TGS2611用于检测甲烷的气体传感器

合集下载

费加罗可燃气体传感器

费加罗可燃气体传感器

费加罗可燃气体传感器
经过市场40余年运用的历史发展,气体传感器和气体报警器都得到了持续的改进。

因此,如今的气体报警器可以做到免维护运行,质保期可达5年。

通过使用内置过滤器来提高传感器耐久性以及防止气体引起误报警的方法已经成为标准做法。

 所有费加罗可燃气体传感器的家用气体报警器都有一个内置过滤器。

过滤材料的使用量满足欧洲标准中设计所要求的响应时间(≤30s)。

 费加罗可燃气体传感器还具有一下特点:
 每一只传感器,都在严控温湿度的条件下生产制造,对使用对象气体就行100%全检。

 有可追溯的制造记录,传感器的制造记录可以通过生产批号进行追溯。

 面向精准客户要求,费加罗推出了LPM2610,NGM2611,CGM6812等几款预校准模块,这些模块出厂前已经经过严格控制条件下的预校准。

 4.符合ROHS与REACH标准。

费加罗气体传感器符合限制有害物质指令(ROHS)以及化学品注册,评估,授权和限制令(REACH)等环保规范。


 低功耗。

费加罗持续致力于研究低功耗的传感器,由于传感器芯片的小型化,TGS2610/2611的功耗仅有280mw。

 长寿命。

TGS6810/6812传感器的预期寿命在10年左右。

tgs2602.pdf tgs2000 系列传感器产品介绍,空气污染、臭味检测用说明书

tgs2602.pdf tgs2000 系列传感器产品介绍,空气污染、臭味检测用说明书

TGS2602 空气污染、臭味检测用特点: 应用:・低功耗 ・空气清新机、换气扇控制 ・对VOC 、氨气、硫化氢有高灵敏度 ・脱臭器控制・长寿命、低成本 ・室内空气监视器・可利用简单电路下图是典型的香烟烟雾灵感度特性。

香烟的根数是约10平米的房间吸烟情况下的数值。

这里的纵轴也用传感器电阻比Rs/Rs(Air)来表示, 这里的Rs 、Rs(Air)定义如下: Rs =香烟的烟雾存在时的传感器电阻值 Rs(Air) =清洁大气中的传感器电阻值 香烟灵敏度特性:敏感素子由集成的加热器以及在氧化铝基板上形成的金属氧化物半导体构成。

当可检知的气体存在时,空气中该气体的浓度越高,传感器的电导率就越高。

使用简单的电路就可以将这种电导率的变化变换为与气体浓度对应的输出信号。

TGS2602不仅对香烟的烟雾或烹调臭味有很高的灵敏度,而且对硫化氢、VOC 、氨气有高灵敏度。

这种传感器是利用相对值检知来实现更接近人类感觉的控制,即以空气清洁的时候为基准,通过传感器电阻值比空气清洁时变化了多少来检测空气的污染程度。

下图是典型的灵敏度特性,全部是在标准试验条件下得出的结果。

(请看背面) 纵轴以传感器电阻比Rs/Rs(Air)表示,Rs 、Rs(Air)的定义如下: Rs =各种浓度气体中的传感器电阻值Rs(Air)=清洁大气中的传感器电阻值灵敏度特性:规格: 结构及尺寸:型 号 TGS2602素子类型 26系列 标准封装 金属 对象气体氢气、酒精等检测范围 1 ~10 ppm标准回路加热器电压 VH 5.0±0.2V DC/AC 回路电压 VC 5.0±0.2V DC Ps 15mW ≦ 负载电阻 RL 可变Ps 15mW ≦标准试验加热器电阻 RH59 Ω(室温)加热器电流 IH 56mA 加热器功耗 PH 280mW VH =5.0V DC/AC 传感器电阻Rs10~100 K Ω(空气中) 灵敏度(Rs 的变化率)0.15~0.5Rs(乙醇:10 )Rs(Air)标准试验试验气体条件 20±2℃,65±5%RH 回路条件 VC =5.0±0.2V DCVH =5.0±0.2V DC/AC试验前预热时间 96小时以上功耗(Ps )值可用下式计算: 传感器电阻(Rs ),可根据VOUT测定值,用下式计算:为提高性能,本规格书将不事先预告而变更。

日本费加罗Figaro氧气传感器

日本费加罗Figaro氧气传感器

日本费加罗Figaro氧气传感器广州南创陈工FIGARO是一家专业生产半导体气体传感器的公司,1962年发明全球第一款半导体产品,目前全球第一。

FIGARO的产品远销38个国家,在多个国家设立了分支机构或办事处,生产基地遍布美洲、东欧、中国等地;并在中国设立了广州南创传感器事业部,可为用户的实验和生产提供最佳的服务与解决方案。

半导体气体传感器采用金属氧化物半导体烧结工艺,对被检测的检测气体具有灵敏度高、响应时间短、成本低、长期稳定性好等优点。

我们的产品包括可燃气体、有毒气体、空气质量、一氧化碳、二氧化碳、氨气、汽车尾气、酒精等传感器元件、传感模块等,以及各种气体传感器的配套产品。

目前已经被广泛应用于家用燃气报警器、工业有毒气体报警器、空气清新机、换气空调、空气质量控制、汽车尾气检测、蔬菜大棚、酒精检测、孵化机械等。

日本费加罗Figaro氧气传感器KE-25KE-50信息日本费加罗Figaro氧气传感器KE-25KE-50性能:测量范围:0-100%O2精度:氧气传感器KE-25:±1%(全量程);氧气传感器KE-50:±2%(全量程)工作温度:5~40℃储存温度:-20~+60℃响应时间:KE-25:14±2秒;KE-50:60±5秒初始输出:KE-25:10.0–15.5mv;KE-50:47.0-65.0mv期望寿命:KE-25:5年;KE-50:10年日本费加罗Figaro氧气传感器KE-25KE-50特性:长寿命(KE-25-5年,KE-50-10年)不受CO2,CO,H2S,NOx,H2影响低成本,在常温下工作信号输出定,无需外部电源不需加热以上日本费加罗Figaro氧气传感器技术参数以《OIML60号国际建议》92年版为基础,最新具体变化可查看《JJG669—12FIGARO广州南创传感器事业部检定规程》产品特性描述:氧气传感器KE-25KE-50属于半导体气体传感器不受CO2,CO,H2S,NOx,H2影响,氧气传感器KE-25KE-50低成本在常温下工作信号输出定,无需外部电源不需加热;精度氧气传。

一种基于TDLAS甲烷传感器的甲烷泄漏探测防爆旋翼无人机[实用新型专利]

一种基于TDLAS甲烷传感器的甲烷泄漏探测防爆旋翼无人机[实用新型专利]

专利名称:一种基于TDLAS甲烷传感器的甲烷泄漏探测防爆旋翼无人机
专利类型:实用新型专利
发明人:靳荔成,孟庆浩,白金伟
申请号:CN202122092086.3
申请日:20210901
公开号:CN216332737U
公开日:
20220419
专利内容由知识产权出版社提供
摘要:本实用新型涉及甲烷泄漏探测设备技术领域,具体涉及一种基于TDLAS甲烷传感器的甲烷泄漏探测防爆旋翼无人机。

包括防爆机体外壳、设置于防爆机体外壳一端开口处的机体外壳封盖、以及设置于防爆机体外壳另一端开口处的半球形外罩;防爆机体外壳内部设置有控制器、无线通讯模块,TDLAS甲烷传感器、视觉传感器、电源;控制器用于执行无人机起降、飞行的控制程序;无线通讯模块用于将无人机飞行参数、TDLAS甲烷传感器采集的数据以及视觉传感器采集的图像信号传递给地面控制器。

该无人机不仅可以快速检测甲烷气体的浓度信息,而且具备在易爆环境中工作的防爆功能,在有害气体环境作业时,可避免操作人员进入危险区域引起的危害。

申请人:冲之智能科技(天津)有限公司
地址:300350 天津市津南区津南经济开发区(西区)香港街3号3号楼112-30
国籍:CN
代理机构:北京中政联科专利代理事务所(普通合伙)
代理人:陈剑杰
更多信息请下载全文后查看。

气体传感器的发展历史和分类

气体传感器的发展历史和分类

气体传感器的发展历史和分类
20世纪初第一只半导体传感器诞生于英国,并一直在欧洲发展和应用,直到20世纪50年代半导体传感技术才流传到日本,费加罗公司的创始人田口尚义在1968年5月率先发明了半导体式气体传感器。

它可以用简单的回路检测出低浓度的可燃性气体和还原性气体,同时将这个半导体式气体传感器命名为TGS(Taguchi
Gas
 Sensor)内置在气体泄漏报警器中,日本和海外的许多家庭和工厂都设置了这些报警器,用于检测液化气等气体的泄漏,进而把这项技术推进到了顶峰。

而欧洲人在发现了半导体传感器的种种不足后开始研究催化传感器和电化学传感器。

气体传感器的理论直到70年代才传入到我们国家,80年代我国才开始研制气体传感器,整个生产技术主要继承于德国。

 气体传感器种类繁多。

按所用气敏材料及气敏特性不同,可分为半导体式、固体电解质式、电化学式、接触燃烧式、高分子式等。

 下面工采网小编主要介绍两种气体传感器:
 半导体气体传感器
 这种传感器主要使用半导体气敏材料。

自从1962年半导体金属氧化物气体传感器问世以来,由于具有灵敏度高、响应快等优点,得到了广泛的应用,目前已成为世界上产量最大、使用最广的传感器之一。

按照检测气敏特征量方式不同分为电阻式和非电阻式两种。

 电阻式半导体气体传感器是通过检测气敏元件随气体含量的变化情况而工作的。

主要使用金属氧化物陶瓷气敏材料。

随着近年来复合金属氧化物、混合金属氧化物等新型材料的研究和开发,大大提高了这种气体传感器的特性。

Figaro 2600系列技术信息:TGS2611甲烷气体传感器说明书

Figaro 2600系列技术信息:TGS2611甲烷气体传感器说明书

Technical Information for Methane Gas SensorsThe Figaro 2600 series is a new type thick f ilm metal oxide semiconductor, screen printedgas sensor which o f f ers miniaturization and lower power consumption. The TGS2611displays high selectivity and sensitivity to methane.PageSpecificationsFeatures.....................................................................................2Applications...................................................................2Structure...................................................................................2Basic Measuring Circuit................................................................2Circuit & Operating Conditions.....................................................3Specifications.......................................................................................3Dimensions.......................................................................................3Basic Sensitivity CharacteristicsSensitivity to Various Gases..........................................................4Temperature and Humidity Dependency......................................5Heater Voltage Dependency...................................................................6Cautions on Sensor Power Consumption.................................................6Gas Response..............................................................................................7Initial Action....................................................................................7Long Term Characteristics....................................................................8ReliabilityCorrosion Test..........................................................................................9Ignition Test....................................................................................9Effect of Air Flow..............................................................................9Heater Resistance Durability........................................................10HMDS Test............................................................................................11Lighter Gas Exposure Test..........................................................................11Cautions (12)See also Technical Brochure ‘Technical Information on Usage of TGS Sensors for Toxic and Explosive Gas Leak Detectors’.a n I S O 9001 a n d 14001 c o m p a n yIMPORTANT NOTE: OPERATING CONDITIONS IN WHICH FIGARO SENSORS ARE USED WILL VARY WITH EACH CUSTOMER’S SPECIFIC APPLICATIONS.FIGARO STRONGLY RECOMMENDS CONSULTING OUR TECHNICAL STAFF BEFORE DEPLOYING FIGARO SENSORS IN YOUR APPLICATION AND, IN PARTICULAR, WHEN CUSTOMER’S TARGET GASES ARE NOT LISTED HEREIN. FIGARO CANNOT ASSUME ANY RESPONSIBILITY FOR ANY USE OF ITS SENSORS IN A PRODUCT OR APPLICATION FOR WHICH A SENSOR HAS NOT BEEN SPECIFICALLY TESTED BY FIGARO.Both TGS2611-C00 and -E00 are UL recognized components in accordance with the requirements of component recognition testing has confirmed long term stability in 60ppm of methane; other characteristics shown in this brochure have not been confirmed by UL as part of component recognition.TGS2611 is available in two different models with different external housings but identical sensitivity to methane gas. TGS2611-C00 possesses small size and quick gas response, making it suitable for gas leakage checkers, while TGS2611-E00 uses filter material in its housing to eliminate the influence of interference gases such as alcohol, resulting in highly selective response to methane gas. Both models are capable of meeting the requirements of EN50194 and UL1484.1. Specifications1-1 Features*High selectivity to methane*Low power consumption*Small size*Long life and low cost*Uses simple electrical circuit1-2 Applications* Residential gas alarms* Portable gas detectors* Gas leak detectors for gas appliances1-3 StructureFigure 1 shows the structure of TGS2611. Using thick film techniques, the sensing material (SnO2) is printed on electrodes (noble metal) which have been printed onto an alumina substrate. One electrode is connected to pin No.2 and the other is connected to pin No.3. The sensor element is heated by RuO2 material printed onto the reverse side of the substrate and connected to pins No.1 and No.4.Lead wires are Pt-W alloy and are connected to sensor pins which are made of Ni-plated Ni-Fe 50%.The sensor base is made of Ni-plated steel. The caps of both TGS2611-C00 and TGS2611-E00 are stainless steel. The upper opening in both caps is covered with a double layer of 100 mesh stainless steel gauze (SUS316). The TGS2611-E00 utilizes a charcoal filter inside the cap for reducing the influence of interference gases.1-4 Basic measuring circuitFigure 2 shows the basic measuring circuit. Circuit voltage (Vc) is applied across the sensor element which has a resistance (Rs) between the sensor’s two electrodes and the load resistor (R L) connected in series. When DC is used for Vc, the polarity shown in Figure 2 must be maintained. The Vc may be applied intermittently. The sensor signal (V RL) is measured indirectly as a change in voltage across the R L. The Rs is obtained from the formula shown at the right.Fig. 1 - Sensor structureVc - V RLV RLRs = x R LFormula to determine RsFig. 2 - Basic measuring circuitNOTE: In the case of V H, there is no polarity, so pins 1 and 4 can be considered interchangeable. However, in the case of V C, when used with DC power, pins 2 and 3 must be used as shown in theFigure above.TGS2611-E00Sensingelement1-5 Circuit & operating conditionsThe ratings shown below should be maintained at all times to insure stable sensor performance:1-6 Specifications NOTE 1Mechanical Strength:The sensor shall have no abnormal findings in its structure and shall satisfy the above electrical specifications after the following performance tests:Withdrawal Force - (pin from base) Vibration - Shock -withstand force of 5kg in each directionfrequency-1000cycles/min.,total amplitude-4mm, duration-one hour, direction-verticalacceleration-100G, repeated 5timesNOTE 1: Sensitivity characteristics are obtained under the following standard test conditions:(Standard test conditions)Temperature and humidity: 20 ± 2˚C, 65 ± 5% RH Circuit conditions:Vc = 5.0±0.01V DCV H = 5.0±0.05V DC R L = 10.0k Ω ± 1%Preheating period: 7 days or more under standard circuit conditions.1-7 DimensionsFig. 3 - Sensor dimensionsAll sensor characteristics shown in this brochure represent typical characteristics.Actual characteristics vary from sensor to sensor and from production lot to production lot. The only characteristics warranted are those shown in the Specification table above.TGS2611-C00 TGS2611-E00Pin connection: 1: Heater2: Sensor electrode (-) 3: Sensor electrode (+) 4: Heater2-1 Sensitivity to various gasessensor resistance in 5000ppm of methane (Ro).sensitivity to methane.and with a matched R Lvoltage (V RL) change as shown in Figure 5. NOTE:calibration is required for each sensor (for Toxic and Explosive Gas Leak Detectors’).under various ambient conditionsTable 1 - Temperature and humidity dependency(typical values of Rs/Ro for Fig. 6)Table 1 shows a table of values of the sensor’s resistance ratio (Rs/Ro) under the same conditions as those used to generate Figure 6.Figure 7 shows the sensitivity curve for TGS2611 to methane under several ambient conditions. While temperature may have a large influence on absolute Rs values, this chart illustrates the fact that effect on the slope of sensor resistance ratio (Rs/Ro) is not significant. As a result, the effects of temperature on the sensor can easily be compensated.For economical circuit design, a thermistor can be incorporated to compensate for temperature (for additional information on temperature compensation in circuit designs, please refer to the Technical Advisory ‘Technical Information on Usage of TGS Sensors for Toxic and Explosive Gas Leak Detectors’).2-3 Heater voltage dependencyratio according to variations in heater voltage (V typical characteristics shown in this brochure.2-4 Cautions on sensor power consumptionFigure 9relationship is referred to as V-I characteristics.basic measuring circuit (see Figure 2and can be calculated according as follows:Ps =where :R L : Load resistor value (k Ω)V RL : Sensor output voltage (v)Vc : Circuit voltage (v)Ps : Power consumption (mW)Vc 2/(4 x R L damage to the sensor due to Joule heat.minimum R L voltage.Table 2 - Minimum suggested R L valuesV RL x (Vc-V RL )R L2-7 Long-term characteristics3000ppm of ethanol.were powered under standard test conditions. 1000ppm of iso-butane.to a stable level within three days of energizing.As the charts presented in this section illustrate, the sensor shows stable long term characteristics.3. Reliability3-1 Corrosion testFigure 15 shows the effect on TGS2611 of corrosivegases specified in Item 43.15 of the UL 1484 standard.Sensor resistance prior to corrosive gas exposure wasmeasured. Unenergized sensors were then placedinto an environment of 23˚±2˚C and 95%RH. In thisenvironment, two separate tests were conducted: onein 0.1% H2S, the other in a combination of 0.5% SO2and 1.0% CO2, with each test exposure lasting 10days. After this exposure, the sensor was re-energized in normal air prior to measuring sensorresistance after removal from corrosive gases.As this data would suggest, sensor characteristics aretemporarily influenced by exposure to corrosive gasconcentrations specified by Sec. 43.15 of UL 1484,TGS2611 has been successfully tested against theignition test requirements of the UL1484 standard.The sensor did not initiate ignition of a propaneFigure 16 shows how the sensor signal (V RL) isaffected by air flow. The test procedure involvessituating the sensor in an air stream of 3.1 meters persecond, with the air flow vertical/horizontal to theflameproof stainless steel double gauze of theThe decrease in sensor signal shown in Figure 16resulted from the decrease in sensor elementtemperature caused by the air flow. As a result, directFig. 16 - Effect of air flow on TGS2611-C00Fig. 17 - Test procedure for heater durability3-4 Heater resistance durabilityFigure 17 illustrates the procedure for testing the effects of excess voltage applied to the heater. Heater resistance was measured while the heater was unpowered and at room temperature.The results of this test are shown in Figure 18 which shows the change in resistance of the heater when various heater voltages (rather than the standard 5.0V) are applied in the absence of gases.As this section demonstrates, the heater shows good durability against increased heater voltage.However, since excessive heater voltage will cause the sensor’s heater resistance to drift upwards,excessive heater voltage should still be avoided.standard circuit conditions. After returning the sensorexposure as shown in Figure 20.The result of the above test is shown in Fig. 20. A 10% iso-butane exposure for 60 seconds appears to cause an increase in Rs in gas. Furthermore, sensor to its original value after energizing in normal air.may cause a permanent change in the sensor’sdone, it must be carefully administered to avoid sensor damage.NOTE: To achieve the optimal level of accuracy in gas detectors, each TGS2611 sensor should be individually calibrated by matching it with a load resistor (R L) in an environment containing the target gas concentration for alarming (refer to Fig. 2).For the convenience of users, TGS2611 is classified into 24 groups according to the each sensor’s Rs in methane. ID numbers marked on the sensor’s body indicate the sensor’s grouping. Individual sensor calibration can be eliminated by matching the sensor with the recommended R L for each sensor ID. However, because group calibration is used instead of individual calibration, an average of 10% less accuracy would result for detectors using group calibration. Please refer to “Application Notes for TGS2611” for more information.4 Cautions on Usage of Figaro Gas Sensors4-1 Situations which must be avoided1) Exposure to silicone vaporsIf silicone vapors adsorb onto the sensor’s surface, the sensing material will be coated, irreversibly inhibiting sensitivity. Avoid exposure where silicone adhesives, hair grooming materials, or silicone rubber/putty may be present.2) Highly corrosive environmentHigh density exposure to corrosive materials such heater material.3) Contamination by alkaline metalsSensor drift may occur when the sensor is contaminated by alkaline metals, especially salt water spray.4) Contact with waterSensor drift may occur due to soaking or splashing the sensor with water.5) FreezingIf water freezes on the sensing surface, the sensing material would crack, altering characteristics.6) Application of excessive voltageIf higher than specified voltage is applied to the sensor or the heater, lead wires and/or the heater may be damaged or sensor characteristics may drift, even if no physical damage or breakage occurs. 7) Operation in zero/low oxygen environment TGS sensors require the presence of around 21% (ambient) oxygen in their operating environment in order to function properly and to exhibit characteristics described in Figaro’s product literature. TGS sensors cannot properly operate in a zero or low oxygen content atmosphere.8) Excessive exposure to alcoholIF TGS2611-E00 is exposed to high concentrations of alcohol (such as 10,000ppm or more) for a long period of time, the filter may become saturated. In this case,Figaro USA Inc. and the manufacturer, Figaro Engineering Inc. (together referred to as Figaro)reserve the right to make changes without notice to any products herein to improve reliability,functioning or design. Information contained in this document is believed to be reliable. However, Figaro does not assume any liability arising out of the application or use of any product or circuit describedherein; neither does it convey any license under its patent rights, nor the rights of others.Figaro's products are not authorized for use as critical components in life support applications wherein a failure or malfunction of the products may result in injury or threat to life.the sensor would show a lower resistance in alcohol than that indicated in Figure 4a.4-2 Situations to be avoided whenever possible 1) Water condensationLight condensation under conditions of indoor usage should not pose a problem for sensor performance.However, if water condenses on the sensor’s surface and remains for an extended period, sensor characteristics may drift.2) Usage in high density of gasSensor performance may be affected if exposed to a high density of gas for a long period of time,regardless of the powering condition.3) Storage for extended periodsWhen stored without powering for a long period, the sensor may show a reversible drift in resistance according to the environment in which it was stored.The sensor should be stored in a sealed bag containing clean air; do not use silica gel. Note that as unpowered storage becomes longer, a longer preheating period is required to stabilize the sensor before usage .4) Long term exposure in adverse environmentRegardless of powering condition, if the sensor is exposed in extreme conditions such as very highhumidity, extreme temperatures, or high contamination levels for a long period of time, sensor performance will be adversely affected.5) VibrationExcessive vibration may cause the sensor or lead wires to resonate and break. Usage of compressed air drivers/ultrasonic welders on assembly lines may generate such vibration, so please check this matter.6) ShockBreakage of lead wires may occur if the sensor is subjected to a strong shock.7) SolderingIdeally, sensors should be soldered manually.However, wave soldering can be done under the following conditions:a) Suggested flux: rosin flux with minimal chlorine b) Speed: 1-2 meters/min.c) Preheating temperature: 100±20˚C d) Solder temperature: 250±10˚Ce) Up to two passes through wave soldering machine allowedResults of wave soldering cannot be guaranteed if con-ducted outside the above guidelines since some flux vapors may cause drift in sensor performance similar to the effects of silicone vapors.。

甲烷泄露报警器的安装说明

甲烷泄露报警器的安装说明

甲烷泄露报警器的安装说明
 如今,在各个办公场所,智能家居,工厂中多多少的的会用到气体报警器,甲烷作为天然气与煤气的燃料,广泛的应用在民用与工业中。

那我们先了解
一下甲烷泄露报警器的一些作用,甲烷泄露报警器就是甲烷气体浓度泄露检
测报警仪器。

当环境中甲烷气体泄露,气体报警器检测到气体浓度达到爆炸
或中毒报警器设置的临界点时,报警器就会发出报警信号,以提醒工作采取
安全措施,并驱动排风、切断、喷淋系统,防止发生爆炸、火灾、中毒事故。

现在我们来教大家甲烷泄露报警器的正确安装方式,让它更好的服务于我们,保障我们的日常生活安全。

 甲烷泄露报警器的正确安装方式:距离气源半径1.5米范围内,通风良好处:。

日本费加罗FIGARO 甲烷气体预校准模块 FSM-T-01

日本费加罗FIGARO 甲烷气体预校准模块 FSM-T-01

FSM-T-01 甲烷气体预校准模块
特点:
应用:
* 气体浓度以通讯方式数字化定量输出 * 可编程设置报警点输出 * 工厂校准,温度补偿 * 体积小,低成本
FSM-T-01是甲烷气体报警器的预校准模块。

此模块 采用TGS2611传感器配合优化的经典电路测量甲烷气体 浓度,经过天津费加罗高精度的标定设备进行预校准,并 以成熟的老化工艺生产。

本模块设计旨在最大限度地为 用户节省开发及生产成本,让用户可以更容易,更简单地 制造出民用天燃气气体报警器。

* 甲烷气体报警器的前端方案
* 简易甲烷气体报警输出
引脚连接:
考虑方便用户使用,本模块设计有两种不同的接口。

TTL 电 平的异步通讯接口允许用户用非常简单的命令读取实时气体 浓度,亦可通过通讯编程设定不同的报警阈值。

当气体浓度 达到设定值时,Alarm 端子上会自动产生报警输出信号。

此外,本模块设计为插口式连接,小巧灵活,可以很方便地 周期性更换传感器。

对于某一块主板,也可以通过简单的插 拔更换不同的模块,实现甲烷或其他气体探测报警的功能。

说明:针对用户的不同需要,不同的被测气体、精度等级或模块的接口形式可以按照用户的需求单独定制,具体可咨询我们的相关技术人员。

规格:
结构及尺寸(单位mm ):
在此产品规格书中所显示的都是传感器的典型特性,实际的指标根据用户的 需求或有不同。

针对本模块的典型应用电路及通讯规约详见《FSM-T-01用户技术手册》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TGS2611 用于检测甲烷的气体传感器
* 低功耗
* 对甲烷气体灵敏度高* 使用寿命长、成本低 * 应用电路简单
特点:
应用:
* 家用气体泄漏报警器* 便携式气体检测仪
* 对气体设施进行泄漏检测
TGS2611对甲烷气体具有很高的灵敏度,由于其对挥发性的酒精 (居住环境常见的干扰气体)灵敏度很低,因而对于家庭用气体泄漏报警器来说是一种理想的传感器。

由于敏感素子体积很小,TGS2611的加热器电流仅需56mA ,传感器的检知部被收纳于标准的TO-5金属封装中。

TGS2611-C00不但体积小,而且响应性十分优异。

是气体泄漏检测仪的最佳选择。

TGS2611-E00中加装了可消除酒精等干扰气体影响的滤罩,具有对甲烷气体极高选择性的灵敏特性。

尤其适用于针对气氛复杂、要求严格的家庭环境进行检测的器具,是家用气体泄漏检测仪最理想的传感器。

下图所示在标准试验条件下(参见背面)测出具有代表性的灵敏度特性曲线。

纵坐标表示传感器电阻比 Rs/Ro ,Rs 与Ro 的定义如下:
Rs = 传感器在各种浓度气体中的电阻值Ro = 传感器在5000ppm 甲烷中的电阻值
重要提示: 费加罗传感器的使用条件将因不同客户的具体运用不同而不同。

费加罗强烈建议在使用前咨询我们的技术人员,尤其是当客户的检测对象
气体不在列表范围时,对于未经费加罗专业测试的任何使用,费加罗不承担任何责任。

Rs/Ro Rs/Ro 灵敏度特性:
R s /R o
R s /R o
REV.11/17
规格:
结构以及尺寸:
管脚连接: 1: 加热器
2: 传感器电极 (-) 3: 传感器电极 (+) 4: 加热器
功耗值(P S )可通过下式求出:
传感器电阻(R S )可根据V OUT (V RL )的
测定值用下式求出:
(V C - V RL )2
R S
V C V RL
R S = ( - 1) x R L P S =
在此产品规格书中所显示的都是传感器的典型特性,实际的传感器特性因产品不同而不同,详
情请参阅各传感器唯一对应的规格表。

TGS2611-C00 TGS2611-E00。

相关文档
最新文档