五年级下册《探索图形》
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下数学《探索图形》教学设计
教学内容:教科书第44页内容
教学目标:
1进一步认识和理解正方体特征。
2通过观察、列表、想象等活动经历“找规律”过程,获得“化繁为简”的解决问题的经验,培养学生的空间想象力,让学生体会分类、数形结合、归纳、推理、模型等数学思想。积累数学思维的活动经验。
3在相互交流中,学会倾听他人意见,及时自我修正、自我反思,增强学好数学的信心。
教学重点:学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:探索规律的归纳方法。
教学过程:小正方体学具课件
教学过程:
(一)引发问题
1.复习正方体特征
课件出示:
棱长1厘米
(1)请同学们看屏幕,这是什么图形?
(2)正方体有哪些特征?
(二)探索规律
1.发现规律
(1)你认为什么样的图形比较简单,我们容易找到答案?
(2)下面我们就来研究这三个图形,看看有什么发现?
①②③
(3)四人一组,小组合作探究
①用正方体学具摆出相应的图形
②观察每类小正方体都在什么位置
③把结果填在记录表中
④观察记录表中的数据,能否找到规律
三面涂色的块数两面涂色的块数一面涂色的块数没有涂色的块数
①
②
③
(4)汇报交流
①适时提问:怎样计算没有涂色的块数?
②初步发现规律
三面涂色的块数两面涂色的块数一面涂色的块数没有涂色的块数
①
8 0 0 0
②1×12=1212×6=613=1
③2×12=2422×6=2423=8
2.验证猜想
(1)按照这样的规律摆下去,你能猜想一下第④个,第⑤个大正方体的结果吗?
④⑤
3.总结归纳
I)文字表示
(1)三面涂色的在正方体顶点位置,因为正方体有8顶点,所以都有8个.
(2)两面涂色的在正方体棱上除去两端的位置块数,因为正方体有12棱,
所以有(每条棱上小正方体块数-2)×12个
(3)一面涂色的在正方体每个面除去周边一圈的位置,因为正方体有6个面,
所以有(每条棱上小正方体块数-2)2×6个
(4)没有涂色的在正方体里面除去表面一层的位置,所以有(每条棱上小正方体块数-2)3个
II)字母表示
若用n表示大正方体每条棱上小正方体块数,则小正方体涂色规律为
a三面涂色的小正方体块数:8
b两面涂色的小正方体块数:(n-2)×12
c一面涂色的小正方体块数:(n-2)2×6
d没有涂色的小正方体块数:(n-2)3
4.应用规律
解决开始遇到的问题
(三)巩固迁移
课件出示
1 2 3
1.如果请你数一数这样的几何体,你打算怎样做?
第一层:1个
第二层:(1+2)个
第三层:(1+2+3)个
第四层:(1+2+3+4)个
………
第1个图形小正方体总数:1+(1+2)=4
第2个图形小正方体总数:1+(1+2)+(1+2+3)=10
第3个图形小正方体总数:1+(1+2)+(1+2+3)+(1+2+3+4)=20
2.如果把这几个几何体的表面涂上颜色,你能根据涂色的情况给这些小正方体分类吗?
3.按这样的规律摆下去,第5个图形的结果是多少呢?
(四)课堂小结
通过这节课的学习,你有什么收获?
分类的思想,转化与化归的思想,...
板书设计:
若用n表示大正方体每条棱上小正方体块数,则小正方体涂色规
律为
a三面涂色的小正方体块数:8
b两面涂色的小正方体块数:(n-2)×12
c一面涂色的小正方体块数:(n-2)2×6
d没有涂色的小正方体块数:(n-2)3