分子生物学朱玉贤笔记
分子生物学总结(朱玉贤版)(2020年10月整理).pdf
![分子生物学总结(朱玉贤版)(2020年10月整理).pdf](https://img.taocdn.com/s3/m/37a87560ce2f0066f4332267.png)
结合着下载的资料复习吧~~~~绪论分子生物学的发展简史Schleiden和Schwann提出“细胞学说”孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律Miescher首次从莱茵河鲑鱼精子中分离出DNAMorgan基因存在于染色体上、连锁遗传规律Avery证明基因就是DNA分子,提出DNA是遗传信息的载体McClintock首次提出转座子或跳跃基因概念Watson和Crick提出DNA双螺旋模型Crick提出了“中心法则”Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制Jacob和Monod提出了著名的乳糖操纵子模型Arber首次发现DNA限制性内切酶的存在Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA)第二章染色体与DNA第一节染色体一、真核细胞染色体的组成DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白)(1)组蛋白:H1、H2A、H2B、H3、H4功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用(2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。
常见的有(HMG蛋白、DNA结合蛋白)二、染色质染色体:分裂期由染色质聚缩形成。
染色质:线性复合结构,间期遗传物质存在形式。
常染色质(着色浅)具间期染色质形态特征和着色特征染色质异染色质(着色深)结构性异染色质兼性异染色质(在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分子H1组成。
分子生物学朱玉贤第四版复习纲要
![分子生物学朱玉贤第四版复习纲要](https://img.taocdn.com/s3/m/f1263ae70b4c2e3f5627630f.png)
一、名词1、分子生物学Molecular Biology2、中心法则Central Dogma二、问答1、简述孟德尔、摩尔根、Avery、沃森和克里克、雅各布和莫诺,尼伦伯格和科拉纳等人对分子生物学发展的贡献2、早期验证遗传物质是DNA的实验有哪些,具体过程是?3、分子生物研究的内容包括哪些?DNA的复制、转录与翻译DNA重组技术基因表达调控研究生物大分子的结构功能研究一结构分子生物学基因(组)、功能基因(组)与生物信息学研究第1章、染色体与DNA第一节、染色体与DNA名词1、DNA双螺旋:两条多核苷酸链反向平行盘绕所生成的双链结构.2、DNA三级结构:DNA双螺旋进一步扭曲盘绕形成的特定空间结构。
3、核小体:是由核心颗粒(H2A、H2B、H3、H4各两个分子生成的八聚体)和连接区DNA(大约200bpDNA)组成4、卫星DNA :又称随体DNA。
因为真核细胞DNA的一部分是不被转录的异染色质成分,其碱基组成与主体DNA不同,因而可用密度梯度离心。
卫星DNA通常是高度串联重复的DNA5、端粒(Telomere):是位于真核细胞线性染色体末端的特殊结构,由一段重复串联的DNA 序列与端粒结合蛋白构成.6、端粒T环结构:端粒形成T环结构使染色体末端封闭起来,免遭破坏.7、单顺反子:真核基因转录产物为单顺反子,即一条mRNA模板只含有一个翻译起始点和一个终止点,因而一个基因编码一条多肽链或RNA链。
8 断裂基因(splitt ing gene):真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因9、间隔基因(Interrupted gene)由于这组基因发生突变时会导致果蝇体节模式发生间隔缺失现象,所以将它们称为间隔基因10、夕卜显子(Exon)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质11、内含子(Intron )在转录后的加工中,从最初的转录产物除去的内部的核苷酸序列12、单核苷酸多态性Single Nucleotide Polymorphism,SNP:主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。
分子生物学总结(朱玉贤版)
![分子生物学总结(朱玉贤版)](https://img.taocdn.com/s3/m/f30dec70cc7931b765ce15d3.png)
结合着下载的资料复习吧~~~~绪论分子生物学的发展简史Schleiden和Schwann提出“细胞学说”孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律Miescher首次从莱茵河鲑鱼精子中分离出DNAMorgan基因存在于染色体上、连锁遗传规律Avery证明基因就是DNA分子,提出DNA是遗传信息的载体McClintock首次提出转座子或跳跃基因概念Watson和Crick提出DNA双螺旋模型Crick提出了“中心法则”Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制Jacob和Monod提出了著名的乳糖操纵子模型Arber首次发现DNA限制性切酶的存在Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA)第二章染色体与DNA第一节染色体一、真核细胞染色体的组成DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白)(1)组蛋白:H1、H2A、H2B、H3、H4功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用(2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。
常见的有(HMG蛋白、DNA结合蛋白)二、染色质染色体:分裂期由染色质聚缩形成。
染色质:线性复合结构,间期遗传物质存在形式。
常染色质(着色浅)具间期染色质形态特征和着色特征染色质异染色质(着色深)结构性异染色质兼性异染色质(在整个细胞周期都处于凝集状态)(特定时期处于凝集状态)三、核小体由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分子H1组成。
最新现代分子生物学(第3版)-朱玉贤-课后答案(全)
![最新现代分子生物学(第3版)-朱玉贤-课后答案(全)](https://img.taocdn.com/s3/m/c7b3d9977fd5360cba1adbfc.png)
现代分子生物学(第3版)-朱玉贤-课后答案(全)------------------------------------------作者xxxx------------------------------------------日期xxxx第一章1简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN反向双平行双螺旋模型.2写出DNARNA的英文全称答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)3试述“有其父必有其子"的生物学本质答:其生物学本质是基因遗传.子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。
4早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。
用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内.三,烟草TMV的重建实验:1957年,Fraenkel—Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片.5请定义DNA重组技术和基因工程技术答:DNA重组技术:目的是将不同的DNA片段(如某个基因或基因的一部分)按照人们的设计定向连接起来,然后在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
现代分子生物学笔记朱玉贤
![现代分子生物学笔记朱玉贤](https://img.taocdn.com/s3/m/b95533ab941ea76e58fa04fa.png)
第一章绪论分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。
它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。
生物化学与分子生物学关系最为密切 :生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。
传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。
分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。
细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。
探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。
分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。
第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。
指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。
达尔文第一个认识到生物世界的不连续性。
意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。
细胞学说细胞学说的建立及其意义德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。
朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解
![朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解](https://img.taocdn.com/s3/m/927f1841aeaad1f347933f5e.png)
目录第1章绪论 (4)1.1复习笔记 (4)1.2课后习题详解 (5)1.3名校考研真题详解 (7)第2章染色体与DNA (10)2.1复习笔记 (10)2.2课后习题详解 (17)2.3名校考研真题详解 (22)第3章生物信息的传递(上)——从DNA到RNA (36)3.1复习笔记 (36)3.2课后习题详解 (44)3.3名校考研真题详解 (49)第4章生物信息的传递(下)——从mRNA到蛋白质 (62)4.1复习笔记 (62)4.2课后习题详解 (71)4.3名校考研真题详解 (78)第5章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术 (90)5.1复习笔记 (90)5.2课后习题详解 (96)5.3名校考研真题详解 (101)第6章分子生物学研究法(下)——基因功能研究技术 (114)6.1复习笔记 (114)6.2课后习题详解 (120)6.3名校考研真题详解 (124)第7章原核基因表达调控 (132)7.1复习笔记 (132)7.2课后习题详解 (138)7.3名校考研真题详解 (140)第8章真核基因表达调控 (147)8.1复习笔记 (147)8.2课后习题详解 (154)8.3名校考研真题详解 (158)第9章疾病与人类健康 (168)9.1复习笔记 (168)9.2课后习题详解 (174)9.3名校考研真题详解 (177)第10章基因与发育 (182)10.1复习笔记 (182)10.2课后习题详解 (183)10.3名校考研真题详解 (185)第11章基因组与比较基因组学 (186)11.1复习笔记 (186)11.2课后习题详解 (189)11.3名校考研真题详解 (192)第1章绪论1.1复习笔记一、分子生物的概念分子生物学是从分子水平研究生物结构、组织和功能的一门学科,以核酸、蛋白质等生物大分子的结构、形态及其在遗传信息和细胞信息传递中的作用和功能为研究对象。
朱玉贤分子生物学重点
![朱玉贤分子生物学重点](https://img.taocdn.com/s3/m/9db8c74a49649b6648d747d2.png)
朱玉贤分子生物学重点等位基因:同一座位存在的两个以上不同状态的基因。
变性:双链DNA因加温, 极端pH, 尿素, 酰胺等变成单链DNA的过程。
复性:变性DNA在一定条件下恢复天然DNA的结构的过程。
熔点:OD增加值的中点温度。
增色效应:由于DNA变性而引起的光吸收的增加称为增色效应。
1.DNA与RNA结构上的主要区别是什么?1)核糖2)碱基3)单链/双链4)稳定性5)数量和长度2.Watson & Crick DNA 双螺旋模型的要点?1)脱氧核糖和磷酸基通过3’,5’磷酸二酯键交互连接,成为螺旋链的骨架。
螺旋的直径20Å。
主链处于螺旋的外侧,核糖平面与螺旋轴平行,碱基处于螺旋的内侧。
2)嘌呤和嘧啶相配,碱基平面与螺旋轴基本垂直。
3)螺距为34 Å,包含10个核苷酸。
4)双螺旋中存在大沟和小沟。
5)蛋白质因子与DNA 的特异结合依赖于氨基酸与DNA 间的氢键的形成。
6)蛋白质因子沿大沟与DNA形成专一性结合的机率与多样性高于沿小沟的结合。
3.影响DNA双螺旋结构稳定性的主要因素有那些?1)氢键,碱基堆积力(范德华力,疏水作用),磷酸酯键,核苷酸序列(从嘌呤到嘧啶的方向的碱基堆集作用显著大于同样组成的嘧啶到嘌呤方向的碱基堆集作用)2)磷酸基团间的静电斥力4.了解超螺旋的概念(83), 区分DNA拓扑异构酶I 和 II的不同作用机理。
(91)双螺旋线状分子再度螺旋化成为超螺旋结构。
Top I催化DNA链的断裂和重新连接,每次只作用于一条链,消除负超螺旋。
Top II同时断裂并连接双股DNA链,通常需要能量辅因子ATP。
分二类,DNA 旋转酶引入负超螺旋,另一类转变超螺旋DNA成为没有超螺旋的松弛形式。
Top I ~ Top II 含量的平衡严格控制体内负超螺旋维持在5%水平,保证DNA 的各种遗传活动。
2基因组:C值:单倍体基因组总DNA 的含量。
C值矛盾:1)生物体进化程度高低与大C值不成明显相关(非线性)2)亲缘关系相近的生物大C值相差较大3)一种生物内大C值与小c值相差极大。
分子生物学(朱玉贤第四版)复习提纲思维导图 7.原核生物基因表达调控
![分子生物学(朱玉贤第四版)复习提纲思维导图 7.原核生物基因表达调控](https://img.taocdn.com/s3/m/6d8b6d6801f69e31433294a3.png)
启动子 操纵子 操纵基因 结构基因 ←调节基因(调节蛋白) 阻遏蛋白 内因 基因表达 诱导物 外因(环境) 小分子效应物 阻遏物 正控阻遏 调节基因(调节蛋白) 激活蛋白 正转录调控 模型 正控诱导 负控阻遏 负转录调控 负控诱导
结构
乳糖操纵子
无乳糖 转录水平调控 负控诱导机制 有乳糖 无葡萄糖 正调控(葡萄糖效应) 有葡萄糖
关于分子生物学总结归纳朱玉贤版
![关于分子生物学总结归纳朱玉贤版](https://img.taocdn.com/s3/m/c00a113903d8ce2f006623bb.png)
结合着下载的资料复习吧~~~~绪论分子生物学的发展简史Schleiden和Schwann提出“细胞学说”孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律Miescher首次从莱茵河鲑鱼精子中分离出DNAMorgan基因存在于染色体上、连锁遗传规律Avery证明基因就是DNA分子,提出DNA是遗传信息的载体McClintock首次提出转座子或跳跃基因概念Watson和Crick提出DNA双螺旋模型Crick提出了“中心法则”Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制Jacob和Monod提出了着名的乳糖操纵子模型Arber首次发现DNA限制性内切酶的存在Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA)第二章染色体与DNA第一节染色体一、真核细胞染色体的组成DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05(一)蛋白质(组蛋白、非组蛋白)(1)组蛋白:H1、H2A、H2B、H3、H4功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用(2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。
常见的有(HMG蛋白、DNA结合蛋白)二、染色质染色体:分裂期由染色质聚缩形成。
染色质:线性复合结构,间期遗传物质存在形式。
常染色质(着色浅)具间期染色质形态特征和着色特征染色质异染色质(着色深)结构性异染色质兼性异染色质(在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分子H1组成。
分子生物学牛人笔记
![分子生物学牛人笔记](https://img.taocdn.com/s3/m/a11c8f30195f312b3169a5e2.png)
现代分子生物学笔记〔朱玉贤版〕.yzubbs./?forum-49-4.html 摘自:.lg30.第一讲序论二、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征与其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的根底学科。
当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为提醒这些遗传密码所进展的努力就成为人类征服自然的一局部,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。
从1847年Schleiden和Schwann提出"细胞学说",证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。
孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说那么进一步将"性状"与"基因"相耦联,成为分子遗传学的奠基石。
Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分提醒遗传信息的传递规律铺平了道路。
在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳与层析技术于1953年首次说明胰岛素的一级结构,开创了蛋白质序列分析的先河。
而Kendrew和Perutz利用X射线衍射技术解析了肌红蛋白〔myoglobin〕与血红蛋白〔hemoglobin〕的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。
1910年,德国科学家Kossel第一个别离了腺嘌呤,胸腺嘧啶和组氨酸。
1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。
同年,Kornberg实现了试管内细菌细胞中DNA的复制。
[VIP专享]现代分子生物学笔记朱玉贤
![[VIP专享]现代分子生物学笔记朱玉贤](https://img.taocdn.com/s3/m/de40f41902d276a201292e0e.png)
第一章绪论分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。
它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。
生物化学与分子生物学关系最为密切 :生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。
传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。
分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。
细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。
探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。
分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。
第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。
指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。
达尔文第一个认识到生物世界的不连续性。
意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。
细胞学说细胞学说的建立及其意义德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。
朱玉贤第三版分子生物学考研要点
![朱玉贤第三版分子生物学考研要点](https://img.taocdn.com/s3/m/752c1337f705cc17542709c0.png)
分子生物学复习要点笔记朱玉贤(第三版)一、分子生物学、染色体和的基本概念1. (分子生物学):指研究核酸、蛋白质等所有生物大分子形态、结构特征及其重要性、规律性和相互关系的科学。
2. 重组技术():又称为基因工程,根据分子生物学和遗传学的原理,将一种生物的遗传物质转移到另一生物体中,使后者获得新的遗传性状或表达出所需要的产物。
3. 作为遗传物质的载体的两个经典实验:⑴、美国著名微生物学家:肺炎双球菌的转染实验⑵、美国冷泉港卡耐基遗传学实验室科学家和他的学生在1952年做的噬菌体侵染细菌的实验。
4. (染色体):原指真核生物细胞分裂中期具有一定形态特征的染色质。
现在这一概念已扩大为包括原核生物及细胞器在内的基因载体的总称。
具有的特征:①分子结构相对稳定;②能够自我复制,使亲代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。
5. 真核细胞染色体的组成:(3040%),组蛋白()(3040%),非组蛋白()(变化很大),少量。
6. C (C值):通常指一种生物单倍体基因组的总量。
7. 真核生物细胞序列大致可被分为3类:不重复序列、中度重复序列和高度重复序列(卫星)。
8. 真核生物染色体的组成及组装过程:核小体→螺线管(6个核小体)→超螺旋9. 核小体():染色质纤维细丝是许多核小体连成的念珠状结构。
绕在组蛋白八聚体(H2A、H2B、H3、H4各一对)核心外1.8周(146),形成核小体核心颗粒。
10. 的一级结构:所谓的一级结构,就是指4种核苷酸的连接及其排列顺序,表示了该分子的化学构成。
基本特点:①分子是由两条互相平行的脱氧核苷酸长链盘绕而成的;②分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧;③两条链上的碱基通过氢键相结合,形成碱基对,它的组成有一定的规律。
这就是嘌呤及嘧啶配对,而且腺嘌呤(A)只能及胸腺嘧啶(T)配对,鸟嘌呤(G)只能及胞嘧啶(C)配对。
现代分子生物学笔记第三版朱玉贤
![现代分子生物学笔记第三版朱玉贤](https://img.taocdn.com/s3/m/e8a78daab0717fd5360cdc60.png)
第一章绪论1、两个经典实验证明遗传物质是DNA而不是蛋白质(1)肺炎球菌在小鼠体内的毒性实验:先将光滑的致病菌S菌烧煮杀灭活性后,以及活的粗糙型细菌R菌分别侵染小鼠,发现这些细菌自然丧失了致病能力。
当他们将烧煮杀死的S 菌和活的R菌混合在感染小鼠时,实验小鼠每次都死亡了。
解剖死鼠,发现有大量活的S 型细菌,实验表明,死细菌的DNA进行了可遗传的转化,从而导致小鼠死亡。
(2)T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应有s标记的蛋白质或p标记的核酸。
分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带s标记的蛋白质,但含有30%以上的p标记。
说明在噬菌体传代过程中发挥作用的可能是DNA,而不是蛋白质。
第二章染色体与DNA构成DNA和RNA分子的五种含氮碱基的结构式:第一节染色体1、真核细胞的染色体具有如下性质:分子结构相对稳定;能够自我复制,使亲子代保持连续性;能指导蛋白质的合成,从而控制生命过程;能产生可遗传的变异。
2、染色体上的蛋白质包括组蛋白和非组蛋白。
组蛋白是染色体的结构蛋白,它与DNA组成核小体。
组蛋白分为H1、H2A、H2B、H3、H4。
组蛋白:histones真和生物体细胞染色质中的碱性蛋白质含精氨酸和赖氨酸等碱性氨基酸特别多,二者加起来约为所有氨基酸残基的四分之一。
3、组蛋白的一般特性:○1进化上的极端保守:不同种生物组蛋白的氨基酸组成是十分相似的,特别是H3、H4可能对稳定真核生物的染色体结构起重要作用。
○2无组织特异性○3肽链上氨基酸分布的不对称性○4存在较普遍的修饰作用○5富含赖氨酸的组蛋白H54、非组蛋白:主要包括与复制和转录有关的酶类、与细胞分裂有关的蛋白等。
5、真核生物基因组DNA:真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开。
分子生物学(朱玉贤第四版)复习纲要
![分子生物学(朱玉贤第四版)复习纲要](https://img.taocdn.com/s3/m/ff3883ad168884868762d6f3.png)
绪论一、名词1、分子生物学 Molecular Biology2、中心法则 Central Dogma二、问答1、简述孟德尔、摩尔根、Avery、沃森和克里克、雅各布和莫诺,尼伦伯格和科拉纳等人对分子生物学发展的贡献2、早期验证遗传物质是DNA的实验有哪些,具体过程是?3、分子生物研究的内容包括哪些?DNA的复制、转录与翻译DNA重组技术基因表达调控研究生物大分子的结构功能研究—结构分子生物学基因(组)、功能基因(组)与生物信息学研究第1章、染色体与DNA第一节、染色体与DNA名词1、DNA双螺旋:两条多核苷酸链反向平行盘绕所生成的双链结构.2、DNA三级结构: DNA 双螺旋进一步扭曲盘绕形成的特定空间结构。
3、核小体:是由核心颗粒(H2A、H2B、H3、H4各两个分子生成的八聚体)和连接区DNA(大约200bpDNA)组成4、卫星DNA:又称随体DNA。
因为真核细胞DNA的一部分是不被转录的异染色质成分,其碱基组成与主体DNA不同,因而可用密度梯度离心。
卫星DNA通常是高度串联重复的DNA5、端粒(Telomere):是位于真核细胞线性染色体末端的特殊结构,由一段重复串联的DNA序列与端粒结合蛋白构成.6、端粒T环结构:端粒形成T环结构使染色体末端封闭起来,免遭破坏.7、单顺反子:真核基因转录产物为单顺反子,即一条mRNA模板只含有一个翻译起始点和一个终止点,因而一个基因编码一条多肽链或RNA链。
8、断裂基因(splitting gene):真核生物结构基因,由若干个和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续组成的完整蛋白质,这些基因称为断裂基因9、间隔基因(Interrupted gene):由于这组基因发生突变时会导致果蝇体节模式发生间隔缺失现象,所以将它们称为间隔基因10、外显子(Exon) 是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质11、内含子(Intron ) 在转录后的加工中,从最初的转录产物除去的内部的核苷酸序列12、单核苷酸多态性 Single Nucleotide Polymorphism,SNP:主要是指在基因组水平上由单个的变异所引起的。
现代分子生物学(朱贤玉)
![现代分子生物学(朱贤玉)](https://img.taocdn.com/s3/m/e60d6d0cbb68a98271fefafd.png)
分子生物学笔记完全版第一章基因的结构第一节基因和基因组一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列.一个典型的真核基因包括①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR)④调控序列(可位于上述三种序列中)绝大多数真核基因是断裂基因(split-gene),外显子不连续。
二、基因组(genome)一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。
人基因组3X1 09(30亿bp),共编码约10万个基因。
每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。
人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。
蛋白质组(proteome)和蛋白质组学(proteomics)第二节真核生物基因组一、真核生物基因组的特点:,①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中.②真核基因组中,编码序列只占整个基因组的很小部分(2—3%),二、真核基因组中DNA序列的分类 •(一)高度重复序列(重复次数>lO5)卫星DNA(Satellite DNA)(二)中度重复序列1.中度重复序列的特点①重复单位序列相似,但不完全一样,②散在分布于基因组中.③序列的长度和拷贝数非常不均一,④中度重复序列一般具有种属特异性,可作为DNA标记.⑤中度重复序列可能是转座元件(返座子),2.中度重复序列的分类①长散在重复序列(long interspersed repeated segments.) LINES②短散在重复序列(Short interspersed repeated segments) SINESSINES:长度<500bp,拷贝数>105.如人Alu序列LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl(三)单拷贝序列(Unique Sequence)包括大多数编码蛋白质的结构基因和基因间间隔序列,三、基因家族(gene family)一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。
分子生物学(朱玉贤第四版)复习提纲思维导图 2.染色质与DNA
![分子生物学(朱玉贤第四版)复习提纲思维导图 2.染色质与DNA](https://img.taocdn.com/s3/m/61ac796a01f69e31433294c2.png)
H1 蛋白质 组蛋白 H2A H2B H3 H4 基因组 概念: C值 C值矛盾 不重复序列 结构基因 rRNA DNA片段重复 染色质(间期)染色体(分裂期) 高度重复序列 结构简练 DNA 原核 转录单元 中度重复序列 tRNA 组蛋白基因 卫星DNA 各2个,八聚体组蛋白核心+H1+200bpDNA 核小体 螺线管 超螺旋 染色单体
一条DNA来自亲本,另一条链新合成 前导链
Ⅰ
DNA聚合酶 Ⅱ Ⅲ 多复制起点,ARS S期 真核生物复制特点
5'→3'聚合酶、3'→5'外切、5'→3'外切
5'→3'聚合酶、3'→5'外切 5'→3'聚合酶、3'→5'外切
复制叉移动速度50bp/s,慢 聚合酶15种以上,αβγδε
端粒酶、端粒
dNTP、Mg2+、模板链、引物、方向5'→3'
重叠基因
断裂基因 端粒 基因组特点:
DNA多态性
真核 多种顺式作用元件 单顺反子 基因组大 重复序列
少量RNA
一级结构
A,T,G,C排列顺序
3',5'-磷酸二酯键
右手螺旋 双螺旋 二级结构 DNA的结构 氢键 左手螺旋 断裂-DNA变性
A-DNA
B-DNA
Z-DNA 增色效应 减色效应 Tm
重新生成-DNA复性 正超 超螺旋 高级结构 拓扑异构酶 负超
复制子 复制叉 复制起点ori 原核:单起点双方向 复制方向 真核:多起点双方向 复制概念 复制速度 θ型 环形DNA 复制方式 D型 线性DNA 半保留复制 复制特点 半不连续复制 后随链 冈琦片段 ori DNA的复制 起始 解旋 引发 复制过程 延伸 原核生物复制特点 终止 Tus蛋白 5'→3' dNTP DNA聚合酶Ⅲ、滑动夹、RNA酶、DNA聚合酶Ⅰ、DNA连接酶 Ter 245bp A、T DNA解旋酶、拓扑异构酶、SSB 引发酶 RNA引物 端粒、端粒酶 滚环
分子生物学总结(朱玉贤版)
![分子生物学总结(朱玉贤版)](https://img.taocdn.com/s3/m/0be4265e011ca300a7c39009.png)
分子生物学总结(朱玉贤版)核小体的定位对转录有促进作用中期染色体由着丝粒、染色体臂、次缢痕、随体、端粒(由重复的寡核苷酸序列构成)5部分组成。
核型:指染色体组在有丝分裂中期的表型, 是染色体数目、大小、形态特征的总和。
第二节DNAChargaff定则:(1) 同一生物的不同组织的DNA碱基组成相同(2) 一种生物DNA碱基组成不随生物体的年龄、营养状态或者环境变化而改变(3) [A]=[T]、[G]=[C],总的嘌呤摩尔含量与总的嘧啶摩尔含量相同([A+G]=[C+T])(4)不同生物来源的DNA碱基组成不同,表现在A+T/G+C比值的不同(一)DAN的结构一级结构:四种脱氧核糖核苷酸dAMP、dGMP、dCMP、dTMP,通过3',5'-磷酸二酯键连接起来的直线形或环形多聚体。
某DNA分子的一条多核苷酸链由100个不同的碱基组成,其可能的排列方式有4^100种右手螺旋:A-DNA 、B-DNA(最常见)二级结构:双螺旋结构左手螺旋:Z-DNAB-DNA:(Watson-Crick)92%湿度下的钠盐结构碱基平面与双螺旋的长轴相垂直,碱基间符合碱基互补配对原则,相邻碱基对平面间的距离为0.34nm,双旋旋的螺距为3.4nm,每圈螺旋有10个碱基对,螺旋直径为2.0nm。
A=T(两个氢键),G=C(三个氢键),具大沟和小沟。
A-DNA:相对湿度75%以下的结构,每圈螺旋有11个碱基对,螺体较宽而短,碱基对与中心轴的倾角也不同,呈19°大沟变窄、变深,小沟变宽、变浅。
若DNA 双链中一条链被相应RNA替换,则变构为A-DNA。
(基因表达)Z-DNA:左手螺旋,螺距延长(4.5nm左右),直径变窄(1.8nm),每个螺旋含12个碱基对。
螺旋骨架呈Z字形。
(转录调控)正超螺旋(左旋、双螺旋圈数增加而拧紧)三级结构:双螺旋进一步扭曲形成超螺旋负超螺旋(右旋、减少而拧松,绝大多数)White方程:L=T+WL(Linking number):连环数或称拓扑环绕数,指cccDNA中一条链绕另一条链的总次数。
现代分子生物学重点笔记朱玉贤版
![现代分子生物学重点笔记朱玉贤版](https://img.taocdn.com/s3/m/8b4643346294dd88d1d26b70.png)
当代分子生物学笔记(朱玉贤版)摘自:第一讲序论二、当代分子生物学中重要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子形态、构造特性及其重要性、规律性和互有关系科学,是人类从分子水平上真正揭开生物世界奥秘,由被动地适应自然界转向积极地改造和重组自然界基本学科。
当人们意识到同毕生物不同世代之间持续性是由生物体自身所携带遗传物质所决定,科学家为揭示这些遗传密码所进行努力就成为人类征服自然一某些,而以生物大分子为研究对像分子生物学就迅速成为当代社会中最具活力科学。
从1847年Schleiden和Schwann提出"细胞学说",证明动、植物都是由细胞构成到今天,虽然但是短短一百近年时间,咱们对生物大分子--细胞化学构成却有了深刻结识。
孟德尔遗传学规律最先使人们对性状遗传产生了理性结识,而Morgan基因学说则进一步将"性状"与"基因"相耦联,成为分子遗传学奠基石。
Watson和Crick所提出脱氧核糖酸双螺旋模型,为充分揭示遗传信息传递规律铺平了道路。
在蛋白质化学方面,继Sumner在1936年证明酶是蛋白质之后,Sanger运用纸电泳及层析技术于1953年初次阐明胰岛素一级构造,开创了蛋白质序列分析先河。
而Kendrew 和Perutz运用X射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)三维构造,论证了这些蛋白质在输送分子氧过程中特殊作用,成为研究生物大分子空间立体构型先驱。
19,德国科学家Kossel第一种分离了腺嘌呤,胸腺嘧啶和组氨酸。
1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内遗传信息通过RNA翻译成蛋白质过程。
同年,Kornberg实现了试管内细菌细胞中DNA复制。
1962年,Watson(美)和Crick(英)由于在1953年提出DNA反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证明了Watson-Crick模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章染色体与DNA染色体(chromosome)是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。
真核生物的染色体在细胞生活周期的大部分时间里都是以染色质(chromatin)的形式存在的。
染色质是一种纤维状结构,叫做染色质丝,它是由最基本的单位—核小体(nucleosome)成串排列而成的。
原核生物(prokaryote) :DNA形成一系列的环状附着在非组蛋白上形成类核。
染色体由DNA和蛋白质组成。
蛋白质由非组蛋白和组蛋白(H1,H2A,H2B,H3,H4)DNA和组蛋白构成核小体。
组蛋白的一般特性:P24①进化上的保守性②无组织特异性③肽链氨基酸分布的不对称性:碱性氨基酸集中分布在N端的半条链上。
④组蛋白的可修饰性:甲基化、乙基化、磷酸化及ADP核糖基化等。
⑤ H5组蛋白的特殊性:富含赖氨酸(24%)(鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5)组蛋白的可修饰性在细胞周期特定时间可发生甲基化、乙酰化、磷酸化和ADP核糖基化等。
H3、H4修饰作用较普遍,H2B有乙酰化作用、H1有磷酸化作用。
所有这些修饰作用都有一个共同的特点,即降低组蛋白所携带的正电荷。
这些组蛋白修饰的意义:一是改变染色体的结构,直接影响转录活性;二是核小体表面发生改变,使其他调控蛋白易于和染色质相互接触,从而间接影响转录活性。
2、DNA1) DNA的变性和复性■变性(Denaturation) DNA双链的氢键断裂,最后完全变成单链的过程称为变性。
■增色效应(Hyperchromatic effect)在变性过程中,260nm紫外线吸收值先缓慢上升,当达到某一温度时骤然上升,称为增色效应。
■融解温度(Melting temperature ,Tm ) 变性过程紫外线吸收值增加的中点称为融解温度。
生理条件下为85-95℃影响因素:G+C含量,pH值,离子强度,尿素,甲酰胺等■复性(Renaturation)热变性的DNA缓慢冷却,单链恢复成双链。
■减色效应(Hypochromatic effect) 随着DNA的复性,260nm紫外线吸收值降低的现象。
2) C值反常现象(C-value paradox) C值是一种生物的单倍体基因组DNA的总量。
真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是著名的“C值反常现象”。
(四)核小体(nucleosome):用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核[(H2A、H2B、H3、H4)*2的八聚体】构成的。
1、原核生物基因组结构特点●基因组很小,大多只有一条染色体●结构简炼●存在转录单元(trnascriptional operon)●多顺反子(polycistron)重叠基因由基因基因、部分重叠基因、一个碱基重叠组成。
2、真核生物基因组结构特点●真核基因组结构庞大 3×109bp、染色质、核膜●单顺反子●基因不连续性断裂基因(interrupted gene)、含子(intron)、外显子(exon) ●非编码区较多多于编码序列(9:1)●含有大量重复序列■不重复序列/单一序列:在基因组中有一个或几个拷贝。
真核生物的大多数基因在单倍体中都是单拷贝的。
如:蛋清蛋白、血红蛋白等功能:主要是编码蛋白质。
■中度重复序列:在基因组中的拷贝数为101~104。
如:rRNA、tRNA 一般是不编码蛋白质的序列,在调控基因表达中起重要作用■高度重复序列:拷贝数达到几百个到几百万个。
●卫星DNA:A·T 含量很高的简单高度重复序列。
1、 DNA的一级结构:指4种脱氧核苷酸的连接及其排列顺序, DNA序列是这一概念的简称。
碱基序列2)特征:●双链反向平行配对而成●脱氧核糖和磷酸交替连接,构成DNA骨架,碱基排在侧●侧碱基通过氢键互补形成碱基对(A:T,C:G)。
2、DNA 的二级结构:指两条多核苷酸链反向平行盘绕所产生的双螺旋结构。
2)分类:右手螺旋:A-DNA,B-DNA左手螺旋:Z-DNA3、DNA的高级结构:指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。
是一种比双螺旋更高层次的空间构象。
2)主要形式:超螺旋结构(正超螺旋和负超螺旋)(一)DNA的半保留复制(semi-nservative replication)1、定义:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式称半保留复制。
3、DNA半保留复制的生物学意义:DNA的半保留复制表明DNA在代上的稳定性,保证亲代的遗传信息稳定地传递给后代。
(二)与DNA复制有关的物质1、原料:四种脱氧核苷三磷酸(dATP、dGTP、dCTP、dTTP)2、模板:以DNA的两条链为模板链,合成子代DNA3、引物:DNA的合成需要一段RNA链作为引物4、引物合成酶(引发酶):此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA 的引物(Primer)。
实质是以DNA为模板的RNA聚合酶。
5、 DNA聚合酶:以DNA为模板的DNA合成酶●以四种脱氧核苷酸三磷酸为底物●反应需要有模板的指导●反应需要有3-OH存在●DNA链的合成方向为5 3性质聚合酶Ⅰ聚合酶Ⅱ聚合酶Ⅲ3' 5 '外切活性+ + +5' 3 '外切活性+ - -5' 3'聚合活性+ 中+ 很低+ 很高新生链合成- - +聚合酶Ⅰ主要是对DNA损伤的修复;以及在DNA复制时切除RNA引物并填补其留下的空隙。
聚合酶Ⅱ修复紫外光引起的DNA损伤聚合酶ⅢDNA 复制的主要聚合酶,还具有3→5’外切酶的校对功能,提高DNA复制的保真性6、DNA连接酶(1967年发现):若双链DNA中一条链有切口,一端是3’-OH,另一端是5’-磷酸基,连接酶可催化这两端形成磷酸二酯键,而使切口连接。
但是它不能将两条游离的DNA单链连接起来DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用7、DNA 拓扑异构酶(DNA Topisomerase):拓扑异构酶І:使DNA一条链发生断裂和再连接,作用是松解负超螺旋。
主要集中在活性转录区,同转录有关。
例:大肠杆菌中的ε蛋白拓扑异构酶Ⅱ:该酶能暂时性地切断和重新连接双链DNA,作用是将负超螺旋引入DNA 分子。
同复制有关。
例:大肠杆菌中的DNA旋转酶8、DNA 解螺旋酶 /解链酶(DNA helicase):通过水解ATP获得能量来解开双链DNA。
E.coli中的rep蛋白就是解螺旋酶,还有解螺旋酶I、II、III。
rep蛋白沿3 ’5’移动,而解螺旋酶I、II、III沿5 ’3’移动。
9、单链结合蛋白(SSBP-single-strand binding protein):稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。
(三)DNA的复制过程(大肠杆菌为例)⏹双链的解开⏹ RNA引物的合成⏹ DNA链的延伸⏹切除RNA引物,填补缺口,连接相邻的DNA片段1、双链的解开------ftju制有特定的起始位点,叫做复制原点。
ori(或o)、富含A、T的区段。
从复制原点到终点,组成一个复制单位,叫复制子复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉双链解开、复制起始P44大约20个DnaA蛋白在ATP的作用下与oriC处的4个9bp保守序列相结合在HU蛋白和ATP的共同作用下,Dna复制起始复合物使3个13bp直接重复序列变性,形成开链解链酶六体分别与单链DNA相结合(需DnaC帮助),进一步解开DNA双链2、RNA引物的合成DnaB蛋白活化引物合成酶,引发RNA引物的合成。
引物长度约为几个至10个核苷酸,3、DNA链的延伸DNA的半不连续复制(semi-discontinuous replication):DNA复制时其中一条子链的合成是连续的,而另一条子链的合成是不连续的,故称半不连续复制。
在DNA复制时,合成方向与复制叉移动的方向一致并连续合成的链为前导链;合成方向与复制叉移动的方向相反,形成许多不连续的片段,最后再连成一条完整的DNA链为滞后链。
在DNA复制过程中,前导链能连续合成,而滞后链只能是断续的合成5 3 的多个短片段,这些不连续的小片段称为冈崎片段。
4、切除RNA引物,填补缺口,连接相邻的DNA片段(复制终止)当复制叉遇到约22个碱基的重复性终止子序列(Ter)时,Ter-Tus蛋白复合物能使DnaB不再将DNA解链,阻挡复制叉继续前移。
P47在DNA聚合酶Ⅰ催化下切除RNA引物;留下的空隙由DNA聚合酶Ⅰ催化合成一段DNA 填补上;在DNA连接酶作用下,连接相邻的DNA链(四)复制的几种主要方式 P421、双链环状、θ型复制、双向等速2、滚环型:(1)模板链和新合成的链分开;(2)不需RNA引物,在正链3‘-OH上延伸(3)只有一个复制叉;3、D环复制---单向复制的特殊方式如:动物线粒体DNA(五)真核生物中DNA的复制特点1、真核生物每条染色体上有多个复制起点,多复制子(约150bp左右);2、复制叉移动的速度较慢(约50bp/秒),仅为原核生物的1/10。
3、真核生物染色体在全部复制完之前,各个起始点不再重新开始DNA复制;真核生物快速生长时,往往采用更多的复制起点。
4、真核生物有多种DNA聚合酶。
5、真核生物DNA复制过程中的引物及冈崎片段的长度均小于原核生物。
(真核冈崎片段长约100-200bp,原核冈崎片段长约1000-2000bp。
)(六)原核和真核生物DNA的复制特点比较①复制起点(ori):原核一个,真核多个;②复制子:原核一个,真核多个;③复制子长度:原核长;真核短;④复制叉:原核多个;真核多个;⑤复制移动速度:原核较快;真核较慢;⑥真核生物染色体在全部完成复制前,各起始点的DNA 复制不能再开始。
而在快速生长的原核生物中,复制起点上可以连续开始新的DNA复制。
⑦原核生物染色体的复制与细胞分裂同步,可以多次复制;真核生物染色体的复制发生在S期,是细胞分类的特定时期,而且仅此一次。
四、DNA的修复DNA修复系统功能错配修复恢复错配1、错配修复(mismatch repair)●Dam甲基化酶使母链位于5’GATC序列中腺甘酸甲基化●甲基化紧随在DNA复制之后进行(几秒种后至几分钟)●根据复制叉上DNA甲基化程度,切除尚未甲基化的子链上的错配碱基2、碱基切除修复 excision repair所有细胞中都带有不同类型、能识别受损核苷酸位点的糖苷水解酶,它能特意切除受损核苷酸上的N-β-糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。