金属材料的力学性能资料

合集下载

金属材料的力学性能

金属材料的力学性能
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力 表达。 如:120HBS 500HBW 600HBS1/30/20 3、优缺陷
(1)测量值较精确,反复性好,可测组织不均匀材料(铸铁)(2) 可测旳硬度值不高(3)不测试成品与薄件(4)测量费时,效率低
4、测量范围
用于测量调质钢、铸铁、非金属材料及有色金属材料等.
6
第一章 金属旳力学性能
引言:
第二节 硬度
1、定义:指材料局部体积内抵抗弹性、塑性变形、压 痕和划痕旳能力。它是衡量材料软硬程度旳指标,其物 理含义与试验措施有关。
2、硬度旳测试措施 (1)布氏硬度 (2)洛氏硬度 (3)维氏硬度
7
§1-2 硬度
一、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径旳球体(淬火钢球或硬质合金球)以相应旳试验力 压入待测材料表面,保持要求时间并到达稳定状态后卸除试验力,测量 材料表面压痕直径,以计算硬度旳一种压痕硬度试验措施。
布氏硬度计
返回
16
洛氏硬度计
返回
17
维氏硬度计
返回
18
布洛维氏硬度计
19
8
§1-2 硬度
二、洛氏硬度
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力旳作用下压入试样表面, 经要求时间后卸除试验力,用测量旳残余压痕深度增量来计算硬度旳一
种压痕硬度试验。
2、洛氏硬度值 出。如:50HRC 3、优缺陷
用测量旳残余压痕深度表达。可从表盘上直接读
(1)试验简朴、以便、迅速(2)压痕小,可测成品、薄件(3)数据 不够精确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
4、测量范围

金属材料的力学性能与测试方法

金属材料的力学性能与测试方法

金属材料的力学性能与测试方法导语:金属材料作为一种重要的结构材料,其力学性能对于工程设计和材料选择具有重要的影响。

本文将介绍金属材料的力学性能参数及其测试方法,以及测试过程中需要注意的问题。

一、金属材料的力学性能参数金属材料的力学性能参数主要包括强度、延展性、硬度、韧性、疲劳性和冷加工性等。

1. 强度强度是金属材料的抗拉、抗压、抗弯或剪切等力学性能的表征。

常见的强度参数有屈服强度、抗拉强度、抗压强度和抗弯强度等。

屈服强度指的是金属材料开始产生塑性变形时所经受的最大应力;抗拉强度指的是金属材料在拉伸断裂之前能承受的最大应力。

2. 延展性延展性是材料在拉伸过程中的塑性变形能力。

常见的延展性参数有延伸率和断面收缩率等。

延伸率是指金属样品在拉伸过程中断裂前的伸长程度;断面收缩率是指拉伸断裂后试样的横截面积缩小的比例。

3. 硬度硬度是金属材料抵抗表面压痕或穿刺的能力。

常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

4. 韧性韧性是金属材料在受到冲击或扭曲力作用下的能量吸收能力。

常见的韧性测试方法包括冲击试验和扭转试验。

5. 疲劳性疲劳性是金属材料在交变应力作用下的抗疲劳性能。

常见的疲劳测试方法有拉伸疲劳试验和弯曲疲劳试验等。

6. 冷加工性冷加工性是指金属材料在冷变形(如冷轧、冷拔等)过程中的变形能力。

冷加工性好的金属材料可以在变形过程中获得较高的强度和硬度。

二、金属材料的力学性能测试方法1. 拉伸试验拉伸试验是测量金属材料强度和延展性的常用方法。

该试验通过施加拉应力使金属样品产生塑性变形,测量应力和应变相关的参数以评估材料的机械性能。

2. 压缩试验压缩试验是测量金属材料抗压强度和压缩性能的方法。

该试验通过施加压应力使金属样本发生塑性变形,测量相应的应力和应变以评估材料的机械性能。

3. 弯曲试验弯曲试验是测量金属材料抗弯强度和韧性的常用方法。

该试验通过在金属样品上施加弯曲力,通过测量不同位置上的应变和应力来评估材料的机械性能。

金属材料的力学性能及其测试方法

金属材料的力学性能及其测试方法

金属材料的力学性能及其测试方法金属材料是广泛应用于各种机械、电子、汽车等领域中的材料。

其作为一种材料,具有许多优点,如高强度、高可塑性、热稳定性和化学稳定性等。

在应用中,金属材料的力学性能是十分重要的参数。

因此,本文主要介绍金属材料的力学性能及其测试方法,以期对相关领域的工作者有所帮助。

第一节:金属材料的力学性能金属材料的力学性能通常包括弹性模量、屈服强度、延伸率、断裂韧性和硬度等。

这里从简单到复杂介绍这些性能参数。

1. 弹性模量弹性模量是金属材料在弹性变形范围内受到应力作用时所表现的一种机械性质。

它的表达式为:E = σ / ε其中E为杨氏模量,单位为MPa;σ为所受应力,单位为MPa;ε为所受弹性应变,无量纲。

弹性模量是金属材料的一个重要指标,它可以衡量金属材料抵抗形变能力的大小。

对于不同的金属材料而言,其弹性模量不同。

2. 屈服强度屈服强度是金属材料在单向轴向拉伸状态下特定应变量时所表现出来的应力大小。

它是指材料能承受的最大应力,以使材料不发生塑性变形。

对于各种金属材料而言,其屈服强度不同。

3. 延伸率延伸率是一个指标,它可以衡量金属材料在受到拉伸应力时,其在一定程度内能够进行延伸的能力。

延伸率的计算公式如下:%EL = (L2 - L1) / L1 × 100%其中%EL表示材料的延伸率,L1和L2分别表示金属材料在断裂前和断裂后的长度,单位为毫米。

4. 断裂韧性断裂韧性是指金属材料在受到极限应力作用下未能抗下,而在断裂破裂时所表现出来的承受能力。

这个承受能力在物质的许多特性中是最为重要的指标之一。

金属材料的断裂韧性通常使用KIC值(裂纹扩展韧性指数)来表达。

5. 硬度硬度是材料抵抗硬物的能力。

一般来说,硬度越高的材料,则可以抵御更大的压力,并且更耐磨。

对于金属材料而言,其硬度主要有三种测试方法,分别是洛氏硬度试验、布氏硬度试验和维氏硬度试验。

第二节:金属材料的测试方法要测试金属材料的一些力学性能参数,需要运用不同的测试方法。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能金属材料的力学性能引言:金属材料是一类具有良好力学性能的材料,广泛应用于工业生产和日常生活中。

它们具有高强度、高刚度和良好的塑性变形能力,使其在结构工程中发挥重要作用。

本文将介绍金属材料的力学性能,包括强度、刚度、韧性和延展性等方面的特性。

一、强度强度是金属材料的抵抗外力破坏和变形的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度、剪切强度等。

屈服强度是指金属材料开始塑性变形时的应力值,抗拉强度是金属材料抗拉应力下发生断裂的能力,抗压强度是金属材料抗压应力下发生断裂的能力,剪切强度是金属材料发生滑移断裂的能力。

强度与金属材料内部的晶体结构密切相关,晶体间的结合力越强,金属材料的强度越高。

二、刚度刚度是指金属材料抵抗外力变形的能力,也称为弹性模量。

刚度与材料的原子结构相关,原子之间的键合越紧密,材料的刚度就越高。

刚度是测量金属材料在受力作用下的弹性恢复能力。

常见的刚度指标是杨氏模量和剪切模量,取决于金属材料中原子之间的键合性质和晶体结构。

三、韧性韧性是指金属材料在受力作用下能够吸收大量能量而不断裂的能力。

韧性是将金属材料弯曲、扭转或拉伸时的表现,具有良好的韧性的材料可以获得较大的塑性变形能力。

韧性材料能够在受到冲击或震动时,通过塑性变形来吸收能量,从而减少外界力量对结构的破坏。

韧性与金属材料内部晶粒的细化、晶界的加强以及材料中的组织缺陷等因素有关。

四、延展性延展性是指金属材料在外力作用下能够发生塑性变形,较大程度延长而不发生断裂的能力。

延展性与金属材料的晶粒形态及其排列方式密切相关,也与材料中晶界的运动有关。

延展性较好的材料可以用于制造需要大变形的构件,如容器、管道等。

延展性较差的材料容易发生局部失稳和断裂。

结论:综上所述,金属材料具有优异的力学性能,包括强度、刚度、韧性和延展性等方面的特点。

这些性能是由金属材料的晶体结构和内部组织决定的。

对于不同的应用需求,可以选择不同力学性能的金属材料来满足要求。

金属材料的力学性能指标

金属材料的力学性能指标

金属材料的力学性能指标金属材料是工程中常用的材料之一,其力学性能指标对于材料的选择和设计具有重要意义。

力学性能指标是评价金属材料力学性能的重要依据,主要包括强度、韧性、塑性、硬度等指标。

下面将对金属材料的力学性能指标进行详细介绍。

首先,强度是评价金属材料抵抗外部力量破坏能力的指标。

强度可以分为屈服强度、抗拉强度、抗压强度等。

其中,屈服强度是材料在受到外部力作用下开始产生塑性变形的应力值,抗拉强度是材料在拉伸状态下抵抗破坏的能力,抗压强度是材料在受到压缩力作用下抵抗破坏的能力。

强度指标直接影响着材料的承载能力和使用寿命。

其次,韧性是材料抵抗断裂的能力。

韧性指标包括冲击韧性、断裂韧性等。

冲击韧性是材料在受到冲击载荷作用下抵抗破坏的能力,断裂韧性是材料在受到静态载荷作用下抵抗破坏的能力。

韧性指标反映了材料在受到外部冲击或载荷作用下的抗破坏能力,对于金属材料的使用安全性具有重要意义。

再次,塑性是材料在受力作用下产生塑性变形的能力。

塑性指标包括伸长率、收缩率等。

伸长率是材料在拉伸破坏前的延展性能指标,收缩率是材料在受力破坏后的收缩性能指标。

塑性指标直接影响着金属材料的加工性能和成形性能,对于金属材料的加工工艺和成形工艺具有重要影响。

最后,硬度是材料抵抗划伤、压痕等表面破坏的能力。

硬度指标包括洛氏硬度、巴氏硬度等。

硬度指标反映了材料表面的硬度和耐磨性能,对于金属材料的耐磨性和使用寿命具有重要意义。

综上所述,金属材料的力学性能指标是评价材料性能的重要依据,强度、韧性、塑性、硬度等指标直接影响着材料的使用性能和工程应用。

在工程设计和材料选择中,需要根据具体的工程要求和使用环境,综合考虑各项力学性能指标,选择合适的金属材料,以确保工程的安全可靠性和经济性。

金属材料的力学性能

金属材料的力学性能

第1章工程材料1.1 金属材料的力学性能金属材料的性能包括使用性能和工艺性能。

使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。

工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。

金属材料的力学性能是指金属材料在载荷作用时所表现的性能。

1.1.1 强度金属材料的强度、塑性一般可以通过金属拉伸试验来测定。

1.拉伸试样图1.1.1拉伸试样与拉伸曲线2.拉伸曲线拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。

当载荷不超过p成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。

载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。

当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。

当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。

由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。

3.强度强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。

(1) 弹性极限金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示:(2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。

所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料承受的应力称为“条件屈服强度”,并以符号σ0.2 表示。

1.1.2 塑性金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能是指材料在受到力的作用下的行为和性能。

常见的金属材料(如钢、铝、铜等)具有较高的强度和刚性,具有良好的塑性和延展性。

其主要的力学性能包括以下几个方面:
1. 强度:金属材料的强度是指材料在受到外力作用下抵抗变形和破坏的能力。

常见的强度指标有屈服强度、抗拉强度、抗压强度等。

2. 延展性:金属材料具有较好的延展性,即在受到外力作用下能够发生塑性变形。

延展性可以通过材料的延伸率、断面收缩率等指标来描述。

3. 韧性:金属材料的韧性是指材料能够在承受外力作用下吸收较大的能量而不发生断裂或破坏的能力。

韧性也可以通过断裂韧性、冲击韧性等指标来描述。

4. 硬度:金属材料的硬度是指材料抵抗局部变形和外界划
痕的能力。

硬度可以通过洛氏硬度、布氏硬度等进行测量。

5. 弹性模量:金属材料的弹性模量是指材料在受到外力后,能够恢复到原来形状的能力。

弹性模量可以描述材料的刚
度和变形的程度。

6. 疲劳性能:金属材料的疲劳性能是指材料在受到交替或
重复载荷下的疲劳寿命和抗疲劳性能。

疲劳性能可以通过
疲劳寿命、疲劳极限等指标来描述。

以上是金属材料的一些常见力学性能参数,不同的金属材
料在这些性能方面有所差异。

这些性能参数的好坏直接决
定了金属材料在工程实践中的应用范围和性能优势。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能金属材料是工程领域中常用的材料之一,其力学性能对于材料的使用和应用起着至关重要的作用。

力学性能是指材料在受力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等方面。

本文将对金属材料的力学性能进行详细介绍,以便读者对金属材料有更深入的了解。

首先,我们来谈谈金属材料的强度。

金属材料的强度是指其抵抗外部力量破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等指标来表示。

金属材料的强度与其内部晶体结构、晶界、位错等因素密切相关,不同的金属材料具有不同的强度特点。

其次,韧性是金属材料的另一个重要力学性能。

韧性是指材料在受到外部冲击或载荷作用下能够抵抗破坏的能力。

金属材料的韧性与其内部晶粒大小、晶界结构、断裂韧性等因素有关。

一般来说,细小的晶粒和均匀的晶界结构有利于提高金属材料的韧性。

此外,硬度也是金属材料的重要力学性能之一。

硬度是指材料抵抗局部变形和划伤的能力,通常用洛氏硬度、巴氏硬度等指标来表示。

金属材料的硬度与其晶粒大小、晶界结构、合金元素含量等因素密切相关,不同的金属材料具有不同的硬度特点。

最后,塑性是金属材料的另一个重要力学性能。

塑性是指材料在受力作用下发生变形的能力,通常用屈服强度、延伸率、收缩率等指标来表示。

金属材料的塑性与其晶粒大小、晶界结构、位错密度等因素有关,一般来说,细小的晶粒和均匀的晶界结构有利于提高金属材料的塑性。

综上所述,金属材料的力学性能包括强度、韧性、硬度、塑性等方面,这些力学性能对于金属材料的使用和应用具有重要的意义。

通过对金属材料力学性能的深入了解,可以更好地选择合适的金属材料,并对其进行合理的应用和设计,从而发挥其最大的效益。

希望本文对读者有所帮助,谢谢阅读!。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能主要包括以下几个方面:
1. 强度:金属材料的强度是指它抵抗外力的能力。

通常用屈服强度、抗拉强度或抗压强度来表示材料的强度。

2. 延展性:金属材料的延展性是指其在受力下能够发生塑性变形的
能力。

常用的评价指标有伸长率、断面收缩率和断裂延伸率。

3. 硬度:金属材料的硬度是指其抵抗局部划痕或压痕的能力。

常用
的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

4. 韧性:金属材料的韧性是指其抵抗断裂的能力。

韧性与强度和延
展性密切相关,一般用冲击韧性和断裂韧性来评价材料的韧性。

5. 塑性:金属材料的塑性是指其在受力作用下发生可逆形变的能力。

塑性是金属材料特有的力学性能,它使得金属材料可以制成各种形状。

6. 疲劳性能:金属材料的疲劳性能是指其在交变或周期性载荷下抵抗疲劳损伤的能力。

疲劳性能的评价指标包括疲劳寿命和疲劳极限等。

不同的金属材料具有不同的力学性能,这些性能会受到材料的化学成分、晶体结构、热处理和加工工艺等因素的影响。

因此,在选择和使用金属材料时,需要根据具体的工程要求和环境条件来考虑其力学性能。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能力学性能是指金属材料在受力作用下所表现出的力学行为和性质。

主要包括强度、塑性、韧性、硬度和抗疲劳性等。

以下将对金属材料的这些力学性能进行简要介绍。

首先,强度是指金属材料抵抗外力破坏的能力。

常见的强度指标有屈服强度、抗拉强度和抗压强度等。

屈服强度是材料在受力过程中开始发生塑性变形时的应力值,抗拉强度是金属材料在拉伸试验中抵抗断裂的能力,抗压强度则是抗压试验中材料承受外压力的能力。

这些强度指标决定了金属材料的受力承载能力。

其次,塑性是指金属材料在受力过程中能够产生可逆的永久变形的能力。

塑性是金属材料重要的力学性能,它体现了材料的延展性和可塑性。

常见的塑性指标有延伸率和冷弯性能等。

延伸率是材料在拉伸过程中产生的伸长量与原长度的比值,冷弯性能则是金属材料在室温下能够承受的塑性变形能力。

韧性是指金属材料在受力过程中能够吸收较大的能量而不断进行塑性变形的能力。

韧性是强度和塑性的综合体现,越高的韧性意味着金属材料在遭受外力时能更好地抵抗断裂。

常见的韧性指标有断裂韧性和冲击韧性等。

硬度是指金属材料抵抗外界划伤或压痕的能力,也是反映材料抗外界形变的能力。

硬度是金属材料与其他物质接触时发生形变的抵抗力,常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

抗疲劳性是指金属材料在重复应力加载下抵抗疲劳损伤的能力。

金属材料在长期受到交变载荷时会发生疲劳破坏,抗疲劳性能反映了材料的疲劳寿命和稳定性。

常见的抗疲劳性指标有疲劳极限和疲劳寿命等。

综上所述,金属材料的力学性能包括强度、塑性、韧性、硬度和抗疲劳性等方面。

不同的金属材料在这些方面有着不同的特点和应用范围,因此在实际应用中需要根据具体情况选择合适的金属材料。

金属的力学性能

金属的力学性能

金属的力学性能
金属的力学性能是指金属材料在受力下的变形能力和承受能力。

主要包括以下几个方面:
1. 强度:金属的抗拉强度是指材料在拉伸试验中能承受的最大拉应力,抗压强度则是材料在压缩试验中能承受的最大压应力。

强度越高,说明金属材料越能承受拉伸或压缩载荷。

2. 延伸性:金属的延伸性是指材料在受拉力作用下能够发生可逆塑性变形的能力,通常用延伸率来表示。

高延伸性意味着材料能够在受力下进行较大的可逆形变,适用于需要抵抗冲击或振动载荷的应用。

3. 硬度:金属的硬度是指材料抵抗划伤或穿刺的能力,通常用洛氏硬度或布氏硬度来表示。

高硬度的金属能够抵抗划伤或穿刺,适用于需要较高耐磨性的应用。

4. 韧性:金属的韧性是指材料在断裂前能够吸收能量的能力,通常通过断裂韧性、冲击韧性或静态韧性来衡量。

高韧性的金属能够在受力下吸收更多的能量,抵抗断裂或破损。

5. 弹性模量:金属的弹性模量是指材料在受力下能够恢复原状的能力,也叫做弹性刚度。

高弹性模量的金属具有较大的刚度和弹性,适用于需要较好的回弹性能的应用。

以上是金属的一些基本的力学性能指标,不同金属材料具有不同的性能特点,可以根据具体需求选择合适的金属材料。

金属材料的力学性能与应用

金属材料的力学性能与应用

金属材料的力学性能与应用金属材料是工业生产和生活中广泛使用的一类材料。

它们具有许多优良的物理、化学和力学特性,如高强度、韧性、导电性和导热性等,因此受到了广泛的关注和应用。

而金属材料的力学性能也是其应用的重要方面之一。

在本文中,将介绍金属材料的力学性能与应用方面的内容。

一、金属材料的力学性能1. 弹性模量弹性模量是衡量材料抵抗形变的能力的物理量。

对于金属材料来说,弹性模量可以反映其刚度和弹性力量。

与其他材料相比,金属材料通常具有较高的弹性模量,这也是它们具有极高的强度和刚度的原因之一。

2. 屈服强度屈服强度是指材料在受力时出现塑性变形的临界点,即开始改变形状的应力值。

对于金属材料来说,屈服强度是其材料强度的重要指标之一。

一般来说,同一种金属材料的屈服强度会因为制备和温度等因素而有所差异。

3. 延展性和脆性金属材料的延展性和脆性也是其力学性能的重要指标。

延展性是指材料在受力时能够发生塑性变形之前所允许的最大形变量。

而脆性则是指金属材料受到应力时的断裂倾向。

在实际应用中,延展性高、脆性低的金属材料常常被用于材料弯曲和拉伸等需要高度变形的应用中。

4. 硬度硬度是反映金属材料在表面受损之前所能抵抗划痕、压痕和穿刺的程度。

对于需要承受较高应力的金属材料来说,硬度往往是其要求之一。

硬度值可以通过多种方式来确定,如钻头试验、Vickers硬度测试等。

二、金属材料的应用1. 制造业在制造业中,金属材料的应用非常广泛。

例如,汽车制造领域的车体和发动机部件常常采用高强度、高硬度的铝合金和钢材等金属材料。

电子设备的机器外壳、接口和散热器等也需要采用金属材料。

此外,飞机、船舶、火车等交通运输领域中,许多结构件也用金属材料制成。

2. 倍增和火器在军事领域,金属材料的应用也非常广泛。

例如,汽车补给车和坦克等军事车辆,大多数结构件都是金属材料制成的。

同样,步枪、手枪、火箭筒等武器的弹片材料也是金属材料。

3. 城市建设在城市建设中,金属材料也有着重要的应用。

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除复习旧课1、材料的发展历史2、工程材料的分类讲授新课第一章金属材料的力学性能材料的性能有使用性能和工艺性能两类使用性能是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、化学性能等。

工艺性能是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻压性能、焊接性能、热处理性能、切削加工性能等。

力学性能是指金属在外力作用下所显示的性能能。

金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。

第一节刚度、强度与塑性一、拉伸试验及力—伸长曲线L 0——原始标距长度;L1——拉断后试样标距长度d 0——原始直径。

d1——拉断后试样断口直径国际上常用的是L0=5 d0(短试样),L0=10 d0(长试样)[拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为拉伸曲线图。

Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状Es段:屈服阶段Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化Bk段:局部塑性变形阶段二、刚度刚度:金属材料抵抗弹变的能力指标:弹性模量 E E= σ / ε (Gpa )弹性范围内. 应力与应变的比值(或线形关系,正比)E↑刚度↑一定应力作用下弹性变形↓三、强度指标σ= F/S o强度:强度是指材料抵抗塑性变形和断裂的能力。

强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。

单位采用N/mm2(或MPa 兆帕)σ= F/Aoσ——应力(MPa);F——拉力(N);S o——截面积(mm2)。

常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。

1、屈服点与条件屈服强度[屈服强度]σs 产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。

《金属材料与热处理》金属材料的力学性能

《金属材料与热处理》金属材料的力学性能

1 疲劳寿命
金属材料在循环加载下能够承受的应力次数。
2 断裂韧度
金属材料抵抗裂纹扩展的能力。
金属材料的高温性能与耐蚀性
1
高温性能
金属材料在高温环境下保持力学性能的能力。
2
耐蚀性
金属材料抵抗化学腐蚀的能力。
影响金属材料力学性能的因素
除了材料本身的特性外,力学性能还受到外界环境、热处理以及加工工艺等 因素的影响。
结论
了解和评估金属材料的力学性能对于合理选材和设计具有重要意义,可有效 提高产品质量和使用寿命。
《金属材料与热处理》金 属材料的力学性能
本节将介绍金属材料的力学性能,包括强度、硬度、延展性、韧性、可塑性、 冲击性能、疲劳寿命、断裂韧度、高温性能和耐蚀性。
金属材料的力学性能概述
力学性能是评价金属材料优劣的关键指标之一。它涉及到材料的力学行为, 如承载能力、形变能力和能量吸收能力。
金属材料的强度与硬度
强度
金属材料的抵抗外力破坏的能力。
硬度
金属材料的抵抗划痕和切割的能力。
金属材料的延展性与韧性
延展性
金属材料在外力作用下产生的。
金属材料的可塑性与冲击性能
可塑性
金属材料在受力情况下发生塑性变形的能力。
冲击性能
金属材料抵抗外部冲击或撞击的能力。
金属材料的疲劳寿命与断裂韧度

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能金属材料在现代工业生产中广泛应用,原因是因为金属材料的机械性能优异,其力学性能在诸多领域都是重要的参考指标。

一、强度金属材料中最为重要的力学性能莫过于强度。

强度是指材料在受到外力时抵抗变形和破坏的能力。

通俗地说,就是指物质能够承受多大的外部负荷。

强度分为屈服强度、抗拉强度和抗压强度。

其中屈服强度是指材料在受到一定压力后开始变形的压力值,抗拉强度是指材料在被拉伸时承受的最大拉力,抗压强度则是指材料在被挤压时所能承受的最大压力。

三者的单位均为N/mm2(纳牛/平方毫米)。

二、延展性金属材料的延展性代表了其受力后能够发生多大的形变,并且保持强大的耐久性。

在加工过程中,延展性的指标非常重要。

延展性又分为材料的伸长率和冷弯性。

伸长率是指材料在拉伸过程中能够延长的量,通常以百分比表示;冷弯性则是指材料在被弯曲或者压缩后仍然能够恢复成原来的形状,并且该过程不会破坏材料的结构。

三、弹性模量弹性模量是金属材料的另一个重要指标,是指材料在受到外来力量后,变形保持弹性状态的能力。

弹性模量越高,材料的抗弯性和抗扭性就越高,同时在结构加工方面也更加有利。

四、硬度硬度是金属材料的固有属性,它描述了材料的抗划痕和抗磨损能力。

硬度指标通常以维氏硬度(HV)表示,维氏硬度是指在标准试件被标准钢球压铸后,钢球和试件之间的形变深度。

五、疲劳强度金属材料的疲劳强度是个复杂的性质。

它是指材料在受到重复荷载后能够承受的最大荷载。

在使用时,金属材料常常会遭受到来自不同方向上的变化载荷,如果材料的疲劳强度不足,则容易出现疲劳破坏的现象。

总体而言,金属材料的力学性能是不可或缺的,它们的强度、延展性、弹性模量、硬度和疲劳强度可为工程师们提供参考指标,帮助他们更好地设计制造各种结构。

在材料科学和工程的领域中,力学性能是研究和开发新材料的基础,因此它对于推动现代工艺和工程技术的发展至关重要。

金属材料的力学性能

金属材料的力学性能

(a)试样 (b)伸长 (c)产生缩颈 (d)断裂
拉 伸 试 样 的 颈 缩 现 象
(一)强度
1. 定义:强度是指金属材料抵抗塑性变形和断 裂的能力,是工程技术上重要的力学性能指 标。由于材料承受载荷的方式不同,其变形 形式也不同,分为抗拉、抗扭、抗压、抗弯、 抗剪等的强度。

最常用的强度是抗拉强度或强度极限σb。

1.变动载荷和循环应力
金属疲劳产生的原因

1.变动载荷

——引起疲劳破坏的外力,指载荷大小、甚至方
向均随时间变化的载荷,其在单位面积上的平均
值即为变动应力。

变动应力可分为规则周期变动应力(也称循环应力) 和无规则随机变动应力两种。
GB/T 228-2002新标准 名称 屈服强度① 符号 -
GB/T 228-1987旧标准 名称 屈服点 符号 σs
上屈服强度
下屈服强度 规定残余延伸 强度 抗拉强度 断后伸长率
ReH
ReL Rr Rm A或A11.3
上屈服点
下屈服点
σsU
σsL
规定残余延伸 σr 应力 抗拉强度 断后伸长率 σb δ5或δ10
第一章 金属材料的力学性能
概 述

使用性能:材料在使用过程中所表现的性能。包括力学性能、
物理性能和化学性能。

工艺性能:材料在加工过程中所表现的性能。包括铸造、锻 压、焊接、热处理和切削性能等。

金属材料的力学性能是指在承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时,对变形与断裂的抵抗

冲击试样
原理

冲击韧性可以通过一次摆锤冲击试验来测定,试验 时将带有U型或V型缺口的冲击试样放在试验机架 的支座上,将摆锤升至高度H1,使其具有势能 mgH1;然后使摆锤由此高度自由下落将试样冲断, 并向另一方向升高至H2,这时摆锤的势能为mgH2。 所以,摆锤用于冲断试样的能量

金属力学性能-精选.pdf

金属力学性能-精选.pdf

1.弹性变形:拉伸条件:室温下,单向载荷,静拉伸;试样:比例试样,非比例试样;实质:在外力作用下金属原子紫平衡位置发生可逆性位移的结果特点:(1)σ=E*ε(2)可逆性(3)变形量很小≤1%(4)变形速率非常快,接近声速力学性能指标①比例极限σp:应力与应变成直线关系的最大应力②弹性极限σe:由弹性变形过渡到弹性塑性变形的应力。

③弹性模量(E)表征材料对弹性变形的抗力(刚度)④弹性比功(αe):表示单位体积金属材料吸收弹性变形功的能力,又称弹性比应变能弹性模量E取决于金属原子本性和晶格类型,对组织不敏感弹性变形的不完整性:①滞弹性②包申格效应2.塑形变形:位错增殖运动的结果;驱动力:切应力;特点:1) 切应力导致塑性变形2) 加工硬化3) 不可逆4) 多晶体材料各晶粒塑性变形的不同时性和不均匀性5) 多晶体材料各晶粒各晶粒塑性变形的相互制约与协调性能指标:强度:σs:有明显屈服平台或屈服齿下,测得的屈服强度,表征材料对微量塑形变形的抗力σ0.2:没有明显屈服平台或屈服齿下,测得的屈服强度,表示规定残余伸长率为0.2%是的应力。

n:反映金属材料抵抗均匀塑形变形的能力抗拉强度σb:金属试样拉断过程中最大试验力所对应的应力称为抗拉强度塑形指标:δ断后伸长率:反映均匀塑性变形能力ψ断面伸长率:反映材料局部变形能力影响塑形的因素:除了细晶强化,其他强化同时降低塑形ψ>δ金属拉伸形成缩颈第一章1.金属材料和高分子材料发生的弹性形变是不同的:金属材料的弹性变形是原子间距在外力作用下可逆变性的结果。

高分子材料普弹性是靠主键角键长的微量伸缩的微小键角变化的结果;高弹性变形是分子链段运动,链卷曲变直,伸长2.包申格效应的消除方法预先进行较大的塑性变形在第二次反向受力前先使金属材料于回复或再结晶温度下退火3.影响屈服强度的因素㈠内在因素(1)金属本性及晶格类型纯金属单晶体的屈服强度从理论上来说是使位错开始运动的临界内应力,其值由位错运动所受的各种阻力决定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料的力学性能金属材料在外力或能的作用下,所表现出来的一系列力学特性,如强度、刚度、塑性、韧性、弹性、硬度等,也包括在高低温、腐蚀、表面介质吸附、冲刷、磨损、空蚀(氧蚀)、粒子照射等力或机械能不同程度结合作用下的性能。

力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,是选用金属材料的重要依据。

充分了解、掌握金属材料的力学性能,对于合理地选择、使用材料,充分发挥材料的作用,制定合理的加工工艺,保证产品质量有着极其重要的意义。

一、强度强度是材料受外力而不被破坏或不改变本身形状的能力。

(一)屈服点金属试样在拉伸试验过程中,载荷不再增加而试样仍继续发生塑性变形而伸长,这一现象叫做“屈服”。

材料开始发生屈服时所对应的应力,称为“屈服点”,以σs表示。

有些材料没有明显的屈服点,这往往采用σ0.2作为屈服阶段的特征值,称为屈服强度。

(二)抗拉强度拉伸试验时,材料在拉断前所承受的最大标称应力,即拉伸过程中最大力所对应的应力,称为抗拉强度,以σb表示。

二、塑性塑性是金属材料在外力作用下(断裂前)发生永久变形的能力,常以金属断裂时的最大相对塑性变形来表示,如拉伸时的断后伸长率和断面收缩率。

(一)伸长率金属材料在拉伸试验时试样拉断后其标距部分所伸长的长度与原始标距长度的百分比,称为断后伸长率,也叫伸长率,用δ表示。

(二)断面收缩率金属试样在拉断后,其缩颈处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率,以符号ψ表示。

三、硬度硬度是金属材料表面抵抗弹性变形、塑性变形或抵抗破裂的一种抗力,是衡量材料软硬的性能指标。

硬度不是一个单纯的、确定的物理量,而是一个由材料弹性、塑性、韧性等一系列不同性能组成的综合性能指标。

所以硬度不仅取决于材料本身,还取决于试验方法和条件。

(一)布氏硬度(二)洛氏硬度(三)维氏硬度四、韧性金属在断裂前吸收变形能量的能力,称为韧性。

衡量材料韧性的指标分为冲击韧性和断裂韧性。

(一)冲击韧性冲击韧性是评定金属材料受冲击载荷作用时抵抗变形和断裂的抗力指标,以冲击韧度或冲击吸收功来度量。

(二)断裂韧性断裂韧性是材料阻止或抵抗裂纹扩展的能力,确切地说是阻止裂纹产生临界扩展的能力,常用K1c或K c表示。

K1c是表示平面应变状态下的断裂韧度,K c表示平面应力状态下的断裂韧度。

第三节钢的分类及编号一、钢的分类钢的分类方法很多,可以按化学成分、冶炼方法、品质、用途及金相组织等进行分类。

(一)按化学成份分类按化学成分可分为碳素钢(简称碳钢)、合金钢两大类。

碳素钢是指碳质量分数低于2.06%的铁碳合金,根据碳质量分数的不同,碳钢又可分为工业钝铁(wc≤0.02%)低碳钢(wc≤0.25%)、中碳钢(wc0.25%一0.60%)和高碳钢(wc>0.6%)。

合金钢是在碳钢的基础上,为了改善钢的性能专门加入某些合金元素炼制而成的钢。

按照合金元素总量的不同,合金钢可分为低合金钢(合金元素总量〔5%〕、中合金钢(合金元素总量为5%~10%)和高合金钢(合金元素总量≥10%)。

(二)按冶炼方法分类根据炼钢炉类别分类,可分为平炉钢、转炉钢(又分氧气吹炼和空气吹炼转炉钢)和电炉钢(又分为电弧炉钢、电渣炉钢、感应炉钢和电子束炉钢等)3大类。

根据冶炼时脱氧程度的不同,可分为沸腾钢、镇静钢及半镇静钢。

沸腾钢是脱氧不完全的钢,钢在熔炼后期,钢液仅用弱脱氧剂(锰铁)脱氧,所以钢液中有相当数量的氧化铁FeO)。

在浇注和凝固时,由于碳与氧化铁反应,钢液不断析出一氧化碳,产生沸腾现象,故称为沸腾钢,以符号,“F”表示。

沸腾钢耐蚀性和力学性能差,不宜用于重要结构使用。

镇静钢为完全脱氧钢,浇注和凝固时钢液镇静不沸腾,故称为镇静钢。

这种钢冷凝后有集中缩孔,所以成材率低,成本高。

但气体含量低,偏析少,时效倾向低,质量较高,因此得到广泛应用。

镇静钢以符号,“Z”表示,但一般省略。

半镇静钢为半脱氧钢,脱氧程度介于上述两者之间,用符号“b’’表示。

(三)按品质分类根据钢中有害杂质硫、磷的含量,可分为普通碳素钢、优质碳素钢和高级优质碳素钢。

(1)普通碳素钢ωp≤0.045%,ωS≤0.05%;(2)优质碳素钢ωp、ωS均0.035%,其他非有意加入而是从原材料带入的残余杂质如Cr、Ni、Cu等的含量也有一定的限制;(3)高级优质碳素钢ωp≤0.035%、ωS≤0.03%,混入的其他杂质含量限制得更加严格。

普通碳素钢一般采用转炉和大型平炉冶炼,产量大、成本低;优质碳素钢一般用电炉或平炉冶炼,杂质少;高级优质碳素钢主要是电炉钢或采用精炼的方法,质量最好、成本也高,它主要用来制造工具和要求很高的机器零件及焊接材料用钢。

(四)按金相组织分类钢按金相组织可分为铁素体一珠光体型钢、贝氏体型钢、马氏体型调质高强度钢、铁素体型钢和奥氏体型钢等。

(五)按用途分类钢按用途可分为结构钢、工具钢和特殊用途钢3大类。

结构钢还分为建筑及工程机械用钢、机械制造用钢、超高强度钢、轴承钢和弹簧钢等。

建筑及工程机械用钢还包括碳素结构钢、低合金高强钢、钢筋用钢等;机械制造用钢包括调质钢、表面硬化钢、易切钢、冷加工成形用钢等。

工具钢分为碳素工具钢、合金工具钢和高速工具钢,包括量具、刃具、模具钢等。

特殊用途钢分为不锈耐酸钢、耐热钢、电工用钢、耐磨钢、低温用钢、各种专业用钢等。

专业用钢主要有锅炉钢、压力容器用钢、船舶、桥梁、钢轨用钢等。

二、钢的编号及特性我国的钢材牌号表示方法,是采用国际化学元素符号、汉语拼音字母和阿拉伯数字并用的原则,即钢号中化学元素用国际化学符号表示;钢材名称、用途、冶炼和浇注方法等一般以汉语拼音的缩写字母来表示;钢中主要化学元素含量(百分率)采用阿拉伯数字表示。

(一)碳素结构钢的牌号、性能及用途1.普通碳素结构钢根据GB/T700--1988《碳素结构钢》标准,钢的牌号由代表屈服点的字母、数值、质量等级符号、脱氧方法符号等4个部分按顺序组成。

主要钢种:Q195、Q215A、Q215B、Q235A、Q235B、Q235C、Q235D、Q255D、Q255B、Q275。

其中:Q一表示钢的屈服点,为“屈”字拼音字母;235――数字表示钢的屈服点数值,单位为MPa;A、B、C、D一分别为质量的4个等级,其中A级质量最低,D级质量最高;F表示沸腾钢;b表示半镇静钢;Z表示镇静钢;TZ表示特殊镇静钢。

2.优质碳素结构钢优质碳素结构钢主要用于制造重要的机器零件、结构,其钢号用两位数字表示。

两位数字表示该钢种平均碳质量分数的万分率,如20、45钢,分别表示钢中平均碳质量分数为0.20%、0.45%的优质碳素结构钢。

常用的钢号有:10、15、20、30、35、40、45等。

高级优质碳素结构钢在钢号后附加“高”或“A”字。

含锰量较高(ωMn为0.70%~1.00%)的优质碳素钢,应将锰元素标出,如15Mn、60Mn等。

10、20钢具有良好的冲击韧度,良好的焊接性能,常用于各种结构件;35、40、45、55钢属于调质钢,调质处理后可获得良好的综合力学性能,多用于制造机器零件等。

3.碳素工具钢碳素工具钢用钢的平均碳质量分数的千分率数字表示。

为了与合金工具钢相区别,在数字前冠以“T’’字,读成“碳”。

如碳质量分数为0.70%的碳素工具钢,其钢号写成T7,读成“碳7"。

常用的钢号有T7、T8、T9、T10、T12等。

高级优质碳素工具钢含磷、硫较低,表示为Tl0A、T12A等。

碳素工具钢一般要经热处理后使用。

4.其他专业用钢在一般碳素结构钢基础上为满足某些专业用途的特殊需要,发展了一些专业用钢,如锅炉钢、容器钢、焊接气瓶用钢、船用钢、桥梁用钢、铁道用钢等。

锅炉用钢板在钢号后加“g”字;压力容器用钢板加“R”字;焊接气瓶用钢板加“HP”字母;多层压力容器用钢板加“RC”,字母,如20g、20R、20HP、15MnHP、16MnRC、15MnVRC等。

(二)合金钢的牌号、性能及用途1.低合金高强度结构钢的编号根据GB/T 1591-1994《低合金高强度结构钢》标准,低合金高强度结构钢的牌号由代表屈服点的汉语拼音字母(Q)、屈服点数值、质量等级符号(A、B、C、D、E)3个部分组成.并按顺序排列。

如:Q390A其中:Q一一一钢屈服点“屈”字拼音首位字母;390-一-屈服点数值,单位MPa:A、B、C、D、E—分别为质量等级符号:低合金高强度结构钢共有Q295A(B)、Q345A(B、C、D、E)、Q390A(B、C、D、E)、Q420(A、B、C、D、E)和Q460C(D、E)5个牌号。

一般以热轧、控轧、正火及正火加回火状态交货。

Q420、Q460的C、D、E级钢也可按淬火加回火状态交货。

GB/T1591-1994与GB1591-1988标准中对应的钢牌号如表3-1所示。

表3-1 新旧低合金结构钢标准牌号对照GB/T1591-1994GB1591-1988Q295 09MnV、09MnNb、09Mn2、12MnQ345 12MnV、14MnNb、16Mn、16MnRE、18NbQ390 15MnV、15MnTi、16MnNbQ420 15MnVN、14MnVTiREQ4602.合金钢的编号我国合金钢是按钢材的含碳量及所含合金元素的种类及其数量进行编号的,因此可以从钢号上直接看出钢材的大致化学成分及质量等级。

其编号原则是:(1)合金结构钢1)首部数字表示平均碳质量分数(万分率),如20Mn2、20表示平均碳质量分数ωc=0.20%。

2)在表示含碳量的数字后面,用元素的化学符号或汉字表示所含有的主要合金元素,并用符号后面的数字表示该合金元素平均质量分数(%)。

凡合金元素含量上限不超过 1.5%时,编号中只写元素符号,不标明含量。

如果平均含量超过1.5%,在该元素后注出近似百分率,如含量为1.8%时.则用“2”表示。

如09Mn2表示平均碳质量分数0.09%,平均锰质量分数约2%的合金结构钢。

(2)合金工具钢编号原则与合金结构钢大致相同,但含碳量的表示方法不同;当碳质量分数不超过1.0%时,以千分率的数字表示.如9SiCr,9表示平均碳质量分数为0.9%;含碳量超过1.0%时,为避免与结构钢相混淆,在钢号中不表示出含碳量。

如CrWMn,表示碳质量分数超过1.0%,并含有Cr、w、Mn3种合金元素的合金工具钢。

(3)特殊高合金钢编号方法与合金工具钢基本相同。

如2Cr13,表示平均碳质量分数为0.20%,铬质量分数为13%的不锈钢。

但有些特殊高合金钢钢号不表示含碳量。

如Cr17,表示铬质量分数约17%的不锈钢,其碳质量分数≤0.12%,但未表示出。

钢中碳质量分数≤.03%或≤.08%时,钢号前分别以“00”或“0”表示,如00Cr18Ni10、0Cr13等。

相关文档
最新文档