)
B.(1,sinα) C.(sinα,cosα)
D.(cosα,sinα)
14、如图 4,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线 MN 交 AC 于 D,
连结 BD,若 cos∠BDC= 3 ,则 BC 的长是(
5
A、4cm
B、6cm C、8cm
) D、10cm
tan A cotB cot A tanB tan A 1 (倒数)
初中数学三角函数基础练习含答案

三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。
初中三角函数练习题及答案资料

三角函数练习1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(2,12)B .(-2,12)C .(-2,-12)D .(-12,-32) 9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)填空1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.图145︒30︒BAD C春天里教育6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈第6题图xO Ay B北甲北乙第5题图αA C B第10题图A 40°52mCD第9题图 B43第4题图1.41,3≈1.73) 三、认真答一答1,计算:s i n c o s c o t t a n t a n 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(c o s s i n )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
初中三角函数练习试题和答案解析

围内是受这次台风影响的区域。
问A城是否会受到这次台风的影响?为什么?
若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?
学习指导参考
WORD格式整理版
0.7346如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平
以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果
受影响,会受影响几分钟?
N
PAQ
M
.
15、如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,
看条幅顶端B,测的仰角为30,再往条幅方向前行20米到达点E处,看到
条幅顶端B,测的仰角为60,求宣传条幅BC的长,(小明的身高不计,结
0
6、在Rt△ABC中,∠C=90
,则下列式子成立的是()
A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB
7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()
2223
A.sinB=
3B.cosB=3C.tanB=3D.tanB=2
(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.
B
20某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台
图①图②
C
高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和
BC(杆子的底端分别为D,C),且∠DAB=66. 5°.
7060943270603322
分析:(1)由图可知ABO是直角三角形,于是由勾股定理可求。
三角函数试题及答案初中

三角函数试题及答案初中一、选择题(每题3分,共30分)1. 若sinα=1/2,则α的度数是()A. 30°B. 60°C. 90°D. 120°2. cos30°的值是()A. 1/2B. √3/2C. √2/2D. 13. 已知tan45°=1,则sin45°的值是()A. 1/√2B. √2/2C. √2D. 14. 如果sinβ=3/5,且β为锐角,则cosβ的值是()A. 4/5B. -4/5C. 3/5D. -3/55. 根据三角函数的定义,下列哪个选项是错误的()A. sin0°=0B. cos90°=0C. tan60°=√3D. sin180°=-16. 已知sinA=1/2,那么cos2A的值是()A. 1/4B. 1/2C. 3/4D. 07. 在直角三角形中,如果一个锐角的正弦值是1/3,那么它的余弦值是()A. 2√2/3B. √2/3C. √6/3D. 3√2/38. 根据三角函数的周期性,sin(360°+α)等于()A. sinαB. -sinαC. co sαD. -cosα9. 一个角的正切值是-√3,那么这个角的度数是()A. 60°B. 120°C. 240°D. 300°10. 根据三角函数的和角公式,sin(α+β)=sinαcosβ+cosαsinβ,那么cos(α+β)的值是()A. cosαcosβ-sinαsinβB. cosαcosβ+sinαsinβC. sinαcosβ-cosαsinβD. -cosαcosβ-sinαsinβ二、填空题(每题4分,共20分)1. sin60°的值是______。
2. 一个角的余弦值是-1/2,那么这个角的正弦值是______。
3. 已知tanA=2,则sinA的值是______。
初中三角函数练习题及答案

初中三角函数练习题及答案初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=23 B.cosB=23 C.tanB=23D .tanB=3 28.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.(32,12) B.(-32,12) C.(-32,-12)D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()(A)350m (B)100 m(C)150m (D)3100m11、如图1,在高楼前D点测得楼顶的仰角为30︒,向高楼前进60米到C点,又测得仰角为45︒,则该高楼的高度大约为()A.82米B.163米C.52米D.70米图145︒30︒BA D C12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=62-,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第6题x O AyB 北甲北乙第5题第46.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•2≈1.413 1.73)三、认真答一答αA CB第10A4052CD第9B431,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
初中数学三角函数习题有答案

一、计算题1、计算:.2、计算:3、计算:+() - ;4、计算:sin600cos300+5、小明的家在某公寓楼AD内.他家的前面新建了一座大厦BC.小明想知道大厦的高度.但由于施工原因.无法测出公寓底部A与大厦底部C的直线距离.于是小明在他家的楼底A处测得大厦顶部B的仰角为.爬上楼顶D处测得大厦的顶部B的仰角为.已知公寓楼AD的高为60米.请你帮助小明计算出大厦的高度BC。
6、(1)计算:;(2)已知∶∶=2∶3∶4.求的值.二、简答题7、先化简.再求值:.其中(tan45°-cos30°)8、已知.凸4n+2边形A1A2…A4n+2(n是非零自然数)各内角都是30°的整数倍,•又关于x的方程均有实根.求这凸4n+2边形各内角的度数.9、已知:sinα是关于x的一元二次方程的一个根.请计算代数式:tan2α-sinα+2cosα的值10、已知是锐角.且.计算11、如图.△A BC和△CDE均为等腰直角三角形.点B.C.D在一条直线上.点M是AE的中点.BC=3.CD=1.(1)求证tan∠AEC=;(2)请探究BM与DM的关系.并给出证明.12、先化简再求值:.其中a=tan60°13、观察与思考:阅读下列材料.并解决后面的问题.在锐角△ABC中.∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图).则sinB=.sinC=.即AD=c sin B.AD=bsinC.于是csinB=bsinC.即.同理有:..所以即:在一个三角形中.各边和它所对角的正弦的比相等.在锐角三角形中.若已知三个元素(至少有一条边).运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料.完成下列各题.(1)如图.△ABC中.∠B=450.∠C=750.BC=60.则∠A= ;AC= ;(2)如图.一货轮在C处测得灯塔A在货轮的北偏西30°的方向上.随后货轮以60海里/时的速度按北偏东30°的方向航行.半小时后到达B处.此时又测得灯塔A在货轮的北偏西75°的方向上(如图).求此时货轮距灯塔A的距离AB.14、开放探索题:(1)如图.锐角的正弦值和余弦值都随着锐角的确定而确定、变化而变化. 试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律.试比较18°.34°.50°.62°.88°.这些锐角的正弦值和余弦值的大小.(3)比较大小(在空格处填“>”、“<”或“=”)若.则______;若.则______;若>45°.则______.(4)利用互为余角的两个角的正弦和余弦的关系.试比较下列正弦值和余弦值的大小:Sin10°、cos30°、sin50°、cos70°.15、学科内知识综合题:已知∠A是锐角.且tanA、cotA是关于x的一元二次方程=0的两个实数根.(1)求k的值;(2)问∠A能否等于45°?请说明你的理由.16、学习过三角函数.我们知道在直角三角形中.一个锐角的大小与两条边长的比值相互唯一确定.因此边长与角的大小之间可以相互转化.类似的.可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图.在△ABC中.AB=AC.顶角A的正对记作sadA.这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义.解下列问题:(1)sad的值为()A. B. 1 C. D. 2(2)对于.∠A的正对值sad A的取值范围是 .(3)已知.其中为锐角.试求sad的值.17、已知:如图.在△ABC中....求:(1) △ABC的面积; (2) sinA的值.18、如图.在Rt△ABC中.BC、AC、AB三边的长分别为a、b、c.则sinA=. cosA=.tanA=.我们不难发现:sin260o+cos260o=1.…试探求sinA、cosA、tanA之间存在的一般关系.并说明理由.三、填空题19、在中.三边之比为.则=20、如图.在平面直角坐标系O中.已知点A(3.3)和点B(7.0).则sin∠ABO的值等于 .21、“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4.大正方形的面积为100.直角三角形中较小的锐角为α.则tanα的值等于___________22、已知为锐角.若.=;若.则;23、已知Rt△中,若cos,则四、选择题24、已知在RT△ABC中.∠C=900.∠A、∠B、∠C的对边分别为a、b、c.则下列关系式错误的是(▲)A、a=btanAB、b=ccosAC、a=csinAD、c=25、直线y=2x与x轴正半轴的夹角为.那么下列结论正确的是()A. tan=2B. tan=C. sin=2D. cos=226、将两副三角板如下图摆放在一起.连结.则的余切值为( )A.B.C.2 D.327、关于的二次函数+.其中为锐角.则:①当为30°时.函数有最小值-;②函数图象与坐标轴必有三个交点.并且当为45°时.连结这三个交点所围成的三角形面积小于1;③当<60°时.函数在x >1时.y随x的增大而增大;④无论锐角怎么变化.函数图象必过定点。
初中数学三角函数巩固练习含答案

三角函数巩固练习一.选择题(共16小题)1.如图,港口A在观测站O的正东方向,某船从港口A出发,沿北偏东15°方向航行15km 到达B处,此时从观测站O处测得该船位于北偏东45°的方向,则观测站O距港口A 的距离为()A.km B.15km C.km D.15km2.在△ABC中,∠C=90°,AC=1,BC=2,则cos A的值是()A.B.C.D.3.如图,从地面B处测得热气球A的仰角为45°,从地面C处测得热气球A的仰角为30°,若BC为240米则热气球A的高度为()A.120米B.120(﹣1)米C.240米D.120(+1)米4.临沂高铁即将开通,这将极大方便市民的出行.如图,在距离铁轨200米处的B处,观察由东向西的动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上,10秒钟后,动车车头到达C处,恰好位于B处西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200D.3005.如图,点P(x,y)(x>0,y>0)在半径为1的圆上,则cosα=()A.x B.y C.D.6.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m.在点B,C分别测得气球A的仰角∠ABD=45°,∠ACD=60°.则气球A离地面的高度()A.(30﹣10)米B.20米C.(30+10)米D.40米7.如图,一辆小车沿着坡度为i=1:的斜坡向上行驶了50米,则此时该小车离水平面的垂直高度为()A.25米B.25米C.30米D.35米8.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米9.△ABC在正方形网格中的位置如图所示,则cosα的值是()A.B.C.D.10.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD为100m,点A、D、B在同一直线上,CD⊥AB,则A、B两点的距离是()A.200m B.200m C.m D.11.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90m,那么该建筑物的高度BC约为()A.100m B.120m C.100m D.120m12.如图,河流的两岸PQ,MN互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得∠DAN=45°,然后沿河岸走了130米到达B处,测得∠CBN=60°.则河流的宽度CE为()A.80B.40(3﹣)C.40(3+)D.4013.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为()米.A.750B.375C.375D.75014.朝天门,既是重庆城的起源地,也是“未来之城”来福士广场的停泊之地,广场上八幢塔楼临水北向,错落有致,宛若巨轮扬帆起航,成为我市新的地标性建筑﹣﹣“朝天扬帆”,来福士广场T3N塔楼核芯筒于2017年12月11日完成结构封顶,高度刷新了重庆的天际线,小明为了测量T3N的高度,他从塔楼底部B出发,沿广场前进185米至点C,继而沿坡度为i=1:2.4的斜坡向下走65米到达码头D,然后在浮桥上继续前行100米至趸船E,在E处小明操作无人勘测机,当无人勘测机飞行之点E的正上方点F时,测得码头D的俯角为58°.楼顶A的仰角为30°,点A、B、C、D、E、F、O在同一平面内,则T3N塔楼AB的高度约为()(结果精确到1米,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,≈1.73)A.319米B.335米C.342米D.356米15.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置测角仪测一得楼房CD顶部点CD的仰角为45°,向前走20米到达A1处,测得点D的仰角为67.5°.已知测角仪AB的高度为1米,则楼房CD的高度为()A.()米B.()米C.()米D.()米16.在Rt△ABC中,把各边都缩小到,那么sin A的值()A.都缩小B.都不变C.都扩大5倍D.无法确定二.填空题(共4小题)17.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值=______,tan∠APD的值=______.18.如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为______.19.如图所示是小明家房子的侧面图,屋面两侧的斜坡AB=AC=6米,屋顶∠BAC=150°,计划把图中△ABC(阴影部分)涂上墙漆,若墙漆的造价每平方米为100元,则这部分墙漆的造价共需______元.20.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cos B=______.三.解答题(共7小题)21.小明学校门前有座山,山上有一电线杆PQ,他很想知道电线杆PQ的高度.于是,有一天,小明和他的同学小亮带着测角器和皮尺来到山下进行测量,测量方案如下:如图,首先,小明站在地面上的点A处,测得电线杆顶端点P的仰角是45°;然后小明向前走6米到达点B处,测得电线杆顶端点P和电线杆底端点Q的仰角分则是60°和30°,设小明的眼睛到地面的距离为1.6米,请根据以上测量的数据,计算电线杆PQ的高度(结果精确到1米,参考数据=1.7,=1.4).22.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,AB:BD=.(1)求tan∠DAC的值;(2)若BD=4,求S△ABC.23.我国海域辽阔,渔业资源丰富,如图所示.现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上,在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向海里处,则海岛A,C之间的距离为多少海里?24.如图是某路灯在铅锤面内的示意图,灯柱AC的高为15.25米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为22米,从D、E两处测得路灯B的仰角分别为α和β,且tanα=8,tanβ=,求灯杆AB的长度.25.如图,在Rt△ABC中,∠C=90°,点D在边BC上,AD=BD=5,sin∠ADC=,求tan∠ABC的值.26.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求(1)∠C的度数.(2)A,C两港之间的距离为多少km.27.已知:如图,在△ABC中,AB=AC=5,BC=8,D是边AB上一点,且tan∠DCB=.(1)试求cos B的值;(2)试求△BCD的面积.三角函数巩固练习参考答案与试题解析一.选择题(共16小题)1.解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∠B=180°﹣45°﹣90°﹣15°=30°,∴AD=AB•sin30°=15×=km,∴OA=AD=km.即观测站O距港口A的距离为km.故选:A.2.解:在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB===,∴cos A===,故选:C.3.解:如图所示,过点A作AD⊥BC于点D,由题意知,∠B=45°,∠C=30°,BC=240米,设AD=x米,则BD=AD=x米,CD===x米,由BC=BD+CD可得x+x=240,解得:x=120(﹣1),即热气球的高度为120(﹣1)米,故选:B.4.解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选:A.5.解:如图,过点P作PQ⊥x轴于点Q,则OQ=x、PQ=y,OP=1,∴cosα==x,故选:A.6.解:作AE⊥BD于E,在Rt△ACE中,CE==AE,∵∠ABE=45°,∴BE=AE,由题意得BE﹣CE=20,即AE﹣AE=20,解得AE=30+10.答:气球A离地面的高度约为(30+10)m.故选:C.7.解:设此时该小车离水平面的垂直高度为x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=502.解得x=25.即此时该小车离水平面的垂直高度为25米.故选:A.8.解:作DE⊥AB于E,作DF⊥BC于F,∵CD的坡度为i=1:2.4,CD=52米,∴=1:2.4,∴=52,∴DF=20(米);∴BE=DF=20(米),∵∠BDE=45°,∴DE=BE=40m,在Rt△ADE中,∠ADE=37°,∴AE=tan37°•20=15(米)∴AB=AE+BE=35(米).故选:B.9.解:如图所示:∵AD=3,CD=4,∴AC=5∴cosα==.故选:C.10.解:∵从热气球C处测得地面A、B两点的俯角分别为30°、45°,∴∠BCD=90°﹣45°=45°,∠ACD=90°﹣30°=60°,∵CD⊥AB,CD=100m,∴△BCD是等腰直角三角形,∴BD=CD=100m,在Rt△ACD中,∵CD=100m,∠ACD=60°,∴AD=CD•tan60°=100×=100m,∴AB=AD+BD=100+100=100(+1)m.故选:D.11.解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120(m),故选:D.12.解:过点C作CF∥DA交AB于点F.∵MN∥PQ,CF∥DA,∴四边形AFCD是平行四边形.∴AF=CD=50,∠CFB=∠DAN=45°,∴FE=CE,设BE=x,∵∠CBN=60°,∴EC=x,∵FB+BE=EF,∴130﹣50+x=x,解得:x=40(+1),∴CE=x=40(3+),故选:C.13.解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故选:A.14.解:如图,作FG⊥AB于点G,CH⊥DO于点H,由i==可设CH=x、DH=2.4x,∵CD2=CH2+DH2,且CD=65,∴652=x2+(2.4x)2,解得:x=25,则BO=CH=25,DH=2.4x=60,∴FG=EO=ED+DH+OH=100+60+185=345,则AG=FG tan∠AFG=345×=115,又∵GO=EF=ED×tan∠FDE=100×tan58°≈100×1.60=160.∴AB=AG+OG﹣OB=115+160﹣25≈198.95+135≈335(米)故选:B.15.解:过B作BF⊥CD于F,作B′E⊥BD,∵∠BDB'=∠B'DC=22.5°,∴EB'=B'F,在Rt△BEE′中,∵∠BEB′=45°,BB′=20米,∴EB′=B′F=10(米),∴BF=BB′+B′F=(20+10)(米)∴DF=(20+10)(米)∴DC=DF+FC=20+10+1=(21+10)米故选:B.16.解:根据锐角三角函数的定义,知若各边都缩小到,则∠A的大小没有变化,所以sin A的值不变.故选:B.二.填空题(共4小题)17.解:∵四边形BCED是正方形,∴DB∥AC,∴△DBP∽△CAP,∴==3,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2,故答案为:3,2.18.解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,故答案为.19.解:如图,过点B作BD垂直于CA延长线于点D,∵∠BAC=150°,∴∠BAD=30°.∴BD=AB•sin30°=AB=3米.∴S阴影=AC•BD==9(平方米)则造价为:9×100=900(元)故答案是:900.20.解:由勾股定理可知:BC==,∴cos B==,故答案为:三.解答题(共7小题)21.解:设QH=x米,由题意得,∠PDH=60°,∠QDH=30°,∴∠DPH=30°,在Rt△QDH中,tan∠QDH=,则DH===x,在Rt△PDH中,tan∠PDH=,则PH==3x,∵∠PCH=45°,∴CH=PH,即6+x=3x,解得,x=3+,则PQ=3x﹣x=2x=6+2≈9,答:电线杆PQ的高度约为9米.22.解:(1)过D作DE⊥AB于E,∴∠BED=∠C=90°,∵AD是∠BAC的平分线,∴DE=DC,∵∠B=∠B,∴△BDE∽△BAC,∴=,∵AB:BD=,∴tan∠DAC==;(2)∵tan∠DAC=,∴∠DAC=30°,∴∠ADC=60°,∠BAD=∠CAD=30°,∴∠B=30°,∴∠ABD=∠DAB,∴AD=BD=4,∴CD=AD=2,AC=AD=2,∴BC=6,∴S△ABC=AC•BC=6×=.23.解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=28(1+),解得,x=28,答:A,C之间的距离为28海里.24.解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC =15.25.由题意得∠BDE=α,tan∠β=.设BF=4x,则EF=5x在Rt△BDF中,∵tan∠BDF==8,∴DF==,∵DE=22,∴x+5x=22.∴x=4.∴BF=16,∴BG=BF﹣GF=16﹣15.25=0.75,∵∠BAC=120°,∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.∴AB=2BG=1.5,答:灯杆AB的长度为1.5米25.解:在Rt△ADC中,sin∠ADC==,∴=,∴AC=4,CD===3,∴BC=CD+DB=3+5=8,在Rt△ABC中,tan∠ABC===.26.解:(1)由题意得:∠ACB=20°+40°=60°;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,如图所示:∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30,∴AE=BE=AB=30,在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===10,∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km.27.解:(1)作AE⊥BC于E,如图,∵AB=AC,∴BE=CE=BC=×8=4,在Rt△ABC中,cos B==;(2)作DF⊥BC于F,如图,在Rt△CDF中,tan∠DCF==,设DF=3x,则CF=5x,在Rt△ABE中,AE==3,∴tan B==,在Rt△BDF中,tan B==,而DF=3x,∴BF=4x,∴BC=BF+CF=4x+5x=9x,即9x=8,解得x=,∴DF=3x=,∴S△BCD=×DF×BC=××8=.。
初中数学三角函数专题练习答案

初中数学三角函数专题练习答案在初中数学的学习中,三角函数是一个重要且具有一定难度的知识点。
为了帮助同学们更好地掌握这部分内容,我们进行了一系列的专题练习。
下面将为大家详细呈现这些练习的答案及解析。
一、选择题1、在直角三角形中,若一个锐角为 30°,斜边为 2,则直角边的长度为()A 1B √3C 2√3D √3/2答案:B解析:在直角三角形中,30°角所对的直角边等于斜边的一半。
已知斜边为 2,所以 30°角所对的直角边为 1。
根据勾股定理,另一条直角边的长度为√(2² 1²) =√3 。
2、已知 sinA = 1/2 ,且∠A 为锐角,则∠A 的度数为()A 30°B 45°C 60°D 90°答案:A解析:因为 sin30°= 1/2 ,且∠A 为锐角,所以∠A = 30°。
3、若tanα =√3 ,则α的度数为()A 30°B 45°C 60°D 90°答案:C解析:因为 tan60°=√3 ,所以α = 60°。
二、填空题1、计算:sin45°=____答案:√2/2解析:sin45°的值是固定的,为√2/2 。
2、已知 cosA = 1/2 ,且 0°<∠A < 90°,则∠A =____答案:60°解析:因为 cos60°= 1/2 ,且 0°<∠A < 90°,所以∠A = 60°。
3、若tanθ = 1,则θ =____答案:45°解析:因为 tan45°= 1 ,所以θ = 45°。
三、解答题1、已知在 Rt△ABC 中,∠C = 90°,∠A = 60°,AB = 4,求AC 和 BC 的长度。
初中三角函数练习试题和答案解析

C
D
C
E
EH学习指导参考
B
F D
WORD格式整理版
0.7344九年级( 1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD 3m,
标杆与旗杆的水平距离BD 15m,人的眼睛与地面的高度EF 1。6m,人与标杆CD的
水平距离DF 2m,求旗杆AB的高度.
0.7345如图3,沿AC方向开山修路,为了加快施工速度,要在小山的另一边同时施工。从
(1)火箭到达B点时距离发射点有多远(精确到0.01km)?
(2)火箭从A点到B点的平均速度是多少(精确到0.1km/s )?
19、经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.
如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A
点开始沿岸边向正东方向前进100米到达点C处,测得ACB 68.
tan 40 ≈ 0.8391,3 ≈ 1。732.
P
北
Q
C
30
B
40
A
18、如图10,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷
学习指导参考
B
A
WORD格式整理版
达站测得AC的距离是6km,仰角是43.1s后,火箭到达B点,此时测得BC的距离是
6.13km,仰角为45。54,解答下列问题:
7.已知Rt△ABC中,∠ C=90° ,AC=2,BC=3,那么下列各式中,正确的是()
2 2 2 3
A.sinB=
3B.cosB=3C.tanB=3D.tanB=2
8.点( -sin60 °,cos60 °)关于y轴对称的点的坐标是()
初中三角函数练习题及答案

初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在△中,∠900,4,54,则( )A 、3B 、4C 、5D 、6 3、若∠A 是锐角,且31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、5、在△中,∠A :∠B :∠1:1:2,则a :b :( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在△中,∠900,则下列式子成立的是( ) A 、 B 、 C 、 D 、7.已知△中,∠90°,2,3,那么下列各式中,正确的是( )A .23B .23C .23D .328.点(60°,60°)关于y 轴对称的点的坐标是( ) A .(,12) B .(-,12) C .(-,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米 10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )(C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米图112、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里(二)细心填一填1.在△中,∠90°,5,3,则. 2,3,则.3.在△中,2,∠30°,则∠的度数是.4.如图,如果△绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且2,那么'的长为. (不取近似值. 以下数据供解题使用:)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西度.第6题图第5题图第4题6.如图,机器人从A点,沿着西南方向,行了个4单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A 的坐标为结果保留根号).7.求值:260°260°.90,13,12,那么tan B=.8.在直角三角形中,∠09.根据图中所给的数据,求得避雷针的长约为(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:43°≈0.6802,40°≈0.6428,43°≈0.7341,40°≈0.7660,43°≈0.9325,40°≈0.8391)10.如图,自动扶梯段的长度为20米,倾斜角A为α,高度为米(结果用含α的三角比表示).A C第10题图第9题(1) (2) 11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为米.(•≈1.41 1.73) 三、认真答一答1,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算; 2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
初中数学三角函数习题有答案

一、计算题1、计算:.2、计算:3、计算:+() - ;4、计算:、计算:sin60sin6000cos3000+5、小明的家在某公寓楼AD 内,他家的前面新建了一座大厦BC BC,小明想知道大厦的高度,但由于施工原因,无法测,小明想知道大厦的高度,但由于施工原因,无法测出公寓底部A 与大厦底部C 的直线距离,于是小明在他家的楼底A 处测得大厦顶部B 的仰角为,爬上楼顶D 处测得大厦的顶部B 的仰角为,已知公寓楼AD 的高为60米,请你帮助小明计算出大厦的高度BC BC。
6、(、(11)计算:;(2)已知∶∶=2∶3∶4,求的值的值. .二、简答题7、先化简,再求值:,其中(tan45tan45°°-cos30-cos30°)°)8、已知,凸4n +2边形A 1A 2…A 4n+2(n 是非零自然数)各内角都是3030°的整数倍°的整数倍°的整数倍,• ,•又关于x 的方程均有实根,求这凸4n +2边形各内角的度数边形各内角的度数. .9、已知:、已知:sin sin α是关于x 的一元二次方程的一个根,请计算代数式:的一个根,请计算代数式:tan tan 22α-sin α+2cos α的值1010、已知、已知是锐角,且,计算1111、如图,△、如图,△、如图,△A A BC 和△CDE 均为等腰直角三角形,点B ,C ,D 在一条直线上,点M 是AE 的中点,BC =3=3,,CD=1.(1)(1)求证求证tan tan∠∠AEC =;(2);(2)请探究请探究BM 与DM 的关系,并给出证明的关系,并给出证明. .1212、、 先化简再求值:先化简再求值:其中a=tan60a=tan60°° 1313、观察与思考:阅读下列材料,并解决后面的问题.在锐角△、观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作 AD ⊥BC 于D (如图如图)),则sinB =,sinC =,即AD =c sin B ,AD =bsinC ,于是csinB =bsinC ,即.同理有:,,所以即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题(1)如图,△ABC 中,∠B =450,∠C =750,BC =60=60,则∠,则∠A = = ;;AC = = ;; (2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西3030°的方向上,随后货轮以°的方向上,随后货轮以60海里/时的速度按北偏东3030°的方向航行,半小时后到达°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西7575°的方向上°的方向上°的方向上((如图如图)),求此时货轮距灯塔A 的距离AB .1414、开放探索题:、开放探索题:、开放探索题:(1)如图,锐角的正弦值和余弦值都随着锐角的确定而确定、变化而变化)如图,锐角的正弦值和余弦值都随着锐角的确定而确定、变化而变化. . . 试探索随试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律着锐角度数的增大,它的正弦值和余弦值变化的规律. .(2)根据你探索到的规律,试比较1818°,°,°,343434°,°,°,505050°,°,°,626262°,°,°,888888°,这些锐角的正弦°,这些锐角的正弦值和余弦值的大小值和余弦值的大小. .(3)比较大小(在空格处填“)比较大小(在空格处填“>>”、“”、“<<”或“”或“==”)”)若,则______;若,则______;若>45>45°,则°,则______.(4)利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小:)利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小:Sin10 Sin10°、°、°、cos30cos30cos30°、°、°、sin50sin50sin50°、°、°、cos70cos70cos70°°.1515、学科内知识综合题:、学科内知识综合题:、学科内知识综合题:已知∠已知∠A A 是锐角,且tanA tanA、、cotA 是关于x 的一元二次方程=0的两个实数根的两个实数根. . (1)求k 的值;的值;(2)问∠)问∠A A 能否等于4545°?请说明你的理由°?请说明你的理由°?请说明你的理由. .1616、、 学习过三角函数,我们知道在直角三角形中,一个锐学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化小之间可以相互转化. . 类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sad A =.容易知道一个角的大小与这个角的正对值也是相互唯一确定的相互唯一确定的. .根据上述对角的正对定义,解下列问题:根据上述对角的正对定义,解下列问题:根据上述对角的正对定义,解下列问题:(1)sad的值为(的值为( ))A. B. 1 C. D. 2(2)对于,∠A 的正对值sad A 的取值范围是的取值范围是 . .(3)已知,其中为锐角,试求sad 的值的值. .1717、已知:如图,在△、已知:如图,在△ABC 中,,,.求:求:求:(1) (1) (1) △△ABC 的面积;的面积; (2) (2) sinA 的值.的值.1818、如图,在、如图,在Rt Rt△△ABC 中,中,BC BC BC、、AC AC、、AB 三边的长分别为a 、b 、c ,则,则sinA=, cosA=,tanA=.我们不难发现:我们不难发现:sin sin 260o +cos 260o =1=1,…,… 试探求sinA sinA、、cosA cosA、、tanA 之间存在的一般关系,并说明理由.之间存在的一般关系,并说明理由.三、填空题1919、在、在中,三边之比为,则=2020、如图,在平面直角坐标系、如图,在平面直角坐标系O 中,已知点A (3,3)和点B (7,0),则sin ∠ABO 的值等于的值等于 . .2121、、“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100100,直角三角形中较小的锐角为,直角三角形中较小的锐角为α,则tan α的值等于的值等于___________ ___________2222、已知、已知为锐角,若,= ;若;若,则;2323、已知、已知Rt Rt△△中,若cos ,则 四、选择题2424、已知在、已知在RT RT△△ABC 中,∠中,∠C=90C=900,∠,∠A A 、∠、∠B B 、∠、∠C C 的对边分别为a 、b 、c ,则下列关系式错误的是(▲),则下列关系式错误的是(▲)A 、a=btanAB a=btanA B、、b=ccosAC b=ccosA C、、a=csinAD a=csinA D、、c=2525、直线、直线y=2x 与x 轴正半轴的夹角为,那么下列结论正确的是(,那么下列结论正确的是( )A. tan =2B. tan =C. sin =2D. cos=22626、将两副三角板如下图摆放在一起,连结、将两副三角板如下图摆放在一起,连结,则的余切值为的余切值为( ) ( )A .B B..C C..2D 2 D..32727、关于、关于的二次函数+,其中为锐角,则:为锐角,则:① 当为3030°时,函数有最小值°时,函数有最小值°时,函数有最小值--;② 函数图象与坐标轴必有三个交点,并且当为4545°时,连结这三个交点所围成的三角形面积小于°时,连结这三个交点所围成的三角形面积小于1; ③ 当<60<60°时,函数在°时,函数在x >1时,y 随x 的增大而增大;的增大而增大;④ 无论锐角怎么变化,函数图象必过定点。
初中三角函数练习题及答案

三角函数练习1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12)D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)填空1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.图145︒30︒BAD C..6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根号).7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,那么tan B =___________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈1.41,3≈1.73)第6题图xO AyB北甲北乙第5题图αA C B第10题图A 40°52mCD第9题图 B43第4题图三、认真答一答1,计算:s i n c o s c o t t a n t a n 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(c o s s i n )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
三角函数数学题初中

三角函数数学题初中一、在直角三角形中,如果一个锐角为30度,那么它所对的直角边与斜边的比值为:A. 1/2B. √2/2C. √3/2D. 2(答案)A(解析)在30-60-90的直角三角形中,30度角所对的直角边与斜边的比值为1:2,即直角边是斜边的一半,所以答案为A。
二、已知sinA = 1/2,且A为锐角,那么角A的度数为:A. 15度B. 30度C. 45度D. 60度(答案)B(解析)在单位圆中,当角度为30度时,正弦值为1/2,所以角A的度数为30度,答案为B。
三、若cosB = √3/2,且B为锐角,则B的度数为:A. 30度B. 45度C. 60度D. 90度(答案)C(解析)在单位圆中,当角度为60度时,余弦值为√3/2,所以角B的度数为60度,答案为C。
四、在直角三角形中,如果一个锐角为45度,那么它所对的直角边与另一直角边的比值为:A. 1/2B. √2/2C. 1D. √2(答案)C(解析)在45-45-90的直角三角形中,两个锐角所对的直角边长度相等,所以比值为1:1,答案为C。
五、已知tanC = √3,且C为锐角,那么角C的度数为:A. 30度B. 45度C. 60度D. 90度(答案)C(解析)在单位圆中,当角度为60度时,正切值为√3,所以角C的度数为60度,答案为C。
六、若一个角的正弦值为√2/2,那么这个角可能是:A. 15度B. 30度C. 45度D. 60度(答案)C(解析)在单位圆中,当角度为45度或135度时,正弦值为√2/2,由于题目中说明是“一个角”,且未限定是锐角还是钝角,但通常在初中阶段默认考虑锐角情况,所以答案为C。
七、在直角三角形中,斜边长为10,一个锐角所对的直角边长为5,那么这个锐角的度数为:A. 30度B. 45度C. 60度D. 90度(答案)A(解析)在直角三角形中,如果斜边是直角边的两倍,那么这个直角边所对的锐角为30度,所以答案为A。
初中三角函数试题及答案

初中三角函数试题及答案一、选择题(每题3分,共30分)1. 若sinA=1/2,则cosA的值为:A. 1/2B. √3/2C. -√3/2D. -1/22. 已知一个角的正弦值为0.6,那么这个角的余弦值的范围是:A. (0,1)B. (-1,0)C. (0,1)D. (-1,1)3. 函数y=sin(x)的周期是:A. 2πB. πC. 2D. 14. 函数y=cos(x)的图像关于:A. y轴对称B. x轴对称C. 原点对称D. 以上都不对5. 已知tanA=2,那么sinA/cosA的值为:A. 2B. 1/2C. -2D. -1/26. 函数y=sin(x)+cos(x)的最大值是:A. 1B. √2C. 2D. √37. 如果一个角的余弦值为-1,则这个角的度数是:A. 0°B. 90°C. 180°D. 270°8. 函数y=sin(x)在区间[0,π]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增9. 函数y=cos(x)的图像在x=π/2处的切线斜率是:A. 0B. 1C. -1D. 不存在10. 已知sin(A+B)=sinAcosB+cosAsinB,那么cos(A+B)的表达式是:A. cosAcosB-sinAsinBB. cosAcosB+sinAsinBC. -cosAcosB-sinAsinBD. -cosAcosB+sinAsinB二、填空题(每题3分,共30分)1. 若sinA=3/5,且A为锐角,则cosA=______。
2. 函数y=cos(x-π/3)的图像关于点______对称。
3. 函数y=tan(x)的周期是______。
4. 如果一个角的正弦值为1/2,则这个角的余弦值可以是______。
5. 函数y=sin(x)在x=π/2处的值是______。
6. 函数y=cos(x)在x=0处的值是______。
初中三角函数复习练习题含答案

M 虬城「I :的境堰为h JL 刪贱创址 叫.初中三角函数复习练习题一*逸择碍1. 若 为说用 F II ^ill CK - f + 则苗 II Ct 'h{93 3 4—*R.— C\— D.一 255 4』2. 为血/XABC I 」* zT = 90fl ・下列儿产於一定成心的楚()Ax $inA - sinB3- cosA-sinB C- s inA=cosBB- * *"_ g=903. 和角三加旳的吗边壮井别<6・8・也第三边的快为*)A ,IQ B, 2 42 C. lOiiUV^ D-七甘;确宦L 在RtAABC 中.ZC^O 1・艸己知IZA 和a 时.球s 应琲择的关系式乩(S, sin45 -co<>457, 巧視堆 a >30 时.則 cos Q 的ffi JiL ()A.人于丄B.小F 丄 U 人片亜 D.小F 亜■ ■斗 4»8, 小明蹄坡谢为3(T 的域面向下虐了 2米,廉么他下箭I 1A. 1B. J5 星 c九送返* 丄 4 liUH^ABCD 屮* . A=60: •.飞兀 0=90:・ BC-2, 0=3. '4^6=)410. CMlKtAABC 'h- ZC=90J ・ tanA=- . BC 瑙.W'J AC f 「)33 rA. 6B. —C. 10 九 12 3:.填空题11. 计ft 2sin30° -SeoifiO* ^3tan45; -.._>12 Fi £iii29 ' =eos < * 则“ - _________ .13+ L LXU 八ASC 中* . U90 , AS=1$. AV 卿 “nA= _____________ .B. c = ---------co^Aa Tan JB,屁】D, 1A- 3中.ZO90c良300:anAC50I 10,则 SZ ABC 写 1 ■: D, 15sin AD<S) L !1|.'C=20* . A=&0 ⑷⑵已知■书.「B=35值vt 牌下対養J®.f" iin :30v *CW !15' *^/2 H D «,・ ian!5 t邑3眄上強我60:Tau60J > tan30QiinW.恋為点测制■草的种用为妙.向高楼療琏前来刖c 点.史講褐慟輔为斗賢.划谏府窿 的岛復尢料好 九駝索B, 163 ItG 52D. 70耐.如囲,外■捋漏療豪豐放從卑鳶杆拥联都幅却血的亡號・tHrMMtt 的离度m=i ・ Mfi«RF«4y :*i □—住■・ m ;朗m _______________________ . - ii L-.' riMvr :'; i三、斛齐縣第.111下卿兼件*vn 阳二AT 书t 4-RtAABC 中.ZC=90* ii Li 已知¥冬 W +<2)己1Slb 可仙,"30. 3 両状■再■而卜的■介酩一盘是当RI贰舟地血慮醴■时* m一次肚可層丿甩仰成30时.那执锐耿朝叮鄭门匕附igt;若中枭?21. tatU. A3 iCil.北岸灌江踣一乩氏为3 F瓠C为幽岸一*口.为『飆按两熄如IEH聲■抱"Jh ic 社緊稲.绘测斤都人任f北甜芹30*方FM’Bm的航北厅向•忒t处堆接河岸的址虹的祈抡娄少' CM 曲河0. U22.册码点A星一牛半忡为300能的瞬用缚林羔冋的中d 邂療林驚闻附近弃3、C闿个村用「6. B. C IMO *的笔闫舍端将种村)£雄,赠利咼NAB4骑冷ZA CB=3*T<问此处挤也代盘毎过饯厲井公回¥请通过计脱H】世明.20*轴一次堰靠药的审户检为孕《fr«・*5C 議八 期二决燥泰到的舉户良为6 XwtW* =5石<*:) 咼狀册烷到的毎fl£的 轧答案部分2.A 氛C 〔戊此唸为色的迦U 呵険为配角也也可慨力料辿【穴買]Hn4-”旳厲严—— cSUlyi札E> T. D 出圍余就值葩新曲纜的堀炯M ・“恥■ t 旳铀J 亚・ffiUcow< —-Bp 10. A >'i.K\a!lA= ------------ ・ AC=AC tau JBC £71-JJ :穴抑 Sbt 电 *3乂1=訐 JJ.— [F 惓:B O J H 肝—討L 二/尸-贰二怜t»A=BC 12------ 二一 ■AC S加損:如M 的正切“n 心击■普,解壯切 .6-^3 f I > w萨 t I - 护=J# + 於 斗 J?:B 1& 82 米力 r RtX4BC' 丨 I. a = —b 10 10j5 b 101020^3UnB Ei60* JJ 3 sin 5^ui60° 3A'9Q B-90 T) =3(T(3)1 s cXftihA=^X —±^7? « b=4X<OA&0, =10X 1=5.疋B=s 『亠/A 期F 』0‘ =W° ■* 19= 炉丄 《 I r "丄U "丄)J) "F ^3 L l Is ——^-=—t +-^™亍1亍 卡I P■■F —dsF**21. 'AC^ CD1.KB : /• D.A.H 22,解;(\ RtAABH'l 1. BH 二 __iaji45°(VRCAACH'I 1,CH =tan 30°AH AH-------- ■+ -------- - = 1000 fan 45° 怡 ii 30° A AH = 500^3 - 500 > 300二不会穿过CD 就处连接两岸瑕如的桥.RFf 角三甬形 BCD 中* ZKD= I5C ・ /fiWBD=CD=x3。
初中数学锐角三角函数练习、解直角三角形练习及详细解答

初中三角函数练习及解答1.锐角三角函数1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;3.若tan 3α=求2sin sin 13sin cos αααα-+的值.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .6.已知sin cos αα+=,求sin cos αα的值.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.13.不查表,求15︒的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).15.求sin18︒的值.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.2解直角三角形1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.6.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC .12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC .13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.16.如图(a ),正方形ABCD 的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?1.锐角三角函数(详细解答)1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.解析(1)利用互余角的三角函数关系式,将cos70︒化sin 20︒,再与sin19︒比大小.因为()cos70cos 9020sin 20︒=︒-︒=︒,而sin19sin 20︒<︒,所以sin19cos70︒<︒.(2)余切函数与余弦函数无法化为同名函数,但是可以利用某些特殊的三角函数值,间接比较它们的大小.32cot 60cos 4532︒=<︒=,再将cot 65︒,cos40︒分别与cot 60︒,cos45︒比大小.因为cot 65cot 60︒<︒=,cos 40cos 45︒>︒>,所以cot 60cos45︒<︒,所以cot 65cos40︒<︒.(3)tan 451︒=,显然cos1︒,sin88︒均小于1,而tan 46︒,cot 38︒均大于1.再分别比较cos1︒与sin88︒,以及tan 46︒与cot 38︒的大小即可.因为()cos38cot 9052tan52︒=︒-︒=︒,所以tan52tan 46tan 451︒>︒>︒=.因为()cos1cos 9089sin89︒=︒-︒=︒,所以sin88sin891︒<︒<,所以cot 38tan 46cos1sin88︒>︒>︒>︒.评注比较三角函数值的大小,一般分为三种类型:(1)同名的两个锐角三角函数值,可直接利用三角函数值随角变化的规律,通过比较角的大小来确定三角函数值的大小.(2)互为余函数的两锐角三角函数值,可利用互余角的三角函数关系式化为同名三角函数,比较其大小.(3)不能化为同名的两个三角函数,可通过与某些“标准量”比大小,间接判断它们的大小关系,常选择的标准量有:0,1以及其他一些特殊角如30︒,45︒,60︒的三角函数值.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;解析(1)原式=tan1tan 2tan3tan 44tan 45cot 44cot 43cot 3cot 2cot1︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ ()()()tan1cot1tan 2cot 2tan 44cot 44tan 45=︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ 1111=⋅⋅⋅= .(2)原式1cos7cos71cos7=︒=⋅︒=︒.(3)原式()22442242222sin sin sin sin cos 1sin sin sin 1cos sin cos ααααααααααα⋅====--.(4)原式sin11cos11sin11cos11sin11cos110-︒-︒=︒-︒-︒-︒=.3.若tan 3α=求2sin sin 13sin cos αααα-+的值.原式2222sin cos sin sin cos sin 13sin cos sin cos 3sin cos αααααααααααα--==+++2222tan tan 336tan 13tan 313319αααα--===-++++⨯.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒解析显然0sin 481<︒<,0cos481<︒<0<cos48°<1.因此有:sin 48sin 48tan 48cos 48︒︒<=︒︒,cos 48cos 48cot 48sin 48︒︒<=︒︒所以A 最大.5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .解析我们将sin 3cos x x =代入22sin cos 1x x +=,得到210cos 1x =,并且x 是锐角,因此cos x=所以sin x =.因此3sin cos 10x x =.6.已知sin cos αα+=,求sin cos αα的值.解析由sin cos αα+=两边平方得()22sin cos αα+=.又22sin cos 1αα+=,所以12sin cos 2αα+=,得1sin cos 2αα=.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.解析由根与系数的关系知1sin cos 3αα=.则有()()2244227sin cos sin cos 2sin cos 9αααααα+=+-=.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.解析由于90A B +=︒,故由互余关系得()sin sin 90cos B A A =︒-=.因此条件即为sin cos A A -=,①将上式平方,得221sin cos 2sin cos 2A A A A +-=,由正、余弦的平方关系,即有12sin cos 2A A =,所以()2223sin cos sin cos 2sin cos 12sin cos 2A A A A A A A A +=++=+=,因sin A 、cos A 均为正数,故sin cos 0A A +>.因此由上式得sin cos A A +=,②由①、②得sin A =,cos A =sin B =9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.解析设方程的两个实根1x 、2x 分别是直角三角形ABC 的锐角A 、B 的正弦.则()22222212sin sin sin cos 190x x A B A A A B +=+=+=+=︒,又122112m x x m -+=+,12122x x m =+,所以()2222111212211242122m x x x x x x m m -⎛⎫+=+-=-= ⎪++⎝⎭.化简得224230m m -+=,解得1m =或23.检验,当1m =时,()()22114820m m =--+<△;当23m =时,()()22114820m m =--+△≥.所以23m =.评注本题是三角函数与一元二次方程的综合,基本解法是利用韦达定理和22sin cos 1αα+=列方程求解.要注意最后检验方程有无实数根.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .解析根据韦达定理,有12125 , 4.4x x k x x ⎧+=-⎪⎪⎨⎪=⎪⎩并且由于其两根是直角三角形的两个锐角的正弦,所以又有22121x x +=.于是有()2222121212512244k x x x x x x ⎛⎫=+=+-=--⨯ ⎪⎝⎭.解得98k =.11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?解析(1)设A 、B 是某个直角三角形两个锐角,sin A 、sin B 是方程20x px q ++=的两个根,则有240p q =-△≥.①由韦达定理,sin sin A B p +=-,sin sin A B q =.又sin 0A >,sin 0B >,于是0p <,0q >.由于()sin sin 90cos B A A =︒-=.所以sin cos A A p +=-,sin cos A A q =,所以()()22sin cos 1sin cos 12p A A A A q -=+=+=+,即221p q -=.由①得21240q p q -=-≥,则12q ≤.故所求条件是0p <,102p <≤,221p q -=.②(2)设条件②成立,则24120p q q -=-≥,故方程有两个实根:α==,β==.由②知p -=p <=-,所以0p p <--+,故0βα>≥.又()2222221p q αβαβαβ+=+-=-=,故01αβ<<≤.12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.解析设题中所述的两个锐角为A 及B ,由题设得()241160 , 1cos cos , 2cos cos .4m m m A B m A B ⎧=+-⎪⎪+⎪+=⎨⎪⎪=⎪⎩△≥因为cos sin B A =,故()2, 1cos sin , 2cos sin , 410m A A m A m m A ++==⎧=-⇒⎪⎪⎪⎨⎪⎪⎪⎩可△≥取任意实数①②①式两边平方,并利用恒等式22sin cos 1A A +=,得()()221cos sin 12sin cos 4m A A A A ++=+=.再由②得()21124m m ++=,解得m =.由cos 0A >,sin 0A >及②知0m >.所以m =.13.不查表,求15︒的四种三角函数值.解析30︒、45︒、60︒这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15︒角的三角函数值,也可以利用直角三角形的性质将其推出.如图所示.在ABC △中,90C ∠=︒,30ABC ∠=︒,延长CB 到D ,使BD BA =,则1152D BAD ABC ∠=∠=∠=︒.设1AC =,则2AB =,3BC =2BD =,所以 23CD CB BD =+=+所以()()())2222123843242323123162AD AC CD =++++++=+=+.所以162sin15462AC AD -︒===+,2362cos15462CD AD ++︒===+1tan152323AC CD ︒===-+cot1523CDAC︒==.评注将15︒角的三角函数求值问题,通过构造适当的三角形,将它转化为30︒角的三角函数问题,这种将新的未知问题通过一定途径转化为旧的已解决了的问题的方法,是我们研究解决新问题的重要方法.根据互余三角函数关系式,我们很容易得到75︒角的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).解析4522.52︒︒=,所以设法构造一个含22.5︒角的直角三角形,用定义求值.如图,Rt ABC △中,90C ∠=︒,45B ∠=︒,延长CB 到D ,使BD BA =,则122.52D B ∠=∠=︒.设AC b =,有222AB b b b =+=,()21DC DB BC b =+=+.故()tan 22.52121ACDCb︒==+.15.求sin18︒的值.解析构造一个顶角A 为36︒的等腰ABC △,AB AC =,如图,作内角平分线则36ABD DBC ∠=∠=︒,设1AC =,BC x =.由于36DBA DAB ∠=∠=︒,72BDC BCD ∠=∠=︒,故CB BD DA x ===,而CAB △∽CBD △(36CAB CBD ∠=∠=︒),故AC BC BC DC =,故11xx x=-,有512x -=(舍去512-).再作AH BC ⊥于H ,则18CAH ∠=︒,514CH -=.所以1sin184-︒=.评注本题所构造的等腰三角形是圆内接正十边形的相邻顶点与圆心确定的三角形,利用它可以求出半径为R 的圆内接正十边形的边长.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.解析由221x y +=,22sin cos 1αα+=,得()()2222sin cos 1x y αα++=,即22222222sin cos cos sin 1x y x y αααα+++=,加一项减一项,得22222222sin 2sin cos cos cos 2cos sin sin 1x xy y x xy y αααααααα+++-+=.即()()2sin cos cos sin 1x y x y αααα2++-=,因为()2cos sin 0x y αα-≥,所以()2sin cos 1x y αα+≤,故sin cos 1x y αα+≤.2解直角三角形(详细解答)1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.解析由角平分线想到对称性,考虑过D 作DE AB ⊥,交AB 于E ,则由90C ∠=︒得CD DE ==.在直角三角形BDE 中,1sin 2DE B DB ==,则60B ∠=︒,所以3tan3AC BC B ==+⋅=,2sin ACAB AC B===,BC CD DB =+=.故ABC △的三边长分别为,.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.解析作DF AC ⊥于F ,EG AC ⊥于G ;DP BC ⊥于P ,EQ BC ⊥于Q .令BP PQ QC a ===,AG GF FC b ===.则2DF a =,EG a =.在Rt CDF △和Rt CEG △中,由勾股定理,得()2222sin a b x +=,及()2222cos a b x +=,两式相加得()2251a b +=,2215a b +=.所以35AB BD ===.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .解析已知Rt ABH △中,10AB =,要求BH ,可求出BAH ∠的正弦值,而BAH CAD ∠=∠,因而可先求出DC 的长.作DE AB ⊥于E ,有6AE AC ==,ED CD =.设3DC k =,由三角形内角平分线性质有106BD DC =,则5BD k =.Rt BDE △中,222DE BE BD +=,即()()()22231065k k +-=,得1k =.33CD k ==,AD ==sin10BHDAC ∠==,故BH =.4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.解析如图,过B 、C 两点作BM AC ∥、CN AB ∥分别交AD 、AE 于M 、N .易知2AC BM =,2AB CN =,tan BM BAD AB ∠=,tan CNCAE AC∠=,从而,1tan tan 4BAD CAE ∠∠=.因为tan 1BAD ∠=,则1tan 4CAE ∠=.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.解析设O 是矩形对角线AC 的中点.连结CF ,由折叠知CF AF =,故FO AC ⊥,即EF AC ⊥.由3AB =,4BC =,得5AC =,从而1522AO AC ==.在Rt AOF △中,90AOF ∠=︒,故tan OF AO FAO =⋅∠.又由Rt ADC △得3tan tan 4DC FAO DAC AD ∠=∠==,所以5315248OF =⋅=,1524EF OF ==.7.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.解析由题意可设10a b +=,30α=︒,则125sin 24S ab α==△,即1125224ab ⋅=,得25ab =.于是,由10a b +=,25ab =,得a 、b 是方程210250x x -+=的两个根.而此方程有两个相等的根,所以5a b ==,即此三角形为等腰三角形.评注也可以直接由()()2240a b a b ab -=+-=,得a b =.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.解析由于斜边长是斜边上中线长的2倍,故2AB c ==.于是,由题设及勾股定理,得224. a b a b ⎧++==⎪⎨⎪⎩①②把①式两边平方,得2226a ab b ++=.再由②得1ab =.③由①、③知,a 、b 分别是二次方程210u +=的两根,解得622u ±=.因为BC AC >(即a b >),故12BC =,12AC =,所以tan 2BC A AC ===+.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .解析(1)根据题意,尝试从边来判断.因为4a b c +=+,()42ab c =+,所以()2222a b a b ab +=+-()()224242c c c =+-⨯+=,从而知ABC △是直角三角形,90C ∠=︒.(2)由90C ∠=︒,3tan 4A ∠=,得34a b =.令3a =,()40b k k =>,则5c k =,于是754k k =+,得2k =,从而有6a =,8b =,10c =.9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.解析(1)由题设得 , 32.ab m a b m =⎧⎨+=⎩消去b ,得32m a a m -⎛⎫= ⎪⎝⎭,故实数a 满足二次方程2320x mx m -+=.①所以()224240m m m m =-=-△≥.因为0m >,所以24m ≥.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.解析因为tan CECDE CD∠=,已知2AB CD =,因此,只需求出AB 与CE 的比值即可.不妨设1CD =,则2AB =.在Rt ABF △中,90A ∠=︒,30ABF ∠=︒,所以cos30AB BF ==︒.在Rt BEF △中,90BEF ∠=︒,45BFE ∠=︒,所以2cos 452BE BF =︒==在Rt BEC △中,90EBC ∠=︒,60ECB ∠=︒,42sin 603BE CE ===︒,所以42tan 3CE CDE CD ∠==.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC.解析作AD BC ⊥于D ,设AD x =,在Rt ABD △中,因为4sin 5B =,所以3cos 5B ==,所以sin 4tan cos 3B B B ==,所以43AD BD =,34BD x =.在Rt ADC △中,因为tan 2AD C DC ==,所以22AD x CD ==,所以35424x BC BD CD x x =+=+=.①因为1102ABC S BC AD =⨯=△,所以151024x x ⨯⋅=,所以4x =.由①知5454BC =⨯=.评注在一般三角形中,在适当位置作高线,将其转化为直角三角形求解,这是解斜三角形常采用的方法.12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC.解析作CE AD ⊥于E ,设CE x =,BE y =,则有()2222225 , 37. x y x y ⎧+=⎪⎨++=⎪⎩①②②-①得22697524y +=-=,所以52y =.因为2x =,所以512cos 52BE CBE CB ∠===,所以60CBE ∠=︒,18060120CBD ∠=︒-︒=︒,所以5356sin 4522CE AC ==︒.13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.解析作BE AC ⊥B ,交AC 的延长线于E ,设BC x =.则sin 45BE BC =⨯︒=,cos 45CE BC =⋅︒=由DC BE ∥,D 是AB 的中点,知2AE EC ==.而222AE BE AB +=,得221+=.即x =,所以BC =.评注通过构造直角三角形,使用三角函数、勾股定理等知识将边角联系起来是求线段长的常用方法.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.解析ADE ACD B ∠=∠=∠,而tan AE ADE DE ∠=,tan ED ACD EC ∠=,tan DFB BF=,所以tan AE ED DFB DE EC FB===,又DF EC =,所以3tan AE ED EC B DE EC BF ⋅⋅=,所以3tan AEB BF=.又tan ACB BC=,所以33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.解析作DF AC ⊥于F ,不妨设3AB =,因AD BM ⊥,90BAM ∠=︒,所以DAF ABM ∠=∠.又112tan 2AC MA ABM AB AB ∠===.1tan 2DF DAF FA ∠==.又90BAC ∠=︒,AB AC =,45C ∠=︒,而90DFC ∠=︒,故FC FD =.由于12FC FA =,而3FC FA +=,1FC =,2FA =,而32MC =,31122FM =-=,1FD =,即1tan 212FD CMD FM ∠===,又tan 2AB AMB AM ∠==,AMB ∠,CMD ∠是锐角.因此AMB CMD ∠=∠.16.如图(a ),正方形ABCD的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.解析记正方形ABCD 的边长为2a .由题设易知BFN △∽DAN △,则有21AD AN DN BF NF BN ===,得2AN NF =,所以23AN AF =.在直角ABF △中,2AB a =,BF a =,则AF ==,于是cos 5AB BAF AF ∠==.由题设可知ADE △≌BAF△,所以AED AFB ∠=∠,18018090AME BAF AED BAF AFB ∠=︒-∠-∠=︒-∠-∠=︒.于是cos AM AE BAF =⋅∠=,23MN AN AM AF AM =-=-=,从而415MND AFD S MN S AF ==△△.又()()212222AFD S a a a =⋅⋅=△,所以2481515MND AFD S S a ==△△.因a =8MND S =△.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.解析由已知条件b a c >=可知,这是一个等腰三角形,且底边b 最长,则最大角为B ∠,求出ABC △中的底角A (或C )即可.我们可以先求角A (或C )的三角函数值,再确定角的大小,如图所示.由图知2cos 2b AD b A AB c c===,则关键是求出b 与c 的比值.通过一元二次方程中的条件,可得到关于c 、b 的方程,则问题得到解决.因为a c =,所以方程为20cx c +=.设1x 、2x 为方程的两个根,则有122b x x c +=,121x x =.因为12x x -=,()2122x x -=,即()2121242x x x x +-=,所以2242c ⎛⎫-= ⎪ ⎪⎝⎭,c =,b c =,所以cos 22b A c ==,所以30A ∠=︒,所以1803030120B ∠=︒-︒-︒=︒.评注这是一道方程与几何知识的综合题.三角形的边是一元二次方程的系数,利用方程条件导出边的关系,由边的关系再进一步求角的大小.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.解析由AB CD ∥,得CDE △∽ABE △.所以22::CDE ABE S S DE BE =△△.连结AD ,则90ADB ∠=︒.故由Rt ADE △,有cos DE AEθ=,又AE BE =,所以2:cos CDE ABE S S θ=△△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD 与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).解析如图,延长AD 交地面于点E ,过点D 作DF CE ⊥于点F .因为45DCF ∠=︒,60A ∠=︒,4CD =,所以2sin 4542CF DF CD ==︒=⨯=,tan 60EF DF =︒==.因为3tan 303AB BE =︒=,所以(()8.5m 33AB BE ==++⨯=≈.20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.解析若设船不改变航向,与小岛S 的最近距离为SC .则有tan 60tan 45152SC SC ︒-︒=⨯,解得1542SC =<.因此需要改变航向,以免触礁.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?解析要使造价最小,只需考虑AD DC CB ++最小,故首先设法用h 、S 、θ表示AD DC CB ++.()()()1122cot cot 22S AB CD h CD h h CD h h θθ=+=+=+.有cot S CD h h θ=-,则2AD DC CB AD CD ++=+2cot sin h S h θθ⎛⎫=+- ⎪⎝⎭()2cos sin h S hθθ-=+.因S 、h 为常数,则要求AD DC CB ++的最小值,只需求2cos sin m θθ-=的最小值.设2cos sin m θθ-=,两边平方整理得()()2221cos 4cos 40m m θθ+---=,cos θ=由上式知()2230m m -≥,解得m m =时,2cos sin θθ-有最小值.当m =时,221cos 12m θ==+,从而得60θ=︒,此时排污渠造价最小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数练习1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A 、缩小2倍 B 、扩大2倍 C 、不变 D 、不能确定12、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(2,12)B .(-2,12)C .(-2,-12)D .(-12,-32) 9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)填空1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=62-,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.图145︒30︒BAD C春天里教育6.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留两个有效数字,2≈xOAyB北甲北乙第5题图αA CB第10题图A40°52mCD第9题图B43第4题图1.41,3≈1.73) 三、认真答一答1,计算:s i n c o s c o t t a n t a n 3060456030︒+︒-︒-︒⋅︒分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(c o s s i n )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。
注意分母有理化,3 如图1,在∆A B C 中,AD 是BC 边上的高,t a n c o s B D A C =∠。
(1)求证:AC =BD(2)若s i n C B C ==121312,,求AD 的长。
图1分析:由于AD 是BC 边上的高,则有R t A D B ∆和R t A D C ∆,这样可以充分利用锐角三角函数的概念使问题求解。
4如图2,已知∆A B C 中∠=∠C R t ,A Cm B A C =∠=,α,求∆A B C 的面积(用α的三角函数及m 表示)图2分析:要求 A B C 的面积,由图只需求出BC 。
解应用题,要先看条件,将图形抽象出直角三角形来解.5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.6. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是 45°,求铁塔高.C30450Ar E D BC分析:求CD,可解Rt ΔBCD 或Rt ΔACD.但由条件Rt ΔBCD 和Rt ΔACD 不可解,但AB=100若设CD 为x,我们将AC 和BC 都用含x 的代数式表示再解方程即可.7、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m ,底CD 宽12m ,求路基顶AB 的宽B ADCE8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.9.如图3,沿AC 方向开山修路,为了加快施工速度,要在小山的另一边同时施工。
从AC上的一点B ,取∠=︒=A B D B D 145500,米,∠=︒D55。
要使A 、C 、E 成一直S 线,那么开挖点E 离点D 的距离是多少?图3FDAH分析:在R t B E D 中可用三角函数求得DE 长。
10 如图8-5,一条渔船某时刻在位置A 观测灯塔B 、C(灯塔B 距离A 处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?分析:本题考查解直角三角形在航海问题中的运用,解决这类问题的关键在于构造相关的直角三角形帮助解题.11、如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时107千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域。
问A 城是否会受到这次台风的影响?为什么?若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长?图8-4EA C BD北东12. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器。
(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG 的方案。
具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ表示)。
(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计)。
13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里处的A点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。
为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B为追上时的位置)(2)确定巡逻艇的追赶方向(精确到01. )(如图4)图4参考数据:sin ..cos ..sin ..cos ..sin ..cos ..sin ..cos ..6680919166803939674092316740384668409298684036817060943270603322︒≈︒≈︒≈︒≈︒≈︒≈︒≈︒≈,,,,分析:(1)由图可知∆A B O 是直角三角形,于是由勾股定理可求。
(2)利用三角函数的概念即求。
14. 公路MN 和公路PQ 在点P 处交汇,且∠=︒Q P N 30,点A 处有一所中学,AP=160m ,一辆拖拉机以3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NP A Q.15、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为︒60,求宣传条幅BC 的长,(小明的身高不计,结果精确到0.1米)16、一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)17、如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈,1.732.18、如图10,一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站测得AC 的距离是6km ,仰角是43.1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54,解答下列问题:(1)火箭到达B 点时距离发射点有多远(精确到0.01km )?(2)火箭从A 点到B 点的平均速度是多少(精确到0.1km/s )?19、经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB.ABC东P 北4030图10ABOC(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC(杆子的底端分别为D ,C),且∠DAB=66. 5°.(1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC ,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)答案一、选择题1——5、CAADB 6——12、BCABDAB 二、填空题1,35 2,73 3,30°(点拨:过点C 作AB 的垂线CE ,构造直角三角形,利用勾股定理CE )4.62-(点拨:连结PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD=15°,图①图②利用sin15°=,先求出PD ,乘以2即得PP ')5.48(点拨:根据两直线平行,内错角相等判断)6.(0,4+(点拨:过点B 作BC ⊥AO ,利用勾股定理或三角函数可分别求得AC 与OC的长)7.1(点拨:根据公式sin 2α+cos 2α=1)8.125(点拨:先根据勾股定理求得AC=5,再根据tan ACB AB =求出结果) 9.4.86(点拨:利用正切函数分别求了BD ,BC 的长)10.20sin α(点拨:根据sin BCAB α=,求得sin BC AB =•α)11.35 三,解答题可求得 1. -1; 2. 43.解:(1)在R t A B D∆中,有tanB AD BD =, R t A D C∆中,有c o s ∠=D A C A DA Ct a n c o s B D A C A D B D A DA CA CB D =∠∴==,故 (2)由si n C A D A C ==1213;可设A D x A C B D x ===1213, 由勾股定理求得D C x=5, B C B D D C x =∴+==121812 即x =23 ∴=⨯=A D 122384.解:由t a n ∠=B AC B CA C∴=∠=∠=∴=∴=⋅=⋅=B C A C B A C A C m B A C B C m S A C B C m m m A B C ta n ta n ta n ta n ,αααα∆12121225解过D 做DE ⊥AB 于E ∵∠MAC=45° ∴∠ACB=45° BC=45在Rt ΔACB 中,BC ABtgACB =)(4545米=⋅=∴tg BC AB在Rt ΔADE 中,∠ADE=30°DEAEtgADE =315334530=⋅=⋅=∴ tg DE AE )(31545米-=-=∴AE AB CD答:甲楼高45米,乙楼高31545-米. 6 解:设CD=x在Rt ΔBCD 中,CDBCctgDBC =∴BC=x(用x 表示BC) 在Rt ΔACD 中,CDACctgDAC =x ctgDAC CD AC 3=⋅=∴ ∵AC-BC=100 1003=-x x 100)13(=-x∴)13(50+=x30450Ar E D BC答:铁塔高)13(50+米.7、解:过B 作BF ⊥CD ,垂足为F BF AE =∴ 在等腰梯形ABCD 中 AD=BC D C ∠=∠3:2=iBCAE=3m ∴DE=4.5mAD=BC ,D C ∠=∠,︒=∠=∠90DEA CFB ∴∆BCF ≅∆ADE ∴CF=DE=4.5m∴EF=3m︒=∠=∠90AEF BFE ∴BF//CD∴四边形ABFE 为平行四边形∴AB=EF=3m8解:CD FB ⊥,AB FB ⊥,CD AB ∴∥CGE AHE ∴△∽△CG EG AH EH ∴=,即:CD EF FD AH FD BD -=+ 3 1.62215AH -∴=+,11.9AH ∴=FDAH11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+=9 解: A 、C 、E 成一直线∠=︒∠=︒∴∠=︒A B D D B E D 1455590,, 在R t B E D∆中, c o s c o s D D EB D D EB D D =∴=⋅, B D =500米,∠=︒D55 ︒=∴55cos 500DE 米,所以E 离点D 的距离是500cos55 o 10 解:在Rt△ABD 中,716284AD =⨯=(海里), ∠BAD=90°-65°45′=24°15′. ∵cos24°15′=AD AB , ∴2830.71cos 24150.9118AD AB ==≈'︒(海里). AC=AB+BC=30.71+12=42.71(海里). 在Rt△ACE 中,sin24°15′=CEAC, ∴CE=AC·sin24°15′=42.71×0.4107=17.54(海里). ∵17.54<18.6,∴有触礁危险。