必修5解三角形知识点归纳总结.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
解三角形
一 . 正弦定理:
1. 正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 并且都等于外
接圆的直径,即
a
b c
2R (其中 R 是三角形外接圆的半径)
sin A
sin B sin C
2. 变形: 1)
a b c
a b
c .
sin
sin C sin
sin
sin
sin C
2)化边为角:
a :
b :
c sin A : sin B : sin C
;
a sin A ;
b sin B ; a sin A ;
b
sin B c
sin C c sin C
3 )化边为角: a
2R sin A, b 2R sin B, c 2R sin C
4
)化角为边: sin A a ; sin B
b ; sin A a ;
sin B b sin C
c sin C c
5
)化角为边: sin A a
sin B b
c
, , sin C
2R 2R 2R
3. 利用正弦定理可以解决下列两类三角形的问题:
4.
①已知两个角及任意—边,求其他两边和另一角;
例:已知角 B,C,a ,
sin B ;
解法 :由 A+B+C=180, 求角 A, 由正 弦定 理
a
sin A ;
b
o
b sin B
c sin C
a
sin A
; 求出 b 与 c c sin C
②已知两边和其中—边的对角,求其他两个角及另一边。
例:已知边 a,b,A,
解法:由正弦定理
a
sin A
o
求出角 C ,再使用正
b sin B 求出角 B, 由 A+B+C=180
弦定理
a
sin A 求出 c 边
c
sin C
4. △ABC 中,已知锐角 A ,边 b ,则
b
① a b sin A 时, B 无解;
② a b sin A 或 a b 时, B 有一个解;
A
b sin A
③ bsin A a b 时, B 有两个解。
如:①已知 A
60 , a 2, b 2 3 , 求 B ( 有一个解 )
②已知 A 60 , b 2,a
2 3 , 求 B ( 有两个解 )
注意:由正弦定理求角时,注意解的个数。
二 . 三角形面积
1.
S
ABC
1
ab sin C 1 bc sin A 1
ac sin B
2
2 2
2.
S
ABC
1 (a b c)r , 其中 r 是三角形内切圆半径 .
2
1
(a b c) , 3.
S
ABC
p( p a)( p b)( p c) , 其中 p
abc
,R 为外接圆半径
2
4. S ABC
4R
5.
S
ABC
2R 2 sin A sin B sin C ,R 为外接圆半径
三 . 余弦定理
1. 余弦定理:三角形中任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的 2 倍,即
a 2
b 2
c 2 2bc cos A b 2
a 2
c 2 2ac cos B c 2 a 2
b 2 2ab cosC
b 2
c 2 a 2
2. 变形: cos A
2bc
a 2
c 2 b 2 cos B
2ac
a 2
b 2
c 2
cosC
2ab
注意整体代入,如: a 2
c 2 b 2
ac cos B
1
2
3.利用余弦定理判断三角形形状:
设 a 、b、 c 是 C 的角、、C的对边,则:
①若,,所以为锐角
②若 c2 b2 a2 A为直角
③若,所以为钝角,则是钝角三角形
4.利用余弦定理可以解决下列两类三角形的问题:
1)已知三边,求三个角
2)已知两边和它们的夹角,求第三边和其他两个角
四、应用题视线
1. 已知两角和一边(如 A、B、C),由 A B C
=
π求 C,由正弦定理求 a、b.
+ +
铅 c 边;再应用正弦定理
2. 已知两边和夹角(如a、b、c),应用余弦定理求A B C 仰角
先求较短边所对的角,然后利用= π ,求另一角.
+ +
水平线
直
3.已知两边和其中一边的对角(如 a、b、A),应用正弦定理求 B,由 A+B+C
线俯角
=π求 C,再由正弦定理或余弦定理求 c 边,要注意解可能有多种情况.
4.已知三边 a、 b、 c,应用余弦定理求 A、B,再由 A+B+C = π,求角 C.
5.方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向
旋转到目视线
标的方向线所成的角(一般指锐角),通常表达成 . 正北或正南,北偏东××度,
北偏西××度,南偏东××度,南偏西××度 .
6.俯角和仰角的概念:在视线与水平线所成的角中 , 视线在水平线上方
的角叫仰角 , 视线在水平线下方的角叫俯角 .